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Abstract

The proper optical characterization of solar reflector materials is a challenging task.

Although several commercial instruments exist to measure reflectance, they have been

developed for other applications and often do not meet all the specific requirements

demanded by the solar thermal industry. In particular, the characterization of solar

reflectors involve the complete solar spectral wavelength range, an incidence angle range

from near normal to 70° and most importantly a very narrow acceptance angle range from

near specular to 20 mrad. The accurate measurement of reflectance as a function of all

the previously mentioned parameters has not been commercially implemented. This paper

reviews the different alternatives to measure reflector materials, describes reflectance

models used to approximate the missing information and presents current research work

on prototype reflectometers to fill the gap.
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Nomenclature

Abbreviations

(SR)2 Space Resolved Specular Reflectometer

ARTA Absolute Reflectance and Transmittance Analyzer

BRDF bidirectional reflectance distribution function

CMOS complementary metal–oxide–semiconductor

CPV concentrating photovoltaics

CSP concentrating solar power

D&S Devices & Services

DNI direct normal irradiance

EMA Equivalent Model Algorithm

IEA International Energy Agency

ISE Institute for Solar Energy Systems

LED light-emitting diodes

MIRA Mirror Reflectance Function Analyzer

MWR Multiple Wavelength Reflectometer

NIR near infrared

OPAC Optical & Aging Characterization

Pab Pab advanced technologies Ltd (pab)

PE Perkin Elmer

PMT photomultiplier

PSA Plataforma Solar de Almería

S2R Spectral Specular Reflectometer

SMQ Solar Mirror Qualification

SMS Schmitt Measurement Systems

STE solar thermal electricity



TIS Total Integrated Scatter

TraCS Tracking Cleanliness Sensor

URA universal reflectance accessory

UV ultraviolet

Vis visible

VLABS Very-low-angle beam spread

Greek symbols

σ standard deviation

σϕ equivalent roughness

α absorptance

β incident angle from the laser beam to the reference mirror (University of

Malaysia set-up)

Δρ  reflectance difference

θ reflected angle from the reference mirror to the photo detector

(University of Malaysia set-up)

θi direction of the incident radiation

λ wavelength

ξ cleanliness

ρ reflectance or amplitude of a reflectance Gaussian distribution

τ transmittance

φ acceptance angle

χ parameter for the observed exponential decrease of the wide scattering

angle

Roman symbols

a major half axis of the ellipse

A1, A2 amplitude coefficients



a1, a2, a3 amplitude coefficients

b offset between reflection terms

c minor half axis of the ellipse

Cclean calibration constant for TraCS system

f focal length

F1, F2 focal points of the ellipse

K relative weight of two Gaussians

t time

Tclean time span

Ts surface temperature

Subscripts

h hemispherical

s solar

λ spectral

1. Introduction

The development of renewable energy has increased over the past few years due to the

high environmental cost of fossil fuels and our great dependence on them [1]. Solar

energy is considered one of the most promising alternative sources of energy for avoiding

the dependency on fossil energy resources [2]. In the last 30 years, 26% of the global

research effort has been related to the use of solar energy [3]. Among solar technologies,

solar thermal electricity (STE) from concentrating solar power (CSP) plants is set to play

a decisive role in the renewable energy mix [4]. The two main systems of concentrating

solar collectors, line-focusing (parabolic-trough collectors and Fresnel collectors) and

point-focusing (solar towers, parabolic dishes and solar furnaces), have in common that

the sunlight is focused onto a receiver by mirrored reflectors to increase the enthalpy of

the heat transfer fluid flowing inside that receiver. Parabolic-trough technology is the

most proven large-scale solar thermal power technology that is available today [4]-[6].



The reflectance of the concentrating reflectors (interchangeably called mirrors) has a

direct impact on the overall efficiency of these solar thermal systems [7].Its accurate

assessment requires appropriate testing methods and measurement tools. This makes the

measurement of the solar-weighted specular reflectance (which is the parameter that

correctly quantifies the reflective quality of a solar reflector [8]) an important concern for

solar reflector evaluation. However, currently there is no commercial instrument available

to directly measure this optical parameter effectively [9], accomplishing all of the features

required by a hypothetical ideal instrument. These requirements have been specified in

[10] and include -among others- the following points:

- The measurement over the complete solar spectral wavelength range, but at least

between λ=280 and λ=2500 nm. The remaining contribution to the direct

irradiance in the spectral range of 2500 - 4000 nm can be calculated from the

standard spectrum [11] to be around 2.5 %.

- Precise, selectable acceptance apertures or a range of acceptance angles appropriate

to measure the specular reflectance as a function of ϕ.

- Measurement at various incidence angles ranging from near normal to at least 50°

or an innovative approach to obtain the specular reflectance as a function of θ.

- Adjustment options to account for different mirror thicknesses and surface

curvatures.

- Measurement spot size as large as possible.

- Non-contact measurement.

- High precision and repeatability.

- No influence by external stray light.

Reflectance measurements serve to qualify reflectors in mint condition, to evaluate their

cleanliness due to soiling, or to quantify their vulnerability to ageing effects during

exposure to the environment.

An evaluation formula presented by Pettit [12] has been widely used in the past. Although

this approximation is appropriate for reflectors with high specularity in the whole solar

spectrum, new research has demonstrated that for some innovative reflector materials a

valid and adequate procedure is still missing. Research work of the last few years

regarding the reflectance measurement procedure [13]-[15] and instruments [16]-[18] to



assess solar reflector materials has advanced significantly.

It deserves to be mentioned the activities ongoing in several working groups during the

last decade to stablish a proper protocol to measure the reflectance of concentrating solar

reflector materials. A group of experts in the field of optical characterization of solar

reflectors has been working since 2009 as members of the SolarPACES Organization

(which belongs to the International Energy Agency, IEA) to create a reflectance

measurement guideline [9], [15]. Several versions of the guideline have been already

published [10]. Under the framework of the Spanish standardization body AENOR, the

sub-committee AEN/CTN 206/SC “Thermoelectric solar energy systems” is working on

topics related to the concentrating solar thermal power plants since 2010 [19]-[21].

Several standards have been published or are in preparation, including one for the

reflectors characterization and durability assessment. At international level, within the

IEC TC 117 committee “Solar thermal electric plants” created in 2012, a project team is

also focus on this subject [19]-[21]. The three working groups are linked among them to

avoid duplicating the efforts and obtaining contradictory results.

Besides the characterization of reflector materials, research activities on the fluctuating

reflectance losses due to soiling, i.e. the accumulation of dust and dirt on mirror surfaces

when exposed to the environment, have increased significantly [22]. As soiling is

quantified by monitoring the reflectance of mirrors over time, the here presented methods

play an important role in this field of research. Applications of soiling research can be

found in resource assessment studies and the optimization of cleaning cycles in running

power plants. As CSP projects are located more closely to dusty environments like sand

deserts [23], growing attention is given to the issue of soiling and thus reflectance

measurement methods.

This paper presents a review of the techniques employed to assess the optical properties

of solar reflectors, as a contribution to define the correct characterization protocol. In the

first part, the models developed to calculate the representative optical parameters related

to reflectance (both based on theoretical statements or experimental parameters) are

presented. Secondly, commercial instruments used to optically characterize solar

reflectors in laboratory and outdoors are reviewed. Finally, the known prototypes

currently under development are described. Glossmeters use the specular reflection as a

photometric value (the radiometric reflectance value weighted with the visual sensitivity

function of the human eye) for the evaluation of gloss in relation to a black polished



reference at defined incidence angles. As their capabilities are not suitable for evaluating

the specular reflectance of solar mirror materials, they are not included in this work.

Nomenclature and reflectance definitions used in this paper are in accordance with

existing standards [25], [26], with some slight improvements which will be fed into the

standardization committees.

2. Reflectance models

Measuring the solar-weighted specular reflectance of a mirror requires instruments

capable of measuring cumulative specular reflectance values over the whole solar

spectrum. While some laboratory devices have been developed for this objective, no

portable equipment to be used in the solar fields is available with the appropriate features.

Over the years, models have been proposed to approach the solar-weighted specular

reflectance by a combination of measurements with portable and laboratory devices. This

section includes the most notable of such models, as reported in the literature.

2.1 Solar-weighted specular reflectance approach, by R.B. Pettit

In 1982, R.B. Pettit proposed a reflectance model in case the solar-weighted specular

reflectance cannot be measured with a laboratory instrument [12]. Pettit’s model is based

on the equation (1):

��,�([��, ��],�� ,�,��) = ��,�([��,��],�� ,ℎ,��) ∙
��,�(�� ,�� ,�,��)

��,�(��,�� ,ℎ,��)
(1)

where ρ is the reflectance, the subscript s means solar weighted, the subscript φ means

specular, λ is the wavelength (measured from λa to λb, inclusive), θi is the incidence angle,

φ is the acceptance angle (defined as the angle between the specular direction and the

direction of the admissible dispersion on the surface for the specific application as well

as the angle associated to the detector aperture of the measurement instrument), Ts is the

surface temperature, ρs,φ([λa,λb],θi,φ,Ts) is the solar-weighted specular reflectance,

ρs,h([λa,λb],θi,h,Ts) is the solar-weighted hemispherical reflectance (which is indicated in

the nomenclature by substituting the φ angle by the symbol h), ρλ,φ(λc,θi,φ,Ts) is the



monochromatic specular reflectance at a certain wavelength, λc (with �� ∈ [��, ��]), and

ρλ,h(λc,θi,h,Ts) is the monochromatic hemispherical reflectance at the same λc (see Figure

1). The value of ρs,h([λa,λb],θi,h,Ts) is calculated from the measurement of the

hemispherical reflectance spectrum at a number of wavelengths λ regularly distributed

over the whole solar spectrum (typically measured with a laboratory spectrophotometer).

ρs,h([λa,λb],θi,h,Ts) is then derived according to the solar weighting calculation described

in [27] or [28], and typically using the solar spectrum from [11]. The quantity

ρλ,φ(λc,θi,φ,Ts) is typically measured with a portable reflectometer, at a unique λc. The

quantity ρλ,h(λc,θi,h,Ts) is also taken from the hemispherical reflectance spectrum, at the

same λc as that used for the measurement of ρλ,φ(λc,θi,φ,Ts). In consideration of the scope

of this work, the influence of Ts is omitted.

Figure 1. Scheme of the solar specular reflectance.

In this model, the solar-weighted specular reflectance is obtained from the solar-weighted

hemispherical reflectance (which can be accurately measured with commercial

instruments) by applying the ratio of specular to hemispherical reflectance at a certain λc,

which provides the relationship between both magnitudes. Hence, the Pettit approach is

based on two assumptions:

• Firstly, it is assumed that the ratio between specular and hemispherical reflectance is

wavelength independent.



• As the first assumption is known to be false, especially in the presence of dust

accumulation or surface degradation, the second assumption is that this approximation

leads to a small error when compared to the reflectance losses.

Because of these two assumptions, this approach is only valid for highly specular

reflectors. For example, this model can be used for high quality silvered-glass reflectors

in new condition, that is, without any soiling or degradation (corrosion spots, scratches,

delamination, stains, etc). To have confidence in using this model one can check its

validity for a certain mirror by comparing hemispherical and specular reflectance results

for several λ and φ. 

2.2 Spectral specular reflectance model with one Gaussian, by R.B.
Pettit

Another approach proposed by Pettit in 1977 [29], is to assume that a mirror would scatter

the beam around the specular direction according to a normal distribution of the form in

equation (2):

��,�(λ,θ� ,φ) ∝ �exp[
−��

2��
] (2)

where ρ in this case means the amplitude of the reflectance Gaussian distribution and σ

is the standard deviation of the distribution. In terms of roughness, this approach is based

on the assumption that the average height and slope distributions can be characterized by

a normal distribution.

This model was validated on the silvered polymer mirror 3M 5400 Scotchcal at

λ = 500 nm and for φ from 1 to 13 mrad. The instrument used for the experimental

measurements was a bi-directional reflectometer which determines the absolute specular

reflectance of flat mirrors at discrete λ over the range 400-900 nm. The curve resulting

from the model fitted the experimental data with parameters ρ(500nm) = 0.86 and

σ = 1.9 mrad.



2.3 Spectral specular reflectance model with two Gaussians, by R.B.
Pettit

While the previously explained approach of a single Gaussian perfectly describes some

of the materials examined, it is not sufficient for all materials. A more generalist approach

was developed by Pettit, assuming that any scattering mechanism might be described by

a Gaussian law, and that most of the materials are characterized by a narrow central beam

and a broad background reflectance curve [29].

