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Abstract 

Remote sensing instrumentation on-board missions to asteroids is paramount to address many of the fundamental 

questions in modern planetary science. Yet, in-situ surface measurements provide the “ground-truth” necessary to 

validate and enhance the science return of these missions. Nevertheless, due to the dynamical uncertainties 

associated with the environment near these objects, most missions spend long periods of times stationed afar. Small 

landers can be used much more daringly, however, and thus have already been identified as valuable assets for in-

situ exploration. This paper explores the potential for ballistic landing opportunities enabled by the natural dynamics 

found in binary asteroid systems. The dynamics near a binary asteroid are modelled by means of the Circular 

Restricted Three Body Problem, which provides a reasonable representation of a standard binary system. Natural 

landing trajectories are then sought that allow for a deployment from the exterior region and touchdown with 

minimum local-vertical velocity. The results show that while landing on the main body of the system would require 

an effective landing system capable to dissipate excess of energy, and avoid bouncing off the asteroid, the smaller 

companion offers the prospect of simple ballistic landing opportunities. 

Nomenclature 

a  = Semi-major axis of the mutual binary asteroid orbit [km] 
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C  =  Jacobi Constant [non-dimensional] 

CL2 = the L2 point energy [non-dimensional]  

∆v  = deployment speed [m/s]  

Dpri = primary diameter [km] 

Dsec = secondary diameter [km] 

   = coefficient of restitution [non-dimensional] 

λ  = latitude [
o
] 

l1, l2 = distance to third body from the centre of primary and secondary [km] 

m1, m2 = mass of primary and secondary [kg] 

µ  = mass parameter [non-dimensional] 

µ1 , µ2 = gravitational parameter of primary and secondary body [km
3
/s

2
] 

n  = secondary-to-primary ratio [non-dimensional] 

n̂   = the normal to the surface at the contact point 

ϕ  = longitude [
o
] 

r   = normalized position vector 

r10, r20 = distance to barycentre from the centre of primary and secondary [km] 

r1, r2 = normalised primary and secondary radii [non-dimensional] 

rx, ry, rz  = position components of the lander to barycentre 

ρ1, ρ2 = normalised distance to barycentre from the centre of primary and secondary [non-dimensional] 

U  = potential function 

v   = landing velocity vector 

vl  = magnitude of touchdown velocity [m/s] 

i

l
v

  = magnitude of touchdown velocity at ith iteration 

landerv
 = speed of the lander at the position r in the landing path [m/s] 
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= lower boundary speed of the bisection algorithm for the landings on primary and secondary [m/s] 
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= upper boundary speed of the bisection algorithm for the landings on primary and secondary [m/s] 
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= local vertical (LV) and local horizontal (LH) velocity vector of the lander an instant before the 

touchdown 

LV


v
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
v

= local vertical (LV) and local horizontal (LH) velocity vector of the lander an instant after the 

touchdown 

mother
v  = orbital speed of the mothership at the position r [m/s] 

V  = normalised speed of third body [non-dimensional] 

x, y, z = normalised position components [non-dimensional] 

xd, yd, zd = normalised deployment position components [non-dimensional] 

ω  = magnitude of angular velocity of the mutual binary orbit [rad/sec] 

ω1  = rotational rate of primary [rad/sec]  

I. Introduction 

 Missions to asteroids have become increasingly attractive in recent years, firstly, because of scientific curiosity, 

but also due to both their potential impact risk to Earth and prospective economic return. A variety of missions have 

been proposed, ranging from manned exploration to commercial mining missions. There have also been a number of 

successful missions to asteroids which brought samples and/or scientific data back to Earth, such as, NEAR-

Shoemaker, Rosetta, Deep Impact, Hayabusa, and Hayabusa-2. Other missions will certainly follow, e.g., OSIRIS-

Rex, and will continue improving our knowledge of the formation and evolution of the Solar System, by visiting 

new asteroids in the future.  

 Near-Earth Asteroids (NEAs) are among the easiest interplanetary objects that can be reached from the Earth, as 

well as a potential impact threat to Earth. About 15% of the NEA population is believed to be a binary system [1]. 

Their formation mechanism has been of interest for decades now, and an explanation has been attempted by various 

theories. However, a space mission would certainly provide in-depth knowledge about the formation and evolution 

of binary systems.  

 Binary asteroids have also been proposed as ideal platforms to investigate the effectiveness of future asteroid 

deflection techniques. One of the two spacecraft envisaged for AIDA mission is intended to impact the smaller 

companion of the binary asteroid Didymos, in order to test the kinetic impact deflection technique [2]. A binary 



system is an ideal testbed for such a technique, since the orbital effects of an impact with the smaller companion of a 

binary can be observed in a much shorter time scale than otherwise possible in an heliocentric orbit [2].    

 Further increase on the scientific return of missions to binary asteroids, such as for AIDA, would be achieved by 

landing a scientific payload on their surface.  After the bold and successful attempt of NEAR-Shoemaker to land on 

Eros in 2001 [3], successor spacecraft to small bodies have been equipped with surface landers for in-situ 

exploration. As a recent example, Hayabusa-2 spacecraft, launched in 2014, carries three small landers/rovers and a 

MASCOT Lander designed by DLR/CNES [4]. Although it has not been attempted yet, such landers can also be 

deployed in binary asteroids onto either of two bodies of the system. Given the fact that navigation within a binary 

asteroid system poses serious challenges, due to its highly perturbed dynamics and its natural satellite, it might not 

be the best solution to put a mothership at risk by getting it into the vicinity of the binary in order to deploy a lander. 

The natural dynamics in binary asteroids could instead be exploited to achieve ballistic landing from a safe distance. 

In this paper, Circular Restricted Three Body Problem (CR3BP) provides a framework within which natural 

dynamics can be sought to enable landings of unpowered landers requiring no, or minimum, control capabilities. For 

instance, NanoSats (or other shoebox-sized spacecraft) are promising candidates to satisfy the exploration demands 

whereas providing a simple and low-cost solution. Their reliability is increasing in low Earth orbit day by day, and 

there is no reason to believe that it should not increase also for interplanetary medium via future interplanetary 

missions. The AIDA mission, for example, is proposed to carry two CubeSats to the binary asteroid Didymos [2], 

one of which is proposed to land on the smaller companion [5], and the interest continues to grow on nanosat 

solutions for small body surface exploration [6].   

 Ballistic landings through natural manifold trajectories on binary asteroids are studied by Scheeres & Tardivel 

[7]. The study considers vicinity of the collinear Lagrange points as deployment locations. The landing, in their 

approach, is defined as the first intersection point of a trajectory on the surface. They concluded that the strategy is 

proved to be successful [7]. Their following work discussed the strategy for a light lander deployment from L2 point 

and statistical analysis of uncertainties within the MarcoPolo-R mission studies for the binary asteroid 1996FG3 [8]. 

The natural manifold deliveries to the surface are also discussed for single asteroid systems. Herrera-Sucarrat et al. 

