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2 Abstract 

 

Many acarine (tick and mite) species are ectoparasites of humans, livestock and 

domestic pets, where they spread disease and impact adversely on health. They are 

normally controlled through the application of acaricides; however, the prolonged use 

of individual compounds has resulted in many species developing resistance to specific 

pesticides. This thesis describes investigations into the molecular properties that 

determine the resistance to and selectivity of pyrethroids, an important class of 

pesticides that act on the voltage-gated sodium channels (VGSCs) of arthropod 

neurons. Comparison of insect and acarine VGSC sequences, coupled with molecular 

modelling studies, have identified a residue at amino-acid position 933 (M. domestica 

numbering) found within a putative pyrethroid binding pocket that may contribute to a 

greater selectivity of pyrethroids with comparatively larger halogenated groups for 

acarine VGSCs compared to those of insects. This is due to the presence of a smaller 

glycine residue at position 933 in acarine channels, compared to a cysteine residue in 

insect channels, which may enhance the binding of such pyrethroids (O'Reilly et al., 

2014). This model is supported by the findings of Jonsson et al 2010, that R. microplus 

cattle ticks carrying the amino acid substitution G933V, are resistant to the pyrethroid 

flumethrin, which has a comparatively larger halogenated group, but not the 

pyrethroid cypermethrin, which has a comparatively smaller halogenated group. Work 

in this thesis describes progress made in the investigation of such specificity; involving 

sequencing studies, two-electrode voltage clamp electrophysiology in Xenopus laevis 

oocytes involving insect and acarine VGSCs, and whole arthropod bioassays. While this 

work cannot conclusively disprove the model proposed by O’Reilly et al 2014, it 

suggests that the mechanisms of selectivity for pyrethroids in arthropods may involve 

the interplay of several factors, rather than being solely based upon structural 

variations in their VGSCs.  

 

Abstract Word Count: 295 
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3 General Introduction 

 

3.1 Acari  

 

Acari are members of the subphylum chelicerata, one of the three major lineages that 

diverged early on in the evolution of the phylum arthropoda. The chelicerata are 

named after their claw-like feeding appendages called chelicerae that they use as 

fangs or pincers. Most extant chelicerates are arachnids, a group comprised of spiders, 

scorpions, ticks and mites - and it is the ticks and mites that make up the subgroup 

acari (Campbell et al., 2015). At the time of writing over 55,000 acarine species have 

been described, making it the most diverse group of the Arachnida, totalling nearly 

half of all known Arachnida species and 3.5 % of all Animalia species discovered so far 

(Zhang et al., 2011). However, this is likely to be a conservative estimate, with some 

entomologists estimating that the total number of mite and tick species is between 

500,000 and 1,000,000 (Zhang et al., 2011). Acari range in size, from the smallest mites, 

at around 0.1 mm in length, to the largest ticks, at a little over 30 mm in length; they 

also range in shape from round to elongated forms and can be hard or soft bodied. The 

larvae of acari have three pairs of legs, but during development into nymphs and 

adults, they develop an additional pair, marking them as distinct from insects (Online: 

Online: Encyclopædia Britannica 2016).  

 

Acari are distributed globally in a wide range of habitats, they have been recorded at 

5,000 m above sea level on the slopes of Mount Everest and at 5,200 m below sea 

level in the Northern Pacific Ocean, they are found in hot springs, deserts, tundra and 

even the Antarctic (Online: Encyclopædia Britannica 2016). Their habitats also intersect 

with areas inhabited by humans; unfortunately, this is not always beneficial from a 

human standpoint, since many acari are vectors of diseases transmissible to humans, 

other animals (including domestic livestock and companion animals), and crop plants 

(Online: Encyclopædia Britannica 2016). The need to prevent the transmission of these 

diseases means that there is an associated need to control vectorial acarine species, 

and some of the challenges involved in meeting this need are addressed in this Thesis. 
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3.2 Mites  

 

3.2.1 Mite Anatomy and Lifestyle 

 

Mites, like all acari, have eight legs. They can be distinguished from ticks as they have 

hairs or bristles called setae on their legs and bodies and they do not have teeth on the 

hypostome of the mouthparts (Service, 2012). The term “mite” comes from old English 

and means “a very small creature” and in fact most are less than 1 mm in length and 

none are longer than a few millimeters (Walter and Proctor, 1999). Mites live in a wide 

range of habitats, such as fresh and brackish water, hot springs, soil, and as parasites 

on plants, mammals, birds and insects; as a consequence of this habitat diversity mites 

exhibit a wide range of body forms, mating strategies, and lifecycles (Service, 2012; 

Walter and Proctor, 1999). 

 

Mites can reproduce sexually or asexually (both as haploid arrhenotoky and as 

thelytoky) and different species exhibit a variety of lifecycles that often involve a 

combination of stages. The sarcoptiform mites and many trombidiformans begin their 

lives as, usually spherical, eggs that hatch into either prelarvae and then go on through 

development to become larvae, protonymphs, deutonymphs, tritonymphs and finally 

adult mites. The prostigmatans skip the tritonymph stage and in most 

heterostigmatans, the adult stage is only separated from the egg by a single larval 

stage. However, in some heterostigmatan species females are physogastric, meaning 

that the abdomen is able to swell to accommodate growing young, and in these mites 

all development, and mating, occurs within the body of the mother and she gives birth 

to fully formed and already mated adult offspring (Walter and Proctor, 1999). 

 

3.2.2 Mite Damage and Mite-Borne Disease 

 

Mites can be benign or even, on balance, beneficial from a human standpoint, being 

critical players in the formation of soil and acting as important agents of biological pest 

control (Walter, 1999; Online: Encyclopædia Britannica 2016). However; they can be 

threatening to humans, with crop-feeding mites causing damage to our food supply by 
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feeding on plant tissue and/or by transmitting plant viruses (Van Leeuwen et al., 2015), 

and some animal-feeding mites acting as vectors for disease or causing skin irritation 

or allergies (Deplazes et al., 2016; Service, 2012). 

 

For human health issues the species of most importance are Sarcoptes scabiei  (the 

scabies mite), trombiculid mites (including the scrub typhus mites), house dust mites 

and follicle mites (Service, 2012). S. scabiei causes scabies, a skin condition resulting 

from the direct burrowing action of the mite, which is particularly prevalent in areas 

where people live in close contact with one another. Scabies starts by a female mite 

being transmitted onto a person’s skin, where it will dig out a small pocket in which to 

wait until it encounters a male mite and can mate. Once fertilized the female mite 

begins to burrow down through the outer layers of the skin, feeding on the liquids 

produced from broken dermal cells. Mites usually choose to burrow in places where 

the skin is thin and creased, commonly the hands, wrists and elbows; this burrowing 

occurs at a rate of around 0.5-5mm per day and burrows can be seen on the skin as 

thin lines. Each fertilized female will then lay 1-3 eggs per burrow, which hatch into 

larvae after 3-4 days (Service, 2012). S. scabei is not a disease vector, but rather affects 

the host by causing an allergic reaction; giving rise to an itchy rash and the scratching 

reaction that this rash induces in the host frequently gives rise to secondary bacterial 

infections. As the rash is caused by an allergic response it  can persist even after all the 

mites are destroyed (Service, 2012). 

 

In Northern Europe and the USA Neotrombicula autumnalis (the harvest mite) and 

Eutrombicula alfreddugesi (the red bug) are trombiculid mites responsible for bites and 

irritation to humans walking through long grass or scrub in the summer or autumn 

(Service, 2012). However; in South East Asia, in an area known as the “tsutsugamushi 

triangle”, some species of trombiculid mites are responsible for the spread of a serious 

disease, scrub typhus (Online: World Health Organisation 2016). Scrub typhus, also 

known as Tsutsugamushi disease, is caused by the bacterium Orientia (formerly 

Rickettsia) tsutsugamushiwas and was first described in 1899 in Japan. The symptoms 

are often non-specific, making misdiagnosis common. Disease presentation begins 

with flu-like symptoms including chills, shaking, a fever, intense headache, infection of 
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the mucous membrane surrounding the eyes and swelling of the lymph nodes. A rash 

may also be present on the infected person’s trunk, as may a dry, dark scab known as 

an eschar at the bite site. Mortality rates in untreated patients can be as high as 30% 

(Online: World Health Organisation 2016).  

 

Also in humans house dust mites (a collection composed of around twenty mite 

species) can aggravate conditions such as asthma and follicle mites (Demodex species) 

can cause skin complaints such as acne, rosacea, impetigo contagiosa or blepharitis 

(Service, 2012). Whilst not seemingly serious; the aggravation of asthma and other 

conditions and the allergic complaints caused by these mites can certainly be life-

altering and even life-threatening in extreme cases (Service, 2012). 

 

In livestock mites can also cause numerous skin problems and systemic allergies. The 

mite species responsible include Psoroptes, Chorioptes, Demodex, Cheyletiella, 

Notoedres, Trombicula, and Otodectes, along with S. scabei  (Taylor, 2001), but McNair 

(2015) has noted Psoroptes ovis (the sheep scab mite) and  Dermanyssus gallinae 

(poultry mites) are of particular veterinary importance in livestock.  

 

P. ovis represents a major economic burden in the UK, and is found in sheep-producing 

countries worldwide, except for New Zealand and Australia, where it has been 

successfully eradicated (Sargison et al., 2007). P. ovis are small (0.75mm) and live 

below the fleece on the skin surface, where they feed on tissue fluid, in a similar way 

to S. scabei (van den Broek et al., 2000). The disease is not usually fatal but the severe 

itching in infected animals frequently leads to secondary bacterial infections and also 

distracts the animal from eating, causing weight loss (Kirkwood, 1986). Coupled with 

damage to the fleece, this weight loss reduces the value of the animal to the farmer 

and since mites can survive for up to 16 days off the animal, the condition can spread 

quickly through a flock (McNair, 2015; O' Brien et al., 1994). 

 

D. gallinae is very common in in hen houses worldwide, especially in Europe, where it 

is estimated that up to 90% of hen houses in Italy and up to 60% of hen houses in the 

UK are infested (Fiddes et al., 2005; Marangi et al., 2012). D. gallinae is 
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haematophagous, feeding on the blood of the chickens and causing anaemia, which  

decreases egg production and can sometimes be fatal (Kirkwood, 1967). Furthermore, 

it is thought that these mites can act as vectors for bacterial and viral infections 

(Valiente Moro et al., 2005). D. gallinae mites are very small, around 1mm long, and as 

such are difficult to treat with acaricides, as they can easily hide in small inaccessible 

nooks during the day, with feeding activity taking place at night. (Kirkwood, 1967). 

Furthermore, D. gallinae can also infest other animals, including the humans who work 

in the hen houses and so can be transported between populations (Rosen et al., 2002). 

 

Companion animals can be infested by many diverse species of mites and given the 

close contact between these animals and humans, mites which infest companion 

species are of particular concern as the transmissive agent of zoonotic diseases 

(Deplazes et al., 2016), defined as “diseases and infections that are transmitted 

naturally between vertebrate animals and man” (Online: World Health Organisation 

1959). 

 

In the order Prostigmata the genera Demodex, Cheyletiella and Trombicula are 

important ectoparasites of dogs and cats, but will also attack other companion animals 

and humans (Deplazes et al., 2016). Demodex species are small-legged, cigar-shaped 

mites that are extremely host-specific; Demodex canis is a particularly important 

ectoparasite of dogs, causing fur loss as mites multiply to excess in hair-follicles, often 

leading to secondary bacterial infections in the skin which can be extremely severe. 

This condition, called demodicosis, can also present in cats, goats, cattle, pigs and 

horses (Deplazes et al., 2016). Cheyletiella (fur mites) are common on dogs, cats and 

rabbits; though they can colonise humans. In dogs, cats, and humans the mites 

(termed “walking dandruff”) can cause dandruff, itching and eczema, but the condition 

may also be asymptomatic (Deplazes et al., 2016). Trombicula mites, as discussed 

above, are important carries of disease in humans (Service, 2012; Online: World Health 

Organisation 2016) but also infest animals, providing a zoonotic transmission route for 

both the mites and, in South East Asia, for scrub typhus (Tsutsugamushi disease) 

(Deplazes, 2016; Online: World Health Organisation 2016). These mites are not host-

specific, and the larvae will attack any mammal or bird, typically en masse, meaning 
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that one individual may be attacked by thousands of mites. This causes extreme itching 

and occasionally convulsions or seizures, with symptoms lasting for several days after 

the larvae have left the host (Deplazes et al., 2016). 

 

Outside of the order Prostigmata, other important mites of companion animals include 

Ornithonyssus bacoti (the tropical rat mite), a haematophagous mite (family 

Macronyssidae) which causes itching, rough fur and restlessness in rodent pets 

including hamsters, gerbils, rats and mice. These mites may also use humans as hosts, 

with children who are in close contact with their pets often being affected by itchy, 

erythematous papules. Also in the family Macronyssidae, Ophionyssus natricis (the 

common snake mite) is the most pathogenic ectoparasite of domestic snakes and can 

also affect lizards and again can move to humans, causing itchy skin lesions and 

vesicular exanthema along with secondary effects from scratching (Deplazes et al., 

2016). Mange is another mite-caused condition that can occur in companion animals 

and is caused by a variety of species such as Otodectes cynotis (ear mange in cats and 

dogs), S. scabiei variants (Sarcoptes manage in horses, canids and mustelids), Notodres 

species (Notoedrosis in cats and rabbits) and Trixacarus caviae (Trixacarosis in Guinea 

pigs). All of these can temporarily infest humans causing pseudoscabies or temporary 

dermatitis (Deplazes et al., 2016). 

 

There are many phytophagous mites that infect crop plants, posing critical threats to 

the production of many human and animal-feed plant species including fruits, 

vegetables, corn, soybean and cotton (Jeppson et al., 1975; Van Leeuwen et al., 2015). 

Mite species belonging to the family Tetranychidae (spider mites), the Tenuipalpidae 

(false spider mites), the Tarsonemidae (tarsonemid mites) and the Eriophyidae (gall 

and rustmites) pose a particularly serious economic threat by both direct feeding 

effects and by the spread of numerous plant pathogens (Van Leeuwen et al., 2010a; 

Van Leeuwen et al., 2010b). The spider mites Tetranychus urticae, Panonychus citri and 

Panonychus ulmi are considered to be the most devastating pests, with P. citri and P. 

ulmi mainly infesting citrus and apples respectively and T. urticae infecting over 1000 

reported host species belonging to more than 250 plant families (Online: Alain Migeon 

And Franck Dorkeld Spider Mites Web: a comprehensive database for the 
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Tetranychidae 2006-2015). A comprehensive review of the impact of agricultural mites 

estimates that worldwide the control of these pests is worth over €900 million, with 

the majority of this being spent to control the three spider mite species (Van Leeuwen 

et al., 2015). 

 

Alongside their direct effects on crop plants, mites may also have a deleterious effect 

on food production via the infestation of insects required for crop pollination, most 

notably Varroa destructor and Acarapis woodi mites and their deleterious effects on 

the honeybee, Apis mellifera.  A. mellifera plays a critical role in human health and the 

global economy, both as honey producer and as the main pollinator of food crops 

(Decourtye et al., 2010).  

 

V. destructor causes varroosis of the European honey bee, now the most common bee 

disease in Europe, and this disease is now also present in North and South America, 

Russia and Africa; spreading from hive to hive and country to country via the long 

range transportation of bees, with the mites spreading between bees through drones, 

workers, robber bees and swarming behaviour (Deplazes et al., 2016). Female mites 

lay eggs in the brood cells of hives before the brood cells are capped, and these 

develop into adults over approximately 8 days on the bee larvae; adult females mites 

leave the brood, already fertilised, together with the bee once it hatches, whilst male 

mites die within the brood cell once fertilisation has occurred (Deplazes et al., 2016). It 

is the female mites that feed on the bee’s haemolymph, depleting energy resources so 

that when infected individuals hatch they are significantly smaller and have 

considerably shorter life-spans than uninfected bees; in heavy infestations young bees 

may not be viable at all (Deplazes et al., 2016). In addition damage by direct feeding, V. 

destructor is known to play a role in the transmission and virulence of the globally-

distributed deformed wing virus, which causes shrivelled wings in infected bees, 

rendering them unable to fly and therefore feed. Furthermore, V. destructor 

infestation also causes immunosuppression in developing bees, making them more 

vulnerable to the virus (de Miranda and Genersch, 2010; Genersch and Aubert, 2010; 

Yang and Cox-Foster, 2005). Without V. destructor mite control a honeybee colony will 

collapse in the third or fourth year after primary infestation, and varroosis is so serious 
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as to be a World Organisation for Animal Health (OIE) listed notifiable disease (Online: 

World Organisation for Animal Health 2016). Effective elimination of V. destructor is 

currently not possible, due to transmission of mites from other hives, so bee keepers 

aim to reduce the number of mites to below a damage threshold (Deplazes et al., 

2016). 

 

Tracheal mite disease (Acarapiosis) caused by A. woodi infestations is also on the OIE 

notifiable list (Online: World Organisation for Animal Health 2016). These mites 

develop within the trachea of honey bees (so are an internal mite) and puncture the 

tracheal wall to ingest haemolymph. This obstructs air circulation, causing general 

weakness and can render the bees unable to fly and can cause death, particularly in 

spring. Acarapiosis is found worldwide, except in Australia and New Zealand, and is 

spread only by direct bee to bee contact; however, affected colonies tend to swam, 

facilitating the spread of the mites. Bees are only susceptible until the age of four days, 

after which the spiracles are protected by strongly chitinised bristles, and the mites 

can no longer penetrate into the trachea (Deplazes et al., 2016; Sammataro et al., 

2000).  

 

3.3 Ticks 

 

3.3.1 Tick Anatomy and Lifestyle 

 

The term tick (suborder Ixodida) refers to any of approximately 867 species 

of invertebrates in the order Parasitiformes (subclass acari) (Jongejan and Uilenberg, 

2004). Most ticks are 15 mm or less, however some can grow up to 30 mm. Ticks are 

closely related to mites, from whom they differ by the presence of a “Haller’s organ”, a 

sensory disk found on the tip segment of the first of four pairs of legs (Haller 1881 - As 

cited in (Foelix and Axtell, 1972)) they also lack setae on their bodies and have a 

toothed hypostome (Service, 2012). All tick species belong to one of three families: The 

Nuttalliellidae or the Ixodidae, which together comprise the hard ticks, or the 

Argasidae, the soft ticks (Jongejan and Uilenberg, 2004; Service, 2012). There are some 

obvious physical differences, allowing easy differentiation between hard and soft ticks, 
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with hard ticks having a hard cuticle and a scutum (protective shield) either completely 

or partially covering the dorsal region, and soft ticks having more leathery bodies and 

no scutum (Mehlhorn, 2001). Hard and soft ticks also differ in their life cycles. Soft ticks 

live on their host animal and feed intermittently, before detaching and retreating to a 

hiding place, off the host. Adult soft ticks mate off the host, and females generally lay 

eggs after each blood meal. There are then several nymphal stages, which are always 

parasitic (Jongejan and Uilenberg, 2004) and like the adults nymphs attach to the host 

for a relatively short time. Soft ticks tend to feed on many different individual hosts, 

often from different species, during their lifetime and are referred to as “many-host” 

ticks (Service, 2012). Hard ticks feed continuously on host blood for several days during 

each life stage (larvae, nymph, adult) and have one, two or three hosts, and usually 

mate on a host animal. When an adult female has obtained a blood meal, she drops 

from the host, lays a single large mass of eggs, and dies. The male may remain on the 

host for several months (Jongejan and Uilenberg, 2004). Many species of hard tick are 

host specific, for example, some feed almost exclusively on birds, others on reptiles 

and others on certain groups of mammals, such as canids. However, others will feed 

on any available host, including humans (Service, 2012). 

 

3.3.2 Tick Damage and Tick-Borne Disease 

 

Ticks were the first arthropods to be recognised as vectors of disease and, along with 

mosquitoes, are the major arthropod vectors of diseases in livestock, companion 

animals and humans (Colwell et al., 2011; Jongejan and Uilenberg, 2004). They 

transmit more pathogens, including protozoans, rickettsiae, spirochetes and viruses, 

than any other arthropod species (Ghosh et al., 2007). A tick is considered a vector for 

a pathogen if it will feed on an infected host, acquire the pathogen during the blood 

meal, maintain the pathogen through one or more life stages, and then pass the 

pathogen on to other hosts (Jongejan and Uilenberg, 2004; Kahl et al., 2002). Ticks are 

responsible for the spread of a large number of potentially life-threatening diseases of 

humans, such as tick-borne encephalitis (caused by viruses of the family Flaviviridae), 

babeosis (a febrile, malaria-like parasitic disease caused by protozoa of the Babesia 

genus), ehrlichiosis (febrile illnesses caused by bacterial infection of white blood cells 



 

 

22 

by bacteria of the genus Ehrlichia) and Lyme borreliosis (Dantas-Torres et al., 2012; 

Jongejan and Uilenberg, 2004; Telford and Goethert, 2004).  

