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Robust Adaptive Control for Robotic Systems 
with Guaranteed Parameter Estimation 

 

Baorui Jing, Jing Na1, Guanbin Gao, Guoqing Sun 

Faculty of Mechanical & Electrical Engineering, Kunming University of Science 
& Technology. 650500, Kunming, China 

Abstract. In most adaptive control systems with unknown parameters, the 
adaptive laws are usually designed based on the predictor/observer error or control 
error. In this paper, we propose a novel adaptive control scheme for nonlinear 
robotic systems by incorporating the parameter error into the adaptive law, which 
leads to guaranteed estimation performance. By carrying out filter operations, the 
robotic system can be linearly parameterized without using the measurements of 
acceleration. Then a new adaptive algorithm is introduced to guarantee that the 
parameter error and control error exponentially converge to zero. In particular, we 
provide an intuitive method to online verify the standard PE condition used for the 
parameter estimation. The robustness against disturbances is also studied and 
appropriate comparisons to several adaptive laws are provided. Simulations with a 
realistic robot arm are presented to validate the improved performance. 

Keywords: Adaptive control, parameter estimation, robotic system, PE condition. 

1. Introduction 

Adaptive control [1] and robust adaptive control [2] have been widely usedto 
achieve tracking control for systems with unknown parameters. In the classical 
framework, the parameter adaptive laws are driven by the control errors to achieve 
the tracking error convergence and to remain the boundedness of the parameter 
estimation with e-modification and σ-modification [2]. However, it is not trivial to 
guarantee that the parameter estimations converge to their true values [3]. In 
particular, the required persistent excitation (PE) condition is generally difficult to 
verify. In [4, 5], a composite adaptive control has been developed to improve the 
control and estimation performance, where the adaptive laws are designed by 
combining the tracking error and the prediction error. However, since the adaptive 
laws are again driven by the induced output errors of controllers and predictions, 
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the convergence performance heavily depends on the convergence of presented 
predictor and the overall control systems.  

Recently, an alternative adaptive scheme has been proposed to address the 
parameter estimation problem, where the information of parameter error (the error 
between the unknown parameters and its estimated values) is explicated obtained 
and used to drive the adaptive laws [6]. In particular, in our previous work [7-9], 
several novel direct estimation schemes are proposed by introducing novel filter 
operations, so that the unstable integrator and the online calculation of a matrix 
inverse in [6] are all avoided. Moreover, exponential and/or finite-time error 
convergence are retained under a verify excitation condition. 

With the development of modern industry, the demand for robotic manipulators 
has increased, and thus adaptive control of robotic systems has also been rapidly 
developed (e.g., [4, 10, 11]) since 1980s when the linear parameterization of 
nonlinear robot dynamics was introduced [4, 12]. In adaptive control proposed in 
[13], the inversion of the estimated inertia should be computed . In [11], the need 
of robotic joint acceleration measurements limits the practical applicability of such 
a control system [14]. Moreover, in these methods only the convergence of the 
tracking error can be proved, while the parameter estimation convergence has not 
been addressed. In our previous work [15], a terminal sliding mode (TSM) control 
was proposed for nonlinear robotic systems to achieve finite-time convergence by 
incorporating the ideas of adaptive laws [8] into the adaptive control, where the 
potential singularity problem ins TSM is avoided and the joint accelerations are 
not used by introducing new filer operations as [14]. However, this two-phase 
control leads to complexities in the analysis and practical implementations.  

In this paper, we further revisit the adaptive control for robotic systems with 
unknown parameters, where the parameter estimation is also studied. The new 
adaptive control strategy will incorporate the parameter estimation methods 
proposed in [8] into the adaptive control to achieve exponential convergence of 
the tracking control and parameter estimation simultaneously. In particular, a new 
modification term with the estimation error is adopted as a new leakage term in 
the adaptive law. In contrary to [15], only one phase control is used to simplify the 
control implementation. The robustness of the proposed schemes against external 
disturbances is analyzed and comparisons to classical adaptive laws are provided. 
Specifically, we have proved that the required excitation condition is equivalent to 
the standard PE condition, and then suggested an intuitive scheme is to verify the 
standard PE condition. Finally, simulations based on a 6-DOF robot arm model 
are presented to validate the performance of the new method. 