[9]  used the equilibrium points for fuel-free transfers in Restricted Full Two body Problem (RF2BP), which are 

equivalent to the Lagrange points in CR3BP [9]. However, their landing strategy requires several manoeuvres before 



touching down the surface [9]. Along the same line, the motion of landers on asteroid surfaces after touchdown has 

been studied by some researchers within the context of various studies [6, 10-11].  

 This paper focuses on unpowered landings in binary asteroids by investigating natural minimum energy 

trajectories which could be found within the dynamics of the system. The binary system is considered as having 

spherical main and natural satellite bodies, which implies point mass gravity for both. This allows us to obtain a 

general insight into the problem. The previous body of work focused on particular asteroids; however, here a 

hypothetical binary asteroid has been created, with the median properties of the well-known binary asteroids which 

have been observed up to date. Landing trajectories are reverse engineered from the surface of both objects in the 

hypothetical binary system, by propagating the model backwards in time. A dense grid of latitude-longitude nodes, 

homogenously distributed over the entire surface of both objects, allows us to obtain a general picture of reachable 

regions and characteristic features of landing trajectories as a function of target latitude-longitude node.  

 The paper particularly focuses on searching landing opportunities for soft local-vertical touchdown. These are 

thus directly applicable solutions for legged-type landers, but also potentially desirable landing geometries for other 

spacecraft, such as cuboid-shaped NanoSats. This kind of landing strategy offers the computational advantage of 

defining a single landing vector, or configuration, at each point on the surface of asteroid. The backwards 

propagation of these landing conditions allows us to provide a complete picture of deployment and landing options, 

under the assumption of a spherical binary asteroid pair. Most of the previous works focused primarily on 

deployment strategies from a neighbourhood of the L2 point (e.g., [7-9]). Here, however, all across the binary 

surface, minimum energy landing trajectories are propagated backwards until they reach regions sufficiently far 

from the barycentre of the binary to be considered safe locations for a deployment from a notional mothership. This 

safe region is defined as the exterior realm in CR3BP, i.e. when the L2 neck region is closed. This approach yields a 

much more general overview of deployment and landing opportunities. Deployment opportunities are studied as a 

consequence of the propagation from the surface of the asteroid, and interesting features, such as deployment speeds 

and landing duration, are thus derived as a consequence of touchdown speeds. 

 Finally, once the complete set of minimum energy landing trajectories is computed, two extra features are 

investigated. Firstly, the coefficient of restitution, or energy damping, required for these landing conditions to settle 

onto the surface of the asteroid, is computed. Secondly, a qualitative measure of the sensitivity to errors and 

perturbations is estimated for all landing trajectories.  



II. Binary Asteroid Systems 

Binary asteroids are systems of two asteroids orbiting around their common centre of mass. Binary asteroids are 

relatively abundant within the NEA population; about 15% of asteroids with a diameter larger than 200 m are 

believed to have a secondary companion [1]. Moreover, Pravec & Harris discuss that the binary population among 

NEAs is concentrated within diameters smaller than 2 km [12]. It is generally agreed that binary asteroids form due 

to the rotational break-up of the original progenitor asteroid. According to recent studies, the rotational break-up is 

mainly the result of a spin-up process, for which the dominant mechanism is suggested to be the Yarkovsky-

O’Keefe-Radzievski-Paddack (YORP) effect. The YORP hypothesises that, due to irregular shape and uneven 

illumination conditions, reemitted solar infrared radiation from a small asteroid applies a momentum to it, which 

consequently accelerates rotation of the body [13].  Once the progenitor body’s spin rate increases to a critical level 

by this effect, where centrifugal force exceeds the combined effects of cohesion and gravity, the asteroid starts 

shedding mass. In due time, this process evolves into a system of a larger main body, referred thereafter as primary, 

and a smaller companion, referred as secondary.  

Binary primaries are observed to have nearly spherical shapes, whereas secondaries have more elongated shapes 

[14-16]. Secondaries are not larger than half the diameter of primaries and, in most cases, smaller than that [12]. The 

most observed NEA binaries have the mass ratio of 0.2 or lower [14]. Predictions for mass density varies between 

1.33 g/cm
3
 to 3 g/cm

3
, which is believed to cover 2/3 of the binary asteroids, according to different sources [12, 15, 

17].  

For most of the small binary systems (i.e. <10 km) observed in NEA population, secondaries are tidally locked 

to their primaries, i.e. secondary spin period is equal to its orbital period around the primary [14]. Semi-major axis 

of an orbit generally appears to be between 1.5 to 5 primary’s radius [13-15]. Secondary’s orbit generally has low 

eccentricity [18]. 

The only visited binary asteroid so far, Ida-Dactyl system, is a main belt asteroid whose binary nature was 

discovered in 1993 during the flyby of the Galileo mission on its way to Jupiter. Ida-Dactyl system was the first ever 

binary asteroid system discovered. Although several other asteroid rendezvous and flybys were performed 

afterwards and will be performed in near future, namely DeepSpace-1, NEAR-Shoemaker, Hayabusa, Rosetta, 

Dawn and Hayabusa-2, none of them visited or flew by binary asteroids.  



The Binary Asteroid in-situ Explorer (BASiX) mission is proposed to probe the geophysics of a near-Earth 

Asteroid (NEA), in the light of some of the theories described above [19]. The binary asteroid 1996 FG3 is selected 

as the target for the BASiX mission [19]. The newly initiated NASA/ESA joint mission concept, Asteroid Impact & 

Deflection Assessment (AIDA) mission, is also proposed to visit a binary asteroid, (65803) Didymos, in 2022, in 

order to test future asteroid deflection strategies whilst improving our understanding of binary asteroid systems [2].  

For the research here, a hypothetical binary asteroid is created. It is aimed that the hypothetical binary should 

provide a reasonable representation of the known binaries. Fig. 1 shows the distribution of the binary asteroids 

whose primary and secondary diameters, as well as semi-major axis, are known
1
. Among all the binary objects 

represented in Fig. 1, only the density of a subset of 17 binaries are known, while for the rest a density of 1600 

kg/m
3
 is generally assumed in order to estimate the various parameters of binaries, including semi-major axis of 

secondary orbit. Only the subset of 17 known objects is selected to create our representative hypothetical binary 

object. 

 

Fig. 1 Secondary radius to primary radius ratio versus semi-major axis to primary radius ratio for 

observed binary asteroids
1
. 

Table 1 shows the mean and median values of the subset of objects with known primary and secondary 

diameters, semi-major axis of secondary’s orbit and mass density, which is generally the density of primary and it is 

assumed here that both bodies have the same value.  

                                                           

1
 http://www.johnstonsarchive.net/astro/asteroidmoons.html#1 is used for the list of asteroids. Relevant 

references and discovery dates of asteroids are given in the website (Last access: March 29, 2016). 