This second approach of Pettit assumes that the sum of two Gaussians, a first one

characteristic of the sharp central beam and a second one characteristic of the background

reflectance, can describe any reflector material or soiling condition. For example, a

laminated plastic film can be described by a normal distribution characteristic of the

intrinsic properties of the metallized plastic film, plus a second distribution characteristic

of the bounding interface. The reflectance profile can then be defined as in equation (3):

��,�(λ, θ�,φ) ∝ �� exp �
−��

2���
� + �� exp �

−��

2���
� (3)

With the constraint that ρλ,h(λ,θi,h) = ρ1 + ρ2, and with σ1 and σ2 characteristic of the highly

specular and intense beam and of the broader beam of lower intensity, respectively. For

example, experimental data of a roll-polished anodized aluminum sheet at λ = 505 nm

(also measured with the bi-directional reflectometer mentioned in the previous section)

was well described by a first normal distribution, with ρ1 = 0.56 σ1 = 0.42 mrad, and by a

second distribution characteristic of the scattering due to the rolling marks, with ρ2 = 0.33

and σ2 = 10.1 mrad.

Instead of explaining the solar reflected beam as the sum of two reflected beams, it can

be also described as the ρλ,h(λ,θi,h) minus the light scattered outside of the angle φ. This

approach was also proposed by R.B. Pettit et al. in 1983 [30]. The light scattered outside

the angle φ is represented as two Gaussians dependent on the half-width σ. Similarly with

the previous approach, one of the Gaussians is of high intensity and highly specular (low

σ), while the second Gaussian is of low intensity and broad dispersion (high σ). The



quantity ρλ,φ(λ,θi,φ) is therefore described by equation (4) where K is representative of the

relative weight of the two Gaussians.

��,�(λ,θ�,φ) = ��,�(λ,θ� , h)�1 − � exp �
− �

�
2�

�

2���
�− (1 − �) exp �

− �
�
2�

�

2���
�� (4)

This approach was applied to a polymer based mirror, experimentally characterized with

the portable reflectometer 15R from Devices & Services (D&S) (see section 3.2.1) by

Gee et al. in 2010 [8]. According to the results obtained, a very good approximation of

the experimental data was achieved, with K = 0.97. The first exponential is representative

of the peak of high intensity and high specularity, with σ = 1.7 mrad, and the second

exponential is representative of the broader peak, with σ = 20.0 mrad. When experimental

data were fitted by using a unique Gaussian approximation, a poorer fit was achieved,

with σ = 2.0 mrad.

2.4 Spectral specular reflectance model with two Gaussians, by
Heimsath et al.

In 2010, new experiments with a goniophotometric setup were carried out at the

Fraunhofer Institute for Solar Energy Systems (ISE) in Germany and a novel approach

was proposed by Heimsath et al. [31]. In their approach, there is a distinction between

front surface mirrors, such as aluminum or polymer based mirrors, and second surface

mirrors, such as glass. Front surface mirrors present a higher scattering of the reflected

beam compared to glass mirrors.

As in [29], they distinguish two Gaussians in the specular reflectance of front surfaces at

small and moderate scattering angles. They additionally note an exponential distribution

for large scattering angles. The proposed equation is therefore as in equation (5):

��,�(λ, θ�,φ) = �� exp�
−��

2���
� + �� exp�

−��

2���
� + �� exp�

−|�|

�
� (5)



where a1, a2 and a3 are the amplitudes of the Gaussian terms, σ1 and σ2 are the standard

deviations of the Gaussian terms, and χ a parameter for the observed exponential decrease 

of the wide scattering angle.

The model function for glass mirrors includes three terms, the first one for the glass

surface reflectance to the air, a second one for the reflecting layer, and a third term for

the second reflection due to absorption in the glass layer. Further reflections are neglected.

Each reflection is represented by a Gaussian function. The three reflections are separated

by an offset depending on the glass thickness and on the incidence angle (see equation 6).

��,�(λ,θ�,φ) = �� exp�
−��

2��
� + �� exp �

−(� + �)�

2��
� + �� exp �

−(� + 2�)�

2��
� (6)

with b being the offset between reflection terms. Coefficients of equations (5) and (6)

were obtained with the Fraunhofer ISE experimental set up (see section 4.6) for several

reflector types.

2.5 Off-normal solar reflectance model, by Montecchi

This model was proposed by M. Montecchi in 2013 [17]. It is a combination of a model

named the Equivalent Model Algorithm (EMA), and the well-known relation called Total

Integrated Scatter (TIS).

The EMA model was initially developed for architectural glazing, and is not suitable in

its most basic form for modelling the reflectance of solar mirrors. It is based on refractive

index calculations and reflector layers analysis, which perfectly reproduces the

experimental measurements at near-normal incidence and predicts off-normal incidence

features with good accuracy. By definition, the value at 0° is equal to the measurement

and value at 90°, and is equal to 100 %.

The TIS relationship obtained by Beckman and Spizzichino in 1963 [32] was slightly

rearranged by Montecchi to consider the φ specific to the specular component. The TIS

relationship is the expression of the ratio between the specular and the hemispherical



components as a function of �, θi and the equivalent-roughness, σϕ, as indicated in

equation (7).

��,�(λ, θ�,φ)

��,�(λ,θ�, h)
= exp �− �

4�������

λ
�

�

� (7)

The quantity σϕ is a heuristic parameter and is not a physical characteristic of the surface.

From experimental data points of equivalent roughness on laminated specimens, the best

equation to express this parameter is equation (8).

�� = �� exp �− �
�

��
�
�

� + �� exp �− �
�

��
�
�

� (8)

where A1 and A2 are the amplitude coefficients. TIS was measured with the ENEA

experimental setup to obtain coefficients A and σ (see section 4.2).

2.6 Summary of reflectance models

A summary of the reflectance models described in this section is presented in Table 1.

Table 1

Main characteristics of the reflectance models.

Authors
Reflectance

type
Year Model principle

Materials suited to the
model

Refe-
rences



R.B. Pettit

Solar-
weighted
specular

reflectance

1982

The solar-weighted specular
reflectance is obtained from the
solar-weighted hemispherical

reflectance by applying the ratio of
specular to hemispherical reflectance

at a λ 

Highly specular
reflectors, where the

ratio between specular
and hemispherical

reflectance is λ 
independent

[12]

R.B. Pettit
Spectral
specular

reflectance
1977

Mirrors scatter the beam around the
specular direction according to a
normal distribution (Gaussian)

Only some materials [29]

R.B. Pettit
Spectral
specular

reflectance
1977

Reflectance is described by the sum
of two Gaussians, one for the sharp

central beam and another for
background reflectance

Any reflector material or
soiling condition

[29]

R.B. Pettit
Spectral
specular

reflectance
1983

Reflectance can be also described as
the hemispherical component minus

the light scattered outside of the
angle φ, represented as two

Gaussians

Any reflector material or
soiling condition

[30]

A.
Heimsath

et al

Spectral
specular

reflectance
2010

Reflectance is described by two
Gaussians at small and moderate

scattering angles plus. an exponential
distribution for large scattering

angles

Front surface reflectors [31]

A.
Heimsath

et al

Spectral
specular

reflectance
2010

Reflectance is described by three
Gaussians, one for the glass-air layer,
one for the reflecting layer, and one

for the second reflection due to
absorption in the glass layer

Glass reflectors [31]

M.
Montecchi

Spectral
specular

reflectance
2013

The ratio between hemispherical and
specular spectral reflectance is an

exponential function of �, θi and the
equivalent-roughness, σϕ

Any reflector material [17]

3. Commercial instruments

In what follows we describe the instruments used to measure reflectance that are

commercially available. Section 4 then gives an insight to academic instrument

developments. The commercial instruments available to measure reflectance of solar

mirrors are divided in this section into laboratory scale spectrophotometers and (mostly)

portable reflectometers.

3.1 Spectrophotometers

A spectrophotometer is a photometer (a device for measuring light intensity) that can

measure intensity as a function of the light source wavelength λ. They are commonly used

for a wide range of applications to measure transmittance, τ, absorptance, α, and ρ of

solutions and opaque materials.

The main advantage of a spectrophotometer for solar applications is the fact that the

reflectance can be measured over the entire solar spectral range. These instruments

typically use one or dual light sources and a monochromator to scan the near ultraviolet



(UV), visible (Vis) and near infrared (NIR) spectrum in desired λ intervals. Although the

first commercial spectrophotometers to measure in the NIR range were marketed around

the forties of last century, the devices to measure in the whole solar range were available

a few decades later. The main disadvantages are that they are not portable, so they can

only be used in laboratories, and they do not offer a beam adjustment, adaption to mirror

curvature, adjustment of the acceptance angle to measure the mirrors specularity, nor are

they applicable to different mirror thicknesses for back-silvered glass. The sample is

illuminated with monochromatic light and the reflected flux is captured with the

appropriate accessory by one or several detectors. The result is the reflectance as a

discrete function of λ.

Both specular and hemispherical reflectance can be measured with spectrophotometers

depending on the accessory used. Integrating spheres are widely employed to measure

hemispherical reflectance accurately. However, the available accessories for measuring

specular reflectance with a spectrophotometer are still under evaluation for solar

concentrating reflectors.

3.1.1 Lambda 950/1050 by Perkin Elmer

The Perkin Elmer (PE) scanning spectrophotometer models Lambda 950 and 1050 are

UV/Vis/NIR double beam and double monochromator instruments with two light

sources, a deuterium lamp for the UV range and a halogen lamp for the Vis/NIR range

(see PE lambda 1050 in Figure 2) [33]. The beam source has a spectral range from 175 to

3300 nm, θi = 8° and about 17 x 9 mm2 size. The beam is divided by a chopper into a

sample and reference beam (see Figure 3). The double beam alignment increases the

measurement accuracy, permitting to reduce errors due to lamp intensity variations. The

detection system in both models is composed of a photomultiplier for the UV/Vis range

and a Peltier controlled PbS (Lead (II) Sulfide) detector for the NIR range. However, the

model Lambda 1050 incorporates a third InGaAs (Indium Gallium Arsenide) detector for

the NIR range, which provides a better level of sensitivity, resolution and scanning speed.

The resolution in both models is 0.05 nm in the UV+Vis range and 0.2 nm in the NIR

range. In addition, the Lambda 1050 includes an extra mirror in the light source

compartment to achieve a higher radiation flux. Beam attenuators are 0.1 and 1 % in the

Lambda 1050 and 1 and 10 % in the Lambda 950. Operating temperature of the

instruments and its accessories is from 10 to 35 ºC.



Wavelength calibration must be done regularly because of possible drift in motor

positions and lamps monitoring is recommended every month to check their aging. In

addition, maintenance and calibration tasks should be done yearly by PR technical

service.

Figure 2. Picture of the spectrophotometer Lambda 1050 by PE. The red square

indicates the detector compartment, which is interchangeable with different accessories.

Figure 3. Scheme of the spectrophotometer Lambda 1050 by PE [33]. (1): Deuterium

and tungsten halogen light sources. (2): Double holographic grating monochromators.

(3): Common beam mask. (4): Common beam depolarizer. (5): Chopper. (6): sampler

and reference beam attenuators. (7): sample compartment. (8) and (10): high-sensitivity

photomultipliers and Peltier-controlled PbS detectors. (9): second sampling area.



The detector compartment (the red square in Figure 2 and numbers 8-10 in Figure 3) is

fully interchangeable with other sampling modules and can be quickly replaced by a

different module accessory, as described in the following sections.

a) Integrating sphere

Integrating sphere reflectance accessories offer a simple method to extend the

measurement capabilities of a UV-VIS-NIR spectrophotometer (see Figure 4 left). By

adding a sphere reflectance accessory to a spectrophotometer, its capabilities are

expanded from traditional transmittance measurements of liquid samples and non-

scattering solids to reflectance or absorptance measurements of reflecting or opaque

solids, such as solar absorbers or reflectors [34]. In an integrating sphere, thanks to the

Lambertian reflectance inner surface and the geometrical sphere shape, the incident light

is, in theory, spread evenly and without angular distribution over the entire surface of the

sphere [35]. Consequently, the entire wall displays a constant luminance which is

measured by a detector also placed in the wall. The sphere design must ensure that the

detector is not illuminated directly by the incident light or the first reflection of the

sample. To avoid that problem, baffles that shield the detectors are incorporated into PE

integrating spheres [36]. In reflectance measurements, the sample is placed at a port

opening opposite the entrance port. The incident flux is reflected by the sample and the

total hemispherical reflectance is collected by the detector (see Figure 4 right).

