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Synopsis Examples of encoding for X-ray diffraction experiments are presented.  The encoding 

was shown to recover critical information from the experiments. 

Abstract Diffraction data may be measured using approaches that lead to ambiguity in the 

interpretation of scattering distributions.  Thus, the encoding and decoding of coherent scatter 

distributions have been considered with a view to enabling unequivocal data interpretation. Two 

encoding regimes are considered where encoding occurs between the X-ray source and sample, and 

where the encoder is placed between the sample and detector. In the first case, the successful recovery 

of diffraction data formed from the interrogation of powder samples with annular incident beams is 

presented using a coded aperture approach. In a second regime, encoding of Debye cones is shown to 

enable recovery of sample position relative to the detector. The errors associated with both regimes 

are considered and the advantages of combining both discussed.   
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1. Introduction 

Signal modulation through coded apertures (CAs) is a long established approach in X-ray astronomy 

(Mertz & Young, 1961; Ables, 1968; Dicke, 1968; Skinner, 1984; Busboom et al., 1997) and nuclear 

medicine (Accorsi et al., 2001; Martineau et al., 2010; Mu et al., 2009) for image recovery. Original 

applications include, for example, the use of Fresnel zone plates designed to behave as refractive 

optics within X-ray microscopes (Mertz & Young, 1961; Cannon & Fenimore, 1980). Applications 

involving the encoding of X-ray diffraction data are uncommon but recent high energy studies have 

shown a significant advantage for such approaches (Faust et al., 2009; Schultz et al., 2009). 
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Conventionally when applying encoding, the intensity distribution on a detector P(x,y) is formed from 

the correlation of a coded mask A(x,y) with an object O(x,y). An ideal mask would, in practice, be a 

pin-hole (δ-function), but this has limited transmissivity and thus the concept of masks with multiple 

pin-holes was developed (Ables, 1968; Dicke, 1968). A reconstruction or inverse function must be 

identified that transforms P(x,y) into an accurate representation of O(x,y). Several mask species with 

various pinhole spatial distributions have been proposed including random multi-pinhole arrays 

(Ables, 1968; Dicke, 1968; Cannon & Fenimore, 1980; Weiss et al., 1977; Klotz et al., 1974; Barrett 

& Swindell, 1981) and uniformly redundant arrays (URAs) (Busboom et al., 1997; Cannon & 

Fenimore, 1980; Chen & Kishimoto, 2003; Fenimore & Cannon, 1978; Fenimore, 1978; Gottesman & 

Fenimore, 1989; Ding et al., 2016). URAs can be particularly effective as the autocorrelation of these 

masks (the system point spread function, SPSF) approximates a δ-function and thus;  

 

P(x,y)*A(x,y) ~ O(x,y) (1) 

where * denotes the correlation operator. 

Previous experimental imaging work has employed encoding masks in pre or post object positions 

(Ignatyer et al., 2011; Olivo et al., 2011). However, such approaches have rarely been employed to 

encode coherent scatter or aid in the interpretation of X-ray diffraction experiments. A notable 

exception is work recently reported by Duke University that has sought to encode recoverable 

information regarding the diffraction source to detector distance of multiple sources along a single 

axis (MacCabe et al., 2012; Greenberg, Hassan, et al., 2014; Greenberg, Krishnamurthy, et al., 2014; 

Greenberg et al., 2013). This made elegant use of a simple post-sample, comb aperture to encode 

Debye cones with an intensity modulation having a spatial frequency proportional to the source to 

detector distance (MacCabe et al., 2012). 

Herein, we introduce two unrelated approaches to the application of encoding for diffraction patterns 

when data is collected in transmission mode. In the first approach, a pre-sample annular mask (that 

has been shown previously to enhance diffracted intensity relative to a simple pencil beam (Rogers et 

al., 2010; Evans et al., 2010)) results in a scattering distribution that possesses an interpretive 

ambiguity. We show how this can be resolved using conventional coded aperture decoding algorithms 

that convolve the captured image with the coded mask (Ables, 1968; Fenimore & Cannon, 1978; 

Ballesteros et al., 1996; Chen & Kishimoto, 2003). In the second approach (solving a different 

problem), we use post-sample encoders to determine the unknown position of either single or multiple 

diffraction sources and explore the precision with which this can be achieved.   