The paper is organized as follows: We start with studying the modeling of 
nonlinear robotic systems in Section 2; Section 3 introduces an adaptive control 
design for robotic systems. The robustness analysis and comparisons to other 
adaptations are presented in Section 4. Simulation results are provided in Section 
5 and some conclusions are outlined in Section 6. 
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2. Problem formulation 

An n-degree of freedom (DOF) robot arm is a highly nonlinear system. In this 
paper, we consider a general structure of the robot systems modeled by: 

 ( ) ( , ) ( )M q q C q q q G q τ+ + =   (1) 
where , , nq q q∈ are the robot arm joint position, velocity and acceleration, 
respectively; n is the number of the DOF of robot, nτ ∈ is the control input 
torque; ( ) n nM q ×∈ is the inertia matrix, ( , ) n nC q q ×∈  represents the Coriolis/ 
centripetal torque, viscous and nonlinear damping, and ( ) nG q ∈  denotes the 
gravity torque. 

  The following properties will be used in the adaptive control design [12]: 
Property 1. The matrix ( ) 2 ( , )M q C q q− is skew-symmetric, then 

 ( ) 2 ( , ) 0, , ,T nx M q C q q x x q q⎡ ⎤− = ∈⎣ ⎦   (2) 

Property 2. The dynamics of robotic system (1) can be represented as a linearly 
parameterized form 

 ( ) ( , ) ( ) ( , , )M q q C q q q G q q q qφ θ+ + =   (3) 
where Nθ ∈ is a constant parameter vector which contains the parameters to be 
estimated, ( , , ) n Nq q qφ ×∈  is the known dynamic regressor matrix. 

Definition 1. [1] A vector or matrix function φ  is persistently excited (PE) if there 

exist 0, 0T ε> >  such that ( ) ( ) ,   0
T Tr r dr I

τ

τ
φ φ ε τ

+
≥ ∀ ≥∫  

3. Adaptive control with guaranteed parameter estimation 

For the sake of achieving the tracking control for a given reference dq  and the 
estimation of unknown parameter θ , the parameter error will be obtained and then 
used in the control design of robotic system (1) in this section. 

We first define a control error variable as 
 rS e e q qλ= + = −   (4) 

where de q q= − ; r dq q eλ= +  is the tracking error and its derivative r dq q eλ= +  

can be calculated based on , , ,d dq q q q . 
Then based on Property 2, we define  
 R( , ) ( ) ( , ) ( ) ( , )r rR q q M q q C q q q G q q q θ= + + = Φ   (5) 
Then the robotic system (1) can be reformulated as 
 ( ) ( , ) ( , )M q S C q q R q q τ+ − = −   (6) 
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As shown in (5), the joint acceleration measurement q   does not appear in the 
regressor R ( , )q qΦ , thus R ( , )q qΦ  can be used in the control design. However, 
for the purpose of parameter estimation with (6), the joint acceleration q  is 

involved in the derivative S . To eliminate the requirements of S , we define 
auxiliary functions ( , ) ( )F q q M q S=  and ( , ) ( ) ( , )H q q M q S C q q S= − + as [14] as 

 
( , ) ( ) ( , )

( , ) ( ) ( , ) ( , )
F

H

F q q M q S q q

H q q M q S C q q S q q

θ

θ

= = Φ⎧⎪
⎨

= − + = Φ⎪⎩
  (7) 

Then, the system (6) can be rewritten as 
( , ) ( , ) ( , ) [ ( , ) ( , ) ( , )] ( , , )F H RF q q H q q R q q q q q q q q q q qθ θ τ+ − = Φ +Φ −Φ = Φ = −  (8) 

where ( , ) [ ( ) ] ( , )F
dF q q M q S q q
dt

θ= = Φ  is the derivative of ( )M q S  and 

( , , ) [ ( , ) ( , ) ( , )]F H Rq q q q q q q q qΦ = Φ +Φ −Φ  is the regressor matrix. However, 
because ( , )F q q  and thus the regeressor ( , , )q q qΦ  contain the joint acceleration 
q , Eq.(8) cannot be used for parameter estimation when the joint acceleration q  
is not measurable.  