The first rule of thumb for integrating spheres is that no more than 5% of the sphere

surface area shall be consumed by port openings [37]. Openings for the introduction of

the incidence beam should be kept as small as possible so that any scattered light after the

first reflection on the sample is not lost through these openings. The port fraction of the

150 mm diameter integrating sphere used in PE lambda instruments is 2.5 % [34]. This

standard 150 mm sphere is the only one that will give accurate and comparable spectra

between different instrument/sphere models [36]. An integrating sphere with a smaller

size (typically 60 mm) generally provides a better signal due to less attenuation, but it is

often unable to meet the strict port fraction requirements [34].

The inner coating material is extremely important for the efficiency of the sphere. For

instance, a 0.5% change in the reflectance of the sphere coating yields a 5% change in the

sphere efficiency for a coating reflectance of approximately 90% [38].



Typically, integrating spheres are able to measure spectrally in the range of

λ = [200, 2500] nm but the recommended range in [10] is reduced to λ = [280, 2500] nm,

with 5 nm steps, to be consistent with the solar spectrum from [11]. In some instruments

significant cost savings can be made by avoiding the use of an extra UV-lamp and starting

the measurements at 300 nm. This is allowed since the UV and NIR tails have a low

impact on the final average value [10]. The resulting range (λ = [300, 2500] nm) is in

agreement with [39]. This type of spectrophotometer has been extensively used by several

research institutions for the hemispherical reflectance measurements of solar reflectors

for concentrating applications [40]-[43].

Following integrating sphere manufacturer’s instructions, a material similar to the sample

to be measured must be installed in the reference port. Concerning the calibration of the

integrating sphere, although the instrument software has the capability to perform it

automatically, a manual calibration is hardly recommended. The manual calibration is

done by measuring first the zeroline, ρzeroline, which consists on removing any sample from

the measuring port. The second step consists on putting the calibrated standard on the

measuring port and measuring it as the baseline, ρbaseline. The calibrated standard is a

reference mirror of known reflectance, ρreference, that should be calibrated by an external

accredited laboratory. Finally, the sample to be measured is situated in the measurement

port and the measurement ρsample is obtained. The corrected reflectance of the sample,

ρsample, corrected, is obtained by applying the equation (9). It is recommended to check the

baseline several times during a working day to detect possible drifts.

reference

zerolinebaseline

zerolinesample

correctedsample ρ
ρρ

ρρ
ρ ⋅

−

−
=, (9)

Most spheres have the ability to measure diffuse only reflectance by allowing the specular

component to exit the sphere via an open specular exclusion port. It is not advisable to

use the specular exclusion port to measure the diffuse reflectance and then calculate the

specular reflectance by subtracting the diffuse reflectance from the hemispherical

reflectance. The exclusion port is usually too large, thus the corresponding φ obtained

(around 116 mrad [15]) is not representative of performance for solar concentrating

applications [29]. Also, the incident light is not collimated which makes it difficult to

determine φ.



Figure 4. Left: Picture of the spectrophotometer Lambda 1050 by PE with the

Integrating Sphere accessory. The red square indicates the Integrating Sphere accessory,

which is interchanged with the detector compartment (see Figure 2). Right: Scheme of

the optical design of 150 mm integrating sphere [44].

A round robin test was performed in 2010 between three research laboratories (DLR,

CIEMAT, and NREL), within the framework of SolarPACES Task III activities, with

samples that represent all of the commercial solar reflectors currently available for CSP

applications [45]. Using the same instruments with the same properties and the same

measurement procedure should lead to similar results when a reflector is measured at

different laboratories by different operators. Each laboratory received a set of samples for

the first round of measurements; the sets were then sent to the next laboratory, where they

were measured and so on, resulting in three rounds. For the measurement of hemispherical

reflectance, ρs,h([250,2500]nm,8°,h), PE Lambda series spectrophotometers were used.

CIEMAT used a new Lambda 1050 with a 150 mm integrating sphere, DLR used a

Lambda 950 with a 150 mm sphere, and NREL used the older Lambda 9 and Lambda

900 equipped with 60 mm spheres. Nine different types of solar mirrors were provided

by six different manufacturers for the test. All samples had clean, smooth surfaces without

scratches or soiling at the beginning of the test.

Surprisingly, the deviation of the hemispherical measurements was high between the

laboratories, although the measurements within the laboratories were very repeatable. The

standard deviation of the hemispherical reflectance (in reflectance units, that is, from 0 to

1) did not exceed σ = 0.002 for all material types when the CIEMAT and DLR

measurements were compared, but the NREL results were higher. This can be explained

by the NREL spectrophotometers’ use of smaller integrating spheres—60 mm vs.

150 mm—and the age of the NREL reference reflectors. DLR and CIEMAT had bought



identical reference reflectors within the last two years from European laboratories,

whereas NREL used significantly older reference standards that had not been recalibrated

for a number of years because calibration services had been unavailable. This led to higher

reflectance values; the same as would be the case if dirty reference standards were used.

The measurements of 2nd surface silvered glass reflectors would be expected to have the

best repeatability because of their homogeneity. The results reveal the opposite,

indicating the importance of the correct reference standard. The 3 mm and 4 mm silvered-

glass reflectors had the greatest standard deviation (σ = 0.007) because NREL used 1 mm

reference standards and DLR and CIEMAT used 4 mm standards. The thin-glass standard

deviation is also high (σ = 0.007) because only NREL had the 1 mm reference standards

with similar properties to the samples, while DLR and CIEMAT used 1st surface

aluminum standards. The aluminum samples measured against 1st surface aluminum

reference standards thus show the smallest average divergence of σ = 0.006. This results

in a general averaged divergence of σ = 0.007. In summary, the results showed

differences in hemispherical reflectance of 0.007 between the laboratories. These

differences indicate the importance of minimum instrument requirements and

standardized procedures. Improved instruments and reference standards are needed to

reach the necessary accuracy for cost and efficiency calculations.

According to the conclusions highlighted in this work, the SolarPACES reflectance

guideline was updated, concluding in version V2.5 [10]. A second round robin test was

launched at the beginning of 2013 [9], to check the suitability of the protocol to measure

hemispherical reflectance described in the SolarPACES reflectance guideline. Six

identical kits, each one consisting of ten specimens collected from eight cooperating

producers, were distributed to six institutes, acting as evaluators: ENEA, CEA, CENER,

CIEMAT, DLR, Fraunhofer-ISE, and NREL. Each research institute used a high quality

spectrophotometer, with a light source at near normal incidence and equipped with an

integrating sphere with diameter not less than 150 mm. For each specimen, the reflectance

spectrum was measured in the range λ = [300-2500 nm]. Then, the solar reflectance was

computed by applying the standard ASTM E903 [27] and using the spectrum in the

standard ASTM G-173-03 [11]. The maximum difference between the results obtained

from two different evaluators was 0.014. The deviation of the results achieved by each

evaluator from the mean, which is assumed to be the true value, is smaller than ±0.007.

Therefore, the agreement between all participants was very good, even for the innovative



mirrors. The institution in charge of the data treatment (assessor) was also one of the

participants. This approach has the methodic drawback that the assessing institute has

access to the results of the rest of the partners beforehand, so they are able to check the

consistency of their own measurements in advance. Nevertheless the participants of the

Round Robin test agreed that it is more important to include as many partners as possible

and for this reason the assessor was also accepted as a participant. The University of

Zaragoza made contact with the Task-III group after the rest of the partners already

performed their measurements. Their results were added afterwards in order to compare

the results of an additional institute.

b) Universal Reflectance Accessory (URA)

The URA is a variable angle specular reflectance measuring module that loads directly

into the detector compartment of the PE lambda spectrometers (see Figure 5 and Figure

6) [46], [47]. The URA can be used to collect absolute or relative reflectance

measurements with θi = [8, 65]º and λ = [190, 3100] nm. Samples are placed on the

horizontal sample plate and can range in size from 8 mm to 150 mm. Samples with sizes

between 3 mm and 8 mm could be measured using a custom-made sample holder.

Due to the complexity of the optical path inside this accessory, which also depends on the

θi selected, a φ is not clearly defined [48]. This value may ensure stable readings but it is

too large for CSP applications [29]. Also, problems might arise for imperfectly flat

mirrors, because the beam alignment cannot be adjusted. Typically, second-surface

samples and different shapes are not supported, especially at measurements of higher

incidence angles.

Once fitted into the spectrometer, the URA can be fully calibrated using the software

(both the zeroline –or 0%- and the baseline –or 100%-). This allows to eliminate the need

to make manual adjustment to the optics or the sample.



Figure 5. Picture of the spectrophotometer Lambda 1050 by PE with the URA. The red

square indicates the URA accessory, which is interchanged with the detector

compartment (see Figure 2).

Figure 6. Scheme of the URA sample beam. Left: configuration to measure the sample.

Right: configuration to measure the baseline [47].

CIEMAT and DLR institutions, in their joint laboratory for Optical & Aging

Characterization (OPAC), made a study to compare the spectra acquired by using the

same spectrophotometer (Lambda 1050 by PE) with two different accessories, the

150 mm diameter integrating sphere and the URA. In the URA accessory, the incidence

angle selected for the measurements was the same as for the integrating sphere, that is,

θi = 8º. Four samples of different materials were measured: 1-mm silvered glass, 4-mm

silvered glass, silvered polymer film and aluminum. The silvered film sample was

measured at the initial state (that is, new) and also after some degradation had occurred.

This comparison was made to check if both accessories (URA and integrating sphere) are

able to detect the reflectance decrease due to the scattering caused by the sample

degradation. Figure 7 toFigure 11 show the results obtained. As can be seen in Figure 7



andFigure 8, highly specular reflectors, such as silvered glass (both 1 and 4 mm thickness)

present similar spectra for the hemispherical and specular reflectance at the acceptance

angle covered by the URA. The same may be concluded for the new silvered polymer

film (see Figure 9), but not when this type of mirror has degraded (see Figure 10). The

reason is an increase of the scattered reflectance out of the specular direction due to the

front surface degradation suffered by the reflector, which is detected by the URA but not

by the integrating sphere. Finally, as expected, aluminum reflectors have lower specular

reflectance than hemispherical reflectance, even at the relatively high φ covered by the

URA (see Figure 11).

Figure 7. Reflectance measurements of 1-mm silvered glass with an integrating sphere

(��,�) and the URA (��,�).



Figure 8. Reflectance measurements of 4-mm silvered glass with an integrating sphere

(��,�) and the URA (��,�).

Figure 9. Reflectance measurements of a new silvered polymer film with an integrating

sphere (��,�) and the URA	(��,�).



Figure 10. Reflectance measurements of degraded silvered polymer film with an

integrating sphere (��,�) and the URA (��,�).

Figure 11. Reflectance measurements of an aluminum reflector with an integrating

sphere (��,�) and the URA (��,�).

c) Absolute Reflectance and Transmittance Analyzer (ARTA)

The ARTA is a stepper motor driven goniometer tool that uses an integrating sphere as

detector, which is 60 mm in diameter, with photomultiplier (PMT) and InGaAs detectors



[49], [50]. As with the two previously described accessories, this module loads directly

into the detector compartment of the high performance Lambda spectrometers from PE

(see Figure 12).

Figure 12. Picture of the spectrophotometer Lambda 950 by PE equipped with the

ARTA accessory. The red square indicates the ARTA accessory, which is interchanged

with the detector compartment (see Figure 2).

The ARTA can be used to collect absolute transmittance or reflectance measurements

utilizing λ =[220, 2500] nm. The sample is placed in the center of a rotation stage and can

rotate through 360°. The integrating sphere detector is placed either behind the sample at

180° for transmittance measurements, or in front of the sample at twice the θi for

reflectance measurements. The θi range is 5° to 85° for reflectance measurement of

specular samples and 0° to 85° for transmittance measurement. The sample holder can

receive square samples up to 10 cm wide.

An important improvement over other commercial instruments is the possibility to

measure at “positive” and “negative” incidence angles to compensate for systematic

errors by taking the average of the two measurements. The systematic errors are due to

the offset in the zero position of the sample angle and the angular distribution of rays in

the beam. Therefore, the correct result is obtained by taking the average of the positive

and the negative measurement [51].