Table 1. The mean and median values of various properties of binary asteroids with known densities 

 Mean Median Standard 

Deviation 

Primary diameter [km] 1.37 1.04 0.95 

Secondary diameter [km] 0.33 0.30 0.19 

Secondary-to-primary ratio 0.28 0.25 0.19 

Density [kg/m
3
] 1717.6 1700 309.6 

Semi-major axis [km] 2.83 2.62 1.72 

Semi-major axis-to-

primary ratio 

2.20 1.95 0.86 

 

Our representative hypothetical binary asteroid, hereafter named as 2016 JGCD, is summarized in Table 2. This 

assumes that both primary and secondary have a spherical shape and same constant density. According to the 

generally accepted binary formation hypothesis, binary primaries are like rubble-pile structures, and secondaries are 

originated from them. As a consequence, large differences in density are not expected between the two, thus the 

same density is assumed for both bodies. Finally, a perfectly circular orbit is used to model the motion of the 

secondary, and its period can be straightforwardly computed using the period of a Keplerian orbit. 

In order to define a sensible representation of a typical binary asteroid, median values are used to define the main 

features of our notional binary 2016 JGCD, instead of using mean values, which could pose issues with both the 

skewness of the distribution and biased extreme values. The hypothetical binary asteroid will thus have 1000 m of 

primary diameter, 250 m of secondary diameter, 1950 m mutual orbit semi-major axis, and density of 1700 kg/m
3
. 

However, as will be discussed later, the results of this paper can be easily scaled to any primary size, as long as the 

primary-secondary diameter ratio and the semi-major axis-primary radius ratio remain constant. 

Table 2. The properties of hypothetical binary asteroid 2016 JGCD 

 Primary Secondary 

Diameter [m] 1000 250 

Density [kg/m
3
] 1700 

Mass [kg] 8.9 x 10
11

 1.4 x 10
10

 

Mutual orbit semi-

major axis [m] 
1950 



Orbital period [h] 19.4 h 

 

III. Dynamical Framework 

This paper seeks unpowered/ballistic landing opportunities for small spacecraft, or science packages.  Such a 

definition therefore is relevant to spacecraft, whose design allow no, or very limited, means of orbit and landing 

control,  due to constraints in complexity, mass and/or volume. Hence, the work presented is applicable to small 

legged landers with only attitude control or, potentially, to NanoSat/CubeSat opportunity payloads. In either case, it 

is envisaged that the lander is deployed from a mothership in a safe trajectory near the binary system. Once 

deployed, the lander could follow the natural paths connecting regions far from the barycentre of the system, where 

the mothership would be stationed, with the surface of the asteroids.  

These natural paths are sought within the framework provided by the Circular Restricted Three Body Problem 

(CR3BP). In CR3BP, two bodies are assumed to rotate around their common centre of mass, in circular orbits, under 

the point mass gravitational attraction of each other. The motion of the third body, in this case the  lander, is 

determined by the gravitational interaction with the two large bodies in the system. The mass of the third body 

however is assumed to be sufficiently small so that its gravitational interaction with the other objects in the system 

can be neglected.  

In the following subsections, the equation of motions of the CR3BP and its integral of motion are described. 

A. Equations of Motion 

The CR3BP is described in a rotating reference frame, located in the barycentre of two main bodies, whose x̂  

axis points the secondary body, ẑ axis normal to the mutual orbit plane and ŷ  axis completing the triad.  

The only force acting on the third body (in this case, spacecraft) is the gravitational attraction from the other two 

bodies (primary and secondary asteroids). The motion of the spacecraft is then represented by: 
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where ω denotes the angular speed of the mutual orbit, µi (i = 1,2) denotes the gravitational constant of primary and 

secondary bodies, li denotes the distances from the primary and the secondary to the third body and ri0 denotes the 

distance from barycentre to the primary and the secondary. 

Eq.(1) can be rewritten with the following normalizations: All the distances are normalized by the distance 

between primary and secondary, denoted by r12 , and the unit mass becomes the sum of the masses of the two bodies. 

The system mass parameter µ is defined as: 
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Finally, time is normalized with the angular speed of the synodic frame ω, and as a result the universal 

gravitational constant also becomes unity.  

Note that in this paper primary and secondary asteroids are assumed to have a spherical shape and equal density. 

Hence, in this case, the system mass parameter µ can be rewritten in a more convenient form as: 

 µ
n

n




3

3 1
  (3) 

where n is the secondary-to-primary ratio. For the hypothetical binary asteroid described in Table 2, µ becomes 

0.0154.  

If the normalized position vector is described as [ ]Tr x y z , Eq. (1) becomes: 
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 where U is the potential function, which is the sum of gravitational and centrifugal potential: 
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2
  (5) 

Note that because of the adimensionality of Eq.(4) the results computed here are actually applicable to any 

binary with density, secondary-to-primary  and semi-major axis to primary ratios as reported in the median results of  

Table 1. Hence, the results presented are relevant to a whole range of binary sizes. However, the paper focuses on 

the notional 2016 JGCD binary, and thus, for clarity, the results are scaled to the units corresponding to the 2016 

JGCD case. 

B.  Jacobi Constant 

The mechanical energy in the CR3BP is represented by the Jacobi Constant C. It is a non-dimensional constant, 

which could be obtained by solving the Jacobi Integral in the rotating reference frame, and described as below [20]: 

 C U V  22   (6) 

where V is the spacecraft speed given in rotating frame of reference. Note that since the Jacobi Constant corresponds 

to C=-2E, where E is classical mechanical energy (i.e. V
2
/2-U), decreasing energy is equivalent to increasing C. 

Bearing this in mind, the terms energy and Jacobi Constant are used interchangeably throughout the text. 

For a given set of initial conditions, Jacobi Integral defines the accessible and forbidden zones of motion. From 

the expression in Eq.(6), it can be deduced that there are locations, for which at some energies, the velocity of the 

motion may become an imaginary number, which clearly indicates the physical impossibility of motion within those 

locations, at those energy levels. Hence, zero-velocity surfaces (ZVS) are defined when one considers the 

conditionV 2 0 . ZVS shows which regions are accessible to motion at a given energy.  

The Jacobi Constant can then define five clearly distinguishable regimes of motion: For high values of Jacobi 

Constant, ZVS show two spheres (bubbles) around the two large bodies, as well as an exterior region (see Fig. 2). 



The motion is thus restricted either to the vicinity of primary or secondary, or to the exterior region (i.e., no 

connections between these three bubbles exist). Decreasing the Jacobi Constant, which means increasing the energy, 

gradually connects these two spheres and eventually makes the motion initially possible only between the two 

bodies, and later with exterior region too. Finally, when Jacobi Constant is sufficiently small, all 3D space becomes 

accessible (i.e. C≤0). 

There are critical points at which the bubbles around each body and the exterior region connect. These critical 

points correspond to energies of the collinear Lagrange points along the x-axis in rotating frame. The first 

connection occurs between the inner regions where L1 point is present. It is followed by L2 point which connects 

inner region to exterior region, then another connection to exterior region occurs at L3 point. The final regions of 

unavailable motion near the orbital plane of the secondary are those near the L4 and L5 equilibrium points, which 

disappear simultaneously for Jacobi Constants smaller than that of the equilateral equilibrium positions.  

