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Abstract

We derive a family of balance models for rotating stratified flow in
the primitive equation setting. By construction, the models possess
conservation laws for energy and potential vorticity and are formally
of the same order of accuracy as Hoskins’ semigeostrophic equations.
Our construction is based on choosing a new coordinate frame for the
primitive equation variational principle in such a way that the consis-
tently truncated Lagrangian degenerates. We show that the balance
relations so obtained are elliptic when the fluid is stably stratified and
certain smallness assumptions are satisfied. Moreover, the potential
temperature can be recovered from the potential vorticity via inver-
sion of a non-standard Monge–Ampère problem which is subject to
the same ellipticity condition. While the present work is entirely for-
mal, we conjecture, based on a careful rewriting of the equations of
motion and a straightforward derivative count, that the Cauchy prob-
lem for the balance models is well posed subject to conditions on the
initial data. Our family of models includes, in particular, the stratified
analog of the L1 balance model of R. Salmon.

1 Introduction

In 1996, R. Salmon published the last in a series of original papers promoting
the use of Hamiltonian approximation methods in the context of balance
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models for geophysical fluid flow [15]. His construction starts out from
the f -plane primitive equations in semigeostrophic scaling and derives a
simple Hamiltonian balance model, the large-scale semigeostrophic (LSG)
equations.

Salmon’s construction is a two-step process. The first step is a variational
analog of the geostrophic momentum approximation—certain terms in the
model Lagrangian are replaced by their geostrophic counterparts. Alterna-
tively, this step can be interpreted as imposing a constraint to geostrophic
balance in the underlying Hamilton’s principle. The second step is a near-
identity change of coordinates that brings the resulting equations of motion
into a very simple form. Salmon introduced his method first in the context
of the shallow water equations [14] where the two steps are clearly sepa-
rated and explained; the corresponding argument in [15] is less explicit in
this regard, but two steps can be performed in sequence there as well.

In the context of the shallow water equations, Salmon named the result
of the first step the “L1 model” referring to the fact that it accurately
represents the shallow water Lagrangian up to first order in the Rossby
number ε. The L1 model is globally well posed under mild conditions [6]
and is numerically robust, while its further simplification in the second step
of Salmon’s procedure yields a model which is dynamically ill posed for all we
know. Salmon’s derivation has been re-interpreted and generalized in [11],
the key idea being that Salmon’s two steps can be reversed: choosing a new
coordinate system first, expanding the Lagrangian in the small parameter,
and truncating the result at a chosen order of approximation will imply a
balance relation so long as the truncated Lagrangian is degenerate. The
balance relation may be interpreted as a Dirac constraint. Thus, achieving
degeneracy emerges as the key construction principle of balance models and
leads to a much greater flexibility in the possible choices of coordinates. In
this view, the apparent ill-posedness of Salmon’s LSG model emerges as the
loss of ellipticity in the potential vorticity inversion when a scalar parameter
λ, which controls the change of coordinates, approaches a critical value.

For stratified flow, the situation is less well studied. An early study of
Shepherd [16] focused on the depth invariant temperature (DIT) equations—
the restriction of the LSG equations to a single thermally active layer—which
show clear signs of numerical ill-posedness. To our knowledge, the matter
has not been pursued since, but by all appearance, the general stratified
LSG equations suffer from similar loss of regularity.

The stratified analog of the L1 model, implicit in Salmon’s work, was
first written out and solved numerically by Allen et al. [2] who also derive a
second order correction; cf. [1] for earlier work in the shallow water setting.
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They find that the L1 and L2 models perform rather well. Here, we ask the
following questions: Can the stratified L1 model can be cast in a potential
vorticity formulation? Is it as well behaved as its shallow water counterpart?
And is there a stratified analog of the generalized large-scale semigeostrophic
models introduced in [11]?

This paper provides, at a formal level, a positive answer to all of these
questions. Our construction follows [11] with one crucial difference. For
the shallow water equations, geostrophic balance determines the velocity
field completely. For the primitive equations, geostrophic balance can only
determine the velocity up to a constant of vertical integration which may
be a function of horizontal position. Without loss of generality, we can take
the vertical mean velocity ū as this constant of integration and split the
velocity field u = ū + û into its vertical average ū and perturbation field
û. Degeneracy of the Lagrangian can be imposed on the perturbation field
only. As in [11], this principle leads to a family of balance models controlled
by a parameter λ. The structure of the resulting Euler–Lagrange equations
is somewhat more complicated: they split into a transport equation for
the relative vorticity which determines the evolution of ū and a kinematic
balance relation which determines û.

By construction, this family of balance models has a materially advected
potential vorticity. The potential temperature can be computed from the
potential vorticity as the solution of a Monge–Ampère equation, thereby
gaining regularity in Sobolev space. Moreover, the perturbation field û is
determined by a second order linear balance relation. It turns out that the
ellipticity conditions for the two problems coincide: ellipticity requires a
stable stratification and sufficient smallness of the Rossby number relative
to relative vorticity and to gradients of potential temperature.

With this structure in place, we can identify three interesting special
cases for the parameter λ. When λ = 1

2 , the transformation reduces to the
identity up to the formal order of accuracy of the model and we obtain the
stratified analog of Salmon’s L1 model. We expect that this model is well
posed at least locally in time. When λ = 0, the balance relation gains two
additional derivatives relative to the general case. This corresponds directly
to the shallow water case discussed in [11]. Finally, when λ = −1

2 , we
obtain Salmon’s LSG equations. The balance relation ceases to be elliptic
and well-posedness is expected to fail.