The ARTA is also equipped with a variable detector aperture to control the φ. The

maximum aperture corresponds to an φ = 15° approximately (about 263 mrad). Varying

the detector aperture is an option to qualify diffuse materials but is not necessary for

specular materials such as mirrors. Nevertheless, this equipment can be used to



characterize the angular scattering of mirrors after degradation. It is being used by some

research institutes for specular reflectance measurements [52], [53].

3.1.2 Cary 5000 by Agilent (formerly Varian)

The Cary 5000 is a dual beam UV, Vis light and NIR spectrophotometer [54]. This

instrument records data in the λ range from 175 to 3300 nm. The extension of the NIR 

range up to 3300 nm is obtained by using a PbSmart detector. The large sample

compartment can be expanded to hold large accessories and integrating spheres. For

optimum analytical performance, it is recommended that the ambient temperature of the

laboratory be between 20 and 25 °C. The maximum operating temperature is 50 ºC.

The experimental setup for opaque samples and surface coatings include reflection

measurements at fixed (12.5º) and variable incidence angles, thanks to the VASRA

accessory able to measure in a range from 20 to 70º. Also, among other accessories, an

internal integrating sphere for hemispherical reflectance measurements is available for

λ = [200, 2500] nm.

3.1.3 OL 750 by Gooch and Housego (formerly Optronic laboratories)

The OL Series 750 is spectroradiometric measurement system from Gooch and Housego

(formerly Optronic Laboratories) capable of performing a variety of highly accurate

optical radiation measurements under computer control in the UV, Vis and IR ranges [55]

(see picture and scheme in Figure 13). Both single (OL750S) and double (OL750D)

grating monochromator versions are available. In this case, θi=10º. Both for OL750S and

OL750D versions, the wavelength accuracy is ±0.05%, the wavelength precision is

±0.01% and the operating temperature is from 5 to 40ºC. The bandwidth is from 0.5 to

20 nm in the case of OL750S and from 0.25 to 10 nm for the OL750D version. The

integrating sphere has a diameter of 152.4 mm and a specular opening port (or light-trap)

of φ≈84 mrad, with a spectral range of λ = [320, 2500] nm. The measurement diameter

may be selected at 3, 6 or 10 mm. In reflectance measurements, the precision is 0.25 %

and the accuracy is 1 %. To calibrate the instrument, the first step is to position the

standard reference sample in the sample port and measure both the signal with the beam

focused on the comparison sample and the signal with the beam focused on the standard

reference sample. The second step consists on positioning the test sample in the sample

port and measuring both the signal with the beam focused on the comparison sample and

the signal with the beam focused on the test sample [56].



Figure 13. Left: picture of the spectrophotometer OL 750 by Gooch and Housego [21].

Right: Scheme of the spectrophotometer OL 750 by Gooch and Housego [56].

The basic system, along with an extensive selection of optical items and accessories,

enables the OL Series 750 to measure over all or part of the entire 200 nm to 30 µm

wavelength range. An automated system can be configured for source spectral analysis,

detector spectral response, diffuse spectral reflectance, specular spectral reflectance and

spectral transmittance. The OL Series 750 can be configured with the OL 750-75MA

Goniospectro-reflectance attachment to measure the specular reflectance of polished

materials or mirrors as a function of both λ and θi. This type of spectrophotometer is being

used by some prestigious research institutions [15].

3.1.4 V670 by Jasco

The JascoV-670 (see Figure 14 left) is a double-beam single monochromator type optical

spectrometer covering a wide spectral range from λ=190 nm to λ=2700 nm which relies

on dispersive mode to measure light intensity at each λ allowing incident light passing

through a monochromator and diffraction grating [57]. The UV range (λ=[190, 350] nm)

is obtained with a deuterium lamp while the Vis and NIR ranges are generated with a

Halogen lamp (see Figure 14 right). With respect to detectors, the UV and Vis ranges are

covered with a PMT one and the NIR range is registered with a Peltier cooled PbS

detector. The measurements are undertaken based on calibration standards and the

spectral output is evaluated directly as a calibrated spectrum. The V670 is designed to

measure transmission and both types of reflection, specular and diffuse, from a sample

surface by mounting various types of optical accessories into the optical chamber.



The total reflectance is estimated using an integrating sphere of 60 mm (inner walls

covered with Barium sulphate) and fluoropolymer-based spectralon (from Labsphere) as

calibration standards. Model V670 has wavelength bandwidth of 0.1 nm minimum and

accuracy of ±0.3 nm in UV-vis ranges with 1% stray light rejection at 198 nm (KCL

12g/L aqueous solution). The beam size is 1-5 mm typically and the standard sample size

is 20 x 20 mm2.

Figure 14. Left: Picture of the Jasco V670 spectrophotometer. Right: Optical

scheme; WI, D2: light source; M: mirror; S: Slit; F: Filter; G: Grating; M8: sector

mirror; PM: UV/Vis detector; PbS: NIR detector; Sam: sample beam; Ref:

Reference beam; W: Window.

Briefly, the optical sources used are a deuterium lamp (187-350 nm) for the UV range

and a halogen lamp (330-2700 nm) for the VIS-NIR bands. The light from the optical

source is focused onto the monochromator which is dispersed by the grating and finally

traversed through the exit slit. The wavelength-dispersed light output is split into two

beams by a sector mirror of which one is incident on the sample under test and the other

on the reference sample for relative spectral analysis. The two beams that pass through

the test sample and reference sample are alternately collected by the detector. Both PMT

and Peltier-cooled PbS photoconductive cell (NIR detection) are used as output detectors.

The embedded Spectra-Manager software is used for spectral analysis. This type of

spectrophotometer is being used in research activities conducted on this topic [58], [59].

3.2 Reflectometers

Reflectometers are devices that measure the intensity of the light source after reflection

on a sample without wide spectral information, that is, they are equipped with light

sources that radiate only one or a few narrow wavelength lines or bands. These lines or



bands should at least be near the solar energy peak between λ = 500 nm and λ = 660 nm.

After calibration with a known reflectance reference standard, the measured intensity is

automatically transformed into a reflectance reading by correlating the measured flux

intensities of reference standard and sample. Reflectometers are typically prepared to

measure specular reflectance. However, reflectometers that are equipped with integrating

spheres may be also suitable for hemispherical reflectance measurements if their sphere

is large enough. Portable instruments of this kind are also useful for relative

measurements in quality control or cleanliness measurements in the field, even with a

small sphere, depending on the level of precision that is required. Since these portable

devices are principally destined to measure solar reflectors exposed outdoors (typically

in dusty environment [23]), the influence of the soiling deposited on the material surfaces

must be considered in the measurement process. In this sense, it is important to highlight

that the dust accumulation produces wavelength dependent scattering [24]. As a

consequence, portable reflectometers should include as maximum wavelength range as

possible in their optical principle.

Reflectometers used for qualification of solar mirrors should fulfil as much as possible of

the list of requirements for the ideal instrument stated in [10]. The minimal requirement

for an instrument measuring specular reflection for solar applications is a selection of

defined φ of at least 12.5 mrad. Preferable are additional apertures in both smaller and

larger cone angles. The reflected beam should be focused into the φ. The instrument

should offer the possibility of adjusting the length of the beam path according to the

reflector front-layer thickness to measure different glass thicknesses of second-surface

reflectors. In addition, as it needs to perform reliably and precisely in the field, the

following aspects should be considered:

• The beam alignment for each measurement should be adjustable to compensate

for any surface curvatures. The positioning adjustment should be stable without

damaging the mirror. The mechanism for beam adjustment and positioning needs

to be easily accessible and controllable.

• Easy handling and use, and high robustness. Size and weight should allow a single

operator to use it, even at above head height.



• The time required to take a measurement should be as short as possible, to reduce

the interference with plant operation. It should be possible to use the instrument

at night, when the plant is not operating.

• High autonomy, i.e. battery and data storage capacity, along with indication of

battery status. Low battery status should not influence the measurement results.

• The possibility of storing the digital data in addition to a display reading is

recommended.

• The instrument performance must be stable in the typical operating environment

of a CSP plant. This includes high, low, and variable ambient temperatures,

relative humidity, wind, and dust. The instrument must be able to work in strong

sunlight without stray light problems.

• Cross contamination of standards and mirrors must be minimized when

characterizing mirror soiling rates.

• Operation should be possible while a cable is connected to a power source or

computer (if needed), which means that the connection should not interfere with

the positioning of the instrument on the sample.

3.2.1 15R-USB by Devices and Services (D&S)

D&S company has manufactured optical instrumentations for solar applications since

1977. The company developed the first version of the 15R reflectometer at the beginning

of the eighties of last century, under contract to Sandia National Laboratories (USA) [12].

a) 15R-USB model by D&S

The portable specular reflectometer model 15R-USB manufactured by D&S (see Figure

15) has a light-emitting diode (LED) source of λ = [635, 685] nm, with a peak at

λ = 660 nm [60], [61]. φ selected for measuring can be φ = {3.5, 7.5, 12.5, 23.0} mrad,

and the θi = 15º. First and second surface mirrors can be measured with this device. The

distance between the reflective surface of the mirror and the optical components of the

15R-USB vary when measuring reflectors with different glass thicknesses. A screw

located centrally on the bottom of the instrument corrects for this such that the optics are

the same for all reflectors. In addition, this instrument allows the measuring of curved

mirrors by using two adjusting screws situated on its base. With these two screws the



optical measuring system is aligned and adapted to the curved surface. The battery

autonomy is 25-30 h and the weight is 1.1 kg.

The calibration process of the instrument may be done with the own reference standard

that come with it, or with an external reference standard. The second option is

recommended to assure a good quality of the reference, which may be replaced when

deterioration is noticed. To calibrate the instrument, the first step consists of selecting the

aperture to be used in the measurement and rotate it into place. With the reference

standard in place, the gain adjustment must be set to the corresponding value of the

calibration. It is recommended that the calibration process is repeated periodically while

making measurements, mainly if ambient temperature changes are suffered. After

calibration with the known reflectance reference standard, the measured intensity is

automatically transformed into a reflectance reading by correlating the measured flux

intensities from the sample to the signal from the reference standard.

An aperture in front of the lens restricts the collimated beam to a diameter of 10 mm so

that all of the reflected beam can be collected by the 22 mm diameter receiver lens. The

instrument resolution is 0.001 and, according to the manufacturer, the repeatability is

±0.002. Operating temperature is from 0 to 50ºC. This instrument has been widely used

by research institutes [40], [62]-[68] and also commercial CSP plants.

Figure 15. Left: Picture of the portable specular reflectometer 15R-USB by D&S.

Right: Principle sketch of the optical alignment of the 15R-USB by D&S [60].

The comparability of three portable specular reflectometers, all models 15R-USB

manufactured by D&S (instrument serial numbers SN 119, 117 and 060) was investigated



in the OPAC laboratory at the Plataforma Solar de Almería (PSA). Different silvered-

glass, silvered polymer film and aluminum reflectors were used for the tests, all of them

10 x 10 cm2. The specular reflectance was measured with the three instruments using

φ = 12.5 mrad. The instruments were calibrated with an external working standard. Five

values were measured for all material types. The average of the measurements was used

as the result for the specular reflectance. The results are presented in Figure 16.

Figure 16. Specular reflectance measurements with the three 15R-USB reflectometers.

As can be observed in Figure 16, the reflectance measurements for the silvered-glass

reflectors are very similar, for both glass thicknesses, with average difference of

0.002±0.002 and maximum difference of 0.003±0.002. This is due to the high stability

and homogeneity of the glass based reflectors. The small differences can largely be due

to the instruments’ resolution, which in this case is 0.001. However, due to the

heterogeneity and lower rigidity of silvered polymer film and aluminum reflectors, the

differences in the reflectance measurements are quite significant, with average difference

of 0.007±0.005 for polymer films and 0.003±0.002 for aluminum and maximum

difference of 0.010±0.010 for polymer films and 0.004±0.007 for aluminum.

b) 15R-RGB (MWR) model by D&S

The 15R-RGW Multiple Wavelength Reflectometer (MWR), manufactured by D&S,

builds on the functionality of the previous model 15R-USB and was marked on 2012 (see

Figure 17) [69]. It incorporates a white light source and the use of different filters makes



it possible to measure the reflectance at λ = {460, 550, 650, 720} nm. Furthermore, the

instrument has five different φ, which are φ = {2.3, 3.5, 7.5, 12.5, 23.0} mrad, and the

θi = 15 º. The rest of the features, properties and calibration methods are the same as for

the model 15R-USB.