 

Worryingly, there is evidence that the incidence of tick-borne diseases is increasing 

(Dantas-Torres et al., 2012; Nicholson et al., 2010; Piesman and Eisen, 2008), and it is 

thought that  changes in human and tick behaviour will increasingly lead to the 

conditions required for tick-borne disease to spread (Randolph, 2010; Sutherst, 2004). 

A good example of this is Lyme borreliosis, or Lyme disease, in the United Kingdom 

(UK). This human disease is caused by bacteria of the Borrelia genus vectored 

predominantly by Ixodes ricinus in the UK (Alao and Decker, 2012) and was first 

described in the late 1970’s in Lyme, Connecticut (Steere et al., 1977). Early symptoms 

include a bull’s-eye rash and flu-like symptoms that are treatable with antibiotics 

(Online: Centers for Disease control and Prevention 2015). However, if not treated, 

complications involving the nervous, cardiovascular and musculoskeletal systems can 

occur (Alao and Decker, 2012; Uzzell et al., 2012). From 2001 to 2011, the number of 

confirmed cases of Lyme disease in England and Wales rose from 268 to 959 (Online: 

Health Protection Agency 2013) suggesting that the disease is on the increase here, 

although this seeming increase may result from improved disease detection methods 

(Uzzell et al., 2012),  

 

A further example of a tick-borne disease increasing in humans is Spotted Fever 

Rickettsiosis (SFR) in the USA. SFR is actually a group of diseases caused by bacteria of 

the Rickettsia genus, which are spread to humans by various hard tick species, via a 

range of domestic and wild animal hosts. It includes the well-documented Rocky 

Mountain spotted fever. Symptoms of an SFR include fever, headache, fatigue, muscle 

aches, a maculopapular or petechial rash and often blackened or crusted skin at the 

site of the tick bite (Online: Centers for Disease control and Prevention 2016). The 

severity depends on the species of Rickettsia involved and varies from self-resolving to 

potentially fatal (Online: Centers for Disease control and Prevention 2016). Reported 

cases in the United States increased from 1.7 cases per million person-years in 2000 to 

14.3 cases per million person-years in 2012, suggesting that favourable ecological 
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changes influencing vector tick populations and disease transmission may be occurring 

(Drexler et al., 2016).  

 

Ticks may also cause direct health problems in in humans and other animal hosts by 

substances in tick salvia, which cause “tick paralysis” and “non-paralytic tick toxicosis”. 

Tick paralysis typically causes a progressive paralysis starting in the lower limbs that 

slowly reaches the upper body, possibly with other symptoms including vomiting and a 

typhus-like rash depending on the host and tick species involved. Non-paralytic tick 

toxicosis gives a multitude of symptoms ranging from fever, sweating, breathing 

difficulties, to nervous incoordination and death (Estrada-Pena and Mans, 2014). Tick 

paralysis occurs globally, involving more than 70 tick species and including both Ixodid 

and Agrasid ticks, with the most important species being Dermacentor andersoni and 

Dermacentor variabilis in the United States and Canada, and Ixodes holocyclus in 

Australia (Estrada-Pena and Mans, 2014; Mans et al., 2004). 

 

For non-humans the host range of ticks is wide and includes mammals, birds, reptiles 

and amphibians, and both hard and soft tick species can be found as parasites 

associated with livestock and companion animals (Deplazes et al., 2016; Guzman-

Cornejo et al., 2011; Jongejan and Uilenberg, 2004; Service, 2012). As for mites, animal 

tick infestation links animal and human health via zoonoses; for example, in the United 

Kingdom, Ixodes ricinus, the main vector of Lyme disease (Uzzell et al., 2012), has been 

reported on both domestic dogs and cats (Jameson and Medlock, 2011) and provides a 

potential route for disease transmission from companion animals to humans. In fact, 

most tick-borne diseases infecting to animals are caused by pathogens that can also 

infect humans, so livestock and companion animals can be reservoirs for human tick-

borne disease (Deplazes et al., 2016). 

 

In livestock tick-borne diseases occur in domestic poultry, cattle, sheep, goats and 

camels (Jongejan and Uilenberg, 2004). In cattle alone, tick-borne diseases affect over 

80% of the population, posing a considerable constraint to livestock production and 

hence the health of many humans living in rural areas (Marcelino et al., 2012). Ticks 

can cause severe damage to the health of livestock animals simply through their role 
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as haematophagous feeders, which damages the skin and coat of infected animals, and 

causes anaemia through blood-loss, leading to lower milk/meat production. 

Furthermore, ticks also transmit a large variety of disease pathogens to livestock 

animals, for example anaplasmosis and babesiosis (Deplazes et al., 2016). 

Anaplasmosis is caused by intracellular parasites of the genus Anaplasma (Alessandra 

and Santo, 2012). In sheep and goats, the condition tick fever is predominantly caused 

by Anaplasma ovis and less commonly by Anaplasma phagocytophilum (Alessandra 

and Santo, 2012). A. ovis is spread by the ticks Rhipicephalus bursa, Rhipicephalus 

bursa turanicus, Dermacentor silvarum, Dermacentor marginatus, D. andersoni and 

Haemaphysalis sulcate (Alessandra and Santo, 2012); while A. phagocytophilum is 

spread by I. ricinus in Europe and Ixodes scapularis and Ixodes pacificus in the US 

(Richter et al., 1996). In cattle the causative agent of anaplasmosis is usually 

Anaplasma marginale, spread mainly by Rhipicephalus microplus, along with other 

members of the Rhipicephalus and Dermacentor species. Amblyomma variegatum and 

Hyalomma species can also spread anaplasmosis, in the form of Anaplasma bovis 

(Deplazes et al., 2016; Marcelino et al., 2012). Babeosis in small ruminants and cattle is 

caused by protozoa of the genus Babesia, which infect erythrocytes causing, among 

other symptoms, severe anaemia (Perez de Leon et al., 2014), for example Babesia ovis 

in sheep with a mortality rate of 30-50% (Alessandra and Santo, 2012). Babesiidae are 

transmitted by many different ticks including Amblyomma, Dermacentor, Ixodes, 

Haemaphysalis, Hyalomma, and Rhipicephalus species (Deplazes et al., 2016).  

 

Common companion animals such as cats, dogs and horses all suffer from ticks and 

tick-borne disease (Jongejan and Uilenberg, 2004; Reichard et al., 2010; Service, 2012) 

and issues for animal welfare and disease transmission can be very significant (Kiss et 

al., 2012). Dogs are particularly affected, for example in tropical, sub-tropical and some 

temperate zones dogs may contract babesiosis that can be highly pathogenic. Babesia 

causing canine babesiosis are spread by D. reticulatus in Europe and Asia, by 

Rhipicephalus sanguineus in America, and by Haemaphysalis bispinosa and 

Haemaphysalis leachi in Australia and Africa (Deplazes et al., 2016). Ehrlichiosis in dogs 

also occurs in several global regions, the vectors being R. sanguineus and D. variabilis, 

and can be fatal (Jongejan and Uilenberg, 2004). Cats can also be affected by tick-
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borne disease, for example feline cytauxzoonosis, vectored by Amblyomma 

americanum and caused by the protozoan Cytauxzoon felis, is fatal in almost all cases 

(Meinkoth and Kocan, 2005; Reichard et al., 2010). 

 

3.4 Acarine Control 

 

The widespread threats from mites and ticks to both human and animal health and to 

crop production means that there is a pressing need for good, sustainable, control 

strategies. As a species, human beings are existing in a time of immense and rapid 

changes in the global environment, such as an increased level of atmospheric carbon 

dioxide and global temperature rise (Solomon et al., 2007), which could have an 

impact on acarine-borne disease, causing human (and therefore animal) movement 

into acarine infested areas (Colwell et al., 2011; Randolph, 2010) and triggering 

changes to both acarine longevity and their habitat range (Sutherst, 2004).  

 

One line of defence against human and animal acarine-borne disease is avoidance of 

areas inhabited by acari during their peak periods of activity, and various agencies such 

as the Centers for Disease Control and Prevention in the USA, the European Centre for 

Disease Control, and the Health Protection Agency in the UK have produced detailed 

and easily accessible web-based information to help to educate the public in acarine, 

and thus acarine-borne disease, avoidance and bite prevention (Online: Centers for 

Disease control and Prevention 2015b; Online: European Centre for Disease Prevention 

and Control 2016; Online: Health Protection Agency 2012; Online: World Health 

Organisation Regional Office for South East Asia, 2016). For example, it is possible to 

reduce the risk of human exposure to Lyme borreliosis in far western North America, 

simply by encouraging people to avoid dense woodland, with ground cover dominated 

by fir needles or leaf litter, between mid-April and mid-June, because this is the peak 

activity time for nymphs of the tick Ixodes pacificus (Clover and Lane, 1995; Eisen et al., 

2003; Eisen et al., 2004; Talleklint-Eisen and Lane, 2000). If entry into tick or mite 

infested areas is unavoidable, an alternative is simple personal avoidance behaviours, 

for example, sticking close to the centre of trail paths and not wandering into areas 

covered by tall grass or leaf litter (Online: Centers for Disease control and Prevention 



 

 

26 

2015b) or the wearing of suitable protective clothing  (Piesman & Eisen, 2008; Online: 

World Health Organisation Regional Office for South East Asia, 2016). However, there 

is currently little information into how effective such strategies are in reducing the 

incidence of acarine-borne disease (Mowbray et al., 2012). Furthermore, trying to 

mitigate the effects of acarine-borne diseases in animals by behavioural changes is not 

very effective and is not applicable to control of mites affecting crop production. It is 

therefore important that novel and more effective methods for acarine control are in 

constant development, including biological control, novel vaccines, RNAi technologies, 

plant-derived (or natural) chemical acaricides and repellents, and synthetic chemical 

acaricides and repellents (Dietemann et al., 2012; Kiss et al., 2012; McNair, 2015; Van 

Leeuwen et al., 2015). 

 

3.4.1 Biological Acarine Control 

 

Biological control has been defined as “the use of an organism to reduce the 

population density of another organism” (van Lenteren, 2012). For pest mite species in 

a crop setting, this primarily involves augmenting biocontrol using natural enemies, 

reared on mass and released into an agricultural/horticultural setting. Such mass 

production and sale of natural enemies has been in operation for around 120 years 

and has been successful in fruit orchards, vineyards, cotton fields, maize crops and 

greenhouses; proving to be an environmentally sound and economically valid method 

of pest control. This includes biological control of mite pest species (van Lenteren, 

2012), which has been used since around 1968 (van Lenteren, 2012). In 2010 it was 

estimated that 170 species of invertebrate natural enemies were sold worldwide for 

controlled release to allow the biological control of over 100 crop pest species (Cock et 

al., 2010). However, despite the availability and successes of this technology, 

augmented biological control was used on only approximately 0.4% of land under 

cultivation in 2010 (Cock et al., 2010). This could be due to serval factors, including 

target specificity of the natural predators; which may seem to be a positive trait, but 

actually limits return on investment in terms of sales (Barzman et al., 2015; van 

Lenteren, 2012). Furthermore, most farmers are accustomed to the use of pesticides 

and may be reluctant to change to an unproven method, with regulations on the 



 

 

27 

application and collection of biological control agents that can delay or even prevent 

them from being used (Cock et al., 2010; van Lenteren, 2012). 

 

Biological control can also be achieved using fungal-based acaricides, known as 

mycoacaricides, which have been in use for many years in crop-pest situations. For 

example, Mycar, a mycoacaricide based on Hirsutella thompsonii, was granted 

registration for the control of the citrus rust mite, Phyllocoptruta oleivora, in the 

United States in 1981 (de Faria and Wraight, 2007) and entomopathogenic fungi have 

been used to successfully control many pest-mite species on crops both in the 

laboratory and in the field (Bugeme et al., 2015; Marcic, 2012; Naik and Shekharappa., 

2009; Shi and Feng, 2006; Shi et al., 2008; Ullah and Lim, 2015). Entomopathic fungi 

have also been used in animal pest-mite control, for example in beehives to control V. 

destructor mites (Kanga et al., 2003; Meikle et al., 2007). However, in this case the 

beneficial effects of the fungus may be outweighed by negative effects on the bees 

themselves, namely increased mortality and reduced adult body mass (Hamiduzzaman 

et al., 2012). Furthermore, two large field trials involving the fungal pathogen 

Metarhizium anisopliae showed no significant V. destructor control (James et al., 2006). 

Recently, conidia of M. anisopliae were shown to be effective against eggs of the tick R. 

sanguineus under laboratory conditions (Luz et al., 2016). However, this study used 

egg clutches of only 25, rather than the thousands seen in a wild clutch, and since 

efficacy was affected by both concentration and formulation, further investigation 

would be needed to see if this fungus could be used in the field. M. anisopliae and 

Beauveria bassiana have been shown to give 100% mortality against adult P. ovis 

sheep scab mites in vitro at temperatures and humidity simulating that of sheep skin 

(Lekimme et al., 2008) and initial in vivo tests showed that both can infect P. ovis on a 

host sheep, with B. bassiana giving the highest infection levels. However, in the latter 

trials, the sheep were housed indoors, so further investigations are required to 

establish efficacy under outdoor conditions (with their varying levels of UV radiation, 

rainfall, and humidity) (Abolins et al., 2007). Combining conidia from B. bassiana with a 

desiccant dust was effective against the poultry red mite D. gallinae in laboratory 

testing arenas, although again tests would be needed to show efficacy in both chicken 

house and free-range situations (Steenberg and Kilpinen, 2014). 
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There have been several mycoacaricidal products that began registration for use 

against ticks and mites (de Faria and Wraight, 2007), but at present, although there are 

mycoacaricidal products marketed as suitable for use against agricultural pest mite 

species, none are detailed as being suitable for use against mites on animals. Only one 

that was original marketed as suitable for use in outdoor tick control, Met52®EC, is 

available to buy from Monsanto BioAg™, although this is no longer stated in the online 

literature as being suitable for use against ticks and no mention is made of animal 

mites (Online: Monsanto 2014). 

 

Bacterial toxins have also been investigated for mite control, for example toxins from 

strains of the bacterium Bacillus thuringiensis have been found to be effective as a 

control agent against V. destructor mites in A. mellifera hives. With some of the toxins 

having only a limited toxic effect on the bees at doses 14 times higher than the LD 50 

for the mites. However, field trials would be needed to confirm efficacy of this toxin, 

refining the delivery method and monitoring the wellbeing of any hive undergoing 

treatment (Alquisira-Ramirez et al., 2014). Proteins from B. thuringiensis strain GP532 

have also shown an in vitro acaricidal effect on the scabies mite Psoroptes cuniculi, 

isolated from New Zealand rabbits, but again  field trials of the protein would be 

needed before it could be seen as a viable treatment option for this form of mange 

(Dunstand-Guzman et al., 2015).  

 

3.4.2 Vaccination 

 

The use of vaccination in animals against ectoparasite mite species has been trialled 

(McNair, 2015) and recently a recombinant vaccine, based on a cocktail of seven 

antigens, has proven effective against P. ovis in lambs, giving a reduction in both mite 

numbers (56%) and lesion size (57%). This may be seen as progress towards a 

commercial vaccine, which could be developed following the necessary field trials and 

optimisation of vaccine production (Burgess et al., 2016). 

 

For ticks vaccination against the pathogenic agent causing a tick-borne disease is an 

alternative option to tick-avoidance, and this has shown some successes. However in 
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humans, the only tick-borne disease currently controlled by a proven efficacious 

vaccine, is Tick-borne encephalitis (TBE) (Piesman and Eisen, 2008). There are currently 

four licenced vaccines available for TBE, FSME-Immun® and Encepur®, used mainly in 

Europe, and TBE-Moscow®  and EnceVir®, used mainly in Russia [Online: World Health 

Organisation 2011]. Immunization campaigns in Australia between 1991 and 2000 

were estimated to have saved the equivalent of 80 million US dollars by reducing costs 

associated with caring for patients, loss of productivity and premature retirement due 

to post-infection neurological complications (Online: World Health Organisation 2011). 

A more recent study showed  that the current adult vaccination programme in 

Slovenia is also cost-effective (Smit, 2012). However, caution should be observed when 

considering vaccination programmes. The World Health Organisation (WHO) states 

that cost-effectiveness will be “strongly influenced by the price of the vaccine and by 

how well the target populations are defined”, recommending large scale vaccination 

only in areas where the disease is highly endemic and that any vaccination should be 

targeted to at-risk groups in areas where the disease incidence is moderate or low 

(Online: World Health Organisation 2011).  

 

In stark contrast to the success of TBE vaccines, LYMErix™, the Lyme borreliosis vaccine 

designed for use in humans, was withdrawn in 2002, after just four years on the 

market, despite being relatively safe and efficacious (Steere et al., 1998) (Piesman and 

Eisen, 2008). This was due to several factors including the need for frequent boosters, 

high cost, exclusion of children from vaccination, fear of vaccine induced Lyme disease 

like symptoms and litigation related to the vaccine, which compounded to give low 

sales (Hanson and Edelman, 2003).  

 

In companion animals and livestock, vaccines are available against anaplasmosis, 

heartwater (ehrlichiosis), babeosis, tropical theileriosis and Lyme borreliosis (Dantas-

Torres et al., 2012; Hebert and Eschner, 2010; Marcelino et al., 2012; Schetters, 2005; 

Suarez and Noh, 2011). As with their human counterparts, these animal vaccinations 

against the pathogenic agents vectored by ticks have also shown mixed results. For 

example, in companion animals, vaccinations against Lyme borreliosis and canine 

babeosis are currently available for dogs. However, these require boosters after one 
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year and six months, respectively, and in the case of babesiosis, there is little efficacy 

data available. Therefore, the costs involved in annual or bi-annual vaccination make it 

more cost effective to use other control measures, such as the application of tick 

repellents, and overall the current position is that it would be unadvisable to rely on 

vaccination alone as a means of protecting companion animals against ticks (Day, 

2011). Furthermore, although livestock vaccinations against heartwater, tropical 

theileriosis, anaplasmosis and babesiosis can be successful, most of those currently 

available vaccines are live, blood-derived, attenuated forms of the pathogen itself 

(Marcelino et al., 2012) or forms of the pathogen with naturally low pathogenicity 

(Shkap et al., 2007). This may pose many problems such as  the spread of silent 

pathogens from the blood of culture donors (for example bovine leukaemia virus), the 

risk of reversion to virulence of the pathogen, uncertainties in standardising the dose, 

quality control of the vaccine, the maintenance of donor animals which may 

themselves become reservoirs for ticks, and difficulties in transportation and storage 

at the end user (Shkap et al., 2007). All of these factors can reduce the efficacy of 

vaccination programmes against tick-borne diseases in livestock (Marcelino et al., 

2012).  

 

There is also the possibility of vaccination against the ticks themselves, to reduce of 

the vector and hence disease transmission. This is currently done on large scale in 

cattle against the tick R. microplus, using two commercially available vaccines, Gavac™ 

and TickGARD™, both based on the R. microplus gut antigen Bm86 (Kiss et al., 2012). 

Vaccination with Bm86 triggers antibody production in the host animal, and ingestion 

of these antibodies damages the feeding ticks (Willadsen, 2001), reducing the number, 

weight and  reproductive capacity of engorged females (Kiss et al., 2012). However, as 

with vaccination against a tick-vectored pathogen, such vaccination against the ticks 

themselves shows variable efficacy. For example R. microplus Bm86-based vaccines, 

that elicit protective immune responses against R. microplus feeding, vary considerably 

in their efficacy depending on the genetic variability of the tick and bovine 

populations. Furthermore, although there is some evidence of cross-protective 

immunity, an antigen against one type of tick may not provide resistance against 

another species (Parizi et al., 2012). To serve as a true preventer of tick-borne disease, 
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anti-tick vaccines must disrupting tick feeding before any pathogen has chance to pass 

into the host animal. This may require anti-tick vaccines that disrupt tick attachment 

rather than tick feeding (Piesman and Eisen, 2008). 