Our work is entirely formal at this point, but we formulate the equations
of motion in a way we believe will be useful for proving well-posedness as
well as for numerical simulations. A complete proof of well-posedness will
require work well beyond the scope of this paper due to the nonlinear nature
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of the kinematic relations.
For simplicity, we assume a basin with a flat bottom, infinite horizontal

extend with decay toward a steady state at infinity, and a constant Coriolis
parameter. We believe that it is relatively straightforward to include bot-
tom topography terms and a spatially varying Coriolis parameter, as has
been done in the shallow water case [13], although the computation and the
resulting equations of motion will be much more complicated. The conser-
vation laws for energy and potential vorticity, however, remain simple even
when f is varying in the horizontal spatial variables, so that we provide a
brief account of the necessary modifications at the end of Section 6.

The paper is structured as follows. In Section 2, we introduce nota-
tion and state the primitive equations in semigeostrophic scaling. Section 3
reviews how the primitive equations arise as the Euler–Poincaré equations
from a variational principle and states the leading order thermal wind bal-
ance for later use. Section 4 contains the key steps of the derivation via
the method of degenerate variational asymptotics. Although it is a rou-
tine exercise to derive the resulting equations of motion, they need careful
rewriting to fully separate the dynamic from the kinematic part. This is
done in Section 5. In Section 6 we derive the expression for the potential
vorticity and show that the potential vorticity inversion is given by a non-
standard Monge–Ampère equation. The paper closes with a discussion of
the full system of balance model equations, three special cases, and brief
conclusions.

2 The primitive equations

The starting point of our investigation are the primitive equations (PE),
which describe atmospheric and oceanic flows in the Boussinesq and the hy-
drostatic approximation. Here, we consider the primitive equations in a very
simple setting: we neglect dissipation, write the equations on the f -plane,
use rigid lid upper boundary conditions, and exclude bottom topography.

Throughout the paper, we adapt the following notation: bold-face letters
always denote three-component objects, while regular typeface is used for
their horizontal parts; e.g., u = (u1, u2, u3)T = (u, u3)T , x = (x1, x2, z)

T =
(x, z)T , and∇ = (∂x1 , ∂x2 , ∂z) = (∇, ∂z). Further, we write u⊥ = (−u2, u1)T

to denote the counter clockwise rotation of u by π/2 and uh = (u, 0)T to
denote the projection of u onto the horizontal coordinate plane.

The non-dimensionalized primitive equations then read

ε (∂tu+ u · ∇u) + u⊥ =
ε

Fr2 ∇φ , (1a)
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∂zφ = θ , (1b)

∂tθ + u · ∇θ = 0 , (1c)

∇ · u = 0 , (1d)

where u denotes the full three-dimensional fluid velocity. For the sake of
brevity, we will refer to φ and θ as geopotential and potential temperature,
respectively, with the understanding that for the oceanic flows the respec-
tive physical quantities are pressure and buoyancy. We remark that the
atmospheric primitive equations take the form (1) in pressure coordinates.

The physical regime is determined by the Rossby number ε = U0/(fL0)
and the Froude number Fr = U0/(NH0), where U0, L0, F0, H0 are charac-
teristic values for horizontal velocity, horizontal length scale, and vertical
length scale, respectively; f denotes the Coriolis parameter which we as-
sume constant, and N is the Brunt–Väisälä frequency. In what follows, we
assume semigeostrophic scaling where Fr2 = ε� 1.

For simplicity, we study (1) in the strip Ω = R2 × [0,−H] of constant
height H with a solid bottom boundary and a rigid lid upper boundary, so
that

u3 = 0 for z = 0 and z = −H , (2a)

φ = 0 for z = 0 . (2b)

In the horizontal, we impose a sufficient rate of decay at infinity so that we
can freely integrate by parts in the horizontal variables without incurring
boundary terms. Thus, we are in exactly the setting in which Hoskins first
introduced a transformation to semigeostrophic coordinates [10].

We note that we could endow the balance models derived below with
periodic lateral boundary conditions. However, in the periodic setting, the
Coriolis parameter is not an exact scalar field (it cannot be written as the
two-dimensional curl of a vector potential), so that our derivation does not
literally apply; see [12] for a discussion of this issue in the shallow water
context.

3 Variational principle for the primitive equations

The primitive equations (1) can be derived from a variational principle as
follows. Let g denote the Lie algebra of vector fields on Ω satisfying the
incompressibility condition (1d) and boundary conditions (2), and let η
denote the flow of a time dependent vector field u ∈ g, i.e.,

η̇(a, t) = u(η(a, t), t) with η(a, 0) = a . (3)
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Here and in the following, the letter a is used for Lagrangian label coor-
dinates, while x = η(a, t) denotes the corresponding Eulerian position at
time t. As u is divergence free, η is volume preserving. In the following,
we shall write η̇ = u ◦ η for short. Correspondingly, advection of potential
temperature (1c) is equivalent to

θ ◦ η = θ0 , (4)

where θ0 is the given initial distribution of potential temperature.
Throughout the article, we use the letters L and ` (with appropriate sub-

scripts as necessary) to distinguish Lagrangians expressed in Lagrangian and
Eulerian quantities, respectively. With this notation in place, the primitive
equation Lagrangian reads

LPE(η, η̇; θ0) =

∫
Ω
R ◦ η · η̇ +

ε

2
|η̇|2 + θ0 η3 da , (5)

where ∇ × R = ez, the unit vector in z-direction. In other words, its
horizontal part R is a two-dimensional vector potential for the Coriolis pa-
rameter which, in non-dimensionalized variables, equals one. We note that
LPE can be expressed in terms of purely Eulerian quantities as

LPE(η, η̇; θ0) =

∫
Ω
R · u+

ε

2
|u|2 + θz dx ≡ `PE(u, θ) . (6)

More generally, LPE is invariant under compositions of the flow map with
arbitrary volume and domain preserving maps. This is known as the particle
relabelling symmetry, which implies a conservation law for the potential
vorticity, further discussed in Section 6 below.