Figure 17. Picture of the multiple wavelength reflectometer 15R-RGB by D&S.

The comparability between two types of instrument by D&S, a 15R-RGB MWR and a

standard 15R-USB, was investigated [70]. Different silvered-glass, silvered polymer film

and aluminum reflectors were used in the study. The specular reflectance was measured

with both instruments, using φ = {3.5, 7.5, 12.5, 23.0} mrad. As the λ of the 15R-USB is

660 nm, the value chosen in the MWR was 650 nm. The instruments were calibrated with

an external working standard (a second-surface silvered-glass reflector), to eliminate the

influence of the calibration process in the instrument comparison. As in the previous

section, three values were measured for the silvered-glass mirrors and five for the silvered

polymer film and aluminum reflectors. The average of the measurements was used as the

result for the specular reflectance. For comparing the instruments, the difference in the

monochromatic specular reflectance Δρλ,φ was calculated as the value of 15R-USB minus

the value of 15R-RGB. Figure 18 represents the differences between the two instruments.



Figure 18. Reflectance difference Δρλ,φ of the two reflectometers by D&S. The value of

the difference is created using the measured reflectance and subtracting the value of

15R-RGB MWR from the value of 15R-USB.

As can be seen in Figure 18, in general the reflectance measured with the 15R-USB is

higher than the one measured with MWR. An exception is the silvered polymer film

reflector, where the reflectance measured with MWR is higher than with 15R-USB. The

reflectance differences for the silvered glass reflectors are very small (0.001 in average

and 0.003 as maximum). This is due to the stability and homogeneity of the silvered glass

reflectors. However, due to the heterogeneity and flexibility of silvered polymer film and

aluminum reflectors, the reflectance differences are more significant (0.007 in average

and 0.018 as maximum). In addition, it should be mentioned that the calibration with the

3.5 mrad setting is quite difficult and consequently the results for this φ are not consistent

with the ones obtained for the rest of the φ.

A test to compare the specular reflectance and the hemispherical reflectance for several

types of reflectors (silvered-glass, silvered polymer film and aluminum reflectors) was

done. The specular reflectance was measured with the 15R-RGB MWR by D&S for every

λ and with every φ, and the results were compared with the hemispherical reflectance

measured with a PE Lambda 1050 spectrophotometer, with the integrating sphere. The

results are presented in the following 4 figures.



Figure 19. Reflectance measurements of 1-mm silvered glass with the PE Lambda 1050

spectrophotometer with an integrating sphere and the D&S 15R-RGB reflectometer.

Figure 20. Reflectance measurements of 4-mm silvered glass with the PE Lambda 1050

spectrophotometer with an integrating sphere and the D&S 15R-RGB reflectometer.
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Figure 21. Reflectance measurements of silvered polymer film with the PE Lambda

1050 spectrophotometer with an integrating sphere and the D&S 15R-RGB

reflectometer.
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Figure 22. Reflectance measurements of aluminum with the PE Lambda 1050

spectrophotometer with an integrating sphere and the D&S 15R-RGB reflectometer.

As can be seen in Figure 19 andFigure 20 for the silvered-glass reflectors, the specular

and the hemispherical reflectance are nearly equal and the specular reflectance using

different φ is almost constant for each λ. This indicates small scattering and a high

specularity for all the λ under analysis. For the silvered polymer film and aluminum

reflectors (see Figure 21 and Figure 22), the specular reflectance increases with the φ and

it is noticeably lower than the hemispherical reflectance. This indicates more scattering

on these samples and that the scattering is wavelength dependent, with more scattering

for small λ.

3.2.2 Condor by Abengoa Solar

The Condor reflectometer, marketed by Abengoa Solar since 2012 and developed in

cooperation with the Zaragoza University (see Figure 23 left), is an accurate, precise,

robust and easy to use portable instrument. It is designed for measurements in actual solar

fields in working CSP plants [71], [72]. It can make specular reflectance measurements

at different λ = {435, 525, 650, 780, 940, 1050} nm, and θi = 12º. The source of these

different λ lights are six LEDs, and six corresponding detectors are included (see the

optical scheme in Figure 23 right). As each LED is separated from the next by 19 mm,

the measurements for the different λ are not done at the same position of the sample. Since

there are six LEDs the distance from the first to the last is 95 mm. The reflectometer

determines the specular reflectance for both second and first surface reflectors due to the

optical arrangements. The battery autonomy is 1200 measurements and the weight is

1.4 kg. This reflectometer has a 1 mm beam diameter and φ = 290 mrad. According to the

manufacturer, the repeatability is ±0.002. The high φ facilitates quick and reliable

measurements of large reflecting areas. Operating temperature is from 0 to 55ºC. The

instruments resolution is 0.001. This instrument does not present optical alignment.

The Condor is simple to use. It is battery operated and requires charging before use. After

switching on, it requires 5-10 minutes for pre-heating and stabilization before taking

measurements. The instrument includes a visual display which guides the operator

through the correct operating procedure. Since the instrument is a comparator it requires

a calibration reflectance using the standard mirror provided. Following this, the



instrument is then leaned against the mirror under test and the measurement system

activated from the menu screen. The measurements through the six LEDS and detectors

are taken sequentially, taking approximately 3-4 seconds for the full data to be collected

and stored within the instrument. Then the next reading can be taken. The instrument

includes an internal temperature sensor. If the predetermined temperature range is

exceeded a warning message is displayed and the instrument must be re-calibrated. Data

can be downloaded later using a USB port, and copied into Excel. The instrument can

operate in automatic mode or manually if only selected wavelengths are required. It is

being employed in research studies to characterize solar reflectors [59] [73].

Figure 23. Left: Picture of the Condor reflectometer by Abengoa. Right: Optical

scheme of the Condor reflectometer by Abengoa [71]; (1): Mirror; (1’): Reflected

surface; (1’’): Glass; (2): Led, emitter; (3): reflection detector; (4): Reference detector;

(5): Diaphragm; (6): Lens; (7): Optic edge.

3.2.3 SOC 410 Solar by Surface Optics

The 410-Solar, patented (in 2007) and marketed by Surface Optics, is based on a modified

integrating sphere [74][75]. It measures total reflectance at seven sub-bands between

λ =[330, 2500] nm spectral range with a tungsten filament source. Specifically, the

wavelength bands are λ1 =[335, 380] nm, λ2 =[400, 540] nm, λ3 =[480, 600] nm,

λ4 =[590, 720] nm, λ5 =[700, 1100] nm, λ6 =[1000, 1700] nm and λ7 =[1700, 2500] nm

[76]. The signal intensity is normalized against an internal standard. Total, diffuse and

specular reflectance is reported for the data at θi = 20º. This reflectometer has a 6.35 mm



diameter beam spot and φ = 52.4 mrad. A total of eight data points are produced during a

single data acquisition cycle.

The device measures the diffuse portion of the total reflectance using the specular port

plug which is fully automated. The port plug is lifted away from the sphere allowing the

20 degrees specular beam to escape and thus leaving the diffuse portion of the total

reflectance left to measure. The specular beam portion is obtained by subtracting the

diffuse reflectance from the total reflectance. For maximum accuracy it can be calibrated

with a specular calibration reference standard or with a diffuse one. The maximum

curvature accepted is 15.24 mm ratio. The battery autonomy is 2 h and the weight is

2.13 kg. Operating conditions are from 0 to 40ºC, non-condensing, and storage

temperature is from -25 to 70ºC. The resolution is ±0.001 and predicts accuracy of ±0.03

[76]. For the calibration, two references are needed (one with high specularity and another

one highly diffuse). This instrument does not present optical alignment. Special care must

be taken during the measurement to avoid moving the contact point and so modifying the

diffuse reading.

A study was conducted on an LS3 sized collector (that is, 5.76 m aperture width and

1.71 m focal length) with 4mm thick glass reflectors in Lakewood, Colorado, to compare

three portable reflectometers: 15R-USB by D&S, Condor by Abengoa Solar and SOC

410 Solar by Surface Optics [76]. The study compared relative reflectance measurements

on naturally soiled mirrors during two months, as well as the ease of use of each

instrument. According to the results obtained, the comparison between the D&S 15R-

USB and the Condor showed reasonable correlation and high agreement because they

predicted the same amount of change between measurements to within 7-13%. With

respect to the comparisons between the SOC 410 Solar and either of the other two

instruments, results achieved were inconclusive because they had low correlation. A

according to the authors of the study, this could be due to the abnormally high standard

deviations of the measurements done with the SOC 410 Solar reflectometer, which may

be a consequence of operator errors or reflectors curvature and thickness [76].

3.2.4 CM 700-d by Konica Minolta

The Konica Minolta CM-700d (marketed since 2007) is a portable spectrophotometer

with vertical alignment, designed for broadband measurement with high repeatability on

shaped and curved samples [77]. As in the SOC 410 Solar device, this instrument uses an



integrating sphere to measure total hemispherical reflectance and diffuse reflectance (by

opening the specular port). The difference between the two values is the specular

reflection. The integrating sphere size is 40 mm diameter. For each measurement, data

for specular components included (that is, hemispherical reflectance) and excluded (that

is, diffuse reflectance) are taken simultaneously to analyse the surface conditions. The

wavelength range is λ = [400,700] nm with a xenon source and θi = 8º. The instrument

resolution is ±0.001 and the repeatability is ±0.002. On the CM-700d, the measuring spot,

i.e. the diameter of the detected beam on the reflector plane, is selectable between 3 mm

and 8 mm to measure small samples. On the CM-660d, the measuring spot is 8 mm. With

a weight of 0.55 kg, the CM-700d is quite light and thus improving portability for on-site

measurement. The battery autonomy is 2000 measurements. Operating conditions are

from 5 to 40ºC, and at 80% relative humidity or less with no condensation. This

instrument does not present optical alignment. Special care must be taken during the

measurement to avoid moving the contact point and so modifying the diffuse reading.

3.2.5 µScan by Schmitt Measurement Systems (SMS)

The SMS μScan System (see Figure 24 left) can calculate surface roughness, reflectance 

and scattered light levels on flat or curved surfaces under any lighting conditions [78]. It

was firstly used for concentrating solar applications by Kramer Junction at the SEGS

plants by the end of the nighties of last century. The portable system consists of an

interchangeable measurement head (number 1 in Figure 24 right), a hand held control unit

(number 2 in Figure 24 right) and separate charging unit (number 3 in Figure 24 right).

To perform a measurement, the operator places the measurement head on the surface to

be analyzed (which must be connected to the hand held control unit) and simply presses

the button. The results are clearly displayed and stored in the system memory. The μScan 

measuring head has a class II laser source2 (θi = 25º and λ = 670 nm), reflectance detector

and two scatter detectors inside and creates a spot size on the target of 1 mm diameter.

The instrument resolution is ±0.001 and the repeatability is ±0.005. The curvature

accepted is 114.3 mm diameter minimum. Operating temperature is from -10 to 45ºC.

The battery autonomy is 5 h and the weight is 2.2 kg in total (control unit and

measurement head). This instrument does not present optical alignment and φ value is not

2 A laser source is classified as class II when the blink reflex of the human eye (aversion
response) will prevent eye damage, unless the person deliberately stares into the beam
for an extended period.



available. The calibration process consist on measuring a reference mirror of known

specular reflectance at λ = 670 nm (reference value) and introducing the obtained datum

(current value) in the software, which automatically compensate the instrument according

to the relation between the true and current value. The reference mirror must be of the

same type (glass thickness, reflective metal and curvature) of the mirror sample to be

measured. In a research work performed at the PSA, it was detected that the accuracy of

this instrument is not sufficient for high quality CSP reflector characterization [79].

Figure 24. Left: Picture of the µScan portable reflectometer by SMS; (1): interchangeable

measurement head; (2): hand held control unit; (3): charging unit. Right: Principle

sketch of the measurement head of the µScan by SMS.

3.2.6 Pflex by PSE AG / Fraunhofer ISE

The new marketed Pflex instrument of PSE AG was developed in collaboration with

Fraunhofer ISE (see Figure 25) [80]. It measures specular reflectance of both flat and

curved reflectors and is operated via a user interface on a mobile phone. The measurement

spot is 10 mm diameter size, with θi = 8º and λ = 631 nm (optionally 455, 533 or 660 nm).