Both coded aperture approaches introduced by this work have applications in areas where high speed 

identification is required, in particular where the sample’s position within a volume is unknown. For 
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example, materials discrimination within the aviation security sector is relatively poor, thus the 

techniques can be exploited to identifying illicit materials within luggage. 

 

2. Experimental 

2.1. Pre-sample Encoding 

The use of annular coded masks was examined some years ago for enhanced nuclear medicine 

imaging (Walton, 1973; Simpson, 1978). More recently, annular incident beam masks have been 

shown to provide a novel geometry within diffraction experiments that produce unique high intensity 

maxima (corresponding to Bragg peaks) along a single axis (Rogers et al., 2010; Evans et al., 2010). 

An annular beam also has the advantage for some applications of utilising a greater cross-section of 

the interrogating sample area when compared to traditional X-ray diffraction beams. This is important 

for applications such as security screening requiring simultaneous integration of a large volume, as 

well as when dealing with samples exhibiting some preferred orientations or large grain size (Chan et 

al., 2010; Evans et al., 2010; Rogers et al., 2012). The scattering distribution measured in a plane 

parallel to the coded aperture consists of concentric ‘rings’ of high intensity formed from a 

superposition of multiple Debye cones. Unfortunately, the ring caustics are formed from both 

diverging and converging scatter cones and are thus difficult to interpret e.g. d-spacings cannot be 

directly calculated from the detector images unless scanning is applied. However, application of a 

traditional coded aperture approach is able to solve this problem. Consider a circular -function that is 

zero except at points on a circle of radius, c i.e. (r-c). The autocorrelation of this function is given 

by: 

 

� (�(�� − �)�(|� − ��|) − �)���� =  
4���√4�� − ��

�
�  

 

(2) 

 

where � and �� are two dimensional vectors with Cartesian co-ordinates (x, y) and (x0, y0) respectively 

and |�| = �  (Barrett & Swindell, 1981). This has a relatively high intensity central maximum and a 

low intensity distribution between 0<x<2c and thus approximates a -function albeit with sidelobes.  

The relationship presented in equation (1) was applied to the scattering distributions from a specimen 

by regarding the Debye cones as the ‘object’ to be recovered (O(x,y)) through convolution with the 

annular function, (A(x,y)). This method assumes that the material under examination is distributed 

homogeneously over the annular footprint of the incident beam and is experimentally illustrated 

within Fig. 1.  
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Figure 1 The experimental arrangement for the pre-sample encoding using an annular mask. 

 

A simulation was used to illustrate the principle and develop the processing protocol. This involved 

convolving single FCG images with an image of the primary beam captured at the sample’s position. 

A bandpass filter (filtered large structures down to 40 pixels and small structures up to 3 pixels) and 

thresholding (dc level removal) was then applied to the resulting image using ImageJ software 

(Schneider et al., 2012). Further explanation and details on this process can be found in Prokopiou 

(2014). This protocol was subsequently followed using experimental data obtained with Zr filtered 

molybdenum radiation, an annular collimator (17.5 mm and 18 mm inner and outer diameters 

respectively) at 140 mm from the X-ray source, a ~0.2 mm thick aluminium oxide (Al2O3) sample at 

~150 mm and a PIXIS 1024 (2D Gadox - Princeton Instruments) 13.3 x 13.3 mm area CCD detector 

with 1024 x 1024 pixels at 15 mm from the sample. 

 

2.2. Post-sample Encoding 

In addition to the coded aperture (CA) treatment in Section 2.1 used to recover the diffraction data, we 

have also employed simple post-sample encoding to determine unknown diffraction source positions. 

In this case using simple transmission geometry, an encoder is placed between the sample and 

detector plane to absorb completely relatively small areas of the scatter distributions (see Fig. 2). We 

explored the use of two novel encoders (linear and Archimedean spiral), each with a high open 

fraction of ~90%. We have demonstrated the ability of these post-sample encoders to unambiguously 

encode conventional pencil beam diffraction data. The linear encoder was employed due to its 

simplicity, whereas the spiral was used to overcome potential limitations of the linear case (see 

section 3.2.1).  
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Figure 2 The experimental arrangement for the post-sample encoding using a simple linear encoder. 