To eliminate the use of q  in the parameter estimation, we introduce a stable 
filter operation on both sides of (8) as 

 

, |

, |

, |

, |

Ff Ff F Ff t 0

Hf Hf H Hf t 0

Rf Rf R Rf t 0

f f f t 0

k 0

k 0

k 0

k 0τ τ τ τ

=

=

=

=

⎧ Φ +Φ = Φ Θ =
⎪
Φ +Φ = Φ Θ =⎪

⎨
Φ +Φ = Φ Θ =⎪

⎪ + = =⎩

  (9) 

where k 0> is a constant filter parameter, ( , ), ( , ), ( , )Ff Hf Rfq q q q q qΦ Φ Φ and 
( , ), ( , ), ( , ),f f f fF q q H q q R q q τ  are the filtered form of ( , ), ( , ), ( , )F H Rq q q q q qΦ Φ Φ  

and ( , ), ( , ), ( , ),F q q H q q R q q τ , respectively. Then from (8)~(9), we obtain 
( , ) ( , ) ( , ) [ ( , ) ( , ) ( , )]f f f Ff Hf Rf fF q q H q q R q q q q q q q q θ τ+ − = Φ +Φ −Φ = −   (10) 

According to the first equation of (9), we get F Ff
Ff k

Φ −Φ
Φ = , sot that the 

system (10) can be rewritten as 

 
( , ) ( , )

( , ) ( , ) ( , )F Ff
Hf Rf f f

q q q q
q q q q q q

k
θ θ τ

Φ −Φ⎡ ⎤
+Φ −Φ = Φ = −⎢ ⎥

⎣ ⎦
  (11) 

where 
( , ) ( , )

( , ) ( , ) ( , )F Ff
f Hf Rf

q q q q
q q = q q q q

k
Φ −Φ

Φ +Φ −Φ  is a new regressor. 

In this case, the acceleration q  is avoided and (11) will be used for estimation. 
In the following developments, we will accommodate the parameter estimation 

by introducing the auxiliary matrix ( ) N NP t ×∈ , vector ( ) NQ t ∈  and vector 
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( ) NW t ∈  as 

 

( ) ( ) , ( )

( ) ( ) , ( )
ˆ( ) ( ) ( )

T
f f

T
f f

P t P t P 0 0

Q t Q t Q 0 0

W t P t Q t

τ

θ

⎧ = − +Φ Φ =
⎪⎪ = − +Φ =⎨
⎪

= −⎪⎩

  (12) 

where 0>  is a designed parameter, θ̂  is the estimated parameter. 
As shown in [9], we know ( ) ( )Q t P t θ= , and thus derive from (11)~(12) that 

 ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )W t P t Q t P t P t P tθ θ θ θ= − = − = −   (13) 

where ˆθ θ θ= −  is the parameter estimation error. 
Then we can design an adaptive control for system (1) as 
 ˆ( , )R q q KSτ θ= Φ +   (14) 

where K>0 is a constant feedback gain matrix. 
The adaptive law to update the parameter estimation θ̂  is provided by 

 ( )ˆ ( , )T
R= q q S Wθ κΓ Φ −   (15) 

where 0Γ >  and 0κ >  are the adaptive learning gains. 
Substituting (14) into (6), we obtain the closed-loop error dynamics as 
 ( ) ( , ) ( , )RM q S C q q S KS q q θ+ + = Φ   (16) 

Remark 1: The term W  in (15) is a new leakage term imposed in the adaptive 
law (15), which were used to achieve parameter estimation convergence (as will 
be shown later). This is clearly different to classical e-modification and σ-
modification [2]. Moreover, by introducing filter operation (9), system (8) is 
reformulated as (11), so that the joint acceleration q  is avoided in both of the 
adaptive control (14) and the adaptive law (15). 

 
To prove the error convergence of (15) and (16), we need to analyze the 

positive definiteness of matrix ( )P t  in (12) as: 

Lemma 1. If the vector fΦ  in (8) is persistently excited (PE), then the matrix P  

in (12) is positive definite, i.e., min ( ) 0Pλ σ> > for a positive constant σ . On the 

other hand, the positive definiteness of P  also implies that fΦ  is PE. 

Proof: From Definition 1, the PE condition ( ) ( )
t T

f ft
r r dr I

τ
ε

+
Φ Φ ≥∫  is equivalent 

to 
-

( ) ( )
t T

f ft
r r dr I

τ
εΦ Φ ≥∫  for 0t τ> > . 