According to the manufacturer, the repeatability is ±0.005 and the operating temperature

is from -15 to 60 ºC. The battery autonomy is more than 24 h. The calibration is done by

measuring a reference mirror and the offset is stablished with a black reference. This

instrument has already been proved by the developing institution, Fraunhofer ISE [81].



Figure 25. Picture of the PFlex reflectometer by PSE AG/Fraunhofer ISE [80].

3.2.7 Tracking Cleanliness Sensor (TraCS) by CSP Services / DLR

The TraCS device, developed by DLR and marketed by CSP Services since 2016 [82], is

an accurate measurement system to study the cleanliness of solar mirrors by using already

well-established measurement equipment [83], [84]. It differs from the above mentioned

reflectometers in that it is stationary and measures reflectance with the actual sun

spectrum although not spectrally resolved as in a spectrophotometer. The measurement

can be taken automatically and continuously at remote sites using the available data

acquisition system.

A precise meteorological station, as frequently used in resource assessment or in a

running power plant, consists of a solar tracker with a pyrheliometer for measuring the

direct normal irradiance (DNI) (see Figure 26). As accessory on the same tracker, a

second pyrheliometer is mounted looking backwards into a mirror that reflects the direct

solar irradiance into it. The measuring spot is 16 mm in diameter. A motor turns the mirror

in its plane to increase the measurement area to approximately 30 cm2.

Figure 26. Picture of the TraCS accessory by CSP Services / DLR at a remote

meteorological station in Morocco.



It can be adapted to target power plant conditions regarding θi and φ. By default θi=15º

and φ=13.6 mrad. The mirror surface covers the complete imaginary area defined by the

opening angle of the pyrheliometer and the working distance. Therefore the portion of the

detected light originating behind the sample mirror is negligible.

The specular reflectance integrated over the current solar spectrum, i.e. the solar weighted

specular reflectance is obtained according to equation (10).
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where t is the time, DNIreflected is the DNI measured by the TraCS pyrheliometer and

DNIsun is the directly measured DNI. It has to be noted that the solar weighting is not

performed with the standard spectrum, but the specific solar spectrum present at the

location and time of measurement as each wavelength contributes equally to the

pyrheliometer irradiance measurement signal.

A calibration constant Cclean can be determined to give the cleanliness of the mirror

according to equation (11)
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where Tclean denotes a time span of approximately one hour directly after cleaning the

sample mirror which is recommended every one to two weeks noting the time of cleaning

for calibration. Both pyrheliometers shall be cleaned daily, which is the standard

requirement for pyrheliometer measurements [85]. Thus no additional maintenance visits

are required for TraCS.

The calibration of the cleanliness measurement is performed during data processing.

Therefore the mirror is considered as the clean reference right after a mirror cleaning

event. The accuracy of solar-weighted reflectance measurement depends on the

measurement accuracy of the pyrheliometers. The solar weighting is a result of the



measurement principle. The TraCS instrument operates at temperatures between - 20 and

+ 50 °C.

The time derivative of the continuous cleanliness measurement is the soiling-rate. In daily

time resolution it is a convenient parameter for application in optimization of cleaning

cycles, plant yield analysis and research on the causes of soiling as it is independent of

the cleaning cycles of the TraCS sample mirror. An example measurement curve for a

soiled mirror is shown in Figure 27. This also illustrates the effect of the mirror rotation:

each red dot in the graph represents the cleanliness for a spot of 2 cm2 on the mirror.

These spots are located along the circular arrow shown in Figure 26. The blue dots

represent the average cleanliness over one full rotation of the mirror that is completed

every 10 minutes. The variation of the high time resolution measurement is an indicator

for the homogeneity of the soiling pattern.

Figure 27. Measurement curve of the TraCS for cleanliness, ξ, over time. A stripe on

the mirror has been cleaned at 17:50h. After that, the 5s-values rise regularly to 1 during

the rotation of the mirror, slightly increasing the 10 min average and reproducing the

mirror’s soiling profile.

It was checked that changing φ from 19 to 46 mrad does not systematically affect the

measurement results in accordance with the results in [18]. The TraCS has shown good

accordance with the D&S 15R-USB and same reproducibility. The accuracy for a

10 minute average cleanliness value is 1.8 %, for daily soiling rate 0.19 %/ day [86].

3.2.8 Summary of reflectometers

The main characteristics of the reflectometers are summarized in Table 2. The

information was taken from manuals or manufacturer’s data sheets, and also from the



experience of the authors as users of those instruments.

Table 2

Main features of the commercial reflectometers. *: information not available.



Manufacturer Surface Optics Device & Services Co
Schmitt Measurement

Systems
Abengoa Konica Minolta CSP Services GmbH PSE AG

Model 410 Solar
15R-USB
15R-RGB

μScanTM Condor CM-700d/600d TraCS PFlex

Measurement principle
Integrating sphere unit
where the specular port

can be opened

A source lamp and a
detector positioned in

incidence and outgoing
angles

A source lamp and a
detector positioned in

incidence and outgoing
angles

Six optical channels
composed by a source

lamp and two
detectors

Integrating sphere unit
where the specular port

can be opened

One pyrheliometer for
measuring DNI and

another looking at the
mirror sample

A source lamp and a
detector positioned in

incidence and outgoing
angles

Measurement type
Hemispherical and
diffuse reflectance

(specular calculated)

Specular reflectance at
selected φ

Bidirectional scatter
function, roughness and

specular reflectance
Specular reflectance

Hemispherical and
diffuse reflectance and

colour
Specular reflectance Specular reflectance

Light source Tungsten
LED (USB), white

light with filters (RGB)
Class II Laser Six LED Xenon Sun *

Incidence angle, θi (º) 20 15 25 12 8 15 8

Beam spot size
(diameter in mm)

6.35 10.00 1.00 1.00
3 to 8 (700d model)

8 (600d model)
16 10.00

Wavelength range, λ
(nm)

Seven bands between
300 and 2500

Peak at 660 (15R-
USB)

460, 550, 650 720
(15R-RGB)

Peak at 670
435, 525, 650,
780, 940, 1050

400-700
Integrated full solar

spectrum
631 (optional 455, 533,

660)

Acceptance angle, φ
(mrad)

52.4
2.3 (15R-RGB only),
3.5, 7.5, 12.5, 23.0

* 290 * 13.6 *

Accuracy (reflectance
units)

±0.020 * ±0.020 ±0.002 * ±0.018 *

Repeatability
(reflectance units)

±0.002-0.005 ±0.002 ±0.005 ±0.002 ±0.002 * ±0.001

Resolution (reflectance
units)

* ±0.001 ±0.001 ±0.001 ±0.001 * ±0.005

Adaptable to mirror
curvature

Yes, 15.24 mm ratio
minimum

Yes
Yes, 114.3 mm ratio

minimum
No No limited Yes

Suitable for 1st and 2nd

surface mirrors
* Yes No Yes No Yes Yes

Influence of external
light

*
No (chopped light

source)
Yes

No (synchronous
detection at modulated

frequency)

No (pulsed light
source)

Requires DNI > 200W/m2

for measurement
No

Weight (kg) 2.13 1.10 2.2 1.40 0.55 * *
Operating temp. (ºC) 0 - 40 0 - 50 -10 - 45 0 – 55 5 - 40 -20 – 50 -15 - 60

Autonomy 2 h 49-52 h 5 h 1200 measurements 2000 measurements * >24 h



Average time needed
for a measurement (s)

10 s 10 s 7 s 8 s * 10 m 8

Level of required
experience of the

operator

On site: high
(maintaining the seal

with the mirror is
highly prone to
operator error

Data evaluation:
medium

On site: high (optical
alignment require an
experienced operator)
Data evaluation: low

On-site: low
Data evaluation:

medium

On-site: low (very
little room for operator

error)
Data evaluation:

medium

*
On site: low

Data evaluation: high

On site: low
(insensitive and robust

against slight tilt or
twist of the instrument)

Data evaluation:
medium

Type of calibration
Two external reference

mirrors
One external reference

mirror
One external reference

mirror
One external reference

mirror
*

Cleanliness: sample
mirror in clean state

Reflectance: reference
mirror

Black reference
(offset) and one

external reference
mirror

Beam aligment No Yes No No No
Optical, using

pyrheliometer pinholes
No

References [74] [76] [60], [61] [78] [71] [76] [77] [82] [81]



4. Prototypes

In the last decade, and thanks to the great evolution and increasing interest in CSP

technologies, a significant research effort has been dedicated to developing more

appropriate instrumentation to characterize the CSP components. In particular, several

prestigious research institutes and related industrial companies have been working on the

development of prototypes to characterize the optical properties of concentrating solar

reflectors in an adequate manner. This section includes a summary of the most advanced

ones.

4.1 Space Resolved Specular Reflectometer (SR)2 by DLR

(SR)2 is a laboratory scale reflectometer developed by DLR in 2010 to improve the

existing specular reflectance measurement capabilities (see Figure 28 left) [16]. It makes

possible to measure specular reflectance on an extended measuring spot of 53.5 mm

diameter. It has a spatial resolution of 37 pixel/mm and the possibility to measure at three

different λ, λ = {410, 500, 656} nm, with θi = 15º. Furthermore, the φ is defined by

choosing one of the three available aperture sizes, φ = {3.5, 6.0, 12.5} mrad.

Figure 28 right depicts the light path of the (SR)². The vertical sample holder has a

vacuum suction mechanism for precise sample placement. This is especially

advantageous for thin and flexible samples, as the measured specularity of the material

depends strongly on the sample flatness. Desired λ is set by changing the interference

filters inserted in the light path coming from the source, which is a white stabilized LED.

Similarly, the φ is set making use of the aperture wheel placed in front of the detector.

The light passing the aperture is detected by the complementary metal–oxide–

semiconductor (CMOS) sensor of a commercial single lens reflex camera. The specular

reflectance of the sample is obtained by calibrating the instrument with a reference mirror,

whose reflective properties are known. The working temperature should be laboratory

conditions.



Figure 28. Left: Picture of the light path of the (SR)2 prototype by DLR within the

absorbing housing (camera was not mounted). Right: Scheme of the light path of the

(SR)2 prototype by DLR.

The image captured by the camera is transferred to a computer unit for processing. To

obtain the measurement data, image processing is done from a graphical user interface

developed with Matlab®. Primarily, average specular reflectance and a reflectance map

of the measured region are shown as the output. In the reflectance map, every pixel is

displayed on a color scale from 0 % to 100 %, where blue pixels mean low specular

reflectance and red pixels mean high specular reflectance. The features for degradation

analysis include information such as automatic counting of detected degradation spots,

percentage of degraded area and specular reflectance values of corroded and non-

corroded areas in order to determine the influence of corrosion on the overall performance

of the material.

Thanks to its relatively large measuring area and spatial resolution, this device is helpful

to characterize the effect of localized degradation on specular reflectance of degraded

reflectors and to monitor gradual changes such as the growth of degradation on the

surfaces. Another interesting application of the instrument is the characterization of the

spatial distribution of reflectance loss due to soiling found on mirrors after exposure. A

research study to analyze the effect of localized corrosion on the specular reflectance of

enhanced aluminum reflectors and to monitor corrosion growth was conducted using the

(SR)² [87] - [89]. The study consisted on the one hand of the outdoor exposing of several

samples at the following weathering sites: Phoenix (Arizona), Golden (Colorado), and

Miami (Florida) in the United States, plus Cologne (Germany) and Tabernas (Spain) in

Europe (see Figure 29). In addition, accelerated aging tests were conducted (sand erosion,



salt spray and humidity/temperature combination) and a model to estimate the specular

reflectance as a function of exposure conditions at different weathering sites was

developed [89].

Figure 29. Example of localized corrosion monitoring with the (SR)2 of an enhanced

aluminum reflector sample after 64 months of outdoor exposure in Tabernas, Spain.

In order to validate the measurements of the prototype (SR)², several different solar

reflector materials were measured [16]. The results were compared to the measurements

performed with the D&S 15R-USB reflectometer during a Round Robin testing

campaign, for 5 reflector types [9]. The results are shown in Table 3, being the differences

inserted in the last column the reflectance of the D&S 15R-USB reflectometer minus the

reflectance of the (SR)² prototype. According to these data, only the 1.60-mm silvered

glass reflector showed higher reflectance with the prototype (negative difference), while

the rest of the reflector materials presented lower values with the prototype (positive

differences). The mean value of absolute reflectance differences is 0.011, which means

that an acceptable agreement was found. The prototype (SR)² has a good repeatability of

the specular reflectance. For φ = 12.5 mrad, the repeatability represented by the standard

deviation lies in the range of σ = 0.005. For smaller acceptance angles (φ = 3.5 mrad) the

measurement uncertainty increased up to σ = 0.008.