 

3.4.3 RNAi Gene Silencing 

 

RNAi gene silencing is an interesting novel method that has been proposed for control 

of some acari. The technique has been shown to be effective in the crop pest T. urticae 

by using double-stranded (ds) RNA injection to silence the Distal-less gene (Khila and 

Grbic, 2007). For V. destructor, dsRNA has been delivered by injection and immersion 

of the mites into a dsRNA solution (Campbell et al., 2010) and also by feeding mites on 

bees which have, in turn, been fed dsRNA (Garbian et al., 2012). The latter trial 

involved injecting a mixture of dsRNA designed to silence 14 genes in V. destructor that 

are thought to be responsible for fundamental housekeeping functions as well as 

apoptosis inhibition in mite cells, and gave a 60% reduction in the mite population on 

the bees, without a significant reduction in bee numbers compared to an uninjected 

control. Further studies are now needed in the field, to test the effects of dsRNA-

treatment in V. destructor-infected honeybee colonies. The first step is to find target-

genes that have the greatest effect on mite survival with the least amount of dsRNA 

needing to be fed to the bees (Garbian et al., 2012). 

 

In 2002 RNAi methods proved successful in the tick A. americanum, where injection of 

histamine binding protein (HBP) dsRNA into females gave a reduction in the HBP 

transcripts (Aljamali et al., 2002). Following this, RNAi was used to silence the 

subolesin gene in D. variabilis (de la Fuente et al., 2006). Subolesin is a highly-

conserved protein in tick species that is involved in feeding and reproduction, and its 

knockdown resulted in a decrease in tick survival and the production of sterile ticks. 

This has led to the suggestion that the release of subolesin-silenced ticks could be a 

method for the control of tick populations, as the release of R. microplus subolesin-

silenced ticks achieved tick-control in cattle populations when used in combination 

with a cattle-based recombinant subolesin vaccination (Merino et al., 2011).  
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However, while the release of sterile acari represents a potential approach to tick and 

mite control, some concerns have been expressed about releasing genetically modified 

vectors into the environment, and this may prevent further use of the technology 

(Sparagano and De Luna, 2008). 

 

3.4.4 Plant-Derived Chemical Acaricides 

 

Plants are one of the greatest sources of organic compounds, and many show 

pesticidal properties; furthermore, they are generally more biodegradable and have 

reduced environmental effects when compared to synthetics pesticides, and so the 

anti-parasite (including anti-acari) activity of plant extracts is being increasingly 

investigated (Flamini, 2006). In fact a large number of products are already in 

commercial use, for example neem oil (from the neem tree) is reported to have 

biocidal effects against over 200 species of arthropod pests (Isman, 2006). 

 

Contact acaricidal activity of plant extracts has been shown against a variety of crop 

plant-infesting mite species including Tetranychus cinnabarinus and T. urticae (Isman, 

2000; Lee et al., 1997; Tunc and Sahinkaya, 1998). Interestingly in the case of T. urticae, 

EcoTrol, a Rosemary oil-based pesticide, not only gave complete pest mortality at 

concentrations not phytotoxic to the host plant, but also proved not toxic to the 

predatory mite Phytoseiulus persimilis at these concentrations in both laboratory and 

greenhouse experiments. Offering potential integrated pest management options 

against this species (Miresmailli and Isman, 2006). Essential oils generally show great 

promise for use in crop species, as most are volatile and rapidly evaporate from the 

foliage or  degrade due to UV and temperature exposure, minimising residues on food 

crops (Miresmailli and Isman, 2006). Furthermore, in contrast to certain synthetic 

insecticides, neither bioaccumulation nor bio-magnification has been reported for any 

plant-derived pesticides to date and for many mammalian toxicity is low and 

environmental persistence is short (Regnault-Roger et al., 2012). Many plant-based 

compounds have toxic, repellent, anti-feedant or growth regulatory effects when used 

in the laboratory against both tick and mite ectoparasites. However, their efficacy is 

variable and dependent upon many factors including the target species, species life-



 

 

33 

stage, the pest feeding mechanism, the method of extraction of the plant active, the 

type of solvent used, the time of harvest, and the working concentration (George et al., 

2008; Kiss et al., 2012; McNair, 2015). 

 

Although plant-derived products are thought to be less environmentally damaging 

than their synthetic alternatives, there are worrying opinions that people may falsely 

believe that naturally-derived products are inherently safe, when in actuality very few 

of these products have undergone toxicological testing against mammals and non-

target organisms (Attia et al., 2013; Shaalan et al., 2005). Furthermore, as field studies 

have a large cost implication, not least because of the high cost of extraction for plant-

derived compounds, a successful active needs to show great promise to progress to 

reach this stage of testing (Attia et al., 2013; George et al., 2008; Kiss et al., 2012). In 

particular, great care must be taken when using plant-derived pesticidal products in 

beehives, as they tend to have broad-spectrum toxicity against arthropods (George et 

al., 2008).  

 

3.4.5 Synthetic Chemical Acaricides 

 

Synthetic chemical repellents and acaricides are currently the most widely used and 

effective method of controlling ticks and mites and hence the diseases they vector 

(Kiss et al., 2012; McNair, 2015; Van Leeuwen et al., 2015). 

 

The following effects can be achieved when using acaricides: 

i. Repellency: When the compound causes the tick/mite to move away from 

an area, plant or animal. 

ii. Disruption of attachment to the host: When feeding is prevented by the 

compound.  

iii. Direct kill: A true acaricidal effect. 

(Adapted from (Halos et al., 2012)). 

 

Repellents and acaricides can be applied directly to the fur or skin of an animal or 

human, or applied indirectly by addition to collars, clothing or bedding (Beugnet and 
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Franc, 2012; Jongejan and Uilenberg, 2004; Katz et al., 2008; Piesman and Eisen, 2008). 

They can also be sprayed directly onto crop plants (Van Leeuwen et al., 2015). Other 

methods treat areas off the host, for example, acaricides sprayed onto vegetation in an 

area-wide attempt to reduce tick-borne diseases (Piesman and Eisen, 2008). 

 

In humans, repellents such as N,N-diethyl-meta-toluamide (DEET) and permethrin-

based products, have proven reasonably safe to use and effectively reduce the risk of 

bites from a variety of species when applied directly to the skin or onto clothing 

(Carroll et al., 2005; Kumar et al., 1992; Lane, 1989; Pretorius et al., 2003; Schreck et al., 

1986; Service, 2012; Solberg et al., 1995). On companion and livestock animals, a wide 

variety of repellents and acaricides are used including organophosphates, pyrethroids, 

carbaryl, fipronil, macrocyclic lactones and amitraz, all of which have been shown to be 

effective against ectoparasites (Beugnet and Franc, 2012; Deplazes et al., 2016; 

Guerrero et al., 2012; McNair, 2015; Stanneck et al., 2012) and a similarly wide-range 

of products are licensed for use in crop plant protection (Van Leeuwen et al., 2015).  

 

The widespread use of acaricides has led to the development of resistance in many 

acari worldwide, leading to a real concern that the armoury of effective compounds 

will be exhausted unless concerted action is taken to develop new products and 

reduce the spread of resistance (McNair, 2015; Rinkevich et al., 2013; Van Leeuwen et 

al., 2015; Van Leeuwen et al., 2010a). Acaricide resistance to multiple compounds is 

seen in several agriculturally and economically important acari, including the two-

spotted spider mite T. urticae (a costly pest of a wide range of outdoor and protected 

crops), S. scabei (the causative agent of scabies in animals), the Southern cattle tick R. 

microplus, the red poultry mite D. gallinae, and V. destructor (a major threat to food 

security due to its parasitism of honey bees) (Reviewed in (McNair, 2015; Van Leeuwen 

et al., 2015; Van Leeuwen et al., 2010a)). The development of new resistance-

management strategies, to prolong the use of existing synthetic acaricidal compounds, 

and the design of novel synthetic acaricides has therefore become a critical area of 

study in recent years (Davies et al., 2007; O'Reilly et al., 2014; Van Leeuwen et al., 

2015). 
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3.5 Pyrethroid Pesticides and the Arthropod VGSC 

 

3.5.1 Pyrethroid Discovery and Development 

 

A major component in acarine control is the use of the pyrethroid pesticides (Deplazes 

et al., 2016; McNair, 2015; Rinkevich et al., 2013; Van Leeuwen et al., 2015; Van 

Leeuwen et al., 2010b). Synthetic pyrethroids were first introduced in the 1970’s and 

represented a new class of environmentally friendly, highly effective and selective 

insecticides. At the time it was introduced, the pyrethroid deltamethrin was the most 

effective insecticide on the market, being 100 times more active than DDT without the 

same bioaccumulation problems (Khambay and Jewess, 2005).  

 

Pyrethroids are the synthetic analogues of naturally occurring compounds found in the 

flowers of plants of the Chrysanthemum genus. The dry flowers were probably used as 

insecticides in ancient China as early as the 1st Century AD, and by the middle Ages 

they were being used for pest control in Persia. They arrived in Europe around 200 

years ago, where they were traded as “Persian dust” (Davies et al., 2007). The 

insecticidal compounds within the Chrysanthemum flowers are esters of 

chrysanthemic acid (pyrethrins I) and pyrethric acid (pyrethrins II) and the alcohol 

moiety of the pyrethrins exists as three natural varieties, so that the complete 

pyrethrin series is pyrethrin I and II, jasmolin I and II and cinerin I and II (Casida, 1980).  

Pyrethroid insecticides were commercially produced from Chrysanthemum flowers in 

the mid-19th Century, with the main active ingredients being pyrethrins I and II (Figure 

1).  However, these compounds show low photostability and were costly to produce. 

There followed a period of structural modification of the pyrethrin series to produce 

the first synthetic pyrethroids, and between 1967 and the late 1980’s many highly 

insecticidal, photostable, compounds with low mammalian toxicity were synthesised; 

including permethrin, cypermethrin and deltamethrin (synthesised by Elliot and co-

workers at Rothamsted Research, England) and fenvalerate (synthesised by the 

Sumitomo Chemical Company, Japan)  (Casida, 1980; Khambay and Jewess, 2005).  
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Pyrethroids are divided into two groups based on both their biological action and their 

chemical structures. Type I pyrethroids are generally good ‘knockdown’ agents (they 

incapacitate rapidly, but relatively high concentrations are needed to kill an arthropod) 

and Type II pyrethroids are generally good killing agents (being slower acting than Type 

I pyrethroids, but killing arthropods at lower concentrations) (Elliott, 1989; Soderlund, 

2012). The differing symptoms seen with Type I and Type II pyrethroids have been 

associated with an α-cyano group at the α-benzylic position in Type II; however, the 

presence of this group does not always lead to increased kill at a lower concentration, 

so it is likely that Type I and Type II represent extremes of a spectrum of activity, from 

knockdown to kill, rather than discrete groups (Khambay and Jewess, 2005) (Figure 

3.1). 

 

Figure 3.1: Pyrethrins I and II and Exemplar Type I and II Pyrethroids 

 

Pyrethrins I and II are shown to illustrate their structural similarity to the modern synthetic 

pyrethroids, Permethrin and Deltamethrin. Permethrin is an example of a Type I pyrethroid and 

Deltamethrin an example of a Type II pyrethroid. The α-cyano group found in Type II pyrethroids is 

highlighted on Deltamethrin by a green box. All structures are adapted from ChemSpider 2016. 

 

3.5.2 Expression of VGSCs 

 

The target-site for pyrethroid action is the voltage-gated sodium channel (VGSC) of the 

arthropod nervous system (Vais et al., 1997; Williamson et al., 1993a; Williamson et al., 

1993b). Like all ion channels, VGSCs are macromolecular proteins that form pores in 

cell membranes, and form one of the excitable elements in nerve cells allowing for the 
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propagation of nerve impulses (Hille, 2001). The first arthropod VGSC gene was cloned 

from Drosophila melanogaster, and was named para based on temperature-sensitive 

paralytic mutations (Loughney et al., 1989). Since then para-orthologous VGSC genes 

have been found in a wide-range of arthropod species (Rinkevich et al., 2013). 

 

In mammals, nine genes are thought to be responsible for the coding of distinct VGSC 

α-subunits with different gating properties, this allows differential expression of VGSCs 

to fulfil unique physiological roles in different cell types, tissues, and developmental 

stages; however, in those arthropods sequenced to date only one functional VGSC is 

encoded from one gene (Catterall, 2012; Dong et al., 2014; Goldin, 2001). Thus in 

arthropods extensive RNA splicing and RNA editing are employed on VGSC transcripts 

to give a variety of channels with distinct gating properties (Du et al., 2009b; Lin et al., 

2009; Liu et al., 2004; Olson et al., 2008; Song et al., 2004; Tan et al., 2002). RNA 

splicing in arthropod VGSC genes was first shown in the para (or DmNaV) gene in D. 

melanogaster  (Loughney et al., 1989; Thackeray and Ganetzky, 1994, 1995). It has 

since been shown that splicing sites are conserved in the VGSC genes of several other 

arthropods including: Blattella germanica (German cockroach), Bombyx mori 

(Silkworm), Heliothis virescens (Tobacco Budworm), Musca domestica (House Fly), and 

Plutella xylostella (Diamondback moth) (Lee et al., 2002; Park et al., 1999; Shao et al., 

2009; Sonoda et al., 2006; Tan et al., 2002). Further VGSC transcript modification, in 

the form of RNA editing, has so far been found in VGSC transcripts from D. 

melanogaster (Hanrahan et al., 2000; Olson et al., 2008) and B. germanica (Liu et al., 

2004; Song et al., 2004). 

 

3.5.3 VGSC Structure and Function 

 

The VGSCs of arthropods are highly homologous to mammalian VGSC α-subunits; 

being comprised of 4 internally homologous domains (DI-DIV), each comprising 6 

membrane-spanning segments (S1-S6) connected by intracellular linkers (Noda et al., 

1984). To make the functional channel, the S5 and S6 segments of each of the four 

domains come together to form a central ion-conducting pore, whilst the S1-S4 

segments form the voltage-sensing part of the channel (Figure 3.2). 
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Figure 3.2: A Representative VGSC 

 

An exemplar VGSC showing domains I-IV and their six membrane-spanning domains (1-6). 

 

The voltage sensor for the channel is comprised of repeating motifs of a positively 

charged amino acid residue, followed by two hydrophobic residues that are found in 

each S4 segment. Hairpin loops between the S5 and S6 segments form a narrow ion-

selective filter at the extracellular end of the pore, within these loops sodium ion 

selectivity is determined by the amino-acids D, E, K and A in analogous positions in 

domains I, II, III, and IV respectively (a sequence known as the “DEKA” motif). The 

intracellular loop between DIII S6 and DIV S1 contains the amino-acid motif “IFM” in 

mammalian cells or “MFM” in arthropods, and this creates an inactivation gate, critical 

for fast inactivation of the channel and facilitating the refractory period required 

between action potentials. (Dong et al., 2014; Hille, 2001; McCusker et al., 2012; 

O'Reilly et al., 2006; Payandeh et al., 2011). The availability of crystal structures from 

bacterial homologues of VGSCs, in both open and closed conformations, suggest that 

the mechanism for channel gating primarily involves the C-terminal end of the S6 

helices. Here a rotation around the backbone angle of one amino-acid residue in the 

middle of S6 helices swings those subunits away from the central pore, thus opening 

up the bottom of the VGSC allowing fully-hydrated sodium ions to traverse (McCusker 

et al., 2012) (Figure 3.3). 
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Figure 3.3 VGSC Structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Ribbon “cartoon” representation of the open crystal structure of the heterotetrameric 
Magnetococcus marinus NavMs VGSC as viewed from the membrane. This channel is structurally 
homologous to arthropod VGSCs. One monomer is coloured to show: The voltage sensor (blue), the 
S4–S5 linker (green), the pore helices (yellow), the C-terminal domain (red), and sodium ions entering 
the channel (purple). The other three monomers are depicted in grey, for ease of viewing. Kindly 
provided for this work by Professor Bonnie Wallace. 

 

Alongside the pore-forming VGSC α-subunit, mammalian sodium channels have one or 

more auxiliary subunits, known as β-subunits. These small transmembrane proteins 

are known to modulate activity of the mammalian VGSC (Brackenbury and Isom, 2011; 

Catterall, 2012). Similarly, insect VGSCs are also known also have both pore-forming 

and auxiliary subunits, the TipE and TEH protein in D. melanogaster and their 

orthologues in other insects, which are functionally homologous to the β-subunits in 

mammals (Dong et al., 2014). However, interestingly in acari any such auxiliary 

proteins have yet to be discovered (Li et al., 2011). 
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Vertebrate NaV1 VGSCs show selectivity for sodium over potassium with permeability 

ratios ranging from 12-21, while potassium channels select potassium over sodium by 

a ratio of 100-1000 (Hille, 2001; Lim and Dudev, 2016). Thus, these channels allow the 

selective, directional, movement of these two ions across the cell-membrane of axon, 

making them critical in maintaining the normal functioning of an animal’s nervous 

system by allowing the propagation of action potentials (Campbell et al., 2015) (Figure 

3.4).  

 

Figure 3.4: Representation of an Action Potential in a Nerve Cell Axon 

 

A representation of changes in neuronal axon membrane potential elicited by a stimulatory nervous 
impulse (action potential). 

 

VGSCs are thought to exist in four states mediated by two defined “gates”, the 

activation gate and the inactivation gate. At the resting membrane potential, the VGSC 

is in a closed resting state; the activation gate (the channel pore) is closed, but the 

inactivation gate (the linker region between Domains III and IV at the intracellular base 

of the channel pore) is open and not blocking the pore. In response to a graded 

depolarisation in a dendrite or cell body, the channel undergoes a structural change to 
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give an open, or activated, state allowing a selective influx of sodium ions through the 

pore (McCusker et al., 2012). After a short delay the inactivation gate occludes the 

pore mouth and the channel forms the inactivated state, which is followed by a fourth 

state, the deactivated state, when the pore is closed at both the activation and 

inactivation gates. Once the membrane has returned to resting potential the 

inactivation gate moves away from the intracellular pore mouth and the channel is 

returned to the closed resting state, ready for another action potential (Figure 3.5)  

(Wakeling et al., 2012). 

 

Figure 3.5: The Four States of the VGSC 

 

A diagrammatic representation of the four states of the VGSC: i) Closed resting, ii) Open, iii) 
Inactivated, iv) Deactivated. Where A) indicates the inactivation gate and B) indicates the activation 
gate. 

 

3.5.4 Pyrethroid Action at the Arthropod VGSC 

 

To allow normal propagation of an action potential, VGSCs must transit between the 

four transition states: i) “closed resting”, ii) “open” iii) “inactivated” and iv) 

“deactivated” and toxins may act by altering the equilibrium between the transition 

states and thus disrupt normal nerve signalling (Catterall, 1980). It is proposed that 

pyrethroids bind to arthropod VGSCs at a specific site; speculated to be a long, narrow, 

hydrophobic cavity bounded by the DIIS4-S5 linker and the DIIS5 and DIII S6 helices 

(Davies et al., 2008; O'Reilly et al., 2006). Upon binding, pyrethroids lock arthropod 

VGSCs in the open conformation causing prolonged current flow through the channel, 

resulting in repetitive firing of nerve impulses, hyper-excitability and/or death 

(Wakeling et al., 2012; Zlotkin, 1999) (Figure 3.6).   
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Figure 3.6: Exemplar Effect of Pyrethroids Generating Persistent Current in Arthropod VGSCs 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The effect of pyrethroid pesticides on arthropod VGSCs as exemplified by Deltamethrin. The persistent current recorded from the V. destructor VGSC using Two-Electrode 
Voltage Electrophysiology in a Xenopus laevis oocyte. Voltage across the oocyte membrane has been manipulated such that: (Phase 1) Expressed VGSCs would undergo a 
period of rapid opening and closing events, allowing pyrethroid binding while VGSCs are in their open conformation. (Phase 2) All VGSCs should be closed and current flow 
should be zero. Any persistent current in this second phase is due to VGSCs within the oocyte membrane being held open. Persistent current flow through the VGSC population 
in the oocyte is shown in the presence of (A) No pyrethroid and (B) 1 µM Deltamethrin. 

