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Abstract 4 

A prototype Peltier thermoelectric cooling unit has been constructed to cool a cold finger on an 5 

electron microprobe. The Peltier unit was tested at 15W and 96W, achieving cold finger 6 

temperatures of -10°C and -27°C respectively. The Peltier unit did not adversely affect the analytical 7 

stability of the instrument. Heat conduction between the Peltier unit mounted outside the vacuum 8 

and the cold finger was found to be very efficient. Under Peltier-cooling, the vacuum improvement 9 

associated with water-vapour deposition is not achieved; this has the advantage of avoiding the 10 

severe degradation of the vacuum observed when warming up a cold finger from liquid nitrogen 11 

temperatures. Carbon contamination rates reduce as cooling commences; by  -27°C contamination 12 

rates were found to be comparable to liquid nitrogen cooled devices. Peltier cooling therefore 13 

provides a viable alternative to liquid nitrogen-cooled cold fingers, with few of their associated 14 

disadvantages. 15 

 Introduction 16 

Liquid nitrogen (LN2) cold fingers have been routinely used in electron probe microanalysis (EPMA) 17 

for many years to reduce carbon contamination and thereby aid the analysis of light elements 18 

(Bastin & Heijligers 1986, 1988, 2011). A key application driving developments in anticontamination 19 

for EPMA was and remains the analysis of low concentration carbon in ferrous alloys (Ong 1966, 20 

Swaroop 1973 and Yamashita et al. 2016).  21 

Quantification at low accelerating potentials using field-emission gun EPMA (FEG-EPMA) to provide 22 

high spatial resolution, has become an important new area where contamination poses a significant 23 

problem (Merlet & Llovet 2012; Buse & Kearns 2015).At such low voltage or low over-voltage 24 

conditions, surface contamination build-up results in a significant reduction in the landing energy of 25 

the beam, as well as contributing to additional absorption of emitting X-rays (Reed 1975). The 26 

growth of low-voltage FEG-EPMA  creates an impetus for developing a convenient and continuous 27 

anti-contamination device.  28 

Previous studies have suggested that cooling a cold finger to the temperature of liquid nitrogen was 29 

not required for effective decontamination. Indeed, temperatures in the range of -15 °C to -70 °C are 30 

found to be effective for cold fingers of different geometries and distances from the sample 31 

(Komoda & Morito 1960; Borile & Garulli 1978; Ranzetta & Scott 1966; Ennos 1954; Hirsch et al. 32 

1994). A detailed study by Hirsch et al. (1994) used a cold finger with the geometry of a cage 33 

surrounding, but not in contact, with the sample and cooled by LN2 to varying temperatures. They 34 

demonstrated that temperatures of -25 °C were comparable to –135 °C in reducing contamination. 35 

The implication that the temperature required can be significantly higher than LN2 presents the 36 

opportunity for using a Peltier thermoelectric cooling unit. Peltier devices readily achieve -25°C (50°C 37 

below ambient) and more powerful or stacked devices can achieve greater degrees of cooling, 38 

approaching 80 – 90°C from ambient (e.g. Hsu et al. 1996). The principal advantage of Peltier cooling 39 

is the ability to run the cold finger over long periods of time, not limited by the size of a nitrogen 40 

dewar and the requirement to keep it filled.  The absence of liquid nitrogen and the ability to run 41 

continuously would allow for the routine use of a cold finger for low voltage and light element 42 



analysis. Laboratory managers will breathe a collective sigh of relief that the burden of keeping a 43 

cryogenic liquid in their domain has passed. 44 

In this proof-of-concept study we have constructed a prototype Peltier-cooled cold finger. Using this 45 

prototype we have checked instrument analytical stability and assessed its effectiveness in anti-46 

contamination. 47 

Materials and Methods 48 

A Peltier-cooled cold finger was constructed by modifying a JEOL LN2 cold finger on a JEOL JXA8530F. 49 

The LN2 flask was removed and replaced with a water-cooled Peltier system as shown in figure 1. 50 