Table 3



Differences of ρs,φ(656 nm;15º,12.5 mrad) obtained with the (SR)2 and the

ρλ,φ(660 nm;15º,12.5 mrad) measured with the 15R-USB D&S reflectometer, for different

solar reflector materials.

Sample ρλ,φ(660 nm;15º,12.5 mrad)
with 15R-USB by D&S

ρs,φ(656 nm;15º,12.5 mrad)
with (SR)2 by DLR

Reflectance
difference

1.60-mm silvered
glass

0.963±0.004 0.952±0.005 -0.011

Aluminum 0.877±0.010 0.887±0.002 +0.010

0.95mm silvered
glass

0.961±0.003 0.974±0.001 +0.013

4mm silvered
glass

0.955±0.004 0.962±0.003 +0.007

First surface
aluminum

0.930±0.004 0.946±0.005 +0.016

4.2 Solar Mirror Qualification (SMQ) by ENEA

ENEA has developed in 2011 a new and promising method based on measuring

hemispherical reflectance and near-specular reflectance at near-normal incidence

(θi = 2.9º) for several φ [17] (see Figure 30). This experimental apparatus adopts three

lasers of different wavelengths λ = {405.5, 543.5, 632.8} nm. The switching from one to

another is achieved by shifting the mirror.

Figure 30. Picture of the SMQ prototype by ENEA.

In the specular reflectance configuration, the laser beam hits the specimen at near-normal

incidence and the reflected beam crosses the entrance-port of a 150 mm integrating sphere

(IS-1), aligned on the specular direction (see Figure 31). The measurement can be realized

for a set of six entrance-ports, the diameter of which is sized to capture all the radiation



reflected in the φ = {3.39, 6.56, 9.84, 13.97, 16.83, 19.95} mrad. In order to ensure that

both near-specular and hemispherical reflectance values refer to the same area of the

specimen surface, for radiation with same coherence length, the experimental-apparatus

was equipped with a second integrating sphere (IS-2, diameter 150 mm) dedicated to the

hemispherical measurement. The calibration is done via the reference sample R, that is a

high quality first surface aluminium mirror (glass substrate). Each measurement is

repeated twice, one for the sample S and another for the reference R. Because the

reflectance of R is known, one can evaluate both hemispherical and near-specular

reflectance of the unknown specimen S. The instrument is a laboratory setup, working at

room temperature.

Figure 31. Scheme of the SMQ prototype by ENEA.

This instrument was used in a research study to model the near-specular reflectance in the

whole solar spectrum of two laminated mirrors and one traditional [17]. The mirrors were

analyzed with the experimental set-up to obtain near-normal incidence reflectance

measurements of the hemispherical spectrum, and near-specular at λ={405.5, 543.5,

632.8} nm, for φ. For a given φ, the wavelength-behaviour of the ratio near-

specular/hemispherical is found to be well modelled by the well-known Total Integrated

Scattering (TIS) relationship. The angular-behaviour of the hemispherical reflectance was

predicted by a simplified optical model of the mirror [90]. As final result, the behaviour

of near-specular solar reflectance versus the θi over the investigated φ range was obtained.
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The instrument set-up was updated, in view of its forthcoming commercialization in 2012.

The most relevant modifications are as follows: direct measurement of diffuse reflectance

beyond 20 mrad; adoption of cheaper, more compact, and less coherent lasers; and a new

procedure of data processing to get more reliable coherent-free assessments [90].

4.3 New reflectometer developed by Malaysia University of Science
and Technology

A new method of reflectance measurement was presented in 2003, which employs a fast

rotating reference mirror and a geometry configuration to alternatively deliver the light

via a sample mirror or by passing it to a photo detector [91]. The instrument incorporates

four optical components (see Figure 32): a sample mirror, a reference mirror, a flat-

surfaced photo detector and a laser source. In the measurement, the reference mirror

rotates (except during short stops for data reading). At a certain moment, the laser beam

impinges on the reference mirror with an incident angle β and is then reflected to a photo

detector at an incident angle θ. The signal received by the photo detector is the reference

signal. At the next moment when the reference mirror continues rotation, the reflected

laser beam is directed to the sample mirror. The sample mirror then bounces the laser

beam to the photo detector. The signal detected is now the sample signal. The reflectance

of the sample mirror is thus simply the quotient of the sample signal and reference signal.

If the rotation is fast, the measurement can take place within such a short period that the

environmental conditions, such as the fluctuation of the laser intensity, do not change

much. However, because of the strong dependence of the reflectivity with incident angles,

it is necessary in this proposed method to have the same incident angles to reference

mirror and to photo detector in these two cases. This is possible if in the sample case, the

data reading is taking place at the moment that the rotation angle of the reference mirror

has further rotated 2β and the normal of the sample mirror is so arranged that the reflected

beam from the sample mirror is incident into the photo detector with the same incident

angle of θ although from the opposite side.



Figure 32. Basic principle of the new reflectometer by Malaysia University. (a):

Measurement of the reference signal; (b): measurement of the sample signal [91].

To prove the precision, reflectance measurements have been conducted for a front-coated

silver mirror. The measurement uncertainty achieved is better than 0.0001 (with a

standard deviation of 0.00006 reflectance unit). In the experimental setup, the incident

angle was β = θ = 22.5º and a single-frequency laser beam (633 nm) as the optical source

is used.

4.4 Mirror Reflectance Function Analyzer (MIRA) by DLR

MIRA is a new prototype instrument which has been developed by DLR at the OPAC

Laboratory at the PSA in 2012 to measure near specular scatter and evaluate its impact

on specular reflectance [92], [93] (see Figure 33). The prototype design is based on the

appealing idea of a parallel imaging goniophotometer. The main components are a

mirrored spheroid to create an angular-to-spatial mapping of the bidirectional reflectance

distribution function (BRDF) coming from a mirror sample, and a camera with a fisheye

lens to capture the reflected light in one image. This way the complete light distribution

is captured simultaneously. A 180° Sigma circular fisheye lens with f = 4.5 mm focal

length is used. This lens produces a circular image on the 4/3 CCD detector array with

3296 x 2472 pixels. Therefore an angular resolution of around 1.3 mrad can be expected

if the lens produces linear mapping over the whole hemisphere.



The instrument allows the distinction of the high intensity specular peak and the low

intensity scatter by taking two measurements with different sensitivity settings for the

CCD chip. In order to prevent blooming on the CCD chip, the specular peak can be

shadowed by a movable band. The evaluation method creates the specular reflection as a

function of the offset angle from the specular direction. The concept is well suited for the

analysis of near specular scatter angles, although less suited for the analysis of rough

surfaces that require high accuracy at full 180° view angle.

The sample holder uses precision screws to position the sample, which can be a first or

second surface mirror. The measurement spot has a diameter of 3.5 mm. The instrument

features a movable light source that can be set to varying incidence angles and a filter

system to create monochromatic illumination at variable wavelength bands in the range

of λ = [500, 700] nm.

Figure 33. Left: picture of the MIRA prototype by DLR. Right: draw of the MIRA

prototype by DLR with components.

This parallel catadioptric imaging goniophotometer features as main component a

mirrored ellipsoid (catoptric part). The two dimensional counterpart of an ellipsoid is the

ellipse, which is defined by its two focal points F1 and F2. The focal points are located

on one axis defined by the major half axis, a. The minor half axis, c, continues

perpendicular to a. The ellipsoid is created by rotating the ellipse around the major half

axis with a rotation angle π. Any light ray coming from one focal point is redirected by

the ellipsoid walls towards the other focal point (see Figure 34). If the incoming light

bundle is composed of parallel light, the ellipsoid creates a junction point at half the

distance between the wall and F2. A camera with a 180° fisheye lens (dioptric part) is



positioned at the focal point F2 and creates an image of the light distribution, where each

pixel represents one scatter angle in which the light left the sample.

Figure 34. Scheme of the MIRA prototype by DLR.

The MIRA measures relative reflectance. If the hemispherical reflectance of the sample

is known, absolute reflectance values can be obtained by relating the hemispherical

reflectance with the integrated intensity of all pixels of the measurement image. The

working temperature should be laboratory conditions. Two reflector materials (silvered

polymer film material and enhanced aluminum sheet with a protective top coat) were sent

to Pab advanced technologies Ltd (pab) for a measurement of the BRDF with their Gonio-

Photometer at λ = 633 nm for reference. The measurement results were compared with

the data generated by pab. The results showed good agreement for both materials, having

the BRDF surface plots comparable shapes, with a difference of <5 percentage points at

φ > 10 mrad. However, for smaller φ there are significant deviations. The MIRA

measurement of a highly specular thin glass mirror already showed a much broader peak

than the pab measurements of reflectors with less specularity, although this is not

expected for this kind of mirror. This indicates that the instrument signature in itself does

not allow distinguishing the distribution at small φ. Reasons for this are being investigated

at the moment. The problem might be due to manufacturing errors of the ellipsoid like

imperfections in the shape of the ellipsoid wall or scattering effects at the surface.

Deviations might also be induced by the imperfectly collimated light source or an

erroneous sample holder position with respect to the camera so that no exact match with

the focal points of the ellipsoid is achieved. These effects will be studied and improved

in the future in order to achieve a higher measurement precision in the small acceptance

angle range.



4.5 Soiling sensor by IK4-Tekniker

IK4-Tekniker developed in 2013 a new low-cost sensor based on light scattering

measurements which is able to monitor the soiling level accumulated on a solar field in

real time [94] (see Figure 35). Due to the low-cost involved, several units may be installed

along the solar field to monitor it and, as a consequence, highly valuable information is

obtained to optimize the global maintenance scheme by implementing a continuous and

real-time reflectance measurement system. In addition, as reflectance measurements are

continuously taken by sensors without operator intervention, a significant manpower

saving is also achieved.

Figure 35. Picture of soiling sensor prototype by IK4-Tekniker.

It was developed under several considerations, including the need to avoid the

interference of the solar surfaces and cleaning tasks, and to be able to conduct

measurements during daytime while maintaining acceptable stability. The period between

measurements can be programmed. The sensor was designed on the basis of a transparent

substrate that is exposed to the same environmental conditions as the solar concentrating

reflector. The measuring principle is based on light scattering from the dust deposited on

the substrate (see Figure 36). The system projects a beam of light onto the internal face

of the substrate, and a set of photo-sensors detect the scattered light. The sensor

incorporates compensation algorithms to correct gain and offset variations of the light

source and of the photodetectors. Preliminary laboratory tests indicate stabilities around

0.02% of the measuring range. Within an extended working temperature range of between

-5ºC and 45ºC (functional temperature range from -20 to 60ºC), measurement stabilities

close to 0.2% of relative cleanliness were achieved.



Figure 36. Scheme of the soiling sensor prototype by IK4-Tekniker.

4.6 Very-low-angle beam spread (VLABS) by Fraunhofer ISE

The VLABS is a laboratory instrument developed by Fraunhofer ISE to determine the

absolute, angle resolved specular reflectance as a function of φ with an angular resolution

of 0.03 mrad (see Figure 37) [18], [31]. The first results with this prototype were

presented in SolarPACES Conference in 2010 [31]. It has LED irradiation as light source

at λ={455, 533, 631} nm (extendable to other λ). The light source is adjustable, with a

beam divergence half-angle of about 1 mrad. The light source spot diameter on reflector

samples ranges from 0.6 mm to 10 mm. The θi can be varied in the range of 8° < θi < 80°,

and the maximum φ is 33 mrad. The dynamic range of the detector covers about five

orders of magnitude. It is important to highlight that with this instrument the results are

not influenced by light source signature, spot size on sample, detector aperture.

Figure 37. Picture of the VLabs prototype by Fraunhofer ISE [18].