Phase 1 Phase 2 

(A) 

(B) 
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The success of pyrethroids as insecticides results mainly from the relative insensitivity 

of the mammalian VGSC to these compounds (Khambay and Jewess, 2005), which can 

be explained, at least in part, by differences in channel structure. Mammalian VGSCs 

differ from those found in arthropods by the presence of an isoleucine, rather than a 

methionine, in the DIIS4-S5. The absence of this methionine in mammalian channels 

would prevent the formation of a key sulphur-aromatic interaction with pyrethroids, 

rendering them relatively insensitive to the compounds (Davies et al., 2008; O'Reilly et 

al., 2006). This effect is enhanced as pyrethroids preferentially target the open state of 

arthropod VGSCs, accessing their binding site through fenestrations in the VGSC that 

are much larger when the channel is activated (Bloomquist, 1996; McCusker et al., 

2012) (Figure 3.7).  

 

Figure 3.7: VGSC Structure and Pyrethroid Binding 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
Space filling model (coloured according to electrostatics) of the open crystal structure of the M. 
marinus NavMs tetrameric channel as viewed from the membrane. This channel is structurally 
homologous to arthropod VGSCs. The locations of detergent and polyethylene glycol molecules are 
shown on the surface in green and red stick format. The location of the fenestration leading to the 
hydrophobic cavity, which pyrethroid insecticides could enter for binding in homologous arthropod 
VGSCs, is circled in black. Kindly provided for this work by Professor Bonnie Wallace. 
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3.5.5 The VGSC and Pyrethroid Resistance in Arthropods 

 

Extensive use of pyrethroids around the globe has led to widespread resistance to 

these compounds amongst target species, including ticks/mites. Such resistance arises 

through modifications to the target site protein, increased metabolism or 

sequestration of the acaricide, or a reduction in the ability of the acaricide to 

penetrate the tick exoskeleton (Guerrero et al., 2012). Pyrethroid insensitivity based 

on target site resistance (mediated by mutations in the gene encoding the VGSC) is of 

particular importance to both acarine and insect control (Williamson et al., 1996). A 

comprehensive review of the many VGSC target-site mutations thought to be 

associated with pyrethroid resistance in insects and acari can be found in (Rinkevich et 

al., 2013). 

 

Pyrethroid target-site resistance, termed knockdown resistance (kdr) (Busvine, 1951), 

has several forms including the more potent super-kdr variants, which confer up to 

500-fold resistance to Type II pyrethroids (Sawicki, 1978). Modelling of the VGSC with 

pyrethroids has suggested that several of the mutations conferring super-kdr are 

located within a putative binding pocket, whilst further kdr-associated mutations, 

found away from the proposed binding site, are in positions which may contribute to 

changes affecting channel kinetics and therefore pyrethroid binding (Davies et al., 

2007; Davies et al., 2008; O'Reilly et al., 2006). 

 

For ticks, three point mutations conferring amino acid substitutions have been 

associated with target-site pyrethroid resistance R. microplus; the first in Mexico (He et 

al., 1999) and the others in Australia (Jonsson et al., 2010; Morgan et al., 2009) (Table 

3.1). Pyrethroid resistance has also been reported in Rhipicephalus sanguineous, 

although this has not been associated with target site changes (Eiden et al., 2015; 

Miller et al., 2001).  
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Table 3.1: VGSC Substitutions in R. microplus 

Domain Segment Amino Acid Substitution Reference Code 

III S6 Phe-Ile F1538I 

II S4-5 LINKER Leu-Ile L925I 

II S4-5 LINKER Gly-Val G933V 
 

Summary of amino acid substitutions detected in the VGSC channel and associated with pyrethroid 

resistance in R. microplus. Reference code numbering comes from alignment with M. domestica. 

 

In mites pyrethroid resistance is relatively common, with many important species 

reported to have target site substitutions (Table 3.2) (Gonzalez-Cabrera et al., 2013; 

Van Leeuwen et al., 2010a). 

 

Table 3.2: VGSC Substitutions in Important Mite Species 

Affected 
Organism 

Domain Segment 
Amino Acid 
Substitution 

Reference 
Code 

V. destructor II S5 Leu-Val L925V 

T. urticae II S6 Leu-Val L1024V 

T. urticae II-III S6-S1 LINKER Ala-Asp A1215D 

V. destructor III S6 Phe-Leu F1528L 

S. scabiei III S6 Gly-Ala G1535A 

T. urticae III S6 Phe-Ile F1538I 

V. destructor III-IV S6-S1 LINKER Leu-Pro L1595P 

V. destructor IV S5 Ile-Val I1752V 

V. destructor IV S6 Met-Ile M1823I 
 

Summary of amino acid substitutions detected in the VGSC channel and associated with pyrethroid 

resistance in some economically important mite species. Reference code numbering comes from 

alignment with M. domestica. 

 

3.5.6 Pyrethroids as Acaricides 

 

Although the pyrethroids were developed first as insecticides, some are reported to be 

more effective at killing acari than they are at killing insects. This offers the possibility 

of selective control of acari without damaging beneficial insects (species of 

environmental and/or human importance). For example, the pyrethroid Tau-
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Fluvalinate is used against V. destructor mites in A. mellifera (honey bee) colonies, as it 

can kill the mites without affecting  the bees (Gonzalez-Cabrera et al., 2013).  

 

Investigations into why some pyrethroids show specificity for acari over insects have 

suggested that it is due to differences between their VGSCs. Modelling studies by 

O’Reilly et al in 2014 suggested that the interaction between pyrethroids and the VGSC 

involves the amino acid at position 933 (M. domestica numbering is used throughout). 

Pyrethroids with selective acaricidal activity differ from other pyrethroids by having 

large halogenated substituents in their acidic moiety, which it is proposed, could be 

accommodated by acarine channels with the smaller glycine/alanine at position 933 

but not by insect channels with the larger cysteine residue (O'Reilly et al., 2014). 

 

This view is supported by the finding of a mutation in the VGSC of Australian cattle 

ticks, which leads to a replacement of the normal glycine at residue 933  with a valine;  

ticks with the valine are sensitive to cypermethrin, which has a comparatively small 

acidic moiety, but resistant to flumethrin, which has a comparatively large acidic 

moiety (Jonsson et al., 2010). The O’Reilly et al 2014 model suggests that the slightly 

larger valine residue would preclude binding of the acarine-specific flumethrin, but 

allow the binding of cypermethrin, with the smaller acidic moiety (O'Reilly et al., 2014) 

(Figure 3.8). 

 

Figure 3.8: Example Pyrethroids with Large and Small Acidic Moieties 

 

Cypermethrin and flumethrin shown as examples of pyrethroids with relatively small and large acidic 

moieties. Areas of interest within the acidic portion are highlighted by green boxes. Both pyrethroid 

structures are from ChemSpider 2016. 
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3.6 Electrophysiological Methods to Study VGSC Activity 

 

In 1881 Sidney Ringer showed that a solution containing sodium, potassium, and 

calcium ions was required to keep a frog’s heart beating, thus creating “Ringer’s 

Solution”. Since then, it has been understood that ions play a role in the functioning of 

the nervous system (Hille, 2001). However, it was in the period from 1935-1952 when 

classical biophysics established the ionic theory of membrane excitation, showing that 

ion permeability changes were responsible for the electrical signals seen in the 

nervous systems of animals (Hille, 2001). Today we can use techniques developed 

during this period to study how ion channels function. 

 

3.6.1 Two Electrode Volt Clamp (TEVC) Electrophysiology 

 

In 1982 Ricardo Miledi and co-workers successfully expressed nicotinic acetylcholine 

receptors (nACHRs) in oocytes from Xenopus laevis (the African clawed frog) by 

injecting nACHR mRNA isolated from cat muscle, allowing study of the changing 

currents that arose across the oocyte membrane due to expression of the protein 

(Miledi et al., 1982). The same group then went on to study more than a dozen 

different ion channels and receptors, injecting mRNA isolated from various tissues. 

When cloning of receptors and channels became possible, the X. laevis  oocyte system 

allowed single cDNAs encoding specific channels to be expressed and compounds with 

selectivity for specific receptor subtypes or channels to be identified (Papke and Smith-

Maxwell, 2009). The relatively large size of the X. laevis oocyte (1mm diameter on 

average) makes them easy to handle, and their very low levels of endogenous channels 

and receptors makes it possible to study currents arising from expressed exogenous 

channels (Goldin, 2006). This is particularly pertinent for tests involving pyrethroid 

pesticides, which are known to be able to bind to other channels besides VGSCs 

(Casida et al., 1983; Khambay and Jewess, 2005). The basic method of TEVC 

electrophysiology can be used to study VGSCs, which are exogenously expressed in 

oocytes following micro-injection of cloned RNA (Section 7.2.7). In this system, the 

oocyte is placed in the middle of a recording chamber filled with a conductive solution 

known as Xenopus Ringer, based on the original solution made by Sidney Ringer in 
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1881 (Hille, 2001). The chamber is connected via a conductive bridge to an input on an 

amplifier, also connected to the amplifier are two microelectrodes and these are 

carefully inserted into the oocyte. One is used to measure the membrane-potential of 

the oocyte membrane by recording the internal voltage of the oocyte relative to the 

experimental chamber, and the other is configured to inject a current into the oocyte 

(Dascal, 2001; Goldin, 2006; Papke and Smith-Maxwell, 2009). If the experimental 

chamber is considered “zero” in terms of electrical potential, it is possible to set the 

voltage across the oocyte membrane by adjusting the amount of current injected, thus 

“clamping” the oocyte at a desired membrane potential. For example, the typical 

resting membrane potential of a X. laevis oocyte is between -10 and -40 mV, the 

typical resting potential of a nerve axon is around -70mV. Therefore, clamping an 

oocyte injected with a VGSC at -70mV will mimic the conditions found in the axon of a 

nerve cell at rest. Any alterations of the set voltage will trigger responses in the 

exogenous VGSCs in line with those seen in their native cell (Hille, 2001). 

 

3.6.2 Studying Pyrethroids and VGSCs Using TEVC Electrophysiology 

 

Since the D. melanogaster para VGSC was first functionally expressed in X. laevis  

oocytes (Feng et al., 1995) it has been possible to use this channel as a model to study 

the effects of target-site mutations suspected of conferring pyrethroid resistance. As 

described, pyrethroids act by stabilising the VGSC in the open “activated” 

conformation and causing repetitive firing of action potentials via a continuous flow of 

sodium ions into the intracellular matrix (Catterall, 2000; Vais et al., 1997; Zlotkin, 

1999). This can be observed using TEVC electrophysiology whereby the application of a 

pyrethroid results in wild-type D. melanogaster para channels showing a delay in 

returning from an open “activated” to a closed “inactivated” state. This is seen as an 

increase in the amount of current needed to restore the membrane potential from one 

in which the channels would be mostly open, to a more-negative potential at which 

the channels would be mostly closed, and the period over which this channel 

inactivation occurs. In channels containing an amino acid substitution that confers 

pyrethroid resistance, this delayed closure is no longer observed, and channels return 

more rapidly to a closed state (Vais et al., 2000b; Warmke et al., 1997). 
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3.7 Aims and Objectives 

 

From the background described in the introduction to this work there is a clear need 

for good control of acari, and to date the pyrethroids have played an important role in 

this. However, there are now concerns over resistance developing to these compounds 

presenting a need to understand more about their mode of action and any potential 

acarine selectivity. 

 

The study reported here set out to understand the interactions of acaricides with the 

VGSCs of arthropods to elucidate efficacy levels and any acarine specificity.  

 

The specific objectives of this work were: 

 

 To identify known or novel mutations in the VGSC sequences of different acarine 

species that confer resistance to pyrethroids, to inform effective pest management 

strategies (Chapter 5). 

 

 To attempt to fully sequence and clone a tick VGSC for expression in X. laevis 

oocytes (Chapter 6). 

 

 To examine the molecular interactions of pyrethroids at amino acid position 933 of 

arthropod VGSCs, postulated by O’Reilly et al 2014 to contribute to the increased 

activity and selectivity of certain pyrethroids at acarine VGSCs compared to closely 

related insect VGSCs (Chapter 7). 

 

 To look at the in vitro toxicity of acaricides on live arthropods to examine the 

accuracy of reported pyrethroid selectivity in insects and acari (Chapter 8). 
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4 General Experimental Methods 

 

Unless otherwise stated all protocols were performed at room temperature (20-25°C). 

All methods in this chapter are adapted from standard protocols as found in 

“Molecular Cloning: A Laboratory Handbook” by Sambrook and Green, 2012. 

 

4.1 Source Organisms 

 

Tick species were obtained via Andreas Turberg and Melania Akkoese at Bayer Animal 

Health, Monheim, Germany. Bayer Animal Health sources tick species as follows: 

Amblyomma americanum (lone star tick) from Oklahoma State University, Stillwater, 

Oklahoma, USA; Amblyomma hebraeum (bont tick) from the Bayer Animal Health 

Breeding Lab, Monheim, Germany (Origin: Understepoort Isolate, South Africa), Ixodes 

ricinus (castor bean tick) and Dermacentor reticulatus (ornate cow tick) from Insect 

Services, Berlin, Rhipicephalus microplus (cattle tick) Parkhurst strain from the Bayer 

Animal Health Breeding Lab, Monheim, Germany (Origin: Parkhurst Isolate, State of 

Queensland Department of Primary Industries and Fisheries, Queensland, Australia), 

Rhipicephalus sanguineous (brown dog tick) and Dermacentor variabilis (American dog 

tick) from EL LABS, Soquel, California, USA. 

 

Mite species were obtained from a variety of sources. Dermanyssus gallinae (red 

poultry mite) was obtained from Melania Akkoese Bayer Animal Health, Monheim, 

Germany. Psoroptes ovis (sheep scab mite) RNA was a gift from Dr Stuart Burgess at 

the Moredun Research Institute, Scotland, UK. For bioassays Varroa destructor (honey-

bee mites) were taken from bees at The Honey Farm, Imkerei Ullmann, Erlensee, 

Germany. The RNA source for V. destructor VGSC cloning was from mites collected by 

Pete Kennedy from the DL colony at the Rothamsted Research farm, Harpenden, 

England.  

 

The insect species Musca domestica, strain WHO(N), was bred at Bayer Animal Health, 

Monheim, Germany. 
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All species were known to be pyrethroid susceptible, with the exception of R. 

microplus (Parkhurst) ticks, which had previously been described as pyrethroid 

resistant (Morgan et al., 2009; Nolan et al., 1989); and V. destructor mites, which were 

untested for their susceptibility to pyrethroids. 

 

4.2 Agarose Gel Electrophoresis 

 

Agarose gels were used to check the size and quality of nucleic acid samples. Gels were 

made by dissolving molecular biology grade agarose (ThermoFisher Scientific) in 1 x 

TAE (Tris-acetate-EDTA) buffer (pH8.3) at an appropriate percentage of agarose for the 

size of the nucleic acids being visualized (See (Sambrook and Green, 2012)) before the 

addition of Ethidium Bromide to a final concentration of 0.4 µg/ml. The mixture was 

then poured into a gel mould and combs added to create wells into which nucleic acid 

samples could be loaded. Once set gels were placed into electrophoresis tanks and 

submerged in 1 x TAE buffer (pH8.3). Nucleic acid samples were mixed with an 

appropriate loading dye and added into the wells alongside a DNA size ladder 

(ThermoFisher Scientific), to allow size estimation of nucleic acid strands (bands). RNA 

samples were first denatured by heating to 65°C for five minutes in RNA loading dye. 

Samples were run through the gel by the application of an electrical current until 

sufficient separation of bands had occurred as would allow size differention. Bands 

were visulaised, such that quality and size could be estimated, using the Gene Genius 

Bio-imaging System (Syngene). 

 

4.3 Extraction of Total RNA from Ticks and Mites 

 

Total RNA was extracted from whole ticks/mites using the Bioline Isolate RNA Mini Kit, 

using half the manufacturers recommended volumes of reagents. When RNA was 

extracted for the purpose of whole species VGSC sequencing several individuals were 

used per reaction to increase RNA yield; however, RNA was isolated from a single 

arthropod when it was required for assertaining the pyrethroid resistance status of an 

individual. Filter tip pipettes were used throughout the extraction process to reduce 

the likelihood of RNase contamination and sample degradation and to prevent cross-
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contamination. Acari were placed into 1.5 ml microcentrifuge tubes and snap frozen in 

liquid nitrogen at the point of collection, then immediately stored at -80°C  to limit 

RNA degradation. When removed form storage each sample was transferred to a 1.5 

ml microcentrifuge tube and the tubes floated in liquid nitrogen for 1 minute; the 

samples were then ground to a powder until complete breakage of the exoskeleton 

was achieved, using sterile plastic pestles that had been pre-chilled by dipping in liquid 

nitrogen. The tubes were then placed at room temeperature and 225 µl of lysis buffer 

R was added, they were then further homogenised with the pestle to ensure adequate 

cell lysis. Samples were then cetnrifuged for 1 minute with a relative centrifugal force 

(RCF) of 16168 x g and the resulting supernatant carefully pipetted onto R1 spin 

columns that had been placed over sterile 1.5 ml microcentrifuge tubes. Samples were 

then were centrifuged at room temperature for 2 minutes at 10037 x g, R1 spin 

columns were discarded, and 1 volume (~200 µl) of sterile (microfiltered) 70% ethanol 

was added to the resulting filtrates. Mixtures were vortexed briefly, before being 

carefully pipetted to labelled R2 spin columns placed over fresh sterile 1.5 ml 

microcentrifuge tubes and then centrifuged for 2 minutes at 10037 x g. 

Microcentrifuge tubes were discarded and R2 spin columns were placed over fresh 1.5 

ml microcentrifuge tubes and 500 µl wash buffer AR was added to the R2 columns. 

Samples were centrifuged for 2 minutes at 10037 x g, the filtrate discarded, and 700 µl 

wash buffer BR added to the R2 columns. Samples were centrifuged again for 2 

minutes at 10037 x g and again the filtrate was discarded. This centrifugation step was 

repeated to ensure that all wash buffer was removed from the R2 columns. R2 

columns were then placed over fresh sterile 1.5ml microcentrifuge tubes and 30 µl of 

nuclease-free sterile distilled water was added to the centre of each R2 column to 

elute acarine RNA. Columns were incubated at room temperature for 1 minute then 

centrifuged for 2 minutes at 10037 x g. The RNA concentration of each sample was 

determined using a Nanodrop spectrophotometer (ThermoScientific) and a small 

amount (apporximately 500 ng each smaple) was run on a 1.5% agarose 

electrophoresis gel to check the quality of the extracted RNA (See Chpater 4.2).  All 

RNA samples were stored at -80°C. 

 



 

 

53 

4.4 Reverse Transcription of RNA 

 

Reverse transcription of RNA into cDNA was done using the RevertAid Premium First 

Strand complementary DNA (cDNA) Synthesis Kit (ThermoFisher Scientific). All 

centrifugation steps were at 4°C in a table top centrifuge. Specific primers were diluted 

to 100 ng/µl immediately prior to use. To begin cDNA synthesis 0.5 µl oligo dT primer, 

0.5 µl 10 mM dNTP mix and 0.1 µl of each gene specific primer were mixed on ice in 

0.25 ml thin-walled microcentrifuge tubes. The gene specific primers used in each case 

were 1147R (a degenerate primer designed bind in Domain II of the acarine VGSC) and 

2187R (a degenerate primer designed to bind downstream of Domain IV of the acarine 

VGSC); except in one instance with R. microplus, where only the 1147R gene specific 

primer was used, in an attempt to enhance cDNA synthesis from the 5’ end of the tick 

VGSC RNA (Table 4.1). 

 

Table 4.1: Degenerate Primers for cDNA synthesis of Acarine VGSCs 

Name Target Domain (D) Sequence 5'-3' Base Pairs 

1147_R DII TCDAWNGCYTCYTGHAGYTTYTTNGT 26 

2187_R DIV CCADATYTCRTARTACATRTC 21 

 

Following this 0.5 µl (~1 µg) RNA was added to each reaction mix, along with nuclease-

free sterile distilled water if required to give a final volume of 7.25 µl. Samples were 

heated at 65°C for 3 minutes, chilled on ice, pulse centrifuged to collect the contents in 

the base of the tube, then placed back on ice. Next 2 µl of 5xRT buffer, 0.25 µl Ribolock 

and 0.5 µl RevertAid premium was added to each sample, reactions were mixed gently 

then incubated at 50°C for 1 hour (double the time suggested in the suggested 

protocol to allow time for synthesis of the long (~6500bp) VGSC sequences. Resulting 

cDNA samples were stored at -80°C. 
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4.5 Polymerase Chain Reaction (PCR) Protocols 

 

Reactions were optimised on a reaction-by-reaction basis; based on the melting 

temperature of the primers, the type of polymerase used, the length of the desired 

amplicon, the GC-content (or suspected GC content) of the target amplicon, and the 

volume of PCR product required. Further details are given where appropriate in the 

methods section of results chapters. PCR products were stored at -20°C. 