 

In both cases the sample to detector distance (���) and Bragg angle of each diffraction maxima () 

were determined independently using; 

���  =  ��� �1 + � ���� − ���� 
(3) 

2� =  tan�� ��� − ����� � 
(4) 

where ��� is the encoder to detector distance, �� and �� are the radii of an arbitrary Debye ring at 

the detector plane and encoder plane, respectively (see Fig. 3). �� may be determined for the linear 

encoder from �� = H/cosand for the spiral encoder from �� = a+bwhere H is the encoder’s 

lateral position relative to the primary X-ray beam, a & b are characteristics of the spiral, and  is the 

azimuthal angle of encoding obscuration relative to the horizontal plane. The variables ���, H, a and 

b are fixed by the experiment and therefore measurement of  and �� for each Debye ring enables 

determination of ��� and 2θ.   

Initially, simulations were performed with McXtrace (Bergback Knudsen et al., 2013) to examine 

various encoder geometries and forms. An error study was undertaken to explore how experimental 

uncertainties (e.g. encoder to detector distance) would propagate to estimations of sample position 

(distance ���) and 2θ. 

Subsequently, experimental data were collected with a simple pencil beam transmission arrangement 

(CuK) and a GADDS (General Area Detector Diffraction System, supplied by Bruker) area detector. 

The encoders were formed from 0.5 mm diameter tungsten wire and the spiral was constructed as a 

simple single turn to avoid potential ambiguity arising from multiple encoding.  
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Figure 3 The geometric arrangement employed to record the 2D X-ray diffraction data encoded by a 

single post-sample encoder (in this example a linear encoder), when illuminated by a pencil beam. 

 

3. Results and Discussion 

3.1. Pre-sample encoding 

Fig. 4a illustrates the result of a typical scattering distribution from an angular dispersive experiment 

in which a thin (~0.2 mm) plate of Al2O3 was illuminated with a pencil beam. The relatively small 

detector active area required 5 x 5 tiling in order to measure a minimum d-spacing of ~0.15 nm at the 

detector distance employed. The horizontal obscured rectangular area artefact was a result of limited 

x/y positioning of the sample stage. Fig. 4b shows a typical scatter pattern produced when using the 

pre-sample annular encoding mask. The apparent concentric rings should not be confused with the 

Debye rings observed during a pencil beam and flat detector conventional Laue type experiment; the 

central high intensity maxima shown in Fig. 4b is not the main interrogating X-ray beam. For further 

details on the geometrical origin of the concentric rings illustrated in Fig. 4b the reader could refer to 

Fig.1 of Evans et al. (2010). 

This central high intensity results from the condition that 
������� ����������� ���� ������ ~ 1 for a particular set of 

diffracting planes. For this condition to be met, the sample (or detector) is translated along the 

primary beam axis until the annular radius = Debye cone radius (Rogers et al., 2010). However, the 
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CA approach presented herein does not require this condition. For the purpose of this study, a mask 

incorporating an annular transparent region was employed as the coded aperture. As indicated by 

equation (2) and shown in Fig. 5, the autocorrelation of the annular mask approximates a δ-function, 

with sidelobes. Hence, an annular mask was convolved with the primary data collected at the detector. 

Fig. 4c shows the result of this convolution following the application of a bandpass filter and 

thresholding. Comparing this result with that from the pencil beam experiment shows that, at least 

qualitatively, the Debye cones have been accurately recovered. This was further demonstrated by a 

comparison of the diffractograms (see Fig. 4d) derived from the radial integration of data presented in 