With respect to the working principle (see Figure 38), the quasi-monochromatic light

from an LED is collimated by an achromatic lens and is directed to the sample. The



reflected light passes through a second achromatic lens and is detected by a CCD array

with high resolution and high quantum efficiency. The reflected radiation (as detected by

the CCD array) is the convolution of the light source, the instrument signature and the

reflecting properties of the sample. To verify the absolute reflectance values a reference

mirror was measured for which reflectance values were provided by the by the Dutch

Organization for Applied Scientific Research (TNO). A comparison of VLABS

measurement results with the mirror’s reference values revealed that the basic principle

of the method leads to accurate absolute results for specular reflectance within an

uncertainty of 0.3 percent points for high quality glass mirrors without first surface

coatings. The working temperature should be laboratory conditions.

Figure 38. Scheme of the VLabs prototype by Fraunhofer ISE [18]. Top: light source

and instrument signature measurement. Bottom: sample measurement.

This instrument was used to investigate the specular reflectance properties of four

different mirror samples suitable for mass manufacturing of concentrating photovoltaics

(CPV) primary concentrators [95]. For this purpose, measurement of specular reflectance

with a very high angular resolution around the specular direction was performed, making

it possible to compare different mirror materials to a high degree of accuracy for arbitrary

acceptance angles. According to the results obtained, for a CPV system with φ=1° the 

loss of radiant flux due to surface scattering amounts to a maximum of 8% relative for

the investigated samples. In addition, this instrument was used to study the impact of the

incidence angle on the specular reflectance of soiled glass mirrors [96]. Measurements



showed that for soiled mirrors, the specular reflectance decreases significantly for

increasing angles of incidence.

4.7 Spectral Specular Reflectometer (S2R) by DLR

The Spectral Specular Reflectometer (S2R) was developed by DLR in 2014 to measure

specular reflectance spectra and solar-weighted specular reflectance at variable θi and φ

(see Figure 39) [48]. The reflectometer was designed as an accessory for the commonly

used PE Lambda UV/Vis/NIR spectrophotometers. The S2R accessory is based on the

commercially available General Purpose Optical Bench (PELA1003) from PE equipped

with a 60 mm integrating sphere and can be employed in the Lambda 950 or Lambda

1050 series (see section 3.1.1).

Figure 39. Pictures of the S2R prototype by DLR.

The measurement principle is shown in Figure 40. The sample and reference beam

originating from the PE Lambda spectrophotometer are coupled into optical fibers using

UV-enhanced aluminum coated reflective collimators. The reference beam is directly

coupled into the integrating sphere using a custom-made adapter plate. The sphere

contains two detectors: a PMT for UV/VIS spectral measurements and an InGaAs

photodiode detector for NIR applications. The sample beam is coupled to another

reflective collimator which outputs a homogeneous collimated beam of 22 mm in

diameter. The sample and the reflective fiber collimator are mounted on independent

rotating platforms, allowing one to change the θi by adjusting two micrometer screws.

The parallel light hits the reflector sample and its reflected light is collected by a 90° off



axis parabolic mirror with low scattering, which focuses the reflected light from the

sample. The reflected light is focused into an aperture stop of variable diameter which is

placed directly before the entrance port of the integrating sphere. The calibration is done

by moving the light source and measuring a 100% reference baseline in air. The absolute

calibration of the S2R has the advantage of not having to rely on reference mirrors. The

working temperature should be laboratory conditions.

Figure 40. Scheme of the working principle of the S2R prototype by DLR.

The range of the main parameters are λ=[250, 2500] nm, φ={9.8, 12.3, 14.8, 20.2, 35.9,

107.4} mrad and θi=[8, 70]º. The maximum sample size is 150 x 150 mm2 and the spot

size is 12 mm. The S2R measurements were validated by measuring a first surface silver

reference master mirror which was calibrated by the National Research Council Canada

(NRC). The S2R instrument has a precision in the range of 0.1 percentage points. Direct

measurement of spectral specular reflectance with the S2R has been shown to be

especially advantageous for innovative mirror materials like polymer films or aluminum

mirrors, which show scattering effects.

4.8 Summary of prototypes

The main characteristics of the prototypes are summarized in Table 4.

Table 4

Main features of the prototypes. *: information not available.



Manufacturer DLR ENEA Malaysia UST DLR IK4-Tekniker Fraunhofer ISE DLR

Model (SR)2 SMQ * MIRA Soiling sensor VLABS S2R

Described in section 4.1 4.2 4.3 4.4 4.5 4.6 4.7

Measurement principle

White light source,
lens focussing,

wavelength filter,
aperture wheel with

CMOS detector behind

Triple wavelength
source with movable

sample and two
integrating spheres

Single laser source,
rotating reference

mirror, sample mirror,
and detector

Based on the concept
of a parallel

catadioptric imaging
goniophotometer

Soiling sensor based on
light scattered from
soiling particles on

mirror surface

Measurement of absolute
reflectance with reference

mirror

Accessory for the
commonly used PE

Lambda UV/Vis/NIR
spectrophotometers

Measurement type
Specular reflectance
compared to known

reference mirror

Hemispherical
reflectance and near-
specular reflectance

Specular reflectance
compared to known

reference mirror

Specular reflectance
and near-specular

scatter

Real-time measurement
of partial reflectance,
with reference glass

Angular resolved specular
reflectance (absolute

measurement)

Specular reflectance at
variable θi and φ

Light source White light LED
Three Source lasers

405.5, 543.5, 632.8 nm
633 nm laser

Fibre light source in
range 500-700 nm

Low cost light source
LED sources at 455, 533,

631 nm
250-2500 nm from two

lamp sources

Incidence angle, θi (º) 15 2.9 22.5 Near normal Variable Adjustable 8-80 8-70

Beam spot size
(diameter in mm)

53.5 * * 3.5 * Adjustable 0.6-10.0 12

Wavelength range, λ
(nm)

410,500,656 405.5, 543.5, 632.8 633 500-700 * 455-631 250-2500

Acceptance angle, φ
(mrad)

3.5,6.0,12.5
3.39, 6.56, 9.84, 13.97,

16.83, 19.95
* >10 mrad * <33

9.8, 12.3, 14.8, 20.2,
35.9, 107.4

Operating temp. (ºC) Room temperature Room temperature * Room temperature -20C to +60 Room temperature
Room

temperature

References [16][87][88][89] [17][90] [91] [92][93] [94] [18][31][95][96] [48]



5. Conclusions

According to the results of the revision performed in this review regarding the instruments

and methods to measure the reflectance of solar mirrors, it may be concluded that a huge

effort has been carried out by research centers and companies during the last two decades

to characterize this solar component, both theoretically and experimentally.

The requirements for measuring the solar reflectance of concentrating mirrors are

challenging. Measurements should cover the complete solar wavelength range, at least

from 280 to 2500 nm, with angles of incidence from near normal to 70º, with acceptance

angles ≤ 20 mrad. These requirements are principally driven by the geometries found in 

parabolic-trough solar fields with absorbers along the line focus, with high quality back-

silvered mirrors as the solar collectors. However, the measurements, procedures, and

standards that are discussed in this review paper have wider applicability in the field of

concentrating solar technologies, and within other applications that demand high

precision optical reflectance measurements. For CSP applications, we require instruments

that can test small laboratory samples, and also large solar collectors in real solar fields.

The mirror surface can vary from as-manufactured and pristine, naturally or artificially

soiled, contact or non-contact cleaned, and either naturally or artificially aged (through

erosion, abrasion, corrosion, and chemical effects (including pollution)). The solar

mirrors may be front or back silvered glass, polished or coated metal (mainly aluminum),

polymer-based, and with a variety of backside coatings and sub-structures. Some

techniques to measure reflectance require calibration standards, which should be durable,

stable and traceable. Depending on its application and location an instrument may need

to be durable, portable, easy to set up and operate, capable of remote operation, automatic,

and self-calibrating. This review is testament to the fact that there is no single instrument

that meets all of these criteria, and the instruments reviewed all have their merits and

deficiencies. Some assumptions and approximations are sometimes required in order to

post-process the actual measurements made. One example of this is the Pettit assumption

[12] of a wavelength independent ratio of specular to hemispherical reflectance.

In the laboratory, spectrophotometers are routinely used to measure wavelength

dependent light intensity, not only for solar applications. They are accurate but not

portable, and require a number of accessories to be adapted to carry out the measurements

needed to characterize a concentrating solar mirror. In this review we have described



instruments manufactured by Perkin-Elmer, Agilent, Gooch and Housego, and Jasco,

together with some of the most useful accessories for solar reflectance measurements.

Reflectometers measure reflected light intensity over a narrow wavelength band (or series

of bands). For solar applications this should include the solar energy peak wavelengths

between 500-660 nm. The commercial reflectometers are collectively summarized in

Table 2. Despite being developed for similar purposes, the instruments contain a number

of different design features. The standard laboratory-based instrument is the Devices &

Services 15R. It can also be used outdoors in solar fields, although the best results require

an experienced operator. The standard instrument is a single wavelength (λ=660 nm) unit,

whereas the more sophisticated 15R-RGB device can cover four wavelengths in the range

of λ=[460, 720] nm. The Abengoa and Surface Optics reflectometers are designed for

rapid measurements of reflectance in solar fields and do not require experienced

operators. Both have larger acceptance angles than the D&S instrument, considerably

larger in the case of the Abengoa Condor. The Surface Optics and the Konica Minolta

CM 700d instruments are actually sphere-type spectrophotometers which do not measure

specular reflectance directly, but subtracts the diffuse reflectance from the hemispherical

reflectance. They are designed for both portability and for broadband measurements

(λ=[400,700] nm for the Konica Minolta instrument and the Surface Optics one measure

7 bands between 300 and 2500 nm). The final two instruments classed as commercial

reflectometers are the SMS µScan and the Pflex from PSE/Fraunhofer ISE. The µScan,

whilst portable, actually comprises separate control unit, measurement head, and charging

unit. According to work performed at CIEMAT-PSA [79] it is not suitable for high quality

CSP reflector characterization. The Pflex, according to Fraunhofer ISE [81], is capable

of high quality reflector characterization and can be operated from a mobile phone app.

A totally different approach is demonstrated by the DLR/CSP Services TraCS cleanliness

sensor. This stationary installation is designed to be permanently installed outdoors and

measures reflectance using the actual solar spectrum. It can take measurements

automatically and remotely, if required.

Since CSP reflectance measurement is such an active area of research, the authors have

also taken the opportunity to describe some new prototype instruments which are under

development but not yet commercially available. The (SR)2 from DLR is a laboratory-

scale instrument. With its characteristic feature of large measurement spot size (53.5 mm

diameter) and good spatial resolution it is ideal for tracking the degradation of mirrors



over time [16], [89]. DLR also has developed two other instruments. The MIRA uses the

principle of a parallel imaging goniophotometer to measure near specular scatter,

mapping the BRDF by means of a 180º circular fisheye lens and a CCD detector array

[92], [93]. DLR has also designed an accessory for the PE Lambda spectrophotometer.

The (S2R) is intended to measure the solar-weighted specular reflectance at variable

angles of incidence and acceptance angles [48]. The ENEA SMQ was primarily lab-

based, but is now being developed as a commercial product [90]. Using three lasers as

light sources (λ={405.5, 543.5, 632.8} nm) the set-up is capable of qualifying solar

mirrors by measuring hemispherical reflectance and near-specular reflectance at near-

normal incidence for a selected number of acceptance angles. Malaysia University of

Science and Technology has reported [91] a system to achieve a reflectance measurement

uncertainty of better than 0.0001. Using a 633 nm laser source, a fast rotating reference

mirror and a photo-detector, the sample mirror reflectance was measured with a standard

deviation of 0.00006 reflectance units. The Fraunhofer ISE VLABS instrument has been

tested on solar PV concentrators [95]. Using three LED sources and a CCD detector array

it is capable of measuring absolute specular reflectance for a variety of acceptance angles

with an angular resolution of 0.03 mrad. Finally amongst the prototype instruments, IK4-

Tekniker has developed a low-cost sensor to monitor soiling on mirrors within the solar

field in real time [94]. These new developments therefore have different aims ranging

from measurements at different incidence and acceptance angles, long term, cost efficient

and practical soiling measurement in solar fields or more accurate specular measurements

regarding the BRDF or the direct measurement of spectral specular reflectance.

It deserves to be remarked the advances found in the soiling monitoring, a research topic

recently focusing a great interest [66][81][83]. Two promising devices were identified to

real time monitoring of soiling (the TraCS by DLR/CSP Services [84] and the instrument

by IK4-Tekniker [94]), which are capable of providing on-line information about the state

of soiling of solar reflectors under real outdoor conditions. The data are recorded in high

time resolution and thus pave the way to understanding the mechanisms for particle

adhesion.
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