As the L2 is the very first point that connects inner region to exterior region, it provides the lowest energy gate to 

enter into the proximity of the asteroid surface.  

IV. Design of Landing Trajectories 

The mission architecture considered in this paper is that of a mothership which carries one (or several) landers. 

Once the mothership reaches the binary system, it would start orbiting near the binary and perform the necessary 

science operations. The mothership should be sufficiently close to the binary system to perform satisfactorily 

detailed observations; however, it should also remain sufficiently far away from the system’s barycentre to prevent 

contamination of instruments and sensors, as well as the spacecraft itself, due to the unfavourable asteroid 

environment. Such an operational orbit would most likely be in the exterior region of zero-velocity surfaces closed 

at L2 point. The operational orbit would also prevent the spacecraft to collide with the binary system, as there is no 

motion possible to the interior region. Fig. 2 shows a general illustration of proposed mission architecture. 



 

Fig. 2 Illustration of mission architecture 

The lander deployment shall then be performed while the mothership is in its operational orbit in the exterior 

region, as depicted in Fig. 2. It is envisaged that the mothership is equipped with a simple spring mechanism that 

would be used to deploy the lander. The spring mechanism is thus used to provide sufficient speed to open the ZVS 

at the L2 point.  The Philae lander, for example, was deployed with an adjustable push-off device allowing a range 

of deployment speeds between 0.05 to 0.52 m/s [21]. Rosetta also carried an emergency spring release system 

designed to eject Philae at 0.17 m/s [21]. On the other hand, current standardized deployers for CubeSats, such as 

the Poly Picosatellite Orbital Deployer (PPOD) [22], eject the CubeSat payloads at 2 m/s, approximately.  

Landing trajectories are thus sought that allow this hypothetical unpowered spacecraft to land on a 

predetermined site on the surface of one of the asteroids in the system. A key requirement for these landing 

opportunities is to allow for the slowest possible touchdown speed; firstly, to prevent damage to the spacecraft and 

its payload and, secondly, to minimize the risk of bouncing off the system if sufficient damping of the energy at 

touchdown is not achieved. This paper considers a simple model for the interaction of the spacecraft with the 

asteroid’s surface; that of a bouncing ball with a specified coefficient of restitution ε [23].   

 Hence, given the initial conditions of the spacecraft after deployment, Eq. (4) can be forward integrated up to the 

point on which the trajectory intersects the surface of one of the asteroids in the system. The velocity of the 

corresponding state vector defines the touchdown conditions, and can be described in a local-vertical (LV), local-

horizontal (LH) components as: 
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where the vector n̂ corresponds to the normal to the surface at the contact point, and the superscript (-) refers to the 

conditions just an infinitesimal instant before the rebound. 

Considering an impulsive rebound at touchdown with some loss of energy due to, for example, the deformation 

of the surface and/or spacecraft, the velocity conditions an infinitesimal instant after the rebound can be at first 

approximation modelled as:  
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where the coefficient of restitution εV defines the dissipation of energy in local vertical direction, while  εH defines 

that of the local horizontal, or tangential, direction. These coefficient must typically have a value between 0 and 1, 

although, as shown in Tardivel et al. [24] and Biele et al. [25], the values of εV and εH may differ substantially, since 

the interaction of the vertical and tangential motion with the surface are fundamentally different. Note also that the 

model in Eq.(8) assumes that the outgoing velocity will remain in the plane defined by the incoming velocity and 

vector n̂ . Irregularities in the surface, such as boulders or sharp surface features, may change this, however, this 

possibility is not considered in the paper. 

A. Landing and Deployment 

 Hence, we seek to find deployment state vectors  , , , , ,
d d d d d d

x y z x y z  that satisfy the landing conditions 

described above. These are six completely unknown design variables. However, if the landing site is defined 

beforehand by its synodic latitude ϕ and longitude λ, and recalling that both primary and secondary objects are 

assumed to be spherical and landing trajectories are sought with only local vertical touchdown velocity, the landing 

state vector in a body-centred body-fixed frame (BCBF) would be of the form:  
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where the subscript i refers to the primary if i=1 or to the secondary if i=2 and vl is the magnitude of the touchdown 

or landing speed. Note that, as discussed earlier, most of the secondaries are tidally locked, hence, their attitude can 

be assumed fixed in the synodic reference frame as well, and the body’s prime meridian (λ=0) can be arbitrarily 

defined as on the x-axis and on the far side of the system (facing the classical L2 point as in Fig. 2). Hence, the 

landing state vector on the secondary can be described by Eq. (9) adding only the position of its barycentre, i.e. (1-

µ,0,0). 

 However, the primary will have a fast rotation, which is likely to be near the point at which a body with 

negligible cohesion starts shedding mass [14]. As a standard value and configuration, we assume here that the 

rotation of the primary is 2.2h, and its rotational axis is also perpendicular to the orbital plane of the secondary [14, 

18]. Hence the state vector of landing conditions on the primary can be represented as:   
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  (10) 

where ω1 is the normalized angular rotation of the primary, so that ω=1. Note finally that for the primary, the 

longitude λ in Eq. (10) only provides information of the landing longitude in the synodic reference frame, instead for 

the secondary, since this is tidally locked, this longitude also represents the actual meridian on the BCBF frame.  

Hence, given the landing state vector as defined by the synodic latitude ϕ and longitude λ pair of its landing site, 

and its touchdown speed vl, the trajectory can be propagated backwards until some satisfactory deployment 

condition is found.  Note that once the landing site is defined, only one design parameter requires to be determined, 

this is the touchdown speed vl. 

A bisection algorithm search, inspired by Ren & Shan [26], is then implemented to determine the minimum 

possible touchdown speed vl for a given landing site.   

As with any bisection method, firstly a lower and an upper threshold for vl need to be determined. The lower 

threshold must be such that the resultant trajectory would never reach the exterior region of the system (no-escape 

condition). On the other hand, an upper threshold for vl must generate a landing trajectory such that  reaches the 



exterior region of the system and so deployment opportunities occur (escape condition). At each iteration i of the 

algorithm, the landing trajectory corresponding to a speed vl
i
 such as: 

 
2

UB LB

i l l

l

v v
v


   (11)  

is propagated backwards. Here, 
LB

l
v is the lower bound and 

UB

l
v is the upper bound speed. 

A trajectory is said to be a feasible landing trajectory if it reaches the exterior region of the binary system. This 

exterior region is defined as the volume of space, outside the orbit of the secondary, where the motion is allowed 

with the Jacobi constant of the L2 equilibrium point CL2. Trajectories that narrowly miss the surface of one of the 

asteroids (<1.25ri), except during the final descent, or that spend less than 8h in the exterior region, are also 

considered unfeasible landing conditions. These final constraints into the trajectories, although relatively ad-hoc, are 

added to ensure that the window for a deployment is sufficiently long and that the trajectory does not require more 

than one close approach to the object before landing. The latter is an attempt to avoid landing conditions that would 

be extraordinarily sensitive to the intrinsic epistemic uncertainties of the asteroid gravitational potential.  