For each PCR a negative control was prepared containing no template cDNA to ensure 

observed bands were not the result of spurious-template contamination.  

 

4.6 Primers 

 

Degenerate primers were designed by the author with the help of Joel Gonzales, all 

other primers were designed solely by the author unless otherwise stated. All primers 

were synthesised by Sigma-Aldrich. Specific sequence and melting temperature (Tm) 

details are given in the methods section of the results chapters.  

 

4.7 Media and Antibiotics 

 

Liquid Lysogeny Broth (LB) media (Bertani, 1951) was prepared by adding 10 g bacto-

tryptone, 5 g bacto-yeast extract and 10 g NaCl to 950 ml of deionized water and the 

mixture stirred until all solutes had dissolved. The pH was adjusted to 7.0 with 5M 

NaOH and the volume made to 1 L with deionized water and the resulting solution 

sterilized by autoclaving. If agar-plates were required, 15 g of bacto-agar was added to 

the mixture. Any antibiotics required for bacterial selection were added just prior to 

use of the media. Super Optimal Broth with Catabolite Repression (SOC) media was 

prepared by adding 20 g bacto-tryptone, 5 g bacto-yeast extract and 0.5 g NaCl to 950 

ml of deionized water and the mixture stirred until all solutes had dissolved. 10 ml of a 

250 mM KCl solution was added and the pH adjusted to pH7.0 with 5M NaOH. The 

volume of the solution was adjusted to 1 L with deionized water and the resulting 

solution sterilized by autoclaving. Just before use, 5 ml of a sterile solution of 2 M 

MgCl2 and 20 ml of filter-sterilised 1 M glucose solution were added along with any 
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desired antibiotics. The antibiotics Ampicillin (Amp) and Carbenicillin were made as 50 

mg/ml stocks and used at a working concentration in media of 50 μg/ml. 

 

4.8 Gel Purification of PCR Products 

 

DNA was purified from agarose-gel slices using a QIAquick Gel Extraction Kit (Qiagen). 

This allows purification of up to 10 µg of DNA of lengths between 70 bp and 10 Kb. All 

centrifugations were at room temperature at 16168 x g in a bench-top 

microcentrifuge. Gel slices containing the DNA fragments were excised using a clean, 

sharp scalpel and placed in 1.5 ml microcentrifuge tubes. Samples were weighed and 3 

volumes of Buffer QG was added for every 1 volume of gel slice (100 mg gel being 

taken as ~ 100 μl). Samples were then incubated at 50°C for 10 min (or until the gel 

slice had completely dissolved), with vortexing every 2-3 minutes to help dissolve the 

gel. Mixtures were confirmed to be still yellow, indicating a pH of ≤7.5 as needed for 

adsorption of the DNA onto QIAquick column membranes, before the addition of 1 gel 

volume of isopropanol to each sample and samples were mixed by inversion. To bind 

the DNA samples were added to QIAquick spin columns, placed over 2 ml collection 

tubes, and centrifuged at 16168 x g for 1 minute. Flow through was discarded and the 

columns placed back into the same tubes, sample volumes of >800 μl were applied to 

the columns in multiple steps. To ensure maximum DNA purity an extra 500 μl Buffer 

QG was applied to the columns, samples were re-centrifuged at 16168 x g for 1 

minute, the flow-through discarded, and the columns placed back into the same 

collection tube. Columns were washed with 750 μl Buffer PE (with ethanol added as 

per manufacturer’s instructions), which was left on the columns for approximately 5 

minutes prior to centrifugation for 1 minute. The flow-through was discarded and the 

columns placed back in the collecting tubes, samples were re-centrifuged at 16168 x g 

for a further 1 minute to completely remove the wash buffer (as residual ethanol from 

the buffer can inhibit subsequent enzymatic reactions). The columns were then 

transferred to clean 1.5 ml microcentrifuge tubes and the DNA eluted by the addition 

of 50 μl nuclease-free water, followed by incubation for four minutes, and to 

centrifugation for 1 minute. Purified DNA was then analysed by agarose gel 

electrophoresis (Section 4.2) and stored at -20°C. 
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4.9 Cloning of DNA for Sequence Analysis 

 

PCR products were purified by gel extraction then cloned into the vector pJET1.2/blunt 

using the CloneJET™ PCR Cloning Kit (ThermoFisher Scientific). This vector was chosen 

because:  

i) Recircularised pJET1.2/blunt vector expresses a lethal restriction enzyme after 

transformation, so only recombinant clones containing a plasmid with the desired 

insert survive.  

ii) The 5'-ends of the pJET1.2/blunt cloning site have phosphoryl groups so 

phosphorylation of the PCR primers is not required.  

iii)  The direction of the insert in the vector was not important, and blunt-end cloning 

raises the chances of correct ligations (compared to a TA cloning vector).  

iv) All common laboratory Escherichia coli strains may be directly transformed with 

pJET1.2/blunt ligation products.  

v) pJET1.2/blunt contains the β-lactamase gene, conferring resistance to ampicillin, 

which can be used for the selection and maintenance of recombinant E. coli. 

 

Plasmids with inserts were transformed into E. coli Stratagene’s Xl10 Gold 

ultracompetent cells following manufacturers’ instructions, except that SOC media, 

rather than NZY+ broth, was used as the growth medium (Section 4.7 and 4.10). 

Following transformation, cultures were plated onto LB plates containing 50 µg/ml 

ampicillin to allow the selection of transformants. Plates were incubated at 37°C 

overnight and then stored at 4°C. 
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4.10 Transformation of Plasmids into E. coli 

 

The following E. coli strains were used for DNA transformations in this work: 

 

 Stratagene’s XL10 Gold cells: These have the genotype TetrΔ(mcrA)183 Δ(mcrCB-

hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte [F´ proAB 

lacIqZΔM15 Tn10 (Tetr) Amy Camr]. XL10 Gold cells were chosen for the cloning of 

VGSC fragments that would not produce functional channels. These cells possess 

the Hte phenotype, which increases the transformation efficiency of ligated DNA 

molecules. Also they are not ampicillin resistant, allowing selection of correctly 

ligated pJET1.2/blunt-DIV plasmids. 

 

 Stratagene’s XL1 Blue ultracompetent cells: These have the genotype recA1 endA1 

gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB lacIqZΔM15 Tn10 (Tetr)]. This cell 

line was chosen for the transformation of full-length VGSC constructs, as XL1 blue 

cells had maintained arthropod VGSCs in that past that had proven fatally toxic to 

other E. coli strains (Martin Williamson personal communication). 

 

 Invitrogen’s MAX Efficiency® Stbl2™ competent cells: These have the genotype F- 

mcrA Δ(mcrBC-hsdRMS-mrr) recA1 endA1lon gyrA96 thi supE44 relA1 λ- Δ(lac-

proAB). These are recommended for use with unstable inserts and proved 

successful for the mutant V. destructor G933V VGSC construct (Chapter 7). 

 

For all transformations E. coli cells were thawed on ice and 50 µl aliquots were added 

to pre-chilled 14 ml BD Falcon polypropylene round-bottom tubes. β-Mercaptoethanol 

provided by the manufacturer was then added to cells as per manufacturer’s 

instructions. For XL1 Blue and Xl10 gold cells, tubes were mixed gently then incubated 

on ice for 10 minutes, with gentle mixing every 2 minutes (Stbl2 cells did not require 

this  step). Following incubation with β-Mercaptoethanol, 2 µl of a ligation mix, or 

0.5µl of a plasmid control, was added to individual cell aliquots. Cells were then 

incubated on ice for 30 minutes, then heat-shocked according to manufacturer’s 

instructions. Following heat-shock 450 µl of preheated (42°C) SOC broth was added to 
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each sample and the tubes were incubated at 30°C for 1.5 to 2 hours with shaking at 

225–250 rpm. After this recovery period 250 µl of each ligation reaction (or 

between2.5 and 25 µl of each control) was plated onto LB-Ampicillin, LB-Carbenicillin 

or LB-Ampicillin[X-gal/IPTG] plates, depending on blue/white selection or growth 

control needs (Section 4.7). The latter plates were prepared by pipetting a 100 µl pool 

of SOC medium onto LB agar surface, then 30 µl of 10 mM Isopropyl β-D-1-

thiogalactopyranosid (IPTG) and 30 µl of 2% 5-Bromo-4-Chloro-3-Indolyl β-D-

galactopyranoside (X-gal) were added and the mixture spread over the plate at least 

30 minutes prior to plating the transformations. Plates were incubated at 

temperatures between 21 and 30°C for at least 24 hours to allow bacterial growth. 

 

4.11 Colony PCR 

 

Single colonies of E. coli containing recombinant plasmids were picked from agar plates 

using 10 µl filter pipette tips. These cells were streaked onto a fresh LB/Amp plates 

(colony plates), which were incubated for ~8hrs at 37°C then stored at 4°C. The cells 

remaining on the tips were then washed into nuclease-free water in the wells of a 

sterile 96 well plate and left to incubate at room temperature. These cells were then 

used in PCR reactions designed to amplify the insert contained within their 

recombinant plasmids. PCR protocols varied according to the length of the inserts and 

primer used (Section 4.5). 

 

For colonies containing the vector pJET1.2 carrying inserts (of less than 1 Kb) 

composed of sections of tick VGSCs the PCR reactions contained: 

   

0.5 μl pJET1.2 Forward Sequencing Primer ~10 μM* 

0.5 μl pJET1.2 Reverse Sequencing Primer ~10 μM* 

2 µl cells 

9.5 μl Water, nuclease-free 

12.5 μl ThermoFisher Scientific’s DreamTaq PCR Master Mix (2X) 

Total volume 25 μl 

*Primers supplied with the CloneJET™ PCR Cloning Kit (ThermoFisher Scientific). 
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Tubes were flicked to mix the contents, pulse centrifuged to collect the contents in the 

base of the tube, then placed into a thermocycler where the protocol in Table 4.2 was 

applied. 

 

Table 4.2: 

Step Temperature Time 

Initial Denaturation 95°C 3 minutes 

25 Cycles 

94°C 30 seconds 

60°C 30 seconds 

72°C I minute per Kb of amplicon 

Final Extension 72°C 5 minutes 

Hold 10°C ∞ 

 

For colonies containing the vector pGH19 (Section 6.2.1) carrying full-length VGSC 

inserts (of over 5 Kb) PCR reactions were carried out using New England Biolabs’s Q5® 

High-Fidelity DNA Polymerase (Q5). The reagents, pGH19-specific primers, and PCR 

conditions listed in Tables 4.3 and 4.4 were used. 

 

Table 4.3: Reaction Setup 

Component Negative control Reactions [Final] 

5X Q5 Reaction Buffer 10 µl 10 µl 1X 

10 mM dNTPs 2 µl 1 µl 400 µM 

10 µM 5’_UTR_3_F* 
GGGATGTGCTGCAAGGCGATTAAG 

2.5 µl 2.5 µl 0.5 µM 

10 µM 3’_UTR_3_R* 
GTATAGATACTCAAGCTAGCCTCG 

2.5 µl 2.5 µl 0.5 µM 

Template 2 µl dH2O 2 µl Cells  

Nuclease-Free Water 32 µl 3 µl 
 

Q5 High-Fidelity DNA Polymerase 0.5 µl 0.5 µl 0.02 U/µl 
*Primers designed by Joel Gonzales 
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Table 4.4: Thermocycling Conditions 

Step Temperature Time 

Initial Denaturation 98°C 30 seconds 

35 Cycles 

98°C 10 seconds 

68°C 20 seconds 

72°C 7 minutes 

Final Extension 72°C 5 minutes 

Hold 10°C ∞ 

 

The DNA fragments produced by the colony PCR reactions were analysed by 

electrophoresis on a 1.5% agarose gel (Section 4.2). 

 

4.12 Nucleic Acid Precipitation 

 

Nucleic acids were precipitated by the addition of an equal volume of sodium acetate 

(4 M, pH 5.2) and 5 x the sample volume (calculated before addition of sodium 

acetate) of filter sterilized 100% ethanol. Samples were incubated at room 

temperature for at least 5 minutes prior to centrifugation at 16168 x g for 30 minutes 

at 4°C. Following centrifugation supernatants were carefully discarded and nucleic acid 

pellets rinsed with 500µl 75% sterile filtered ethanol. Samples were then centrifuged 

at 16168 x g for 15 minutes at 4°C and the supernatants discarded. Nucleic acid pellet s 

were air-dried and re-suspended in 10-50 µl of nuclease-free water, depending on the 

desired final concentration. Nucleic acid concentrations were checked using a 

Nanodrop spectrophotometer (ThermoFischer Scientific) and gel electrophoresis was 

used to confirm the quality of samples (Section 4.2). 

 

4.13 Extraction of Plasmid DNA from E. coli 

 

Extractions of plasmid DNA from E. coli used the QIAprep Spin Miniprep Kit from 

Qiagen, designed to purify up to 20 μg of high-copy plasmid DNA from up to 5 ml 

cultures of E. coli grown in LB medium. Firstly, bacterial cultures were pelleted by 

centrifugation then resuspended to give a homogenous solution in 250 μl Buffer P1 

(with RNase added as per manufacturer’s instructions). Samples were transferred to 

1.5 ml microcentrifuge tubes and 250 μl Buffer P2 was added to each reaction, 



 

 

61 

solutions were then mixed thoroughly by inversion. This lysis step was allow to 

proceed for no more than five minutes before the addition of 350 μl Buffer N3 to each 

sample. The solutions were mixed immediately and thoroughly by inversion to give a 

cloudy solution then centrifuged for 10 minutes at 16168 x g in a table-top 

microcentrifuge. Resulting supernatants were carefully applied to QIAprep 2.0 spin 

columns (in collecting tubes) and centrifuged at 16168 x g for 30-60 seconds. Spin 

columns were then washed with 0.75 ml Buffer PE (with ethanol added as per the 

manufacturer’s instructions) and centrifuged at 16168 x g for 1 minute; the flow-

through was discarded and samples were re-centrifuged at 16168 x g for an additional 

1 min to remove all residual wash buffer (residual ethanol from the buffer could have 

resulted in inhibition of subsequent enzymatic reactions). To elute plasmid DNA from 

the columns, columns were placed into clean 1.5 ml microcentrifuge tubes and 50 μl 

nuclease-free water was added to each sample, these were left to incubate for 1 

minute prior to centrifugation at 16168 x g for 1 minute. Columns were then discarded 

and the concentration of plasmid DNA determined using a Nanodrop 

spectrophotometer (ThermoFischer Scientific) and gel electrophoresis (Section 4.2). 

 

4.14 Sequencing and Sequence Analysis 

 

All sequencing was done by Eurofins MWG Operon. Sequence analysis used Geneious 

software created by Biomatters and available from http://www.geneious.com/ 

 

4.15 Site-Directed Mutagenesis of Cloned VGSC Sequences 

 

Mutagenesis of the D. melanogaster para VGSC construct (para 13-5) and of pgh19 

vectors containing the V. destructor VGSC  construct (Varroa 13-5) (Sections 6 and 7) 

used the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies). In 

each experiment the pWhitescript 4.5-Kb control plasmid was used to demonstrate the 

efficiency of mutagenesis; this plasmid contains a stop codon (TAA) at a position which 

is normally a glutamine codon (CAA) in the ß-galactosidase gene, so that that E. coli 

cells transformed with this plasmid appear white on LB-Ampicillin[x-gal/IPTG] plates. 

The control primers create a point mutation in pWhitescript that changes the stop 

http://www.geneious.com/
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codon (TAA) in the ß-galactosidase gene back to a glutamine codon (CAA), so that 

following transformation colonies that have undergone successful mutagenesis appear 

blue on LB-Ampicillin[x-gal/IPTG] plates. 

 

Mutagenesis control reactions contained: 

5 µl of 10× reaction buffer 

2 µl (10 ng) of pWhitescript 4.5 Kb control plasmid (5 ng/ µl) 

1.25 µl (125 ng) of oligonucleotide control primer #1 [34-mer (100 ng/ µl] 

1.25 µl (125 ng) of oligonucleotide control primer #2 [34-mer (100 ng/ µl] 

1 µl of dNTP mix 

3 µl of QuikSolution reagent 

36.5 µl of double-distilled water (ddH2O) to a final volume of 50 µl 

 

After samples were mixed and pulse centrifuged to collect the contents in the base of 

the tube, 1 µl of PfuUltra HF DNA polymerase (2.5 U/µl) was added and samples were 

cycled using conditions outlined in Table 4.5. 

 

Table 4.5: 

Segment Cycles Temperature Time 

1 1 95°C 1 minute 

2 18 

95°C 50 seconds 

60°C 50 seconds 

68°C 1 minute per Kb of plasmid 

3 1 68°C 7 minutes 

 

Sample mutagenesis reactions contained: 

5 µl of 10× reaction buffer 

X µl (Around 50 ng) of Template DNA  

1.25 µl (125 ng) of each forward oligonucleotide primer  

1.25 µl (125 ng) of each reverse oligonucleotide primer  

1 µl of dNTP mix 

3 µl of QuikSolution 

X µl ddH2O to a final volume of 50 µl 
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After samples were mixed and pulse centrifuged to collect the contents in the base of 

the tube, 1 µl of PfuUltra HF DNA polymerase (2.5 U/µl) was added and samples were 

cycled using specific cycling parameters depending on the construct (Sections 6 and 7). 

 

Following the temperature cycling, reaction tubes were placed on ice for 2 minutes to 

cool the reactions to ≤37°C, then 1 µl of the DpnI restriction enzyme (10 U/ µl) was 

added and samples were mixed by pipetting. Sample tubes were briefly spun in a 

microcentrifuge, then incubated at 37°C for 1 hour to digest the parental (non-

mutated) supercoiled dsDNA. Following the DpnI digestion samples were transformed 

into E. coli (Section 4.10) and mutagenesis reaction samples were plated onto LB-

Ampicillin plates, mutagenesis control reaction were plated on LB-Ampicillin[x-gal/IPTG] 

plates to allow for blue/white selection (Section 4.10). 

 

4.16 Data Analysis 

 

Details pertaining to the data analysis of experimental work can be found in the 

methodological sections of Chapters 6-8. 
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5 Amplification and Sequencing of Acarine VGSCs  

 

5.1 Chapter Introduction and Aims 

 

Since the introduction of pyrethroid insecticides their extensive use has led to the 

development of widespread resistance to these compounds in many arthropod species, 

including mites and ticks of agricultural, animal health, and medical importance 

(Rinkevich et al., 2013). This resistance reduces the effectiveness of pyrethroids, thus it 

is critical to be able to determine which species are resistant, and their geographical 

location, in order to limit the spread of resistance and create effective acarine control 

measures where needed. Target-site resistance to pyrethroids results from mutations 

in the gene encoding the VGSC, and these mutations cluster around a proposed 

pyrethroid-binding site (O'Reilly et al., 2006). Therefore, the use of PCR amplification 

and sequencing in the region of the proposed binding site can give a good indication of 

any potential resistance mutations present in an acarine species, and can allow the 

development of high throughput diagnostics to monitor the presence and spread of 

target-site pyrethroid resistance. Furthermore; the suggested specificity of pyrethroids 

with larger halogenated groups for acarine species over insects has led to speculation 

that this could be due to variation in their VGSCs, especially at amino acid residue 933, 

where most acarine species have a glycine and insect species sequenced to date have a 

cysteine (O'Reilly et al., 2014). The hypothesis is that the presence of the glycine will 

allow the binding of pyrethroids with larger halogenated groups, compounds whose 

binding would be precluded by the presence of a cysteine. This model is supported by 

the finding that a glycine to valine substitution at position 933 (G933V) in the VGSC of 

Australian cattle ticks, results in cypermethrin remaining effective but flumethrin 

becoming ineffective (Jonsson et al., 2010; O'Reilly et al., 2014). 

 

This chapter reports the sequencing of cDNA from individuals belonging to several 

acarine species, to identify any potential target-site pyrethroid resistance mutations 

and to elucidate the amino-acid present at position 933 in the VGSCs of these acari. 