We first prove that if fΦ  is PE, then P  is positive definite ( min ( ) 0Pλ σ> > ). 

Based on the above analysis, if fΦ  is PE, then 
-

( ) ( )
t T

f ft
r r dr I

τ
εΦ Φ ≥∫  holds for 

0t τ> > , such that the following inequality is true 
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( ) ( ) ( ) ( ) ( )
t tt r T T

f f f ft t
e r r dr e r r dr e Iτ τ

τ τ
ε− − − −

− −
Φ Φ ≥ Φ Φ ≥∫ ∫  (17) 

which is obtained via the fact ( ) 0t re e τ− − −≥ > for the integral interval [ , ]r t tτ∈ − . 
Moreover, it can be verified for all 0t τ> >  that 

( ) ( )

0
( ) ( ) ( ) ( )

t tt r T t r T
f f f ft

e r r dr e r r dr
τ

− − − −

−
Φ Φ > Φ Φ∫ ∫   (18) 

From (17)~(18), one can conclude that 
( )

0
( ) ( ) ( ) ( )

t tt r T T
f f f ft

P e r r dr e r r dr e Iτ τ

τ
ε− − − −

−
= Φ Φ > Φ Φ ≥∫ ∫   (19) 

This implies that P  is positive definite and thus min ( ) 0Pλ σ> >  for e τσ ε−= . 
Now, we will prove that if P is positive definite, then fΦ is PE. If P  is positive 

definite, i.e., ( )
1 0

( ) ( )
t t r T

f fP e r r dr Iε− −= Φ Φ ≥∫  for positive constant ε , it follows 

( )

0

( ) ( )

0

1

( ) ( )

( ) ( ) ( ) ( )

|| || ( ) ( )

t t r T
f f

t tt r T t r T
f f f ft

t T
f f ft

I e r r dr

e r r dr e r r dr

e I r r dr

τ

τ

τ

τ

ε

φ

− −

− − − − −

−

−

∞ −

≤ Φ Φ

= Φ Φ + Φ Φ

≤ + Φ Φ

∫
∫ ∫

∫

 (20) 

The last inequality is obtained from the use of ( )

0
/

t t re dr e
τ τ− − − −≤∫ . Thus 

Eq.(4) gives 
†( ) ( ) ,   for 

t T
f ft

r r dr I t
τ

ε τ
−
Φ Φ ≥ ≥∫   (21) 

where †
1|| || / 0fe τε ε φ−

∞= − >  for sufficiently large  and τ . This implies that 
the regressor matrix fΦ  is PE. 

Remark 2: In all of our previous work [7-9, 15], we have only proved that the 
standard PE condition is sufficient to guarantee positive definiteness of matrix 

( )P t , i.e., the PE condition of fΦ  implies min ( ) 0Pλ σ> > . However, the inverse 

of this claim (i.e., min ( ) 0Pλ σ> > implies the PE of fΦ ) was not addressed. In 

this paper, the second claim has been formally proved, and thus Lemma 1 in this 
paper is a more complete result paving a way for online verifying the PE condition, 
i.e., calculating the minimum eigenvalue of P  and testing for min ( ) 0Pλ σ> > . 
This scheme is numerically feasible. To the best of our knowledge, the issue for 
online verification of PE condition has rarely been solved in the literature. 

Now we have the following results: 
Theorem 1. For robotic system (1) with adaptive control (14) and adaptive law 
(15), if the regressor matrix fΦ  in (8) is PE, then the parameter error θ  and the 
tracking error S converge to zero exponentially. 
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Proof: We define Lyapunov candidate function as 

 -11 1
2 2

T TV S MS q q= + Γ   (22) 

Then the derivative V with respect to time t can be obtained along (15)~(16) as 

 

1 1( , ) ( )
2 2

T T T 1
R

T T

V S C q q S KS S M q S

S KS P
V

θ θ θ

κθ θ
μ

−⎡ ⎤= − − +Φ + + Γ⎣ ⎦

= − −
≤ −

  (23) 

where { }min max maxmin ( ) / ( ), / ( )12 K M 2μ λ λ κσ λ −= Γ  is a positive constant. 

Then according to Lyapunov theory, we conclude that S  and θ  are bounded and 
converge to zero exponentially with the convergence rate μ . 