The algorithm iterates the above procedure and substitutes the attempted speed vl
i
 for the upper boundary

UB

l
v , if  

vl
i
  lead to an escape trajectory, or for the lower boundary  

LB

l
v , if it did not. The algorithm stops once a certain 

tolerance is reached. 

The initial lower and upper bounds of the bisection algorithm are defined based on the no-escape/escape 

conditions that were previously  mentioned. Clearly, no-escape condition would occur for vl=0, but a larger lower 

threshold can also be identified if the energy of the L2 point is used to compute the vl, since at this energy there is no 

possible escape condition. On the other hand, obviously, for escape condition to happen for 
UB

l
v the state vector in 

the synodic reference frame must be such that ZVS are opened at the L2 Point.  

A good first guess approximation of the minimum touchdown speed as a function of landing site can thus be 

computed as:  
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  (12)  



where 1

LB

l
v and 2

LB

l
v are the minimum touchdown speeds in the primary’s and secondary’s BCBF frame and ρ1 and ρ2 

are the distance to the primary and secondary objects, respectively. Eq.(12) are derived by estimating the Jacobi 

constant of the L2 equilibrium point CL2, substituting it in Eq.(6) and solving for landing speed. Fig. 3 shows the 

resulting values of Eq.(12), with the dimensions corresponding to the hypothetical binary asteroid 2016 JGCD, as 

described in Table 2. 

 

 

Fig. 3 Minimum touchdown speed as a function of landing 1

LB

l
v (above) and 2

LB

l
v (below), computed as in 

Eq.(12). The minimum touchdown speed on the secondary is only fractionally varying over the surface and 

around 0.08 m/s. The variation over the primary surface is mainly caused by its rotation. Note that the 

classical (i.e. Keplerian) escape velocity from the surface of the primary would be ~0.5 m/s. 

The upper bound is instead simply defined by multiplying the lower boundary with some arbitrary, relatively 

large number. 

Once the resulting trajectories are obtained and propagated backwards for a sufficiently long timespan, the exact 

deployment location of the landing trajectory can be chosen within the propagated path. In principle, any point 

beyond the L2 point can be seen as a deployment location. Recall that the mothership is assumed to be orbiting the 

binary system in an operational orbit such that the ZVS are closed at the L2 point (i.e., exterior realm or region). The 



deployment speed can then be thought as a manoeuvre to provide the lander spacecraft with sufficient speed to open 

up the ZVS and enable the landing path computed beforehand [27]. 

Hence, let the mothership have an orbital speed such as  
mother

v r , which for each feasible point of deployment 

in the landing path must be such that: 

     L motherC U v r r
2

2 2   (13) 

where r  denotes a position vector in the landing path where the deployment could be implemented. Hence, the 

minimum deployment speed ∆v in a position r must then satisfy the following equality constraint: 

       
2

2 2L landerC U v v  r r r   (14)  

where  
lander

v r is the speed of the lander at the position r  in the landing path, as computed by the backward 

propagation. Finally, the deployment speed ∆v can be estimated by solving Eq.(14) for ∆v:  

      L landerv U C v   r r r22   (15) 

Note that the ∆v obtained as above is only the minimum manoeuvre to reach the L2 point energy, hence assumes 

that the mothership’s operational orbit has a Jacobi Constant of exactly CL2. However, the mothership is likely to be 

in more stable configurations, with higher Jacobi constants. The latter discussion, as well as the exact direction of 

the manoeuvre, which will depend on the actual mothership’s operational orbit is not explored in this current paper. 

Finally, it is noteworthy to mention that since spherical asteroids are being used, as well as due to the symmetry 

of motion around the reference plane of the CR3BP, landing trajectories for the northern hemisphere are the mirror 

image of those in the southern hemisphere. This means that the direction of landing conditions of mirror image 

latitudes will differs on the surface, however the magnitude will not. Nevertheless, the same does not occur with an 

X-Z partition, since there is not symmetry of motion due to the rotation of the reference frame.  

B. Primary landing results 

Regardless of whether the landing occurs on the primary or on the secondary, all previous discussion on 

minimum energy landing still holds. Thus, landings on the primary are also sought by assuming the lowest possible 

energy, which is that of the opening of the L2 bottleneck. However, the results show that the required energies to 

land on the primary are much higher than that. As shown in Fig. 4, even the equatorial region, which is the most 

accessible region of the primary, requires Jacobi Constants C<<C(L4/L5). At these energies, ZVS are nearly all 



open. Only some out-of-plane regions remain unavailable for motion until C<0, hence the higher energies at the 

poles. In terms of the actual touchdown speeds, the equator allows ballistic landing with touchdown velocities 

slightly below 30 cm/s. Note that this is nearly twice as much as the estimate for the minimum touchdown speeds 

1

LB

l
v  as computed by Eq.(12). The touchdown speed increases with increasing latitude, reaching 45 cm/s at the poles, 

which is a similar estimate to that of Eq.(12). Note that the two body escape velocity for the notional 2016 JGCD at 

the surface of the primary is computed to be ~50 cm/sec.  

 

Fig. 4 Energy map of trajectories on both primary and secondary. C values in the box show the Jacobi 

Constants of each Lagrange point. Dots in the trajectories denote 1h motion marks. 

Fig. 4 shows two example trajectories that land on the primary and secondary, as well as the asteroid surfaces 

coloured with the level of Jacobi Constant of the corresponding landing trajectory. The reader should note the 

maximum Jacobi Constant value used in the colour bar: Trajectories requiring Jacobi Constants C<0 are all coloured 

at the same level.  



C. Secondary landing results. 

Unlike the relative straightforwardness of the landing trajectories on the primary, landing on the secondary 

shows much richer dynamics. In general, much lower energy landing opportunities than in the primary can be 

observed as depicted with Fig. 4 colour map. Fig. 5 provides more detail to the resultant Jacobi Constant for 

landings onto the secondary.  

As observed in Fig. 5, the Jacobi Constant of trajectories landing on the secondary is intensely affected by the 

secondary’s rotation around the primary. In general, the regions that are facing the L2 points are reachable by the 

lowest energy trajectories. However, trajectories landing in the same direction of the tangential motion of the 

secondary are also characterised by lower energies. Fig. 5 shows the two hemispheres of secondary surface as cuts 

in X-Z plane. The eastern hemisphere is seen in the left hand side of Fig. 5, from the longitude 0
o 
to 180

o
. The letter 

“N” shows the +Z direction, i.e. 90
o
 latitude. The western hemisphere can be seen on the right hand side, from the 

longitude 180
o
 to 360

o
 (i.e. equal to 0

o
). The starting point (i.e. landing site) of the example trajectory is also marked 

with an arrow in the direction of the backward propagation (same example trajectory as in Fig. 4). The cross-like 

symbol indicates that +Y is out of the page direction. The dot symbol on the right hand side indicates that  +Y 

direction is into the page. The Jacobi Constant of the landing trajectories onto the different landing sites can be 

observed in the figure. 