Fig. 4a and Fig. 4c. The position of each diffraction peak’s maximum intensity was obtained and 

compared to the corresponding peak in the recovered data via a residual sum of squares (RSS) 

analysis. The resulting RSS value was 0.02° (2θ) indicating a strong agreement between conventional 

diffraction data and recovered Debye cones in terms of peak positions. The source of discrepancies 

between relative intensities is due to (i) different sampling volumes and therefore different preferred 

orientations, and (ii) differences in Lorentz factors. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Experimental results of coded aperture processing. (a) Conventional pencil beam 

transmission diffraction data from a ~0.2 mm thick Al2O3 plate, (b) observed diffraction pattern from 

a ~0.2 mm thick Al2O3 plate with an annular pre-sample aperture, (c) recovered Debye rings 

following convolution of (b) with a captured image of the incident annular beam at the sample’s z-

position, (d) radial integration of (a) and (c). 
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Figure 5 (a) 2D image of the autocorrelation of an annular aperture, (b) 2D profile plot of (a), and 

(c) 3D surface plot of (a). 

 

3.2. Post-sample encoding 

3.2.1. Linear encoder simulation 

Simulations were conducted with calcite (CaCO3) samples of thickness 0.05 mm illuminated with a 

pencil beam (CuKα radiation). Calcite was chosen as the diffraction data has a dominant diffraction 

maximum from the 104 reflection (thus enabling some clarity) and 0.05 mm allowed sufficient 

transmission to observe diffraction from multiple samples simultaneously. The offset distance of the 

linear encoder, H, and encoder to detector distance, DED, were systematically changed and coherent 

scatter distributions calculated at each point. The magnitude of the errors when determining the 

sample to detector distance (���) from the inner 104 Debye cone was calculated via analytical error 

propagation and the results are shown in Fig. 6a. This demonstrates that the position of the linear 

encoder for minimising errors in estimated sample position occurs when the encoder to incident beam 

distance, H, is greatest and it is positioned close to the sample i.e. the distance between the linear 

encoder and detector, ���, is maximised. This is only true when the linear encoder interrupts the 

Debye cone, i.e. H is limited by the radius of the Debye cone at distance ���. 
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Figure 6 (a) 3D surface plot of sample to detector distance error and (b) 3D surface plot of error 

associated with measuring the scattering angle (2θ) calculated using the 104 reflection from the 

sample closest to the detector with a linear post-sample encoder. 

 

The same trend can be observed when calculating the associated error of the scattering angle, 2θ, at 

each linear encoder location, Fig. 6b. Thus, errors in the determination of 2θ and sample position are 

minimised when ��� and H are maximised, limited by the requirement of course that the encoder still 

interrupts the Debye cone. The most dominant source of error for these experimental conditions, with 

a 1% error in all variables, was associated with DED, the distance between the linear encoder and 

detector. 

 

3.2.2. Linear encoder experimental 

Initially, a sample of Al2O3 (plate) was placed at a known distance from the detector and the 

subsequent 2D scattering data used to calibrate critical encoder parameters, such as the encoder to 

detector distance (���) and the encoder’s lateral position relative to the primary X-ray beam (H). A 

series of experiments was then performed by collecting scattering data as the sample to detector 

distance was changed to confirm that the encoding behaved as predicted by equations (3) and (4) and 

the simulation. 

A result from a multiplex sampling (>1 sample spatially separated along the primary axis) experiment 

is shown within Fig. 7a. Here, two thin samples (~0.05 mm) of calcite loaded cellulose were 

simultaneously placed within the primary beam at different distances from the detector. The scattering 

distribution is therefore the weighted sum of diffraction patterns from both samples. The obscurities 

formed by the encoder are clearly visible as vertical obscured regions and the encoding positions can 

be quantified from azimuthal plots such as those shown in Fig. 7b for the 104 calcite maxima 

corresponding to each sample. 

(a) (b) 
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Figure 7 (a) Simulated image obtained with an off-centre linear encoder (H = 6 mm, DED = 37 

mm) with two 0.05 mm thick calcite samples separated by 32 mm along the primary beam axis. The 

two brightest rings, from different calcite samples, have radii of 30 mm and 54 mm, respectively. (b) 

Azimuthal plots of simulated data (a) showing the encoding position for each high intensity Debye 

ring. (c) Diffraction pattern from a pair of calcite samples under the same experimental configuration 

as the simulations. (d) Azimuthal plots of experimental data (c). 