Given a Lagrangian L satisfying the relabelling symmetry L(η, η̇; θ0) =
`(u, θ), the Euler–Poincaré theorem for continua ([8] or [9, Theorem 17.8])
asserts that the following are equivalent.

(i) η satisfies the variational principle

δ

∫ t2

t1

L(η, η̇; θ0) dt = 0 (7)

with respect to variations of the flow map δη = w ◦ η where w is a
curve in g vanishing at the temporal end points.

(ii) u and θ satisfy the reduced variational principle

δ

∫ t2

t1

`(u, θ) dt = 0 , (8)
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where the variations δu and δθ are subject to the Lin constraints

δu = ẇ +∇wu−∇uw = ẇ + [u,w] , (9a)

δθ +w · ∇θ = 0 , (9b)

with w as in (i).

(iii) m and θ satisfy the Euler–Poincaré equation∫
Ω

(∂t + Lu)m ·w +
δ`

δθ
Lwθ dx = 0 (10)

for every w ∈ g, where L denotes the Lie derivative and m is the
momentum one-form

m =
δ`

δu
. (11)

In the language of vector fields in a region of R3, the Euler–Poincaré
equation (10) reads∫

Ω

(
∂tm+ (∇×m)× u+∇(m · u) +

δ`

δθ
∇θ
)
·w dx = 0 (12)

for every w ∈ g. Due to the Hodge decomposition, the term in parentheses
must be a gradient, i.e.,

∂tm+ (∇×m)× u+
δ`

δθ
∇θ =∇φ̃ . (13)

Noting that
δ`PE

δu
= R+ εuh and

δ`PE

δθ
= z , (14)

re-defining the geopotential φ = φ̃ − zθ + 1
2 ε |u|

2, and using the vector
identity

(∇× uh)× u = u · ∇uh − 1
2∇|u|

2 , (15)

we can write the Euler–Poincaré equation for LPE as

ε (∂tuh + u · ∇uh) + ez × u− ez θ =∇φ . (16)

This expression encodes the horizontal momentum equation (1a) and the
hydrostatic equation (1b).

We remark that traditional approach to variational derivation of the
primitive equations treats the geopotential as a Lagrange multiplier respon-
sible for enforcing the incompressibility constraint, cf. [15]. Here, we build
the constraint into the definition of the configuration space. The gradient
of the geopotential then appears naturally due to the fact that the L2 pair-
ing with divergence free vector fields determines a vector field only up to a
gradient. Both approaches, of course, lead to identical equations of motion.
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4 Derivation of the balance model Lagrangian

We observe that any notion of balance entails restricting the motion to a
submanifold of the phase space. Therefore, when a balance model arises
from a variational principle, its Lagrangian is necessarily degenerate. Our
general strategy for the derivation of approximate balance models is to find
a near-identity configuration space transformation such that the original
Lagrangian becomes degenerate when truncated at the desired order of an
expansion in the small parameter. The truncated degenerate Lagrangian
then determines the balance model variational principle. Its degeneracy
implies a Dirac constraint on the system, which is precisely the balance
relation.

To implement this strategy, we largely follow the construction in [11].
We consider the primitive equation flow map as a family of maps ηε param-
eterized by ε. They relate to a balance model flow map η via a change of
coordinates generated by a vector field vε ∈ g, so that

η′ε = vε ◦ ηε with η0 = η , (17)

where η′ε denotes the derivative of ηε with respect to ε. At this point, we
have free choice of vε. To obtain a balance model, we seek an expression
for vε that renders the PE Lagrangian degenerate. Generally, it is not
possible to do this exactly, but we can proceed iteratively in a formal power
series expansion of the Lagrangian with respect to ε. Here, we pursue the
construction to order O(ε) only, which is the setting used by Salmon [14, 15].
In principle, higher order balance models are possible, but the resulting
expressions are extremely complicated.

At the leading order in ε, the Euler–Poincaré equation (16) reads(
u⊥

−θ

)
=∇φ . (18)

Taking the curl and noting that, for a general vector field (v, f)T in three
dimensions,

∇×
(
v
f

)
=

(
∂zv
⊥

∇⊥ · v

)
−
(
∇⊥f

0

)
, (19)

we obtain the thermal wind relation

∂zu = ∇⊥θ (20)

in the horizontal components and the divergence free condition ∇ · u = 0 in
the vertical component.
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The thermal wind relation specifies the horizontal velocity field only up
to a constant of integration, which may be a function of the horizontal space
variables x. Without loss of generality, we may assume that this constant of
integration is the mean horizontal velocity, which we write ū = ū(x), while
the thermal wind relation specifies the deviation from the mean, denoted
û = û(x). Writing u = ū + û so that ∂zu = ∂zû and noting that, by
definition,

0 =

∫ 0

−H
ûdz = H û(−H)−

∫ 0

−H
z ∂zûdz , (21)

we find that the vertically mean free thermal wind is given by

û(z) = û(−H) +

∫ z

−H
∂zûdz′ =

∫ 0

−H

z

H
∇⊥θ dz +

∫ z

−H
∇⊥θ dz′ . (22)

As we remarked earlier, balance in the stratified setting only constrains
the mean free component û of the horizontal velocity, while the vertical
mean ū remains entirely unconstrained. Thus, the principle that the balance
model Lagrangian must be degenerate applies only to the contribution from
û.