 

Fig. 5 Energy map of trajectories to land on secondary surface (C values show the Jacobi Constants of 

Lagrange points.) 

The rotation of the binary system appears to be affecting the energy of the landing trajectories. If the landing is 

performed on a site in the eastern hemisphere of the secondary, the motion of the secondary, in the opposite 



direction of the landing, seems to be energizing the trajectories. On the other hand, landing in the western 

hemisphere requires less energy. In this latter case, the lander is catching a secondary that moves on the same 

direction. A third of the equatorial region is observed to be reachable without increasing the energy further than that 

to open up L3. This ratio decreases at higher latitudes.  

The lowest energy trajectories, whose energies are indicated with white colour in Fig. 5, generally perform a 

partial or complete revolution/orbit around L2 point before clearing off to the exterior region: Hence, showing a 

clear association with periodic orbits near the L2 point, i.e., transit trajectories through a narrow L2 point bottleneck. 

Accordingly, it also takes longer to land for such trajectories, as can be observed in the example in Fig. 5. This issue 

will be further discussed in the following section. Higher energy trajectories (grey and black coloured regions) are 

instead more direct trajectories, taking less time to land.   

There is also a varied taxonomy of landing trajectories with different topologies at energies near that of the 

equilateral equilibrium positions L4/L5. At these energies only a narrow band of surface is available, extending from 

200
 o 

to 250
 o 

longitude approximately. Among the mentioned varied topology of trajectories, some trajectories seem 

to perform different types of co-orbital motion for some significant periods of time. An example of this motion is 

reproduced in the following sub-section. Finally, as clearly marked in Fig. 6, a small region facing the primary 

cannot be reached from the exterior region with the required landing conditions. This is due to the fact that a landing 

constrained as in previous sections would always intersect the primary. 

 

Fig. 6 Landing speed map over the surface of secondary. 



Fig. 6 summarises landing speeds on the surface of secondary. Note that the colormap is defined such that 

landing speeds larger than 1 m/s are all coloured in white. This is done in order to increase the colour contrast for 

accessible regions with <1 m/s of touchdown. Clearly, the lower the energy of the trajectory is, the lower the landing 

speed becomes. Therefore, main features of Fig. 5 and Fig. 6 are very similar. Landing speeds are observed at 

magnitudes lower than 10 cm/s, with the minimum at 9.04 cm/s, as with dimensions corresponding to 2016 JGCD. 

On the other hand, the maximum speeds are observed in the regions where secondary faces the primary, with 

magnitudes near or above 1 m/s.  It is also noteworthy that the majority of the secondary surface appears to be 

accessible with landing speeds lower than the corresponding two-body escape velocity. The latter is here computed 

as the sum of the two-body escape velocities for the primary and the secondary in the co-rotating frame, which at the 

furthest point from the barycenter (i.e. tip point of the secondary on the side facing the L2 point) is found to be 

approximately 35 cm/sec. 

D. Deployment results. 

As described earlier, deployment speeds can be computed at any position in the exterior realm, where the latter is 

defined as the region beyond the ZVS corresponding to the energy of the L2 point. Hence, in order to achieve the 

computed touchdown speeds for a given landing site, as shown in Fig. 6, this means that the results of deployment 

speed ∆v, as in Eq.(15), are function of the synodic latitude ϕ and longitude λ of the landing site and the time of 

backward propagation. Note then that this time of backward propagation would correspond to the landing operation 

timespan or time from deployment to touchdown.  

Since these results are four-dimensional, Fig. 7 summarises the deployment speeds for the equator only, hence 

synodic latitude ϕ=0
o
. X-axis shows the equatorial longitude, of which 0

o
 and 360

o
 longitude is the same point and 

facing the L2 point. Y-axis shows instead the landing operation timespan, i.e. time to reach the surface after the 

separation from the mothership, and different colours in the filled contour plot corresponds to deployment speeds. 

As an example, at 45
o
 longitude, for 6 hours landing duration, the mothership must provide about 0.1 m/s at 

deployment. Also note the maximum deployment speed of the colour map; though the maximum deployment speed 

is determined to be 2 m/s, the colour map maximum is set to 0.5 m/sec in order to improve the visualisation at lower 

deployment speeds. 



 
Fig. 7 Deployment speeds for landings in equatorial longitudes and landing durations 10 hours or less 

For some of the lowest energy landing trajectories, i.e. mostly on the ±30
o
 range from the prime meridian (λ=0), 

the deployment location is required to be near the Lagrange L2 point, unless extremely long landing trajectories are 

considered. An example of such a trajectory can be seen in Fig. 8a, for an equatorial landing and longitude at λ=0
o
. 

The landing trajectories shown in Fig. 8 were propagated backwards for four full synodic periods. Deployment 

options are shown only for the portions of trajectories that transit within the exterior realm (as defined earlier).  

Deployment within 10h of touchdown in Fig. 8a  corresponds only to the part of the trajectory performing a last loop 

around L2 point. Thus, the set of lowest energy landing conditions generally spends some time winding near the L2 

point before definitively moving to the exterior region. During this motion around L2 point, some portion of the 

trajectory occurs just beyond the L2 distance, even before definitively moving out of this region, hence allowing for 

the first deployment options very near the Lagrange point. This is however a rather dynamically unstable location, 

therefore bringing mothership to this location and deploying a lander may entail important challenges.  

Much more direct landing trajectories, with landing operations shorter than 4 hours, are also possible. However, 

these more direct options imply higher energies, often requiring the Jacobi Constant to be sufficiently low as to have 

the ZVS fully open. Some examples of these trajectories can be seen in Fig. 8b to 8c. These higher energy options 

also require higher deployment speeds from the mothership. Fig. 8c depicts a typical landing trajectory requiring 

landing speeds that are beyond the escape velocity of the system, hence the spiral shape trajectory appears as a 



consequence of the synodic reference frame (i.e. co-rotating with the secondary) used to represent the dynamics of 

the system.  

Fig.8d-e depicts trajectories with energies near those of the triangular equilibrium positions L4 and L5. As 

mentioned earlier, these trajectories mostly occur within a narrow longitude band extending from 200
 o
 to 250

o
, and 

depict a varied taxonomy of landing topologies. Fig8d shows a typical epicycle motion in the synodic reference 

frame. Fig8e instead shows a trajectory depicting co-orbital motion features, other trajectories show similar features 

but with complete loops around the L3 point (not shown in Fig 8). Finally, Fig 8f depicts another trajectory with 

Jacoby Constant 0<C<C(L4/L5). Recall that all simulation in Fig 8 were propagated for four full synodic periods, 

which in the notional 2016 JGCD asteroid would correspond to ~3.2 days. 