The Peltier unit is mounted outside the vacuum and consists of two Peltier devices (TEC1-12706) on 51 

either side of a central aluminium block. This central block is cooled and attached to the existing 52 

copper rod and cold finger of the JEOL cold finger assembly (see figure 1a-c), with each Peltier device 53 

possessing a water-cooled heat sink. To remove electrical interference on the electron beam the 54 

central aluminium block and the heat sinks were connected to earth. 55 

The temperature of the cold finger was measured using a k-type thermocouple attached to the cold 56 

finger inside the chamber (figure 1d). For greater sensitivity the vacuum was measured using the 57 

millivolt read-out from the JEOL Penning gauge calibrated to the digital output. 58 

Analyses were conducted on a carbon-coated polished andradite sample at 5 kV, 10 nA with a 1 μm 59 

beam size and a 10 μm spacing between analyses. Carbon-coated andradite was chosen as carbon is 60 

commonly used as a coating material in the analysis of silicate materials, developing on the work of 61 

Buse & Kearns (2015) examining methods of mitigating contamination in high-resolution low-voltage 62 

silicate analysis. After inserting samples into the analysis chamber, the instrument was left pumping 63 

for 2-3 hours to recover vacuum prior to cooling the cold finger. The initial vacuum at the start of the 64 

cooling experiments was comparable for both the Peltier test ( 3.6-3.7 x 10-4 Pa) and the LN2 test (3.6 65 

x 10-4 Pa). 66 

Calibrated backscattered electron (BSE) images were used to measure the amount of contamination 67 

build-up adjacent to the beam, similar to the method described by Buse & Kearns (2015). The BSE 68 

image intensity was calibrated for carbon thickness using two andradite samples with carbon coat 69 

thicknesses of 25 nm (the irradiated sample) and 32 nm respectively (measured in Buse & Kearns 70 

2015, using the thin film package GMRFilm). The contamination was measured by extracting line 71 

profiles through analysis spots from the calibrated images. For each contamination measurement 72 

the average of 3-4 analysis points was used.   73 

Results 74 

Beam stability, temperature and vacuum 75 

The Peltier unit does not degrade beam stability - the probe current remained stable whilst the 76 

Peltier unit was operating (Figure 2a) and beam shift when turning the Peltier unit on was 20 nm 77 

(Figure 2b). Table 1 gives the minimum temperature of the cold finger using LN2 and Peltier cooling. 78 

The Peltier unit was tested at two different power settings (15W and 96W). The heat conduction is 79 

efficient; the Peltier unit outside the vacuum recorded a temperature of -29°C when the cold finger 80 

inside the chamber recorded a temperature of -27°C. There is uncertainty in the minimum 81 

temperature of the cold finger achieved when using LN2, because K-type thermocouples are 82 

insensitive in this range. The measured temperatures of -171°C and -215°C using a Eurotherm gauge 83 

and the Omega thermocouple reference tables respectively reflect this and the actual temperature 84 

given the efficient heat conduction of the cold finger must be close to and not exceed -196°C the 85 

boiling temperature of LN2. 86 



Figure 3a compares the time scale required for cooling the cold finger using LN2 and Peltier cooling. 87 

Increasing the power supplied to the Peltier unit results in a more rapid initial cooling and a lower 88 

minimum temperature. Similarly with LN2 initial cooling is more rapid and the minimum temperature 89 

is much lower than the Peltier unit. The effect of temperature on vacuum pressure is given in Figure 90 

3b. Over the temperature range of Peltier cooling the vacuum pressure remains approximately 91 

constant. Conversely, over the temperature range of LN2 cooling, a step-change is observed in the 92 

vacuum level at ca. 115°C as the vapour pressure of water is crossed (-111°C at 1.33 x 10-4 Pa; Honig 93 

& Hook 1960). This change in vacuum explains why we observe the severe degradation of the 94 

vacuum on warming up the cold finger after LN2 cooling, which is not observed with Peltier cooling. 95 