 

Subsequent application of equations (3) and (4) is shown in Table 1, where the d-spacing and sample 

to detector distances are shown to be the same as those compared to their known values, within 

experimental errors. Thus, the position and d-spacing(s) (and therefore material phase) can, in 

principle, be determined with no a priori knowledge of the object position. 
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Table 1 Results of the linear encoding recovery. Samples 1 and 2 were placed at 60 mm and 92 mm 

respectively from the detector. The corresponding d-spacings for cellulose and calcite are 0.39002 nm 

and 0.3035 nm, respectively (ICDD database PDF 50-2241 and PDF 5-586). 

Debye ring source RD (mm) ° 
Calculated sample to detector 

distance (mm) 

Calculated d-spacing 

(nm) 

Sample 1: Cellulose 25 47 59.9 ± 0.7 0.39 ± 0.02 

Sample 1: Calcite 34 59 59.6 ± 0.6 0.30 ± 0.02 

Sample 2: Cellulose 39 75 93.0 ± 0.6 0.39 ± 0.02 

Sample 2: Calcite 52 78 91.1 ± 0.6 0.30 ± 0.02 

 

3.2.3. Archimedean spiral encoder simulation 

Simulations were also conducted with an Archimedean spiral encoder and two calcite samples of 

thickness 0.05 mm spatially separated along the primary beam axis. To illustrate the effectiveness of 

the approach, one of the plates was held stationary while the other was translated in 2 mm steps along 

the primary X-ray beam towards the stationary detector. The errors associated with determination of 

sample to detector distance (���) and 2θ (from the 104 Debye cone) are shown in Fig. 8a and Fig. 8b, 

respectively. 

 

 

 

 

 

 

 

 

Figure 8 (a) 3D surface plot of sample to detector distance error and (b) 3D surface plot of error 

associated with measuring the scattering angle (2θ) calculated using the 104 calcite maxima from the 

sample closest to the detector with an Archimedean post-sample encoder. 

 

As with the linear encoder, the position that minimises errors in scatter angle and sample position 

occurs when the spiral is closest to the sample, i.e. when ��� is maximised. The error in the 

(a) (b) 
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calculated sample relative position was dominated by the measurement error in the encoder to 

detector distance. For the calculated scattering angle, 2θ, the greatest contributor to the total error was 

from the measurement error in Debye ring radius. 

 

3.2.4. Archimedean spiral encoder experimental 

Several experiments were performed including changing the sample to detector distance for a single 

sample and for multiple samples. One of the sample plates was held stationary while the other was 

translated in 2 mm steps along the primary X-ray beam towards the detector. To illustrate the 

encoding, Fig. 9 shows a sequence of scatter patterns collected from the two plate samples of calcite. 

The Debye cone encoding is apparent as limited opaque regions within each Debye ring. Using the 

dominant 104 scattering maxima, it is apparent that the encoding region associated with the 

translating sample appears to rotate simultaneously with a decrease in the associated Debye ring 

radius.  

 

 

Figure 9 (a) A sequence of simulated images and (b) a sequence of diffraction patterns from of a 

pair of calcite samples spatially separated along the primary axis with a spiral encoder in front of the 

detector. The sequence was recorded as one of the samples was translated towards the detector face. 
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The radii of the Debye rings and their encoding  angles were measured, and the scattering angles and 

sample to detector distances calculated at each translation step. The data is presented in Table 2, 

which indicates a good agreement with that expected for both parameters. 

An analytical error analysis of these post-sample encoder geometries shows that the parameters with 

the most significant influence on estimated sample to detector distance and scatter angle are the 

encoder to detector distance and measured Debye ring radius, respectively.  

For the linear encoder, a large wire to primary axis distance increases precision but unfortunately this 

coincides with a less accurate determination of  and a limited d-spacing range.  

 

Table 2 Results of the spiral encoding recovery. Sample 1 remained stationary while the sample to 

detector distance was incrementally increased for sample 2. The corresponding d-spacing for the 104 

reflection of calcite is 0.3035 nm (ICDD database PDF 5-586). 