Remark 3: As shown in Theorem 1, by introducing the leakage term Wκ  
containing the parameter estimation error ( )P t θ  in the adaptive law (15), a 

quadratic term T Pκθ θ  appears in the Lyapunov analysis (23), which can 
guarantee the exponential convergence of θ  and S  to zero simultaneously.  

4. Robustness analysis and comparisons 

We will study the s robustness of the proposed control and adaptive law. For 
this purpose, we introduce a bounded disturbance nξ ∈ in the robotic system (1) 
such that it can be presented as 

 ( ) ( , ) ( )M q q C q q q G q τ ξ+ + = +   (24) 
where , 0ξ ξξ ε ε≤ > . 

Then similar to Section 3, system (24) can be rewritten as 
 ( , )f f fq q θ τ ξΦ = +   (25) 

where fξ  is the filtered version of ξ  in terms by , ( )f f fk 0 0ξ ξ ξ ξ+ = = . 
Consequently, by defining the control error as (4) and using the same control 

(14), we can obtain the closed-loop error for (24) as 
 ( ) ( , ) ( , )RM q S C q q S KS q q θ ξ+ + = Φ +   (26) 

On the other hand, the auxiliary variable W defined in (12) can be represented 
as 

 ˆW P Q Pθ θ ψ= − = − +   (27) 

where ( ) ( ) ( )
t t r T

f f0
e r r drψ ξ− −= − Φ∫  is bounded by ψψ ε≤  for some 0ψε > . 

Then we have the following results: 
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Corollary 1. Consider system (24) with control (14) and adaptive law (15), if the 
regressor matrix fΦ  in (8) is PE, then the closed-loop system is stable, and the 

estimation error θ  and the tracking error S  converge to a small set around zero. 
Proof: Consider the Lyapunov function as 

 -1T T
2

1 1V S MS
2 2

θ θ= + Γ   (28) 

We know ( )( )min P t 0λ σ> >  holds, so that 2V can be calculated as 

 

-1

min

( , ) ( , )

( ) ( )

T T T
2

T T T T

2 2
22

2 2 2

1V S C q q S KS q q S MS
2

S KS S P

1 1K S
2 2 2 2

V

ξ ψ

θ ξ θ θ

ξ κθ θ θ ψ

ηε ηε
λ κσ θ

η η
μ γ

⎡ ⎤= − − +Φ + + + Γ⎣ ⎦

= − + − +

⎛ ⎞
= − − − − + +⎜ ⎟

⎝ ⎠
≤ − +

  (29) 

where { }min max maxmin ( ( ) / ) / ( ), ( / ) / ( )1
2= 2 K 1 2 M 2 1 2μ λ η λ κσ η λ −− − Γ  and 

/ /2 2
2= 2 2ξ ψγ ηε ηε+  are all positive constants for large 0η > . Based on the results 

in [16], we know that all signals in the closed-loop system are bounded, and the 
errors θ  and S  converges to small residual set around zero. 

Finally, we will compare the proposed novel adaptive law (15), with widely 
used gradient method and σ-modification . 

1) Gradient method [1]: The adaptive law for parameter estimation is solely 
driven by the tracking error S , i.e., the parameter = 0κ  in (15). Then we can 
obtain the estimation error as 

( , )T
R= q q Sθ −ΓΦ     (30) 

A critical problem of the gradient adaptation is the lack of guaranteeing the 
convergence of the estimation errorθ . This can be intuitively explained based on 
(30), i.e., the convergence of θ  to zero cannot be claimed even the tracking error 
S  converges to zero. This may lead to bursting phenomenon. 

2) σ -modification [2]:  A modification term ˆκθ  is used to replace the term Wκ  
in (15) to give the σ -modification method 

( )ˆ ˆ( , )T
R= q q Sθ κθΓ Φ −     (31) 

Then the estimation error can be obtained as 
ˆ( , ) ( , )T T

R Rq q S q q Sθ κθ κθ κθ= −ΓΦ +Γ = −Γ −ΓΦ +Γ  (32) 

The error equation (32) contains a term κθΓ  that is linear in θ , thus one can 
claim that the error dynamics in (32) are bounded-input-bounded-output (BIBO), 
i.e., the estimation error θ  is bounded for bounded S  and θ . However, the 
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involved damping term κθΓ  in (31) makes the estimated parameter θ̂  stay in the 
neighborhood of the pre-selected value only, rather than converge to its real value. 
In fact, when the tracking error 0S = , the transfer function of (32) from θ  to θ is 

p
κθθ
κ

Γ
=

+ Γ
 (p is the Laplace operation). Consequently, the ultimate bound of θ  

cannot be null. 