To implement this construction, we substitute ηε for η in the primitive
equation Lagrangian (5), write η′ ≡ η′ε

∣∣
ε=0

, and expand in powers of ε, so
that

LPE =

∫
Ω
R◦η · η̇+θ0 η3 da+ε

∫
Ω

(−η′ · η̇⊥)+
1

2
|η̇|2 +θ0 η

′
3 da+O(ε2) . (23)

We now change to Eulerian variables, split the transformed velocity field
into its vertical mean and its mean free component via u = ū+ û, and note
that ∫

Ω
|u|2 dx =

∫
Ω
|ū|2 + 2 ū · û+ |û|2 dx =

∫
Ω
|ū|2 + |û|2 dx (24)

because the cross term drops out via the mean free condition on û, so that

`PE =

∫
Ω
R·u+θ z dx+ε

∫
Ω

(v⊥+ 1
2 ū)·ū+(v⊥+ 1

2 û)·û+θ v3 dx+O(ε2) (25)

where v = vε
∣∣
ε=0

.
To ensure that the O(ε) contribution is affine, hence degenerate in the

variable û, our choice of v must cancel the term |û|2. This suggests that the
horizontal components of the transformation vector field v should be of the
form

v = 1
2 û
⊥ + F (θ) . (26)
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The third component of v is then determined by the condition that v is
divergence free and tangent to the top and bottom boundaries.

As in [11], motivated by dimensional considerations, we specialize to the
one-parameter family of transformation vector fields

v =
1

2

(
û⊥

∇⊥ · Û

)
− λ

(
g⊥

∇⊥ ·G

)
, (27)

where g is the thermal wind defined through an expression of the form (22),
namely

g = ∇⊥Θ (28)

with

Θ =

∫ 0

−H

z

H
θ dz +

∫ z

−H
θ dz′ , (29)

and where

G = −
∫ 0

z
g dz′ and Û = −

∫ 0

z
ûdz′ (30)

are the vertical antiderivatives of g and û, respectively. By construction, v
is a divergence free field, v3(0) = v3(−H) = 0, and v has zero vertical mean.

The case λ = 1
2 is special: whenever u satisfies the thermal wind rela-

tion, then v = 0 so that O(ε) deviations from thermal wind correspond to
a transformation vector field that is O(ε) small. Hence, the transformation
for λ = 1

2 is overall an O(ε2) change of variables so that quantities in phys-
ical and computational coordinates may be identified up to errors that are
beyond the order of accuracy of the approximation.

We further remark that Salmon’s [15] transformation corresponds to the
choice λ = −1

2 up to terms of higher order, as the leading order balance
implies that

vSalmon =

(
g⊥

∇⊥ ·G

)
=

1

2

(
û⊥

∇⊥ · Û

)
+

1

2

(
g⊥

∇⊥ ·G

)
+O(ε) . (31)

Returning to the general case, we plug the transformation (27) back into
(25), drop all higher order terms, and note that the integral of v⊥ · ū is
zero as v has zero vertical mean. This yields the balance model reduced
Lagrangian

`BM =

∫
Ω
R · u+ θ z dx+ ε

∫
Ω

1
2 |ū|

2 + λ g · û+ θ∇⊥ · (1
2 Û − λG) dx . (32)
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To simplify this expression, we note that∫
Ω
θ∇⊥ · Û dx = −

∫
Ω
Û · ∇⊥θ dx = −

∫
Ω
Û · ∂zg dx =

∫
Ω
û · g dx , (33)

where, in the first equality, we integrated by parts in the horizontal variables,
while in the last equality, we integrated by parts in z using the fact that Û
vanishes on the top and bottom boundaries by construction. Similarly,∫

Ω
θ∇⊥ ·Gdx =

∫
Ω
|g|2 dx . (34)

Altogether, the balance model reduced Lagrangian is given by

`BM =

∫
Ω
R · u+ θ z dx+ ε

∫
Ω

1
2 |ū|

2 + (λ+ 1
2) g · û− λ |g|2 dx

=

∫
Ω
R · u+ θ z dx+ ε

∫
Ω

1
2 u · (ū+ g) + λ g · (û− g) dx

≡ l0 + ε l1 . (35)

5 Balance Euler–Poincaré equations

Taking the variation of l1 from (35) and noting that products of mean-free
with vertically averaged functions vanish, we find that