Contamination rates 96 

During spot analysis carbon contamination forms ring shape deposits as hydrocarbons cracked by 97 

the electron beam deposit adjacent to the beam position (e.g. Castaing & Descamps 1954; Ranzetta 98 

& Scott 1964; Fourie 1976). In this study, contamination is quantified using BSE images calibrated for 99 

carbon thickness. The amount of contamination was measured at different temperatures by running 100 

a series of spot analyses (each for 180 seconds) during both Peltier and LN2 cooling of the cold 101 

finger. Contamination reduces as the cold finger is cooled.  Figure 4 is a series of carbon Kα x-ray 102 

maps of spot analyses taken at different cold finger temperatures when cooled by the Peltier unit 103 

and the effect can be clearly seen. By measuring the amount of contamination using calibrated BSE 104 

images, contamination is observed to reduce to similar levels for both LN2 and Peltier cooling (Figure 105 

5). The temperature at which minimal amounts of contamination is achieved is -27 °C for Peltier and 106 

-75°C for LN2 cooling.  107 

Line profiles of the carbon contamination associated with spot analyses are given in Figure 6a. The 108 

profiles show the build-up of carbon with time. The data plotted is for cold finger at room 109 

temperature, -27°C using Peltier cooling and -196°C using LN2 cooling. Contamination thickness 110 

proceeds in a very similar manner for Peltier and LN2 cooling (Figure 6b). Consistent with previous 111 

studies (e.g. Hirsch et al. 1994, Bastin & Heijligers 1988, 2011), when using a cold finger (Peltier or 112 

LN2 cooled) there is initial deposition during the first minute which quickly drops off, whereas for the 113 

case without anticontamination the rates are much higher and deposition continues with beam 114 

exposure time. 115 

Discussion 116 

Contamination is reduced to a similar amount with Peltier and LN2 cooling. The discrepancy in the 117 

temperature at which this is achieved observed at -75°C for LN2 and -27°C for Peltier cooling is 118 

consistent with a time lag response. The initial temperature drop using LN2 is rapid, with the cold 119 

finger quickly passing from 20°C to – 50°C (see Figure 3a) preventing contaminate precipitation 120 

keeping pace with temperature change. Given this, -27°C is a more accurate estimate of the 121 

minimum temperature required for effective anticontamination, which is consistent with the 122 

previous work by Hirsch et al. (1994) and comparable to that  of Heide (1963), where the minimum 123 

contamination was reached at about -40°C. The reason for an absence of further improvement when 124 

cooling the cold finger to liquid nitrogen temperatures is unclear. Heide & Urban (1972) record the 125 

temperature at which hydrocarbons start to condense as 6.8 °C with the partial pressure of 126 

hydrocarbons approaching 1 nTorr at -93.16 °C.  The critical temperature will depend on the species 127 

of hydrocarbons present, with the vapour pressure of mechanical oil crossed at ca. -10°C, whilst 128 

vacuum grease (apiezion L) is always below vapour pressure. Surfaces of the chamber on venting 129 

and of samples inserted into the machine also absorb a range of hydrocarbons with Campell & 130 

Gibbons (1966) ascribing the gradual reduction in hydrocarbon contamination to the crossing of a 131 



series of vapour pressures, and Hart et al. (1970) recording the presence of alkanes and alkenes 132 

which condense at temperatures <-75°C.   133 

It is unclear whether the carbon coat has an effect on the contamination rate or the temperature at 134 

which minimum contamination is observed. However, the data shows a close agreement with that of 135 