 In general, however, Fig. 7 depicts relatively low values  for the required deployment speed for landing 

durations under 10 hours. The time necessary to reach the asteroid’s surface however exhibits much more 

inhomogeneous features. For equatorial landing, separation speeds larger than 0.2 m/s only occur in a relatively 

small range of longitudes between 148
o
 and 162

o
, near the boundary with the no-landing region.  The 30

o
wide 

region, spanning from 162
o
 to 192

o
 in longitude, depicts no deployment options. This region corresponds to the 

same no-landing region described in Fig. 6, where landing trajectories intersect the primary surface, before reaching 

the secondary. It is noteworthy to highlight again that the regions, where no landing trajectories are possible, are 

artificially affected as a consequence of the constrained landing geometry. It is very likely that allowing some 

additional horizontal velocity at touchdown, landing in those regions may also be possible, but this is simply not 

computed here. The paper is concerned with the overall insights of the minimum energy vertical landing in a binary 

system with predefined mission architecture and constraints, but it is clear that attempting to land on no-landing 

regions imply additional challenges due to the strong interaction of the landing trajectories with the other body in the 

system. In particular, landing trajectories that target the primary-facing side of the secondary pass extremely close to 

the primary surface, therefore uneven shape and irregular gravitational field of the primary are likely to perturb the 

trajectory. 

 



 



Fig. 8 Trajectories to land at four different locations in the equatorial region. The speed required to insert 

the lander into the landing trajectory is mapped onto the parts of the trajectory whose distance to the 

barycenter is larger than the L2 distance. a) shows the landing at 0
o
 longitude, which faces the L2 point.  b-f)  

depict trajectories landing at 90
o
, 140

o
, 246.5, 244 and 211 longitudes, respectively.  

 The deployment analysis shows that some of the lowest energy landing condition also come with lengthy landing 

operations. However, long landing operations are also of increasing risk due to both the highly perturbed 

environment and the passive nature of the landing, this issue is briefly explored in the following section. Besides, 

the continuous availability of personnel during lengthy landing operations may also impact on mission costs, and so 

be worthy of consideration.  

Overall, these results show that even in binary systems with total mass on the order of 10
12 

kg, the mothership 

will require  a deployment subsystem that is able to provide cm/s level separation speeds, likely with high accuracy. 

Recall that the deployment mechanism of Rosetta spacecraft was capable of providing a separation speed between 5 

– 50 cm/s, including an emergency system providing of 17 cm/s push to its ~10
13 

kg target, comet 67P/Churyumov-

Gerasimenko [28]. More relevant to these results, AIM’s deployment mechanism was estimated to provide a range 

of 0.5 – 2 m/s speed for its CubeSat payloads, although this seemed under assessment initially [29]. At the time of 

writing, AIM’s deployment mechanism, upgraded from ISIPOD deployer, is estimated to provide 2-5 cm/s within 

+/- 1 cm/s accuracy [30].  The results provided here seems to be in harmony with this upgraded range of deployment 

speeds, as the majority of darkest shaded regions (0.2 m/s or lower) in Fig 7 actually correspond to values in this 

range. Note that AIM’s binary target, Didymos, has a total system mass on the order of ~5x10
11

kg [2]. 

V. Further Considerations on the Landing Opportunities 

Despite the existence of landing opportunities as described above, there are other important questions that would 

ultimately drive the feasibility of low energy ballistic landing trajectories. This last section broadly explores two 

critical issues: firstly, the dissipation of energy required at touchdown and, secondly, the robustness, or sensitivity, 

of these landing solutions to uncertainties of motion. The former is a necessary condition to enable a passive landing, 

since if the landing were to exhibit the behaviour of elastic collisions, then the resultant motion would be an escape 

trajectory. The robustness, or sensitivity, is a critical issue for low energy trajectories, since these exhibit highly 

chaotic behaviours, and may ultimately render some of the lowest energy trajectories as computed earlier unfeasible, 



if sufficient robustness to uncertainties cannot be ensured. However, this section does not intend to provide a 

comprehensive analysis on these issues, but only some final insight in the prospective usefulness of the landing 

trajectories, to complement the previous discussion.  

A. Bouncing Motion and Coefficient of Restitution 

It is clear that if the local vertical touchdown velocity is simply reverted instantaneously, without any loss of 

energy, then the resultant trajectory is a take-off trajectory with the same allowed motion that the original landing 

had. Therefore, some dissipation of energy must occur in order for the spacecraft to, eventually, settle on the surface 

of the asteroid. Fortunately, energy dissipation is expected to occur naturally as undoubtedly some energy will be 

lost to heat and deformation during the short touchdown instant, before bouncing occurs. This energy dissipation is 

here represented by the coefficient of restitution εV, which defines the ratio between the local vertical velocity LV


v , 

an instant after the touchdown (+), and the local vertical velocity LV


v , an instant before the touchdown (-).   

Fig. 9 summarises the values of the coefficient of restitution εV , as a function of the landing site, that ensures a 

sufficient condition to remain permanently in the neighbourhood of the body where the landing has been attempted. 

This sufficient condition is computed by estimating a coefficient of restitution 1LVJ LVV
  v v , where 

1LVJ


v represents the local vertical velocity after touchdown such that the Jacobi constant of the bouncing trajectory is 

that of the L1 equilibrium. This energy limit after the first bounce is chosen so that no escape can possibly occur 

from the neighbourhood of the asteroid, since zero velocity surfaces will be closed both at L1 and L2 points. As can 

be observed in Fig. 9, the far side of the secondary (L2 facing) is characterised by ε>0.8, while the highest εV in the 

primary body occurs near the equator within the range of 0.6 to 0.7, except in some small regions which are 

artificially affected as a consequence of the constrained landing geometry together with the secondary position. 



 
Fig. 9 Required coefficient of restitution ε to ensure ZVS closed at L1 & L2 points 

Clearly, a reliable estimate of the likely bouncing and settling phase is out of the scope of this paper, since this 

motion would be highly affected by the local shape and features, such as local slope, boulders, materials, etc [24]. 

However, the analysis carried out for Fig. 10  indicates that the coefficient of restitution 1LVJ LVV
 

 v v is likely only 

a lower bound and that landing may also be possible at higher εV  (i.e, sufficient but not necessary condition). Fig. 

10a represents again the coefficient of restitution as 1LVJ LVV
  v v  on a Mercator projection of the secondary. Fig. 

10b instead represents a LV LVV
 

 v v where LV


v is iteratively computed with a bisection method so that its forward 

propagation is ensured to remain on the secondary after only two bounces. This means that at the second bounce 

sufficient energy damping has already occurred so that zero velocity surfaces are closed at L1 and L2 points. The 

dynamics of bouncing motion are computed here assuming an impulsive rebound approximation as described by 

Eq.(7-8). Note that, in this case, the coefficient of restitution of the local-horizontal component of the velocity εH is 

assumed 1, although in any real situation this is likely to be smaller than εV [24, 25]. Fig. 10b then demonstrates that 

by only allowing one complete bounce, whose damping of energy only occurs in the local vertical direction, the 

region on which ε <0.9 would result on successful landing on the secondary has already grown considerably.  



 

Fig. 10 Coefficient of restitution εV required to ensure a passive landing onto the secondary. a) Estimates 

computed by means of energy consideration (i.e., remaining energy after first bound must be smaller than 

CL1). b) Estimates computed by numerically iterating bounces assuming an impulsive rebound model as in 

Eq.(7-8). 