δl1 =

∫
Ω

(
ū+ (λ+ 1

2) g
)
· δu+

(
(1

2 + λ) û− 2λ g
)
· δg dx

=

∫
Ω
p · δu+ b · δg dx , (36)

where, for future reference,

p = ū+ ν g and b = ν û− 2λ g (37)

with ν = λ + 1
2 . Further, we shall write B = ν Û − 2λG to denote the

vertical antiderivative of b.
Taking the variation of (28), we have

δg =

∫ 0

−H

z

H
∇⊥δθ dz +

∫ z

−H
∇⊥δθ dz′ . (38)
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When integrated against the vertically mean-free vector field b, the contri-
bution from the first term vanishes, so that, reversing the order of the z and
the z′ integration, we obtain∫

Ω
b · δg dx =

∫
Ω
∇⊥δθ ·

∫ 0

z
bdz′ dx =

∫
Ω
δθ∇⊥ ·B dx . (39)

Combining (35), (36), and (39), we find that

mBM ≡
δ`BM

δu
= R+ εph and

δ`BM

δθ
= ∇⊥ ·B , (40)

so that the Euler–Poincaré equation (13) for LBM reads

ez × u− θ ez + ε
(
∂tph + (∇× ph)× u+∇θ∇⊥ ·B

)
=∇φ . (41)

Introducing the relative vorticity

ζ = ∇⊥ · p = ∇⊥ · ū+ ν∆Θ (42)

and separating the horizontal and vertical component equations, we write
(41) in the form(

u⊥

−θ

)
+ ε

(
∂tp+ u⊥ ζ + u3 ∂zp

−u · ∂zp

)
+ ε∇θ∇⊥ ·B =∇φ . (43)

Notice that incompressibility implies ∂zu3 = −∇ · u, so that

u3 =

∫ 0

z
∇ · u dz′ = −∇ · Û , (44)

where the second equality is due to u3(−H) = 0, which implies that∇·ū = 0.
Since g and G are horizontally divergence free, we can write

u3 = −ν−1∇ ·B (45)

so long as ν 6= 0. Then, taking the curl of (43), noting that ∂zp = ν∇⊥θ
and ∂zζ = ν∆θ, using (19), and applying the vector identity

∇× (f∇θ) =∇f ×∇θ =

(
∂zf ∇⊥θ − ∂zθ∇⊥f

∇⊥f · ∇θ

)
, (46)

we rewrite the Euler–Poincaré equation in the form
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(
∇⊥θ − ∂zu
∇ · u

)
+ ε

(
−ν∇θ̇ − ∂zu ζ − ν u∆θ + ν∇ · u∇θ − ν u3 ∂z∇θ)

∂tζ +∇ · (uζ)−∇ · (∇θ∇ ·B)

)
+ νε

(
∇⊥(u · ∇⊥θ)

0

)
+ ε

(
∇⊥θ∇⊥ · b− ∂zθ∇⊥∇⊥ ·B

∇θ · ∇⊥∇⊥ ·B

)
= 0 . (47)

The vertical component of (47) describes the evolution of relative vor-
ticity ζ. Rearranging terms, we can write it in the form

∂tζ +∇ · (ζu) = −ε−1∇ · û+∇ · (∇θ∇ ·B)−∇θ · ∇⊥∇⊥ ·B
≡ F1(∇ · û,∇θ,∇∇θ,∇B,∇∇B) . (48)

Since, by (54), ∇· û is formally an O(ε) quantity, all terms on the right hand
side are O(1) so that ζ evolves on the slow time scale.

Setting ω = ∇⊥ · ū and taking the vertical average of (48), we obtain

∂tω + ū · ∇ω = ∇ · (∇θ∇ ·B − ν û∆Θ)−∇θ · ∇⊥∇⊥ ·B ≡ F2 . (49)

The horizontal component equation of the Euler–Poincaré equation (47),
on the other hand, is entirely kinematic and will lead to an equation for Û ,
the balance relation. To make this relation more explicit, we note that the
advection equation for θ implies

∂t∇θ = −∇(u ·∇θ) = −∇(u · ∇θ)−∇(u3 ∂zθ) . (50)

Then, after rearrangement of terms, the horizontal part of (47) reads

∇⊥θ − ∂zu+ ε
(
−ζ ∂zu+∇⊥θ∇⊥ · b− ∂zθ (∇⊥∇⊥ ·B +∇∇ ·B)

)
+ νε

(
∇(u · ∇θ)− u∆θ +∇ · u∇θ +∇⊥(u · ∇⊥θ)

)
= 0 . (51)

Now we use the general vector identifies

∇∇ ·B +∇⊥∇⊥ ·B = ∆B , (52)

∇(u · ∇θ)− u∆θ +∇ · u∇θ +∇⊥(u · ∇⊥θ) = 2 Def u∇θ , (53)

where Def u = 1
2 (∇u+ (∇u)T ), to obtain

(1 + ε ζ) ∂zû− (1 + ε∇⊥ · b)∇⊥θ + ε ∂zθ∆B = 2εν Def u∇θ . (54)

Recalling the definition of b and using the identity

(∇⊥ · û)J + 2 Def û = 2∇û , (55)
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where J denotes the standard 2× 2 symplectic matrix, we obtain

(1+ε ζ) ∂2
z Û+ε ∂zθ∆B−2εν∇∂zÛ ∇θ = (1−2ελ∆Θ)∇⊥θ+2εν Def ū∇θ .