Sequencing was done using PCR to amplify and sequence the region of the VGSC gene 

around this residue. Initially using degenerate primers, to look at a wide-range of 
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acarine species rapidly, and then with species-specific primers as needed. Following 

initial acarine VGSC sequencing the R. microplus VGSC was chosen for further study, 

because of its relevance to animal health and because it was the only tick species in 

which target-site mediated resistance to pyrethroids had been detected (Rinkevich et 

al., 2013; Van Leeuwen et al., 2010a). Rapid Amplification of cDNA Ends (RACE) and the 

construction of an Illumina transcriptome were done with the aim of obtain a full-

length tick VGSC construct for study in X. laevis oocytes. The aim of all investigations 

being to garner a greater knowledge of the potential efficacy of these compounds at 

acarine VGSCs and thus inform the judicious use of these compounds against acari. 

 

Throughout this study the numbering of the amino acid residues in the VGSC is 

according to the published numbering for the M. domestica channel (Williamson et al., 

1993a). 

 

5.2 Chapter Specific Methods 

 

5.2.1 Primers for VGSC Amplification and Sequencing 

 

For initial sequencing degenerate primers were designed for the targeted amplification 

of membrane-spanning domains of previously un-sequenced acarine VGSCs. These 

primers were based on published partial or putative mRNA channel sequences from 

ten acarine species: I. scapularis (accession number XM_002407075), Metaseiulus 

occidentalis (accession number XM_003741689), R. microplus (accession number 

AF134216), S. scabiei type hominis (accession number DQ077148), S. scabiei type canis 

(accession number EF041516), S. scabiei type suis (accession number DQ145115), T. 

cinnabarinus (accession number JX290514), Tetranychus evansi (accession number 

HM117902), T. urticae (accession number JN881331) and V. destructor (accession 

number AY259834). The sequences of the primers and the domains they were 

designed to amplify (target domains) are shown in Table 5.1. Primers in Table 5.1 were 

designed by the author with the help of Joel González-Cabrera. 
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Table 5.1: Degenerate Primers Targeting Acarine VGSC Sequences 

Primer 
Name 

Target  
Domain (D) 

Primer Sequence 5'-3' 
Primer Length 
(Base Pairs) 

484_F DI AARRGMAARGAYATMTTYCG 20 

490_F DI AARGAYATMTTYCGBTTYAG 20 

898_R DI TCCWGGWACDAYAGCDACBG 20 

903_R DI TTBARTCCWGGWACDAYAGC  20 

819_F DII GAYGTNATGGTNCTRAAYGA 20 

924_F DII ATGGCNATGGAYCAYCAYGAYATG 24 

1146_R DII TCYTGHAGYTTYTTNGTRTC 20 

1147_R DII TCDAWNGCYTCYTGHAGYTTYTTNGT 26 

1710_F DIII ATHTTYTGGCTVATHTTYTC 20 

1712_F DIII TGGCTVATHTTYTCNATHATG 21 

1814_F DIV TAYTTYGTNTTYTTYATHAT 20 

1816_F DIV GTNTTYTTYATHATHTTYGG 20 

1850_R DIII TCYTCNGTCATRAACATYTC 20 

1853_R DIII TTYTGRTCYTCNGTCAT 17 

2185_R DIV TCRTARTACATRTCRTARTC 20 

2187_R DIV CCADATYTCRTARTACATRTC 21 

 

Further degenerate primers were designed for the amplification of Domain IV (DIV) of 

acarine channels (Table 5.2), using mRNA sequences from one tick and four mite 

species with available Domain IV sequences: I. scapularis (accession number 

XM_002407075), M. occidentalis (accession number XM_003741689), T. cinnabarinus 

(accession number JX290514), and V. destructor (accession number AY259834) for 

both forward and reverse primers and T. urticae (accession number JN881331) for the 

forward primers only. These primers were used to amplify and sequence DIV from D. 

gallinae, P. ovis, A. hebraeum, D. variabilis, and R. sanguineus. 

 

Table 5.2: Degenerate Primers Targeting Acarine VGSC Domain IV 

Primer 
Name 

Target  
Domain (D) 

Primer Sequence 5'-3' 
Primer Length  
(Base Pairs) 

DIVFA DIV GAARAARATGGGMTCWAARAARCC 24 

DIVRA DIV GRUCGAAMYGCUGCCARAUC 20 

DIVFB DIV CCAMGRTTYAAACTTCARGC 20 

DIVRB DIV GCUGCCARAUCUCRUAGUAC 20 
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Degenerate primers were designed to amplify the region just before DI (Pre-DI) and 

just after DIV (Post-DIV) of the acarine VGSC, using mRNA VGSC sequences from M. 

occidentalis (accession number XM_003741689), T. cinnabarinus (accession number 

JX290514), T. urticae (accession number JN881331) and V. destructor (accession 

number AY259834). These were used to amplify the R. microplus (Parkhurst) VGSC 

sequence past the domain-spanning region to aid RACE primer design (Table 5.3).  

 

Table 5.3: Primers Used to Amplify and Sequence the R. microplus VGSC 

Primer 
Name 

Target  
Domain (D) 

Primer Sequence 5'-3' 
Primer Length  
(Base Pairs) 

Pre-DIFA Pre-DI TDTTYMGRCCKTTYACSAGRG 21 

Pre-DIRA Pre-DI CATGAGGACGCAGTTGACGA 20 

Pre-DIFB Pre-DI GRCCKTTYACSAGRGARWSYYTSGC 25 

Pre-DIRB Pre-DI CAGTTGACGAGAATGGTTAC 20 

 

Primers to amplify the full domain-spanning region of the R. microplus VGSC and the 3’ 

end including the 3’ untranslated region (UTR) are shown in Tables 5.4 and 5.5. Primers 

in Table 5.4 were designed to sequence a full-length R. microplus domain-spanning 

VGSC PCR product that included the 3’ UTR region. This PCR product was created using 

the primers shown in Table 5.5, designed from sequence information obtained using 

Pre-DI primers in Table 10 at the 5’ end and using raw reads from a R. microplus 

Illumina transcriptome at the 3’ end.  
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Table 5.4: Primers Used to Sequence the R. microplus VGSC 

Primer Name Primer Sequence 5'-3' Primer Length (Base Pairs) 

RM DIS1 R GGTGCACTAGGATGCAGATG 20 

RM DIS1 F CATCTGCATCCTAGTGCACC 20 

RM DIS3 F GGATTTTGTTGTTATATCTCTAGCG 25 

RMSeqCheck5' CGCTAGAGATATAACAACAAAATCC 25 

DI-II FCP F CCTGGGCTCCTTCTATCTAGT 21 

DI-II FCP R AGCAATTGGCCATGCACTTG 20 

DII FCP F CGCTATTCATGGCCATGGAC 20 

RM DIIS2 R CATAAGCTTCATTCCAGC 18 

RM DIIS2 F GCTGGAATGAAGCTTATG 18 

RM DII-III R GTCGGGATTCGCTTGGGACAG 21 

RM DII-III F CTGTCCCAAGCGAATCCCGAC 21 

RM DII-III RB GTGTCCACATCTTCCGTGTC 20 

RM DII-III FB GACACGGAAGATGTGGACAC 20 

D II-III FCP R ATCGCGTGTAACACCAGTCG 20 

RM DIIIS5 R CTTTCCCGCAAGCATCTGGA 20 

RM DIIIS5 F TCCAGATGCTTGCGGGAAAG 20 

RM DIVS3 R AGGTCCTTTAGCACCGTACC 20 

RM DIVS3 F GTGCTAAAGGACCTGATCGC 20 

RMSeqCheck3' CTTGTGATGTTCATCTACGC 20 

ParaRMCheckF ACCTCATCATCAGCTTCCTCG 21 

RM PostDIV R TTGGTCAGGTTGGAGTAGGC 20 

RM PostDIV F GCCTACTCCAACCTGACCAA 20 

 

Table 5.5: Primers Used to Amplify the Functional Region of the R. microplus VGSC 

and the 3’ UTR 

Primer 
Name 

Primer Sequence 5'-3' 
Primer Length  
(Base Pairs) 

RMFL0115 FPA CCTTTCACGCGAGAGTCCCTAGCC 24 

RMFL0115 RPA CGCGAGAGTCCCTAGCCGCCCAAG 24 

RMFL0115 FPB GGTGCTTCTGCGTCGAGGGTACG 23 

RMFL0115 RPB CTTCTGCGTCGAGGGTACGTAGC 23 
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5.2.2 PCR Protocols 

 

For each amplification of regions of the VGSC, two rounds of PCR were carried out, the 

first (PCR 1) with a set of outer primers and the second (PCR 2) with at least one inner 

(nested) primer. This enabled the synthesis of enough PCR product for sequencing 

reactions. 

 

Standard PCR reactions used the ThermoFisher Scientific’s DreamTaq PCR Master Mix 

(2X), containing DreamTaq DNA Polymerase and proprietary PCR buffer containing KCl 

and (NH4)2SO4 at a ratio optimized for best performance of the DreamTaq DNA 

Polymerase, dNTPs, and 4mM MgCl2. The buffer also includes a density reagent, 

allowing direct loading onto agarose gels and two tracking dyes for monitoring 

electrophoresis. The master mixes also contained 1 µl of each primer (forward and 

reverse) from a stock made to 100ng/µl. PCR 1 reactions contained 2 µl cDNA as a 

template, cDNA concentration is unknown, due to RNA and nucleotide contamination 

of the mix; however, 2 µl insect cDNA prepared in the manner outlined in Section 4.4 

had previously been shown to be effective in PCR experiments (Joel González-Cabrera 

and Martin Williamson personal communication). Nested PCR 2 reactions contained 1 

µl of PCR 1. Control reactions contained nuclease-free water in place of the template 

DNA. Unless otherwise stated, PCR reactions started with an initial denaturation step 

at 95°C for 3-5 minutes followed by 25 to 45 PCR cycles, each with denaturation steps 

of 95°C for 45 seconds and extension steps of 72°C that allowed approximately 1 min 

of extension time per Kb of sequence to be amplified. Primer annealing steps were 45 

seconds and Tm’s were primer specific. 

 

Amplification reactions with degenerate primers from Table 5.1 were done  on all 

acarine species tested in this study using ThermoFisher Scientific’s DreamTaq PCR 

Master Mix (2X), with Tm’s and primer combinations as shown in Table 5.6.  
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Table 5.6: Effective Primer Combinations and Tm’s Used for Primers in Table 5.1  

Primer Name Target Domain (D) PCR Tm (°C) 

484_F DI 1 45 

898_R DI 1 45 

490_F DI 2 44 

903_R DI 2 44 

819_F DII 1 45 

1146_R DII 1 45 

924_F DII 2 53 

1147_R DII 2 53 

1710_F DIII 1 54 

1850_R DIII 1 54 

1712_F DIII 2 50 

1853_R DIII 2 50 

1814_F DIV 1 45 

2185_R DIV 1 45 

1816_F DIV 2 45 

2187_R DIV 2 45 

 

Reactions with primers from Table 5.2 were used in protocols designed to amplify DIV 

from D. gallinae, P. ovis, A. hebraeum, D. variabilis, and R. sanguineus, using 

ThermoFisher Scientific’s DreamTaq PCR Master Mix (2X) and Tm’s and primer 

combinations as shown in Table 5.7.  

 

Table 5.7: Effective Primer Combinations and Tm’s Used for Primers in Table 5.2 

Primer Name Target  Domain (D) PCR Tm (°C) 

DIVFA DIV 1 54 

DIVFB DIV 1 54 

DIVRA DIV 2 51 

DIVRB DIV 2 51 

 

Degenerate Pre-DI primers shown in Table 5.3 were used to amplify a region of the R. 

microplus (Parkhurst) VGSC past the domain-spanning region. These reactions used 

ThermoFisher Scientific’s DreamTaq PCR Master Mix (2X) with Tm’s and primer 

combinations as shown in Table 5.8. 
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Table 5.8: Effective Primer Combinations and Tm’s Used for Primers in Table 5.3 

Primer Name Target  Domain (D) PCR Tm (°C) 

Pre-DIFA Pre-DI 1 48 

Pre-DIRA Pre-DI 1 48 

Pre-DIFB Pre-DI 2 54 

Pre-DIRB Pre-DI 2 54 

 

Primers shown in Table 5.5 were used designed to try to obtain the full membrane-

spanning domain region of the R. microplus VGSC, using PCR reactions with New 

England Biolabs’s Q5® High-Fidelity DNA Polymerase (Q5) All reaction mixes contained 

1X Q5 Reaction Buffer (New England Biolabs), 0.5 µM of each primer (forward and 

reverse), 400 µM dNTPs (from an equal mix of dATP, dCTP, dGTP, and dTTP nucleoside 

triphosphates) and 0.04 U/µl High-Fidelity DNA Polymerase (Q5). PCR 1 reactions 

contained 1 µl cDNA as a template and nested PCR 2 reactions contained 1 µl of the 

PCR 1 reaction as a template. Control reactions contained nuclease-free water in place 

of the template DNA. Following an initial denaturation step of 98°C for 30 seconds, 

PCR amplification occurred over 25 cycles, each with denaturation steps of 98°C for 10 

seconds and extension steps of 72°C for 6 minutes. Primer annealing steps were 20 

seconds in duration and Tm’s and primer combinations are shown in Table 5.9. 

 

Table 5.9: Effective Primer Combinations and Tm’s Used for Primers in Table 5.5 

Primer Name Target  Domain (D) PCR Tm (°C) 

RMFL0115 FPA Full Channel 1 72 

RMFL0115 RPA Full Channel 1 72 

RMFL0115 FPB Full Channel 2 72 

RMFL0115 RPB Full Channel 2 72 

 

Following PCR amplification, samples were either sequenced directly following DNA 

precipitation or after cloning (see Chapter 4). 
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5.2.3 Rapid Amplification of cDNA Ends (RACE) 

 

5’ and 3’ RACE reactions for VGSCs were done using the FirstChoice® RLM-RACE Kit 

(Ambion) on RNA from I. ricinus, R. microplus and R. sanguineus and  the SMARTer™ 

RACE cDNA Amplification Kit (Clontech) and the GeneRacer™ Kit (Invitrogen) for R. 

microplus RNA only ( the latter kit being used in amplification of only  the 5’ end). All 

reactions were according to manufacturer’s instructions; however, with the 

FirstChoice® RLM-RACE Kit the “small scale” reaction protocol was followed and with 

the SMARTer™ RACE cDNA Amplification Kit, half volumes of reactants were used. All 

gene-specific RACE amplification primers were designed according to manufacturer’s 

directions and are shown in Tables 5.10, 5.11 and 5.12.  

 

The PCR mix for amplification using the FirstChoice® RLM-RACE Kit (Ambion) was 

adapted to accommodate the use of a range of primers and DNA polymerases, 

specifically ThermoFisher Scientific’s DreamTaq PCR Master Mix (2X), New England 

Biolabs’s Q5® High-Fidelity DNA Polymerase (Q5) and the KAPA2G Robust DNA 

Polymerase from KAPA Biosystems. The PCR mix for amplification using the SMARTer™ 

RACE cDNA Amplification Kit was adapted to accommodate the use of a range of 

primers and DNA polymerases, specifically ThermoFisher Scientific’s DreamTaq PCR 

Master Mix (2X), New England Biolabs’s Q5® High-Fidelity DNA Polymerase (Q5), 

ThermoFisher Scientific’s Long PCR Enzyme Mix and the KAPA2G Robust DNA 

Polymerase from KAPA Biosystems. 

 

In all PCRs the  extension time was set to allow for the size of the product expected 

plus extra time to take account of untranslated regions at the 5’ and 3’ ends of the 

VGSC. 
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Table 5.10: Primers Used with the FirstChoice® RLM-RACE Kit (Ambion) 

Primer Name Target Species Primer Sequence 5'-3' 
Primer Length  
(Base Pairs) 

Tick 5' Outer Primer A I. ricinus; R. microplus; R. sanguineus GAGGACRCAGTTGACGAGAATGG 23 

Tick 5' Outer Primer B I. ricinus; R. microplus; R. sanguineus GATTCRAACGTGTAGATTGTGGT 23 

Tick 5' Outer Primer C I. ricinus; R. microplus; R. sanguineus GCTARAGATATAACAACAAAATC 23 

Tick 5' Inner Primer A I. ricinus; R. microplus; R. sanguineus GACRCAGTTGACGAGAATGGTTAC 24 

Tick 5' Inner Primer B I. ricinus; R. microplus; R. sanguineus AACGTGTAGATTGTGGTGAATAT 23 

Tick 5' Inner Primer C I. ricinus; R. microplus; R. sanguineus AGATATAACAACAAAATCCAACC 23 

Tick 3' Outer Primer A I. ricinus; R. microplus; R. sanguineus CGTCTCSTACCTCATCATCAG 21 

Tick 3' Outer Primer B I. ricinus; R. microplus; R. sanguineus GAYTGCAACCGSCCCACCGAC 21 

Tick 3' Outer Primer C I. ricinus; R. microplus; R. sanguineus CTACGGCGTCGACGAGAACT 20 

Tick 3' Inner Primer A I. ricinus; R. microplus; R. sanguineus CTCSTACCTCATCATCAGCTTCC 23 

Tick 3' Inner Primer B I. ricinus; R. microplus; R. sanguineus TGCAACCGSCCCACCGACGA 20 

Tick 3' Inner Primer C I. ricinus; R. microplus; R. sanguineus GCGTCGACGAGAACTTCAAC 20 

5' Outer Primer A R. microplus AGAAGCTGAAAAGTGGGTGCA 21 

5' Outer Primer B R. microplus ATGGTCATGAGGACGCAGTT 20 

5' Inner Primer R. microplus TGCAGATGGCCAGTCTCCTGA 21 

3' Outer Primer R. microplus CCCTTCGGGACTGCCTACCA 20 

3' Inner Primer R. microplus TTGGACCTTACGCGCACGCT 20 

5' RACE Chance Outer Primer R. microplus AGCTGACAAAGCAGTCTCGG 20 

5' RACE Chance Inner Primer R. microplus GACAAAGCAGTCTCGGCGGG 20 
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Table 5.11: Primers Used with the SMARTer™ RACE cDNA Amplification Kit (Clontech) 

 

 

 

 

 

 

 

 

Table 5.12: Primers Used with the GeneRacer™ Kit (Invitrogen) 

Primer Name Target Species Primer Sequence 5'-3' 
Primer Length  
(Base Pairs) 

RACE12.2015GSP1 R. microplus  GTAGTCGTCGCCTGCCGGGATGCCC 25 

RACE12.2015GSP2 R. microplus  TCGATGGGCGTGGCGATGAGCTCGG 25 

Primer Name Target Species Primer Sequence 5'-3' 
Primer Length  
(Base Pairs) 

Tick 5' Outer Primer C Extended R. microplus  CGCAAGGCGCTCAGGTTYCCCAAATTAA 28 

Tick 5' Inner Primer C Extended R. microplus  CAAAATCCAACCARTTCCAYGGATCTCGAAG 31 

Tick 3' Outer Primer C Extended R. microplus  GGCATGTCYTTCTTYATGCACGTSAAGC 28 

Tick 3' Inner Primer C Extended R. microplus  CGCTAYGGCGTCGACGAGAACTTYAACTTYG 31 

RmSpec3'A R. microplus  GCGGCCTACTTCGTGTCGCCCAC 23 

RmSpec3'B R. microplus  CCCTGGCCATGTCATTGCCGGCAC 24 

RmSpec5'A R. microplus  CGATGGGCGTGGCGATGAGCTCG 23 

RmSpec5'B R. microplus  GATCGGCGTCCTTGTGGTCTCGCGAG 26 
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5.2.4 Transcriptomics 

 

Alongside RACE the R. microplus transcriptome was sequenced using the Illumina 

HiSeq2000 method in order to try to obtain the full-length R. microplus VGSC 

sequence.  R. microplus total RNA (from larvae + adults) was sent to 

Eurofins/MWG/Operon (Ebersberg, Germany) for cDNA library preparation and 

normalisation.  The cDNA was processed and sequenced using 2 full lanes of 

HiSeq2000 with 1 x 100bp paired end reads protocol.  Each lane generated just over 

100 million reads, giving a combined total of 208 million reads. Initial read data were 

analysed for quality using FastQC (Online: Babraham Bioinformatics 2016), digitally 

normalised to further reduce the abundance of the more common transcripts and then 

assembled using the programme Trinity (Grabherr et al., 2011).  This resulted in 

250,000 contigs of average length 950bp, which were put into the DeCypher server at 

Rothamsted allowing sequence-specific searching using a Basic Local Alignment Search 

Tool (BLAST). Raw reads were also put into a Geneious (Section 4.14) server for BLAST 

searching. 