Hirsch et al. (1994) for uncoated polished copper.  136 

Restricting the cold finger to temperatures above the vapour pressure of water has a big advantage 137 

in avoiding the severe degradation of the vacuum when warming up the cold finger. It also greatly 138 

reduces the amount of contaminants deposited on the cold finger, water being the main gas species 139 

in the chamber (Hart et al. 1970; Heide & Urban 1972). The use of a Peltier unit allows long-term 140 

operation without the need for LN2 refilling. The long-term performance is unknown; as the cold 141 

finger becomes progressively coated in contaminants its performance may deteriorate, requiring 142 

periodic warming-up, similar to cryogenic pumps (Ash 1998). This effect will be greatly reduced 143 

compared to cryogenic pumps by not depositing water vapour on the cold finger, lengthening the 144 

time of operation.  145 

The data suggests that cooling beyond -27°C is not required. The absolute temperature achieved by 146 

the Peltier is dependent on the room temperature (kept constant at 21°C in this study) and the 147 

temperature of the water used to cool the heat sinks. Initial tests were run with cold mains water. 148 

Warmer water will reduce the temperature difference between the hot and cold sides of the Peltier 149 

devices and reduce the amount of cooling achieved. To ensure -27°C is always achieved more 150 

powerful Peltier devices or an increased number of devices is suggested for a revised Peltier unit. A 151 

closed-circuit chilled water supply would also be beneficial. 152 

The results suggest that there is no need to mount the Peltier unit within the vacuum chamber as 153 

the heat transfer between the Peltier unit and the cold finger is effective. In addition a Peltier unit 154 

within the vacuum chamber may have adverse effects on the electron beam as some form of heat 155 

extraction would be required. A disadvantage of mounting the Peltier unit outside the vacuum is 156 

that ice build-up was found to occur around the central cooled block over several days of operation. 157 

Improved insulation is required for a revised Peltier unit, excluding air from the cold surfaces. 158 

Conclusions and future refinements 159 

The anti-contamination performance of the prototype Peltier cooled cold finger when cooled to -160 

27°C is similar to a liquid nitrogen cooled cold finger. This is consistent with the results of Hirsch et 161 

al. (1994). The Peltier unit was mounted outside the vacuum. It produced efficient cooling of the 162 

cold finger and did not degrade the performance of the instrument.  Peltier cooled cold fingers are 163 

thus demonstrated viable and will provide a good alternative to LN2 cooling. They have the potential 164 

to run for extended periods of time, although periodic conditioning of the cold finger may be 165 

required. 166 

Two issues identified with the current prototype are: (1) ice deposition on the central cooled block 167 

mounted outside the vacuum and (2) maintaining the required temperature of -27°C to minimise 168 

contamination. To avoid ice deposition some form of air-tight insulation is recommended, probably 169 

through employing improved insulators. To ensure -27°C is always achievable the use of additional 170 

or more powerful Peltier devices requires to be tested; at present we only achieve -27°C operating 171 

the devices at their maximum power capacity. A chilled water supply to the heat sinks will further 172 

enhance heat transfer. 173 



Acknowledgments 174 

We would like to thank Chris Spencer (JEOL UK Ltd.) for valuable advice and support in fitting the 175 

Peltier unit onto the JEOL JXA 8530F EPMA. We would also like to thank Microscopy Society of 176 

America archivist Mike Marko for supplying Heide (1963) which is difficult to source. We wish to 177 

thank Mike Matthews and Jon Wade for reading and commenting on the manuscript. 178 

References 179 

Ash, G.S. (1998). Cryogenic Pumps. In Handbook of Vacuum Science and Technology, Hoffman, D.M., 180 

Singh, B. & Thomas III, J.H. (Eds.), pp. 149-182. San Diego, London: Academic Press. 181 

Bastin, G.F. & Heijligers, H.J.M. (1986). Quantitative Electron Probe Microanalysis of Carbon in Binary 182 

Carbides. X-ray Spectrometry 15, 135-141 183 

Bastin, G.F. & Heijligers, H.J.M. (1988). Contamination phenomena in the electron probe 184 

microanalyzer. In Microbeam Analysis, Newbury, D.E. (Ed.), pp. 325-328. San Francisco: Scan 185 

Francisco Press, Inc. 186 

Bastin, G.F. & Heijligers, H.J.M. (2011). Quantitative Electron Probe Microanalysis of Boron, Carbon, 187 