(56)
We note that the balance relation (56) together with the advection of

potential temperature and vorticity transport equation (49) imply (48).
When ν 6= 0, it is better to write out an equation for B, so that the third

order horizontal derivative on Θ implicit in the second term of (56) appears
on the domain side rather than on the range side of an elliptic operator.
Our final expression for the horizontal balance relation then reads

(1 + ε ζ) ∂2
zB + εν ∂zθ∆B − 2εν∇∂zB∇θ

=
(
ν − 2λ− 2λε ζ − 2ελν∆Θ

)
∇⊥θ + 2εν2 Def ū∇θ + 4ελν∇g∇θ

≡ F3(∇2Θ,∇θ,∇u) . (57)

For fixed u and θ, equation (57) is a linear second order PDE in B. It is
elliptic as long as the matrix

Λ(ζ, θ) =

 εν ∂zθ 0 −εν ∂x1θ
0 εν ∂zθ −εν ∂x2θ

−εν ∂x1θ −εν ∂x2θ 1 + ε ζ

 (58)

is positive definite, or, equivalently,

ν ∂zθ > 0 and 1 + ε

(
ζ − ν|∇θ|2

∂zθ

)
> 0 . (59)

Moreover, the operator on the left-hand side of (57) is uniformly elliptic
whenever the bounds (59) hold uniformly in space, i.e.,

inf
x∈Ω

ν ∂zθ ≥ µ1 > 0 and inf
x∈Ω

1 + ε

(
ζ − ν|∇θ|2

∂zθ

)
≥ µ2 > 0 . (60)

Thus, assuming ν > 0, uniform ellipticity holds so long as the fluid is stably
stratified and provided ζ and horizontal gradient of θ are not too large.

6 Conservation of energy and potential vorticity

As the balance model Lagrangian is invariant under time translation, the
model possesses a conserved energy of the form

HBM =

∫
Ω

δ`BM

δu
· u dx− `BM(u, θ) =

∫
Ω
ε
(

1
2 |ū|

2 + λ |∇⊥Θ|2
)
− θ z dx .

(61)

14



The symmetry of the balance model Lagrangian under particle relabeling
leads to a material conservation law for the balance model potential vorticity.
It can be derived geometrically as follows. First note that the abstract
Euler–Poincaré equation (10) can be written as

(∂t + Lu)m+
δ`

δθ
dθ = dφ̃ , (62)

where d denotes the exterior derivative. Taking the exterior (wedge) product
between the exterior derivative of (62) and dθ, we find that

0 = d
(
(∂t + Lu)m+

δ`

δθ
dθ − dφ̃

)
∧ dθ

= (∂t + Lu)(dm ∧ dθ)− dm ∧ d(∂t + Lu)θ

= (∂t + Lu)(dm ∧ dθ) , (63)

where we used the commutativity of Lie and exterior derivatives in the
second equality and the advection of θ in the third equality. In three dimen-
sions, we can identify this conservation law with material advection of the
scalar quantity

q = ∗(dm ∧ dθ) , (64)

where ∗ denotes the Hodge dual operator. Indeed, writing µ = dx1∧dx2∧dz
to denote the canonical volume form on Ω, we have dm ∧ dθ = qµ, so that

0 = (∂t + Lu)(qµ) = µ (∂t + Lu)q + qLuµ . (65)

Since the flow is volume preserving and µ is non-degenerate, this proves that
∂tq + Luq = 0, i.e., q is conserved on fluid particles.

In the language of vector calculus, expression (64) for the potential vor-
ticity reads

q = (∇×m) · ∇θ . (66)

In fact, the derivation above corresponds to taking the inner product of
the curl of the Euler–Poincaré equations (13) with ∇θ and manipulating
correspondingly; the advantage of the abstract approach is that commut-
ing exterior and Lie derivative in traditional notation is not linked to any
intrinsic operation, thus requires tedious verification.

To write out the explicit balance model potential vorticity, note that

∇×
(
R
0

)
= ez , ∇×

(
ū
0

)
=

(
0
ω

)
, ∇×

(
g
0

)
=

(
∂zg
⊥

∇⊥ · g

)
, (67)
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where once again ω = ∇⊥ · ū, and insert g from (28) into the expression (40)
for mBM, so that

q = ∂2
zΘ (1 + ε ω + εν∆Θ)− εν |∇∂zΘ|2 ≡ F (D2Θ;ω) . (68)

This expression is a fully nonlinear second order equation for Θ. The stan-
dard solvability condition for equations of this type is uniform ellipticity of
F (see, e.g., [4, 18]). Ellipticity for a nonlinear equation is essentially de-
fined as ellipticity of its linearization. To be precise, we follow the definition
given in [18]. Let U be an open subset Rn, Sn the space of symmetric n×n
matrices, and F a real-valued function on U ×R×Rn×Sn that is C1 in its
last argument. Then the operator

F (x,Θ, DΘ, D2Θ) (69)

is elliptic on some subset Γ ⊂ U × R× Rn × Sn provided the matrix

[Fij ] =
∂F

∂M
(x, α, β,M) ≡

[
∂F (x, α, β,M)

∂Mij

]
(70)

is positive definite for all (x, α, β,M) ∈ Γ. Furthermore, F is uniformly el-
liptic on Γ provided there exist positive functions λ1, λ2 on Γ and a constant
µ such that for any ξ ∈ Rn,

λ1 |ξ|2 ≤ Fij ξi ξj ≤ λ2 |ξ|2 with λ2/λ1 ≤ µ . (71)

When F is defined by (68), we find that

∂F

∂D2Θ
= Λ(ζ, θ) . (72)