The results shown in Fig. 10 are of course strictly relevant only for a spherical secondary with no surface 

features, such as boulders, on the surface, which may completely distort the bouncing motion. Nevertheless, these 

results cast some important insight into the feasibility of ballistic landing onto a binary system, especially when 

considering that past missions that touched down onto the surface of asteroids or comets, such as Hayabusa and 

Philae, all measured coefficients of restitution of ε <0.85 [28, 31]. Hence, these results indicate the potential for 

ballistic landing on some particular regions of the secondary, and so demonstrate the merit of investigating this 

concept with higher fidelity models.   

B. Sensitivity of the Deployment Conditions. 

Inherent to the benefits and advantages of low energy conduits associated with periodic motion near equilibrium 

points also come the instabilities of motion near these regions [20, 32]. As discussed earlier, many of the landing 

trajectories analysed here wind around the equilibrium points of the CR3BP, indicating their proximity to periodic 

motion near these points. Consequently, an understanding of the sensitivities of these landing trajectories to 



uncertainties both due to the strongly perturbed environment and to the errors during the deployment operation is 

required in order to assess the feasibility of these landing trajectories. This section attempts to gain some final 

insight into the dynamical sensitivity of the landing trajectories by assessing the dispersion of the landing 

trajectories subject to errors on the deployment velocity vector. Fig. 11 summarises the results of this analysis. 

Fig. 11a shows the log10 of the spectral norm of the state transition matrix (SSM)  0,t tΦ , such that the 

difference between two neighbouring landing trajectories with initial state at deployment as 
0s  and 

0 0s s can be 

estimated at first order as: 

  0 0,t t s Φ s   (16) 

where the SSM  0,t tΦ  is numerically integrated as: 
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and  tA is the matrix of partial derivatives of the system, or Jacobian matrix [33]. The spectral norm of the SSM 

for the landing trajectory provides a very rough understanding on how quickly a neighboring state will diverge from 

the actual landing trajectory, as discussed by the author in [34].  

 However, as a figure of merit, the log10 of the spectral norm of  0,t tΦ only provides some qualitative insight 

of the regions whose landing trajectories may be more sensitive to uncertainties. Further to Fig. 11a, Fig. 11b 

complements the analysis by providing the results on a Monte Carlo simulation. Fig. 11b shows the success rate of a 

1000 landing sequences where a random 1 cm/s error is introduced in the deployment manoeuvre. The 1 cm/s error 

is added as a pseudorandom error in magnitude ([0 1] cm/s), right ascension and declination ([0 2π] rad) of the 

velocity. Due to the addition of error to the nominal trajectory, the touchdown can occur in a different position than 

the original nominal touchdown position (where the trajectory takes off in backwards propagation), and it does not 

have to be in local vertical. Note that here it is sufficient for a trajectory to touchdown once on the secondary to be 

considered successful.  It is not the scope of this simulation to assess the viability to successfully land given the 

velocity uncertainty, but simply to detect potential issues on the sensitivities to errors in the velocity vector at 

deployment. Indeed, both Fig. 11a and b show that the region directly looking towards the L2 point is extremely 

sensitive, while adjacent regions seem to be less so. The near equatorial region between 250 and 340 degrees 

longitude, however, not only appear to be relatively robust to uncertainties in velocity, but also correspond with 



regions where only modest energy damping is required to ensure landing. Finally, note that in Fig. 11 (a and b) there 

is a large region where landing is not possible. The region, marked with a diagonal line texture, appears due to the 

fact that landing in Fig. 11 is required to occur within 10h of the deployment. In these no-landing regions then, it 

appears that landing would require longer than 10h.  

 

Fig. 11 Sensitivity analysis for deployment conditions. a) log10 of the spectral norm of the landing 

trajectory transition matrix. b) touchdown success rate for a 1000 trials Monte Carlo simulation with added 

uncertainties in the velocity. Diagonal pattern represents regions where landing is not possible.  

 It is out of the scope of this paper to provide a comprehensive discussion on the technical viability of these 

landing trajectories, for which a much higher fidelity characterization of the landing scenario would be required (e.g., 

deployment errors, gravitational and non-gravitational perturbations, etc.). However, the results presented in Fig. 11, 

together with the previous analysis, continues to indicate the prospective opportunities for ballistic landing in binary 

asteroids, particularly, onto the surface of the secondary. Clearly, further analyses are required for specific binary 

systems, with a much more specific characterization of the dynamical model, its perturbations and the technical 

limits of the deployment from the exterior region. However, the results shown in this paper clearly indicate the merit 

of continuing with these analyses further.  



VI. Conclusions 

This paper has investigated the possibility to benefit from the natural dynamics near a binary asteroid as an 

efficient mean to deliver a lander, or scientific payload, onto its surface. The results show that the dynamics of the 

landing options onto the surface of the primary are always subject to high energies, as in the sense that the energy of 

the landing trajectory is far above that of the L4/L5 equilibrium position. However, the options to land onto the 

secondary, particularly the region directly facing the L2 point, benefit from well-known low energy conduits in the 

three-body problem. 

The scalability of the model used in this paper allows to carry out a simple, yet effective, study of accessible 

regions and landing/deployment speeds that can easily extend to any binary size. The backwards propagation 

approach has proved to be a powerful tool to assess deployment options at a variety of locations in the exterior 

region. The algorithm is flexible, and specific conditions and constraints for the landing trajectories can be easily 

added. In this regard, a simple, yet robust, method is presented to evaluate the feasibility of natural landing 

trajectories in binary asteroid systems. The mass parameter of the binary system was defined as a function of the 

primary-to-secondary ratio, and the results focus on a hypothetical binary system designed as a good representative 

of the known binaries within the NEA population. 

The results show that while landing on the primary may yet put some challenging constraints to the spacecraft, 

since it would require an effective passive/active landing system, the secondary offers the prospect of simple totally 

ballistic landing opportunities. This prospect is bound to the condition that the mothership is capable of deploying 

the lander with sufficient accuracy. However, the analysis carried out here does not allow us to estimate what is the 

required accuracy, since this would depend on the particular binary asteroid targeted, and much more accurate study 

should be performed. Nevertheless, it is also clear that, while deployment mechanisms for Philae and MASCOT 

provide relatively accurate, low speed deployments, current standardized deployment mechanisms (PPOD) for 

CubeSats do not provide the gentle impulses that would be required to enable passive landing in binary systems. 

Further improvement on PPOD or a modification on the existing deployment mechanism for bigger landers may be 

required to accurately deploy CubeSat payloads to binary asteroids.  

The landing trajectories computed here represent only the minimum energy landing trajectories for a vertical 

landing at a given latitude and longitude, at both primary and secondary. Slightly different landing conditions (i.e., 



direction and velocity) may exist, exhibiting much more optimal features, in terms of landing duration and 

sensitivity to perturbations, at modest increases of coefficient of restitution.  
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