Debye Ring 

Source 
RD (mm) ° RE (mm) 

Calculated d-

spacing (nm) 

Calculated 

Sample to 

Detector 

Distance (mm) 

Measured 

Sample to 

Detector 

Distance (mm) 

Sample 1: Fixed 37 165 6.7 0.30 ± 0.04 66.0 ± 0.5 67 

Sample 2: Step 0  46 312 15.8 0.30 ± 0.03 82.6 ± 0.5 83 

Sample 2: Step 1 45 304 15.2 0.31 ± 0.03 81.6 ± 0.5 81 

Sample 2: Step 2 44 289 14.1 0.31 ± 0.03 79.6 ± 0.5 79 

Sample 2: Step 3 42 268 12.6 0.31 ± 0.03 76.8 ± 0.5 77 

Sample 2: Step 4 41 254 11.6 0.31 ± 0.03 75.1 ± 0.5 75 

Sample 2: Step 5 40 234 10.4 0.30 ± 0.03 72.8 ± 0.5 73 

Sample 2: Step 6 39 218 9.4 0.30 ± 0.03 71.0 ± 0.5 71 

 

4. Conclusions 

Two different methods for encoding angular dispersive, transmission diffraction data have been 

presented. We have shown how, by adopting a conventional coded aperture reconstruction process, 

conventional scattering distributions (i.e. Debye cones) may be recovered from the scattering patterns 

produced from an annular, pre-sample aperture. We have also shown how sample position and 

material phase information may be recovered through post-sample encoding. An application area 

which can benefit from both methods is detection of threat materials or illicit drugs in luggage or 
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parcels. The approach is currently the subject of study for employment within baggage screening 

systems. 

The pre-sample annular coded aperture geometry was shown to produce a scattering pattern with 

several notable features. High intensity ‘condensation’ points at the centre of the patterns occur when 

the Debye cone radius and mask annular radius are equal. Interestingly perhaps, at sample positions 

where this condition is not true, then, in principle, there is no coherent scatter contribution at the 

diffraction pattern centre. Unfortunately, these scatter patterns are difficult to interpret; radially 

integrating produces diffractograms with two overlapping d-spacing scales due to the converging and 

diverging nature of the Debye cones. However, we have shown that these scatter patterns can be 

interpreted through convolution with the annular mask as a result of the near singular feature of the 

mask autocorrelation function. It can also be anticipated that using a mask annulus with a radius 

significantly greater than that of the Debye cones would produce an improved convolution 

reconstruction as the lobe extremes in the autocorrelation function (shown in Fig. 5) would contribute 

less to the final result. This is due to the fact that the lobe extremes present in the annulus’ 

autocorrelation function are the only source of reconstruction ‘confusion’ i.e. the only deviation from 

an ideal δ-function (see Fig. 5). We continued the simulation studies and these indicated that recovery 

was also effective with poorer S/N (in the measured data) or geometric distortion of the annular mask. 

However, the ambiguity in the Debye cones produced by this geometry means that the post-sample 

encoding solution demonstrated by Duke would be ineffective for this data (see below) (MacCabe et 

al., 2012).  

The second encoding approach introduced in this study, linear and spiral post-sample encoders, were 

shown to be effective at providing geometric and structural information. Material phase identification 

(through d-spacing determination) can be achieved with no a priori knowledge of the sample’s 

position relative to the detector. Linear and spiral encoders were shown to provide single axis 

positions with ~1% precision although accurate calibration was essential especially with the spiral 

encoder where small manufacturing errors (affecting a and b) significantly influence the derived 

parameters. Comparison of the induced errors from both encoders with 1% error in all their variables 

indicated that the Archimedean spiral yields a lower experimental error in the calculated DSD distance 

(~7.5 times lower) than the linear encoder.  

We anticipate that the combination of an incident beam annular mask and post-sample linear encoder 

has advantages over alternative coded aperture approaches. For example, a linear encoder (such as 

that described above) would provide sample position information, overcoming the inherent ambiguity 

in the converging and diverging Debye cones generated by conventional post-sample encoders. The 

convergence point acts as an inversion centre thus enabling discrimination between a converging and 

diverging Debye cone. Furthermore, such simple encoders have a high open fraction compared to 

conventional coded apertures and thus maximise the number of measured photons at the detector. 
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