Thus, the ellipticity conditions for the nonlinear equation (68) and for the
balance relation (57) coincide and are both given by (59). Moreover, if
condition (60) is satisfied and, in addition, there is a uniform upper bound
of the form

1 + ε ζ + εν ∂zθ ≤ µ3 , (73)

then F is uniformly elliptic.
In fact, (68) has the form of a generalized Monge–Ampère equation. To

expose this structure, we formally set |∇| =
√
−∆ and define the generalized

Hessian

Hess Θ =

(
∆Θ ∂z|∇|Θ

∂z|∇|Θ ∂2
zΘ

)
, (74)
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so that
q = ∂2

zΘ (1 + ε ω) + εν det Hess Θ . (75)

Finally, defining

Ψ =
1√
εν

∆−1(1 + ε ω) +
√
ενΘ , (76)

we have
q = det Hess Ψ . (77)

Thus, the potential vorticity inversion relation is of Monge–Ampère type,
albeit in a non-standard form. For Monge–Ampère equations coming from
a standard Hessian, Cafferelli [3] proved W 2,p regularity provided the right
hand side is sufficiently close to a constant; also see [7]. We expect that
similar results hold for (77), where Caffarelli’s condition would impose a
restriction on the deviation from linear stratification. We remark that the
passage from (68) to (77) is not possible for periodic lateral boundary con-
ditions as the Laplacian is not invertible on constants; however, this is not
an issue as everything can be done using (68) directly.

In the context of classical semigeostrophic theory, Cullen and Purser
[5] have shown that for the system to be dynamically stable, the matrix
Hess Ψ defining the PV has to be positive definite, which is equivalent to a
certain convexity condition for Ψ. We expect this condition to be applicable
here as well. However, we stress that the nature of our results is different
from classical semigeostrophic theory, which asserts existence of possibly
discontinuous front-type solutions under only natural stability conditions for
the front, see Shutts and Cullen [17]. Here we need to impose, additionally, a
smallness assumption on gradients of θ which is more restrictive, but appears
to allow a stronger notion of solutions.

When the Coriolis parameter f = ∇⊥ · R varies horizontally in space,
the balance model equations become rather cumbersome and shall not be
pursued further in this paper. However, we note that the conservation laws
remain simple even in this case and outline the principal changes compared
to the case of non-varying f .

When f = f(x) but non-dimensionalized as before, the thermal wind
relation becomes

∂zu =
1

f
∇⊥θ , (78)

so that we define the thermal wind as g/f with g is still given by (28).
Proceeding as in Section 4, we use the transformation vector field

v =
1

2

(
û⊥

∇⊥ · Û

)
− λ

f

(
g⊥

∇⊥ ·G

)
, (79)
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which yields the balance model Lagrangian

`BM =

∫
Ω
R · u+ θ z dx+ ε

∫
Ω

1

2
u · (ū+ g) +

λ

f
g · (û− g) dx. (80)

Therefore, (40) becomes

mBM ≡
δ`BM

δu
= R+ εph , (81)

where

p = ū+ νf g with νf =
1

2
+
λ

f
. (82)

Substituting the expressions for `BM and mBM into the general formulas
of the balance model energy (61) and potential vorticity (66), we obtain,
respectively,

HBM =

∫
Ω
ε
(1

2
|ū|2 +

λ

f
|∇⊥Θ|2

)
− θ z dx (83)

and
q = ∂2

zΘ (f + ε ω + ε νf ∆Θ)− ε νf |∇∂zΘ|2 . (84)

PV inversion is given by the generalized Monge-Ampère problem

q = ∂2
zΘ (f + ε ω) + ε νf det Hess Θ . (85)

or, equivalently,
νf q = det Hess Ψ , (86)

where

Ψ =
1√
ε

∆−1(f + ε ω) +
√
εΘ . (87)

Hence, potential vorticity satisfies an equation of the same type as in the
case of constant Coriolis parameter provided νf and f are bounded away
from zero. In particular, the invertibility conditions do not change when f
is a small perturbations of a constant.

We remark that a spatially variable Coriolis parameter in a shallow water
setting leads to similarly simple balance model energy and potential vorticity
[13].
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7 Balance model evolution and special cases

We are now ready to collect the complete set of balance model equations.
It comprises the two transport equations

∂tθ + u · ∇θ = 0 , (88a)

∂tω + ū · ∇ω = F2 , (88b)

the two kinematic linear second order equations

(1 + ε ζ) ∂2
zB + εν ∂zθ∆B − 2εν∇∂zB∇θ = F3(∇2Θ,∇θ,∇u) , (88c)

∆ψ = ω , (88d)

and a number of direct relations between the variables,

Θ =

∫ 0

−H

z

H
θ dz +

∫ z

−H
θ dz′ , (88e)

ū = ∇⊥ψ , (88f)

û = ν−1 (∂zB + 2λ∇⊥Θ) , (88g)

u3 = −ν−1∇ ·B , (88h)

u = ū+ û . (88i)

The balance relation (88c) is elliptic provided ν > 0, the fluid is stably
stratified so that ∂zθ > 0, the vorticity ζ and horizontal gradient ∇θ are not
too large, and ε is sufficiently small; it is complemented with homogeneous
Dirichlet conditions on the vertical boundaries. The nonlinearities F2 and
F3 are defined in (49) and (57), respectively.