 



 

 

76 

5.3 Results 

 

5.3.1 Comparing the Pyrethroid Binding Site of Insect and Acarine VGSCs 

 

PCR primers targeting Domains DI, DII and DIII of the VGSC (Table 5.1) were used 

successfully on all nine acarine species to amplify and sequence regions of the VGSC; 

with the exception of DI from P. ovis, which failed to amplify (Figure 5.1).  

 

Figure 5.1: Acarine VGSC Sequencing Coverage 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Summary of VGSC areas in different acarine species covered by sequencing in this study to date. VGSC 
Domains I-IV are shown split into their S1-6 segments. Blue and green lines represent sequence 
coverage for each organism.  
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Further amplification of the P. ovis VGSC DI was attempted with alternative primers; 

but despite several PCR protocol iterations all attempts to gain this portion of the 

channel failed. Primers targeting Domain DIV (Table 5.1) were successful for A. 

americanum, D. reticulatus, I. ricinus and R. microplus only and molecular cloning and 

colony PCR prior was needed to get enough material for sequencing (Chapter 4). 

Sequence details for the acarine VGSCs sequenced in this study can be found in 

Appendices 1 and 2. 

 

For R. microplus, the entire domain-spanning sequence of the VGSC has been 

elucidated, along with the 3’ UTR, using both PCR and bioinformatics-based methods. 

Initially degenerate primers (Table 5.1) were used to amplify domain spanning 

segments of the channel, then Pre-DI primers (Table 5.3) were used to extend the 

sequence at the 5’ end for later RACE protocols, Post-DIV primers were also 

synthesised to try to extend the sequence at the 3’ end prior to RACE, but 

amplification with these was unsuccessful. Several RACE protocols using three 

different RACE methods and various PCR amplification steps using a range of primers, 

cycling protocols, DNA polymerases and Tm’s were tested.  However, all proved 

unsuccessful in gaining either the 5’ or 3’ ends of the channel. As an alternative, a R. 

microplus transcriptome from mixed larvae and adults was sequenced using the 

Illumina HiSeq2000 method and this did generate reads corresponding to the 3’ end of 

the gene, including the stop codon and the 3’ UTR. The transcriptome was assembled 

using Trinity (Grabherr et al., 2011), but resulting assemblies discarded contigs 

corresponding to the 3’ end, so direct sequence mapping to the I. scapularis (accession 

number XM_002407075) VGSC sequence using the raw Illumina reads in Geneious 

(Section 4.14) was used to obtain the sequence of the 3’ UTR. 

 

Primers which enabled the full amplification and sequencing of the R. microplus 

domain-spanning region (Table 5.5) were RMFLNMFA (“R. microplus full-length non-

mutant forward A”), RMFLNMRA (“R. microplus full-length non-mutant reverse A”), 

RMFLFA (“R. microplus full-length forward A”), RMFLRA (“R. microplus full-length 

reverse A”). Note that the latter two primers change the channel by adding AflII and 
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AbsI restriction sites to the 5’ and 3’ ends, this was to allow the subsequent cloning of 

the products (Chapter 6). 

 

The sequencing reported here gave some interesting results regarding the similarity of 

acarine VGSCs around the pyrethroid binding site and subtle differences between 

acarine and insect channels. Overall, the acarine channels sequenced to date are very 

conserved and are very similar to the M. domestica insect channel across the putative 

pyrethroid binding site (O'Reilly et al., 2006) at the protein level (Figure 5.2). The mites 

used in this study, D. gallinae and P. ovis, show the greatest level of variation when 

compared to each other and to the tick and M. domestica channels.  

 

Within Domain II at residue 933 (Figure 5.2 “Domain II S5”), there is a clear difference 

between the acari sequenced in this study and the insect VGSCs sequenced to date. 

This residue is a glycine in most acari, including those sequenced here, and a cysteine 

in insects, so sequencing in the current study supports the theory proposed in O’Reilly 

et al 2014, that the specificity of certain pyrethroids for acarine toxicity may be due to 

differences between acarine and insect VGSCs at position 933. With the smaller glycine 

in acarine channels being able to support pyrethroids with larger halogenated groups 

that would be excluded by the larger cysteine found in insect VGSCs (O'Reilly et al., 

2014). 

 



 

 

79 

Figure 5.2: Acarine VGSCs over the Proposed Pyrethroid Binding Site 

The Domain II S4-S5 Linker: 

 

Domain II S5: 
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Domain III S6: 

 

Comparisons of acarine protein sequences as sequenced in this study at the putative pyrethroid binding site (O'Reilly et al., 2006) using M. domestica (accession number 
AF461154)  as an insect reference. Species names and the primers used for sequencing the domain segments shown are on the left hand side of the sequence diagrams (Tables 
5.1-5.5). Orange boxes represent the sites of VGSC target-site mutations associated with pyrethroid resistance as reported in arthropod species to date (Rinkevich et al., 2013). 
Note that at these sites all acarine species sequenced carry the same amino acid as the pyrethroid susceptible M. domestica comparison. 
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5.3.2 Pyrethroid Resistance in R. microplus and R. sanguineus 

 

During the course of the acarine sequence analysis reported in this study amino acid 

substitutions linked with target-site pyrethroid resistance were located in two tick 

species; R. microplus (Parkhurst strain) and R. sanguineus (Field individuals). 

 

The R. microplus strain used in this study is a lab strain, known to be pyrethroid 

resistant, reared by Bayer Animal Health in Monheim, but originally isolated from the 

field in Australia (Nolan et al., 1989). This strain has previously been characterised as 

carrying target-site resistance for pyrethroids in the form of a leucine to isoleucine 

amino-acid substitution at position 925 (L925I) and this amino acid substitution was 

confirmed in the present study (Morgan et al., 2009; Nolan et al., 1989).   

 

During sequence analysis a novel amino acid substitution, located in DII S6 (Figure 5.3), 

was identified in R. microplus (Parkhurst). The mutation causing this was shown to be 

homozygous by molecular cloning and sequence analysis (Chapter 4) and results in a 

valine at position 1010 being swapped for a phenylalanine (V1010F). The substitution 

is close to other sites where substitutions have been reported to be associated with 

resistance, i.e. I1011M/V, L1014F/H/S and V1016G/I (Figure 5.1) (Rinkevich et al., 

2013).
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Figure 5.3: The V1010F Aino Acid Substitution in R. microplus (Parkhurst Strain) 

 

i) A representative insect/acarine VGSC showing domains I-IV and their six membrane-spanning domains illustrating the relative position of V1010F in R. microplus (Parkhurst) 
(black star) compared to previously identified VGSC mutations (coloured circles) that have been confirmed to confer resistance to pyrethroids in X. laevis oocyte TEVC 
experiments (Reported in Dong et al 2014). Mutations with a * do not confer pyrethroid resistance alone but enhance resistance conferred by L1014F or V410M.  
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ii) Comparisons of acarine protein sequences as sequenced in this study around V1010F using M. domestica (accession number AF461154) as an insect reference. Species 
names and the primers used for sequencing the domain segments shown are on the left hand side of the sequence diagrams (Table 5.1). Orange boxes represent the sites of 
VGSC target-site mutations associated with pyrethroid resistance reported in arthropod species to date (Rinkevich et al., 2013). 
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For R. sanguineus field samples, collected by Bayer Animal Health (Monheim, Germany) 

were tested for resistance to pyrethroids by exposing individuals to permethrin 

dissolved in acetone. Sample collection, including the location of collection sites, 

bioassay protocols, and further sequence details are the confidential property of Bayer 

Animal Health. Following bioassays, individuals were frozen at -80°C and then sent to 

Rothamsted Research for PCR amplification and sequencing using primers shown in 

Tables 5.1 and 5.2 (Section 5.2.1) and PCR protocols detailed in Section 5.2.2. Where 

mutations were found, PCR products were cloned to establish if the mutations were 

homozygous (on just one allele) or heterozygous (on both alleles). Mutations resulting 

in amino acid substitutions in the VGSC found in R. sanguineus individuals during this 

study are shown in Table 5.13 and Figure 5.4.  

 

Table 5.13: Resistance Profiles of R. sanguineus 

Name of 
Individual 

Description 
Mutations Present 

L925I G933V F1538L 

RST1 
Control  
(Acetone treated only) 

 WT# L/L 
Homozygous 
V/V 

WT F/F 

RST2 
Survivor 180 ppm* 
permethrin 

Heterozygous 
L/I 

Heterozygous 
G/V 

Heterozygous 
F/L 

RST3 
Survivor 180 ppm 
permethrin 

WT L/L 
Heterozygous 
G/V 

Heterozygous 
F/L 

RSA4 
USA⌂ 
Presumed WT. 

WT L/L WT G/G WT F/F 

 

#
Wild Type  

*
parts per million 

⌂
EL LABS, Soquel, California, USA 
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Figure 5.4: Mutations Found in Permethrin Resistant R. sanguineus Individuals 

 

A representative insect/acarine VGSC showing domains I-IV and their six membrane-spanning domains illustrating the relative position of L925I, G933V and F1538L mutations 
found in R. sanguineus individuals in the present study. These are compared to previously identified VGSC mutations (coloured circles) that have been confirmed to confer 
resistance to pyrethroids in X. laevis oocyte TEVC experiments (Reported in Dong et al 2014). Mutations with a * do not confer pyrethroid resistance alone but enhance 
resistance conferred by L1014F or V410M. Note that L925I is shown only once as a coloured circle, as it has already been confirmed to confer pyrethroid resistance in X. laevis 
oocyte TEVC experiments (Usherwood et al., 2007).  
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R. sanguineus individual RST1, used in the acetone control bioassay, was  homozygous 

for G933V, found in the putative pyrethroid binding site (O'Reilly et al., 2006) of the 

VGSC. Individual RST2 had three heterozygous amino-acid substitutions; L925I and 

G933V, located within the pyrethroid binding site in the Domain II S4-S5 linker of the 

VGSC, and F1538L in Domain III S6 (Figure 5.4). Cloning experiments showed that L925I 

and G933V are on the same allele for this individual, whilst F1538L is on the opposite 

allele. Individual RST3 also had G933V and F1538L, present heterozygously on opposite 

alleles. 

 

5.4 Discussion 

 

Work described in this Chapter describes the sequencing of acarine VGSCs from a 

variety of species and the detection of amino acid substitutions associated with 

resistance to pyrethroids.  

 

Significant progress was made in obtaining new sequence information for the 

membrane-spanning domains of the VGSCs from nine acarine species, A. americanum, 

A. hebraeum, D. gallinae, D. reticulatus, D. variabilis, I. ricinus, P. ovis, R. microplus 

(Parkhurst) and R. sanguineus. In the case of R. microplus the sequencing covers 

almost the entire length of the channel, with just the 5’ start sequence being missing 

(Figure 5.1).  The results highlight the striking similarity of amino acid sequences 

between arthropod VGSCs over their functional membrane spanning domains, in 

particular around the putative pyrethroid binding site (O'Reilly et al., 2006). This has 

supported the view that amino acid 933 could play a role in pyrethroid selectivity. As 

more acarine samples become available, future work should focus on further 

examining the similarities and differences between the channels of a wider variety of 

acari and insects, leading to stronger clarification on the mechanisms of pyrethroid 

binding and selectivity.  

 

The novel amino acid substitution, V1010F, identified in the R. microplus (Parkhurst) 

VGSC could be playing a role in pyrethroid resistance in this strain, especially since it is 

located in close proximity to other mutations already reported to be associated with 
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target-site resistance to pyrethroids in other organisms (Rinkevich et al., 2013) (Figure 

5.3). A similar leucine to valine, V1010L has been found in Anopheles culicifacies 

(malaria mosquitoes) in India by Singh et al in 2010 and in this case V1010L was always 

found in conjunction with L1014S heterozygous on the same allele (Singh et al., 2010). 

L1014S is commonly associated with resistance to pyrethroids in insects, but this 

mutation was not found in the acari in the present study. It is worth noting that 

V1010L has had no associations to pyrethroid resistance as no A. culicifacies 

mosquitoes in the Singh et al 2010 study were screened for their pyrethroid 

susceptibility (Singh et al., 2010). At present it is also not possible to link V1010F with 

resistance to pyrethroids in R. microplus due to the interfering effects of L925I, which 

has been shown to be associated strongly with pyrethroid resistance in arthropods and 

has been confirmed as conferring pyrethroid resistance in electrophysiological studies 

with the D. melanogaster para VGSC (Morgan et al., 2009; Morin et al., 2002; 

Usherwood et al., 2007). However, both the proximity of V1010F to other substitutions 

in the VGSC that have been confirmed to confer pyrethroid resistance (Rinkevich et al., 

2013) and its presence as a homozygous mutation marks it as a potential subject for 

further electrophysiological study.  

 

The study has also led to the characterisation of resistance in R. sanguineus individuals, 

the first time that pyrethroid resistance in this species has been linked to target site 

mutations. The substitution L925I, found in R. sanguineus individual RST2 has been 

linked previously with pyrethroid resistance in several other species (Morin et al., 2002; 

Rinkevich et al., 2013) and has been confirmed to reduce VGSC sensitivity to 

pyrethroids by expression in  in X. laevis oocytes (Usherwood et al., 2007); therefore it 

is likely that this mutation contributes to conferring the resistance to permethrin 

shown by RST2. L925I in RST2 is found heterozygously with G933V and with another 

substitution, F1538L, found in Domain III S6 (Figure 5.2). F1538L has been reported as 

potentially linked to pyrethroid resistance in the VGSC of the pollen beetle Meligethes 

aeneus (Wrzesinska et al., 2014); and a substitution at the same position, F1538I (He et 

al., 1999) has been found in several species to date (Rinkevich et al., 2013) and has 

been confirmed to reduce VGSC sensitivity to pyrethroids by expression in X. laevis 

oocytes (Du et al., 2011). Cloning experiments show that for R. sanguineus RST2, L925I 
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and G933V are found on the same allele, whilst F1538L is found on the opposite allele; 

therefore, it is possible that in this case the substitutions work in concert to give the 

observed phenotypic levels of permethrin resistance.  

 

Individual RST1 was homozygous for the substitution G933V, found in the putative 

pyrethroid binding site (O'Reilly et al., 2006) of Domain II S5 of the VGSC (Figure 8). 

This was also present in R. microplus ticks from Australia, where, the homozygous form 

remained sensitive to the pyrethroid cypermethrin, which has a comparatively small 

acidic moiety, but gave resistance to the pyrethroid flumethrin, which has a 

comparatively large acidic moiety (Jonsson et al., 2010). This specific sensitivity 

supports the pyrethroid-selectivity model suggested by O’Reilly et al, in that the 

slightly larger valine residue found in resistant ticks would preclude binding of 

flumethrin but allow the binding of cypermethrin (O'Reilly et al., 2014). It is a shame, 

therefore, that the resistance phenotype of RST1 is unknown, as this would have given 

a valuable insight not only into its pyrethroid resistance profile, but into the 

relationship between residue 933 and pyrethroid selectivity. Like cypermethrin, 

permethrin has a comparatively small acidic-moiety (Figure 5.5); therefore, the O’Reilly 

model implies that it is unlikely that the G933V mutation alone would give permethrin 

resistance; permethrin being small enough to fit into the VGSC without hindrance from 

the comparatively larger valine residue. 

 

Figure 5.5: The Pyrethroids Cypermethrin and Permethrin 

 

Cypermethrin and permethrin are shown as examples of pyrethroids with small acidic moieties. Areas 
of interest within the acidic portion are highlighted by green boxes. Both pyrethroid structures are 
from ChemSpider 2016. 
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In flumethrin-resistant Australian R. microplus ticks, G933V and L925I were found 

heterozygously on opposite alleles (Jonsson et al., 2010),  suggesting that they may act 

in combination to confer resistance. Interestingly, the resistance profile of these 

individuals showed them to be resistant to flumethrin but not to cypermethrin 

(Jonsson et al., 2010); supporting the model proposed by O’Reilly et al 2014. In the R. 

sanguineus individual RST3 in the present study, G933V and F1538L are also found 

heterozygously on opposite alleles, suggesting that they too could act in combination 

in a similar manner to confer resistance. However, if the model proposed by O’Reilly et 

al 2014 is correct, then the combination of G933V and F1538L in RST3 would not 

confer resistance to permethrin; its comparatively small acidic moiety would allow it to 

bind to channels containing a valine at position 933 (Figure 5.5). It could be that 

F1538L alone gives target site resistance, as suggested case for heterozygous F1538L 

pollen beetles (Wrzesinska et al., 2014). Alternatively, in both RST3 and pollen beetles 

metabolic resistance could be involved, and such resistance has been characterised 

previously in both species (Miller et al., 2001; Philippou et al., 2011).  

 

It would be useful to do further studies of the R. sanguineus ticks from this 

geographical area to get a better understanding of their resistance to permethrin and 

how this might inform the pyrethroid binding model, proposed by O’Reilly et al in 2014, 

and which is under investigation in the present study. It would be relevant to test the 

susceptibility of such ticks to a range of pyrethroids, to see whether their resistance 

profiles differ for pyrethroids with large acidic moieties such as flumethrin. Further 

examination of sequence data from both survivors and susceptible individuals could 

then identify any target site mutations involved. If ticks which survive a flumethrin 

treatment, but not a permethrin treatment, are homozygous for G933V (like RST1), 

this would support the model.  
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6 Progress in Obtaining a Chimeric Arthropod VGSC 

 

6.1 Chapter Introduction and Aims 

 

Study of a tick VGSC by expression in X. laevis oocytes has been frustrated by the lack 

of a complete sequence encoding such a channel. Attempts to use of Rapid 

Amplification of cDNA Ends (RACE) and a R. microplus Illumina transcriptome to 

provide the sequence of a 5’ end of a tick VGSC were also unsuccessful in the current 

study (Chapter 5). Therefore, the aim of the present chapter was to produce a chimeric 

channel with the domain-spanning sequence and functionality (voltage sensing and 

pore forming domains) of a R. microplus channel but with the N and C termini of an 

insect, D. melanogaster, VGSC. The resulting construct would be expected to function 

as a R. microplus channel when expressed in X. laevis oocytes and could thus be used 

to investigate pyrethroid activity at an acarine VGSC; allowing comparison of 

pyrethroid selectivity between acarine and insect VGSCs to inform targeted pesticide 

application.  

 

R. microplus was chosen because of the economic burden of treatment against this 

parasite, and because it was  the only tick species that had been shown to have target-

site mediated pyrethroid resistance (Rinkevich et al., 2013).  

 

6.2 Chapter Specific Methods 

 

6.2.1 para 13-5 Mutagenesis and Primer Design 

 

A construct containing a functional D. melanogaster para VGSC was supplied by Martin 

Williamson (Rothamsted Research, Hertfordshire, UK). This construct, para 13-5 

(Warmke et al., 1997), is the plasmid vector pGH19 containing the D. melanogaster 

para VGSC flanked by the 5’ and 3’ untranslated X. laevis beta-globin sequences, to 

stabilize heterologous cRNAs expressed in X. laevis oocytes (Liu et al., 1996). 
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To create a R. microplus/D. melanogaster chimeric VGSC construct, it was first 

necessary to find sites that would allow the creation of unique restriction sites in para 

13-5 by site-directed mutagenesis to enable the insertion of the domain-spanning (or 

functional) region of the R. microplus VGSC into the D. melanogaster para channel.  