Nitrogen and Oxygen. The Netherlands, ISBN 978-94-6228-222-3 188 

Borile, F. & Garulli, A. (1978). Modifications to an Electron Microprobe to Aid in the Determination of 189 

Low Atomic Number Elements. X-ray Spectrometry 7, 124-131 190 

Buse, B. & Kearns, S. (2015). Importance of Carbon Contamination in High-Resolution (FEG) EPMA of 191 
Silicate Minerals. Microscopy and Microanalysis 21, 594-605. 192 
 193 

Campbell, A.J. & Gibbons, R. (1966). Specimen contamination in the electron microprobe. In The 194 

electron microprobe, McKinley, T.D., Heinrich, K.F.J. & Wittry, D.B. (Eds.), pp. 75-82. New York, 195 

London: John Wiley & Sons, Inc. 196 

Ennos, A.E. (1954). The sources of electron-induced contamination in kinetic vacuum systems. British 197 

Journal of Applied Physics 5, 27-31 198 

Fourie, J.T. (1976). Contamination Phenomena in Cryopumped TEM and ultra-high vacuum field-199 

emission STEM systems. Scanning Electron Microscopy, 53-60.  200 

Hart, R.K., Kassner, T.F. & Maurin J.K. (1970). The contamination of surfaces during high-energy 201 

electron irradiation. Philosophical Magazine 21, 453-467. 202 

Heide, H.G. (1963). The Prevention of Contamination without Beam Damage to the Specimen. In 203 

Proceedings of the Fifth International Congress on Electron Microscopy, Breese, S.S. (Ed.), pp. A4. 204 

Academic Press. 205 

Heide, H.G. & Urban K. (1972). A novel specimen stage permitting high-resolution electron 206 

microscopy at low temperatures. Journal of Physics E: Scientific Instruments 5, 803-808 207 

Hirsch, P., Kässens, M., Püttmann, M. & Reimer, L. (1994). Contamination in a Scanning Electron 208 

Microscope and the Influence of Specimen Cooling. Scanning 16, 101-110. 209 

Honig, R.E. & Hook, H.O. (1960). Vapor pressure data for some common gases. RCA Review 21, 360-210 

368.  211 



Hsu, C.C., Walsh, A.J., Nguyen, H.M., Overcashier, D.E., Koning-Bastiann, H., Bailey, R.C. & Nail, S.L. 212 

(1996). Design and Application of a low-temperature peltier-cooling microscope stage. Journal of 213 

Pharmaceutical Sciences 85 70-74  214 

Komoda, T. & Morito, N. (1960). Experimental Study on the Specimen Contamination in Electron 215 

Microscopy. Journal of Electron Microscopy 9, 77-80. 216 

Merlet, C. & Llovet, X. (2012). Uncertainty and capability of quantitative EPMA at low voltage – A 217 

review. IOP Conference Series: Materials Science and Engineering 32, 012016 218 

Ong, P.S. (1966). Reducing carbon contamination. In X-ray Optics and Microanalysis, Castaing, R., 219 

Deschamps, P. & Philibert, J. (Eds.), pp 181-192. Paris: Hermann. 220 

Ranzetta, G.V.T. & Scott, V.D. (1964). Electron-probe microanalysis of low atomic number elements. 221 

British Journal of Applied Physics 15, 263-274 222 

Ranzetta, G.V.T. & Scott, V.D. (1966). Specimen contamination in electron-probe microanalysis and 223 

its prevention using a cold trap. Journal of Scientific Instruments 43, 816-819 224 

Reed, S.J.B. (1975). Electron Microprobe Analysis. Cambridge, UK: Cambridge University Press 225 

Swaroop, B. (1973). Carbon and Case Depth Determination in Steel by Electron Microprobe. Review 226 

of Scientific Instruments 44, 1387-1389 227 

Yamashita, T., Tanaka, Y., Yagoshi, M. & Ishida, K. (2016). Novel technique to suppress hydrocarbon 228 

contamination for high accuracy determination of carbon content in steel by FE-EPMA. Scientific 229 

Reports 6, 29825 230 