3) Proposed method: In this paper, a new leakage term Wκ  is included in the 
adaptive law (15), then the estimation error of can be given as: 

( , )T
RP q q Sθ κ θ= −Γ −ΓΦ    (33) 

It is shown that the error equation (33) introduces a forgetting factor Pκ θΓ  as 
σ -modification (32). Thus, the error θ  is also BIBO stable. Consequently, the 
robustness of the proposed adaptive law is compatible to σ -modification (32). 

 Moreover, the leakage term Wκ can update the estimated parameter θ̂  towards 

its true value θ . In fact, the error equation (33) is represented as
T
RS

p P
θ

κ
ΓΦ

=
+Γ

, so 

that 0θ → holds as long as 0S → . Thus, the adaptive law (15) can obtain better 
estimation performance thanσ -modification (32). 

5. Simulation 

In this paper, we use the derived model of a 6-DOF Robot Arm (which is 
purchased from Reinovo Ltd) for simulation. In order to simply the control design 
and to illustrate the parameter estimation performance, only two joints (joint 1 and 
joint 2 in Figure 1) of this robot arm are modeled in this paper.  

According to [17], we deduce the kinetic energy K  and the potential energy 
P  as 

 

2 2

2 2 2 2 2 2 2
1 1 1 2 2 1 2 2 2 2 2 1 2

1 1 1 2 2 1 2 1 1

1 1
2 2
1 1 1
2 2 2

( sin 320) [ sin( ) sin( ) 320]

mv I

m l q m l q m l q m l q q

mgh
m g l q m g l q q l q

ω= +

= + + +

=
= + + + + +

K

P

  (34) 

where v  and ω  are the velocity and angular velocity respectively. I  is the 
moment of inertia and h  is the height. 

The Lagrange’s equation of a robotic system is given by: 

 d
dt

τ∂ ∂
− =
∂Θ∂Θ

L L   (35) 
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where -=L K P  is the Lagrangian. 
Then the dynamics of the robotic arm is molded as 

 11 12 1 11 12 1 1

21 22 2 21 22 2 2

( ) ( ) ( , ) ( , ) ( )
( ) ( ) ( , ) ( , ) ( )

M q M q q C q q C q q q G q
M q M q q C q q C q q q G q

τ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (36) 

with 
2 2 2

11 2 2 1 2 1 2 1 2 2 12 21 2 2 2 1 2 2
2

22 2 2 11 2 1 2 2 2 12 2 1 2 2 2

21 2 1 2 1 2 22 1 2 2 1 2

( ) ( ) 2 cos( ), ( ) ( ) cos( )

( ) , ( , ) 2 sin( ), ( , ) sin( )
( , ) sin( ), ( , ) 0, ( ) cos(

M q m l m m l m l l q M q M q m l m l l q

M q m l C q q m l l q q C q q m l l q q
C q q m l l q q C q q G q m gl q q

= + + + = = +

= = − = −
= = = + 1 2 1 1

2 2 2 1 2

) ( ) cos( )
( ) cos( )

m m gl q
G q m gl q q

+ +
= +

where 1 2,m m  are the mass of robot arm, 1 2,l l  are the length of each link, 
9.18g =  is the gravity constant. 

 
Figure 1. 6-DOF Robot Arm 

In this study, we assume the unknown parameters to be estimated in system (36) 
is 1 2[ , ] [10,5]T Tm mθ = = , and the auxiliary variables ( , ), ( , ), ( , )F q q H q q R q q  can 
be derived as 

2 2 2
2 1 2 1 2 2 1 1 2 2 2 2 1 1
1 1 1 1

1 2 2 2 1 1 2 2 2 2 2 1 2
2 2

1 2 2 2 1 2 2

( , ) ( ) ( , ) ( )

( 2 cos( )) ( cos( ) ) cos( )
cos( )

2 sin( ) sin( ) cos( )