We conjecture that this system is well-posed at least locally in time,
which is supported by a simple count of derivatives. Suppose that initially
outside of a compact domain of sufficiently large radius the fluid is at rest,
horizontal gradients of θ vanish, and, furthermore, that both θ and Θ are
of Sobolev class Hs+1

loc and u ∈ Hs with s large enough so that Hs−1 is a
topological algebra. Then, initially, ζ = ω + ν∆Θ ∈ Hs−1 and, by elliptic
regularity, B ∈ Hs+1 from the balance relation (88c).

We now need to assure that these regularity classes are maintained for
at least a short interval of time. This is not obvious from the two advection
equations (88a) and (88b), which each seem to be one derivative short.
However, we note that ζ also satisfies the evolution equation (48), which
implies that class Hs−1 is maintained provided that θ and B remain at the
indicated level of the hierarchy. Via the balance relation (88c), the condition
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on B is satisfied provided θ, Θ, and u remain at the indicated level of the
hierarchy.

To guarantee Hs+1-regularity of Θ, we note that q ∈ Hs−1 initially, so
by PV advection with the Hs vector field u, it remains in this class for a
short interval of time. We then use elliptic regularity of the Monge–Ampère
problem (68) directly to conclude that Θ ∈ Hs+1.

Achieving Hs+1-regularity of θ is more subtle. We need to assume, in
addition, that initially q ∈ Hs, this better regularity class is also maintained
over short intervals of time provided u ∈ Hs. Now differentiate (68) with
respect to z to find that

∂2
zθ (1 + ε ω + εν∆Θ) + ∂zθ (1 + εν∆θ)− 2εν∇θ · ∇∂zθ = ∂zq . (89)

Then, provided ∂zθ > 0 and 1 + ε ω + εν∆Θ > 0, the required θ ∈ Hs+1

follows by linear elliptic regularity. Further, the positivity conditions are
maintained by continuity for at least a short interval of time.

The argument above is not a full proof, but rather a plausibility check
which demonstrates that we have brought the equations into a form that
is consistent with standard strategies of proof. A full proof of local well-
posedness will require a careful study of the solvability conditions for the
PV inversion and balance relation.

Finally, it is not clear whether solutions to (88) have a chance to persist
for all times subject only to conditions on the initial data. As written,
it is not given that the ellipticity condition (59) will persist. Hence, we
believe that an argument toward global well-posedness necessarily requires
additional structural insight. In this context, we note that the balance model
Hamiltonian (61) provides a global a priori bound on ∇Θ in L2.

We now discuss three special choices for the model parameter λ.

Case λ = 1
2 : stratified L1 dynamics

The case λ = 1
2 is special because then the transformation vector field v =

O(ε), hence the transformation is an identity to order O(ε2). With this
choice, we obtain the “missing” stratified L1 model. In this case ν = 1,
B = Û −G, and the balance relation (88c) simplifies to

(1 + ε ζ) ∂2
zB + ε ∂zθ∆B − 2ε∇∂zB∇θ = 2ε (∇(ū+ g))T∇θ . (90)

We remark that the L1 model could have been derived within Salmon’s [15]
procedure simply replacing û in the primitive equation Lagrangian by g.
However, as we saw in Section 5, the bare Euler–Poincaré equations are
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not immediately useful. The new insight we suggest here is that we should
not try to “simplify” the L1 model by further approximation, but rather
understand it as an already fine model by leveraging the conservation of
potential vorticity, implicit in its derivation, as a dynamic variable.

Case λ = 0: more regularity for Û

In the special case when λ = 0 so that ν = 1
2 , b = 1

2 û and B = 1
2 Û , the

balance relation (88c) reads

(1 + ε ζ) ∂2
z Û + ε

2 ∂zθ∆Û − ε∇∂zÛ ∇θ = ∇⊥θ + ε J Def ū∇⊥θ . (91)

We note that in this case, the right hand side of the balance relation contains
only first horizontal derivatives, so Û is more regular than in the generic case.
Whether this leads to a different functional setting for the entire system, as in
[6] for the shallow water analog, or is helpful for a numerical implementation
remains open.

Case λ = −1
2 : Salmon’s LSG model

Finally, when λ = −1
2 so that ν = 0 and B = G, (54) reads

(1 + ε∇⊥ · ū) ∂2
z Û = (1 + ε∆Θ)∇⊥θ − ε ∂zθ∆G . (92)

It is clear that this balance relation is not elliptic, thus û is expected to lose
three horizontal derivatives with respect to Θ and one horizontal derivative
with respect to q. Hence, we cannot expect that the regularity class of Θ
persists for any time t > 0; the problem appears to be ill posed.

8 Conclusions

In this paper, we have shown that the method of degenerate variational
asymptotics applies to a stratified fluid described by the primitive equations
in semigeostrophic scaling. The construction is in many respects parallel to
the well-explored case of rapidly rotating shallow water.

Specifically, we derived a family of balance model for stratified flow which
conserve energy and potential vorticity. We rewrote the model equations in a
robust form, emphasizing the importance of advection of potential vorticity,
which appears to be a crucial ingredient for the proof of local well-posedness.
It is worth noting that both balance relation and PV inversion are elliptic
subject to identical physically reasonable conditions.
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Subject to stable stratification and a small data assumption, the models
are formally in the same regularity class as their shallow water counterparts.
We believe techniques we had used to prove well-posedness for balance mod-
els of shallow water [12, 6] can be adapted to the stratified case, hence expect
existence and uniqueness of solutions for as long as stable stratification and
smallness of data assumptions persist.
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