( cos( ) )
0

r r

r r
r

r r

r r

R q q M q q C q q q G q

l l l l q q l l q l q l g q
l q l g q

l l q q q l l q q q l g q q

l l q l q l q
l

= + +

+ + + + +
+

− − + +
=

+ +
+

1

2

1 2 2 1 1 2 1 2

( , , , )

sin( ) cos( )
R r r

r

q q q q

m
m

l q q q l g q q
Φ

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥

+ +⎢ ⎥⎣ ⎦

(37) 
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21 22 2 21 1 22 2

2 2 2 2
1 1 1 2 1 2 2 1 1 2 2 2 2

2 2
1 2 2 2 1 2 2

( , )

( ) ( ) ( ) ( )
( , )

( ) ( ) ( ) ( )

1( +2 cos( )) ( cos( ) )
12

0 ( cos( ) ) +
F q q

M q M q S M q S M q S
F q q

M q M q S M q S M q S

l S l l l l q S l l q l S

l l q l S l S
φ

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤+ + +⎢ ⎥=
⎢ ⎥

+⎢ ⎥⎣ ⎦

1

2

m
m
⎡ ⎤
⎢ ⎥
⎣ ⎦

  (38) 

11 111 1 12 2

21 121 1 22 2

1

1 2 1 1 2 2 2

( , )

( , ) ( ) ( , )

( , )( ) ( )
( , )( ) ( )

0 0
0 ( )sin( )

H q q

H q q M q S C q q S

C q q SM q S M q S
C q q SM q S M q S

m
l l S q q q m

φ

= − +

⎡ ⎤+ ⎡ ⎤
= − +⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

  (39) 

where [ ]1 2, TS S S=  is the control error with the parameter as [ ]( )5,5diagλ = . 

To guarantee the required excitation condition, we choose the reference as 
20sin(0.3 )dq t= , and we set the control feedback gain as ([10,10])K diag= . The 

parameters used in adaptive laws are set as 1, 0.001, 50k κ= = = and 20IΓ = . 
Comparative simulation results are shown in Figure 2, where the adaptive control  
(14) and the proposed adaptive law (15) and the gradient method (30) and σ-
modification (31) are all simulated with the same condition and parameters.  

The output tracking profiles and the tracking error of the proposed methods (14)
~(15) are shown in Figure.2 (a)-(b), where fairly good control performance is 
achieved. The evolutions of the estimated parameters with different adaptive laws 
are all depicted in Figure 2 (c). It is clearly shown that the estimated parameters 
with new adaptive law (15) converge to their true values very fast as we claimed 
in Theorem 1. However, the transient convergence performance for the gradient 
scheme is sluggish and with significant oscillations. Nevertheless, the steady-state 
error for σ-modification method (31) cannot converge to zero although its 
transient convergence is similar to that of the gradient scheme, which has been 
pointed out in Section 4.  

Finally, a bounded external disturbance 0.2sin( )tξ =  is applied on the control 
system to verify the robustness analysis as detailed in Section 4. As shown in 
Figure 2(d), the parameter errors of the new adaptive control methods converge to 
a very small set as well as the tracking error. However, the gradient method 
provides sluggish control and estimation performance though it performs slightly 
better than the σ-modification method. 

All of above simulation results show that the newly introduced leakage term in 
the adaptive law can improve the parameter estimation and thus the overall control 
performance. Moreover, the predictor used in the composite control scheme [3] is 
not used, and the joint accelerations are also avoided. 
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(a) Tracking control performance 

 
(b) Tracking errors 

 
(c) Parameter estimation performance 
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(d) Tracking and estimation errors under disturbances 

Figure 2. Adaptive control and parameter estimation performance. 

6. Conclusion 

This paper presents an alternative adaptive control method for robotic systems, 
which incorporates a new leakage term into the adaptive law. By introducing 
appropriate filter operations, the robotic acceleration measurements are avoided. 
Exponential convergence of the control error and parameter estimation error to 
zero can be achieved simultaneously. In particular, we prove that the required 
excitation condition is equivalent to the standard PE condition, and thus provide a 
numerically feasible and intuitive method to online verify the PE condition. The 
robustness and comparisons to other adaptive schemes are also provided and 
validated in terms of simulations based on a realistic robotic arm model.  
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