The  D. melanogaster para VGSC gene and the R. microplus domain regions were 

aligned in Geneious (Section 4.14) and two suitable restriction enzymes were identified; 

AflII (New England Biolabs® Incorporated) at the 5’ end and AbsI (SibEnzyme®) at the 3’ 

(Figure 6.1). The primers used to create AbsI and AflII sites in the D. melanogaster para 

VGSC are listed in Table 6.1. 
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Figure 6.1: The para 13-5 Construct Showing the Modifications Needed to Generate 

the R. microplus/D. melanogaster para chimeric VGSC Construct 

 

 
The para 13-5 construct used in the creation of a D. melanogaster para/R. microplus chimeric VGSC. 
To create the channel construct, mutagenesis of the existing para 13-5 construct was performed to 
insert cut sites for the restriction enzymes AflII and AbsI. At the same time, PCR was used to generate 
complimentary sites at the end of the domain-spanning regions of the R. microplus VGSC. Restriction 
digestion and subsequent ligation would give a chimeric D. melanogaster para/R. microplus VGSC 
channel construct. 
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Table 6.1: Primers Used to Create AbsI and AflII Sites in the D. melanogaster para gene in para 13-5 

Name Restriction Site Progress Sequence 5'-3' Base Pairs 

ParaMut5'F3M First 3 mutations towards AflII site GCAATGTGGCTCTTCGATCCATTCAATCCGATACGTCGTGTGGCC 45 

ParaMut5'R3M First 3 mutations towards AflII site GGATTGAATGGATCGAAGAGCCACATTGCTTTTGATGCAGAAAAGCG 47 

ParaMut5'F AflII site complete GCAATGTGGCTCTTAAGTCCATTCAATCCGATACGTCGTG 40 

ParaMut5'R AflII site complete GGATTGAATGGACTTAAGAGCCACATTGCTTTTGATGCAG 40 

ParaMut3'F3M First 3 mutations towards AbsI site TTCCTGGACGCCCTCGAGCCCCCGCTGCAGATCC 34 

ParaMut3'R3M First 3 mutations towards AbsI site TCTGCAGCGGGGGCTCGAGGGCGTCCAGGAATTCG 35 

ParaMut3'F AbsI site complete TTCCTGGACGCCCTCGAGGAGCCGCTGCAGATCC 34 

ParaMut3'R AbsI site complete TCTGCAGCGGCTCCTCGAGGGCGTCCAGGAATTCG 35 
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Mutagenesis of para 13-5 to create the AflII and AbsI sites used  the QuikChange II XL 

Site-Directed Mutagenesis Kit (Agilent Technologies) and the primers shown in Table 

6.1. Two rounds of mutagenesis were required; in the first reaction, primers were 

designed to generate the first three mutations needed to create each restriction site, 

and in the second reaction the primers were designed to give complete restriction 

sites. Each mutagenesis reaction the cycling parameters shown in Table 6.2. 

 

Table 6.2: PCR Conditions for the Creation of AbsI and AflII Sites in para 13-5. 

Segment Cycles Temperature Time 

1 1 95°C 1 minute 

2 18 

95°C 50 seconds 

60°C 50 seconds 

68°C 1 minute per Kb of plasmid 

3 1 68°C 10 minutes 

 

After the mutagenesis of para 13-5 the sequence was checked by sequencing a second 

AbsI site, previously unknown in the plasmid due to a prior sequencing discrepancy, 

was located. This was removed by a further round of site-directed mutagenesis using 

the same protocol as shown in Table 6.2 and the primers shown in Table 6.3. 

 

Table 6.3: Primers Used to Remove Second AbsI Sites from para 13-5 

Name Sequence 5'-3' Base Pairs 

AbsI2MutF CGGCCGCCTCCAGGCTAGCTTGAGTATC 45 

AbsI2MutR AAGCTAGCCTGGAGGCGGCCGCCTGCAGG 47 

 

6.2.2 Amplification of the Domain-Spanning Region of the R. microplus VGSC 

 

The full-length domain (FLD) spanning region of the R. microplus VGSC was amplified 

using the nested PCR protocols detailed in Tables 6.4-6.7. Primers RMFLFA and 

RMFLRA were designed to create AflII and AbsI sites at the 5’ and 3’ ends respectively 

of the R. microplus VGSC such that the amplicon could be inserted, in frame, into the 

sites created in para 13-5 as detailed in Section 6.2.1. All primer Tm’s were calculated 

using New England Biolabs’s Q5 Tm Calculator. 
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Table 6.4: PCR1 Reaction Setup 

Component Negative Control Reactions [Final] 

5X Q5 Reaction Buffer 10 µl 10 µl 1X 

10 mM dNTPs 1 µl 1 µl 200 µM 

10 µM RMFLNMFA 
GACTACGTCCACCACTCGC 

2.5 µl 2.5 µl 0.5 µM 

10 µM RMFLNMRA 
TTGCGGGCGAAGAAGTCC 

2.5 µl 2.5 µl 0.5 µM 

Template 2 µl dH2O 2 µl cDNA  

Nuclease-Free Water 31.5 µl 31.5 µl 
 

Q5 High-Fidelity DNA Polymerase 0.5 µl 0.5 µl 0.02 U/µl 

 

Table 6.5: Thermocycling Conditions 

Step Temperature Time 

Initial Denaturation 98°C 1 minute 

35 Cycles 

98°C 30 seconds 

69°C 30 seconds 

72°C 5 minutes 

Final Extension 72°C 5 minutes 

Hold 10°C ∞ 

 

Table 6.6: PCR2 Reaction Setup 

Component 
Negative 
control 

Reactions [Final] 

5X Q5 Reaction Buffer 10 µl 10 µl 1X 

10 mM dNTPs 1 µl 1 µl 200 µM 

10 µM RMFLFA 
GCGCTGTTTCTCTTAAGCCCCTTCAACC 

2.5 µl 2.5 µl 0.5 µM 

10 µM RMFLRA 
GGATCTGCAGAGGCTCCTCGAGGGCGTTCACG 

2.5 µl 2.5 µl 0.5 µM 

Template 
2 µl 
dH2O 

2 µl PCR1  

Nuclease-Free Water 31.5 µl 31.5 µl 
 

Q5 High-Fidelity DNA Polymerase 0.5 µl 0.5 µl 0.02 U/µl 

 

CTTAAG = AflII restriction endonuclease site 

CCTCGAGG = AbsI restriction endonuclease site 
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Table 6.7: Thermocycling Conditions 

Step Temperature Time 

Initial Denaturation 98°C 1 minute 

35 Cycles 

98°C 30 seconds 

72°C 30 seconds 

72°C 5 minutes 

Final Extension 72°C 5 minutes 

Hold 10°C ∞ 

 

The resulting PCR product was fully sequenced using primers shown in Table 5.4. 

 

6.2.3 Ligation Reactions to Create a Chimeric Arthropod VGSC Construct 

 

Firstly a total of 3 µg each of the doubly mutated para 13-5 plasmid (the vector) 

(Section 6.2.1) and the R. microplus VGSC PCR product (the insert) (Section 6.2.1) were 

cut with AflII in 1X CutSmart® Buffer (50 mM Potassium Acetate, 20 mM Tris-acetate, 

10 mM Magnesium Acetate, 100 μg/ml BSA) (New England Biolabs® Incorporated) in a 

total reaction volume of 50µl at 37°C for one hour. Samples were then heated to 65°C 

for 20 minutes to denature the AflII enzyme. In the same manner 500 ng of un-

mutated para 13-5 was treated with AflII as a negative control for AflII digestion 

(Control A). This was frozen along with another control (Control B) of 5 µl cut vector 

DNA, to act as both a positive vector digestion and a ligation control.  

 

AflII cut Control B (4 µl), insert, and the remaining vector DNA was ethanol precipitated 

as (Section 4.12) and the pellet resuspended in 49µl AbsI 1X Reaction Buffer (10 mM 

Tris-HCl (pH 9.0 at 25°C), 10 mM MgCl2, 50 mM KCl, 1mM DTT) (SibEnzyme®). After 1 

µl of vector and insert DNA was removed (to act as a control for the efficiency of 

ethanol precipitation) 2µl of AbsI was added to the AflII-cut vector and insert tubes 

and both were incubated at 37°C for one hour. Concurrently the following control 

digestions (controls C-F) were performed in 1X AbsI or 1X Fast Digest reaction buffer at 

37°C, in a total volume of 25 µl (Table 6.8). 
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Table 6.8: Control Reactions 

Control Contents 

C 500ng para 13-5 cut with Fast Digest NotI (ThermoFisher Scientific). 

D 500ng para 13-5 with AbsI only. 

E 500ng vector with NotI (ThermoFisher Scientific). 

F 500ng vector with AbsI only. 

 

All resulting controls and double-digested vector and insert DNA were run overnight 

on a 1% agarose gel, along with uncut parental para 13-5 and uncut vector and insert 

DNA. The next day the gel was stained with ethidium bromide (0.75 µg/ml) for 30 

minutes, then de-stained in 300 ml distilled water before visualisation (Figure 6.2). 

 

Figure 6.2: Gel of DNA Fragments used in the Creation of a Chimeric D. melanogaster 

para and R. microplus VGSC Construct. 

                                                                     LANE NUMBER 
 

 

 

 

 

 

 

 

 
Lane 1 is a 1Kb DNA Ladder (GeneRuler™, Fermentas) with the size, in base pairs, of each band on the 
left-hand side of the gel image. Lane 2 is uncut para 13-5 plasmid, Lane 3 uncut vector and Lane 4 
uncut insert. Lane 5 is Control A and Lane 6 Control B (see 6.2.3). Lanes X and Y have 1 µl each of 
ethanol purified AflII cut vector and insert respectively. Lanes 7-10 are Controls C-F. Double AflII/AbsI 
digested vector was split between Lanes 11 and 12 and insert between Lanes 13 and 14. 

 

The gel (Figure 6.2) showed that the control A DNA  (Lane 5) was uncut, indicating that 

para 13-5 does not have any additional AflII sites. In contrast, Control B (Lane 6) 

showed that the mutated para 13-5 had been cut successfully with AflII to give a linear 

band. Control X and Y, composed of 1 µl of ethanol purified AflII cut vector and insert 

DNA, show that DNA was not being lost during the ethanol precipitation process. 

Controls C and D (Lanes 7 and 8 respectively), showed that para 13-5 was cut 
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successfully with NotI and with AbsI as expected. Controls E and F (Lanes 9 and 10 

respectively) showed that the vector was cut successfully with NotI and also with AbsI, 

although the  AbsI digestion was less efficient and possibly showed star activity. The 

double digested vector DNA  (in both Lanes 11 and 12) showed a fragment at 

approximately 5,200bp,  representing the D. melanogaster para VGSC domains being 

removed and a fragment of approximately 4,100 bp, representing the pGH19 vector 

with D. melanogaster para 5’ and 3’ VGSC tails, as needed to make the chimeric 

construct. The double digested insert is shown in Lanes 13 and 14. After visualisation 

bands representing all vector and insert fragments (including the removed D. 

melanogaster para VGSC fragment) and control bands B-F were cut from the gel and 

the DNA extracted (Section 4.8). Note that the upper vector gel fragments from lanes 

11 and 12 were combined, the lower vector gel fragments from lanes 11 and 12 were 

combined and insert fragments from lanes 13 and 14 were combined to increase the 

amount of DNA. Samples were eluted into 50 µl nuclease-free water and 1 µl of each 

was run on a 1% agarose gel to check DNA recovery. 

 

The ligation of the DNA fragments  used New England Biolabs’s® High-concentration T4 

DNA ligase and the ligation mix contained 1000 cohesive end units in a total reaction 

volume of 10 µl in 1X DNA ligase buffer (50 mM Tris-HCl, 10 mM MgCl2, 1 mM ATP, 10 

mM DTT). The construct was made from 2.5µl of prepared vector (pGH19 with 5’ and 

3’ D. melanogaster para channel tails) and 5µl of prepared insert DNA with a DNA 

quality and ligation control comprising 2.5 µl of prepared vector (pGH19 with 5’ and 3’ 

D. melanogaster para channel tails) and 5µl of the D. melanogaster para VGSC 

domains removed by double-digest. As a ligation efficacy control 5µl of Controls B-F 

were added to further separate ligation mixes. The ligations were incubated at 16°C 

overnight and then 2µl of each was removed and used to transform XL1 Blue E. coli 

(Section 4.10). The remainder of each ligation mix was then incubated for a further 48 

hours at 4°C and then 2µl of each was removed and used to transform XL1 Blue E. coli 

(Section 4.10). Plates were incubated for 24 hours at 32°C, resulting colonies were 

picked and overnight cultures were prepared in 2 ml LB broth containing 50 µg/ml 

ampicillin (Section 4.7). DNA was prepared from the cultures using a Qiagen mini-prep 

kit to remove plasmid DNA (Section 4.13). Extracted DNA was sent for sequencing 
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(Section 4.1) to check the presence and reading frame of the R. microplus full-length 

domain-spanning insert using primers shown in Table 6.9. 

 

Table 6.9: Primers Used to Sequence Chimeric VGSC Constructs 

Primer Name Primer Sequence 5'-3' Primer Length (Base Pairs) 

T7* TAATACGACTCACTATAGGG 20 

RM DIS1 R GGTGCACTAGGATGCAGATG 20 

RM DIS1 F CATCTGCATCCTAGTGCACC 20 

RM DIS3 F GGATTTTGTTGTTATATCTCTAGCG 25 

RMSeqCheck5' CGCTAGAGATATAACAACAAAATCC 25 

DI-II FCP F CCTGGGCTCCTTCTATCTAGT 21 

DI-II FCP R AGCAATTGGCCATGCACTTG 20 

DII FCP F CGCTATTCATGGCCATGGAC 20 

RM DIIS2 R CATAAGCTTCATTCCAGC 18 

RM DIIS2 F GCTGGAATGAAGCTTATG 18 

RM DII-III R GTCGGGATTCGCTTGGGACAG 21 

RM DII-III F CTGTCCCAAGCGAATCCCGAC 21 

RM DII-III RB GTGTCCACATCTTCCGTGTC 20 

RM DII-III FB GACACGGAAGATGTGGACAC 20 

D II-III FCP R ATCGCGTGTAACACCAGTCG 20 

RM DIIIS5 R CTTTCCCGCAAGCATCTGGA 20 

RM DIIIS5 F TCCAGATGCTTGCGGGAAAG 20 

RM DIVS3 R AGGTCCTTTAGCACCGTACC 20 

RM DIVS3 F GTGCTAAAGGACCTGATCGC 20 

RMSeqCheck3' CTTGTGATGTTCATCTACGC 20 

ParaRMCheckF ACCTCATCATCAGCTTCCTCG 21 

RM PostDIV R TTGGTCAGGTTGGAGTAGGC 20 

RM PostDIV F GCCTACTCCAACCTGACCAA 20 
*T7 Universal Primer designed to anneal to the T7 promoter sequence found in pGH19 (Sambrook and 
Green, 2012). 

 

6.2.4 Removal of a NotI Site from the R. microplus Sequence 

 

As the native R. microplus channel (Section 10.1 Appendix 1) contains a NotI restriction 

site and this enzyme was used to linearize plasmid vector pGH19 prior to cRNA 

transcript preparation (Chapter 7) the chimeric constructs underwent site-directed 

mutagenesis to remove this site following the protocol shown in Table 6.2 and the 

primers shown in Table 6.10. The constructs were fully sequenced after this process 

(using primers shown in Table 6.9) to check for additional any mutations that might 

have been introduced. 
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Table 6.10: Primers Used to Remove Second NotI Sites from Chimeric Constructs 

Name Sequence 5'-3' Base Pairs 

NotI Removal F CCGGAGTCGCGCCCGCGCTCCGCCGCC 27 

NotI Removal R GCGGAGCGCGGGCGCGACTCCGGGTAG 27 

 

6.3 Results 

 

6.3.1 Creation of R. microplus/D. melanogaster para Chimeric VGSCs 

 

Three chimeras were successfully created, constructs Chimera L2, Chimera L4 and 

Chimera LC (Figure 6.3).  All three resulted in slow growth when they transformed E. 

coli a characteristic noted previously in E. coli containing functional arthropod VGSCs 

(Martin Williamson and Joel González-Cabrera personal communication). However, 

whilst all constructs contained the R. microplus functional domains successfully ligated 

into the D. melanogaster para channel, subsequent sequencing revealed that all 

sequences contained premature stop codons. Note that these were present in Chimera 

LC and Chimera L4 both before and after removal of the NotI site. Chimera L2 and 

Chimera L4 were found to be identical, and both contained a frame-shift mutation 

between Domains I and II, caused by the deletion of amino acids and resulting in the 

creation of many stop codons before the start of Domain II in both clones (Figure 6.3). 

A further deletion also occurred in these clones, in an area homologous to optional 

exon b, a removal variation first described in the D. melanogaster para VGSC and since 

documented several arthropod species (Dong et al., 2014; Loughney et al., 1989). This 

deletion alone would not cause a frame shift in the channel (Figure 6.3). Finally, a 

probable alternative exon is was present in Chimera L2/L4, in a homologous position to 

that of variations seen in other arthropods. This variable region was first described as 

the mutually exclusive exons k and l in the M. domestica Vssc1 and D. melanogaster 

para VGSCs, and was subsequently documented in two other arthropod species, B. 

germanica and V. destructor (Dong et al., 2014; Lee et al., 2002). Chimera LC was found 

to contain a point-mutation encoding a stop codon between Domains I and II, in place 

of a tryptophan in the native R. microplus channel (Figure 6.3). The full sequences of 

Chimera LC and Chimera L2/L4 can be found in Section 10.3 Appendix 3.  
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Figure 6.3: Comparison of the R. microplus, Chimera L2, Chimera L4, and Chimera LC VGSCs over Variable Regions of Interest. 

 

Chimera constructs Chimera LC, Chimera L2 and Chimera L4 compared over variable regions to each other and the R. microplus full-length domain PCR product shown in 
Section 10.1 Appendix 1 and detailed in Chapter 5.  

 

(A) 

 

The first deletion region in Chimera L2 and Chimera L4, giving a frame shift in these clones and causing subsequent stop codon creation. Also the guanine to adenine mutation 
resulting in the creation of a tryptophan to stop substitution in Chimera LC. The R. microplus PCR product (Chapter 5) (Section 10.1 Appendix 1) is set as the reference sequence 
and colour highlighting indicates variations from this sequence.  

 

(B) 

 

The second deletion region in Chimera L2 and Chimera L4 around a region corresponding to optional exon b in other arthropods (Dong et al., 2014). This is shown removing the 
frame shift created by the first deletion for clarity.  
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(C) 

 

The variable region found in R. microplus constructs corresponding to the mutually exclusive exons k and l in D. melanogaster and M. domestica, exon 3 in V. destructor (Wang 
et al., 2003), and exons G1, G2 and G3 in B. germanica (Tan et al., 2002). The R. microplus PCR product (Chapter 5) (Section 10.1 Appendix 1) is set as the reference sequence 
and colour highlighting indicates variations from this sequence. 
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Given the importance of obtaining a functioning R. microplus/D. melanogaster VGSC, 

attempts were made using site-directed mutagenesis to change the stop codon in 

Chimera LC back to a tryptophan, and to remove a guanine nucleotide from around the 

Exon b removal site in Chimera L4 and Chimera L2 to correct the frame shift. Although 

the mutagenesis reactions were successful, all resulting constructs were further 

mutated, presumably by the E. coli, and would not be expected to express functional 

VGSCs. As found when X. laevis oocytes were injected with cRNA from a similarly 

truncated channel from B. germanica (Tan et al., 2002). Further attempts to obtain a 

functional VGSC used Chimera LC as a start point. These attempts included:  

 

 Changing the E. coli cell type used for growth following mutagenesis (XL1 Blue, XL10 

Gold and Stbl2 cells were all used),  

 Lowering the growth temperature to room temperature, 

 Using carbenicillin in place of ampicillin in LB growth media, 

 Mutagenesis then removal of the T7 promoter from the construct, 

 Colony PCR of transformed E. coli prior to liquid culture growth using primers 

designed to amplify the full-length chimeric channel, 

 A “ZIP-PCR”  as an alternative to site-directed mutagenesis; this involves two rounds 

of PCR, with the first designed to amplify the two halves of the construct and in the 

process remove the stop codon, and the second to “zip” these two halves together 

and give a full-length channel. 



 

 

104 

6.4 Discussion 

 

In summary none of the attempts to create R. microplus/D. melanogaster chimeric 

VGSC constructs for functional studies were successful, which was very disappointing. 

However, future work on the constructs might produce a functional channel. Moving 

the chimeric VGSC and X. laevis Beta-globin sequences to different bacterial expression 

vectors, to see if this stabilises the construct in E. coli, is a potential solution. As is 

moving these regions to an insect expression vector, then attempting maintenance, 

and even chimeric channel expression, in insect cells. Any VGSC expression could then 

be monitored using patch-clamp techniques. 

 

In addition, there are some interesting wider inferences to be made from the data 

obtained in this study. Despite their frame-shift deletion, Chimera L2 and Chimera L4 

showed possible alternative exon usage within the R. microplus VGSC, which is 

comparable to that seen in other arthropods (Dong et al., 2014). Firstly around an area 

homologous to optional exon b, a variation first described in the D. melanogaster para 

channel and since documented in several arthropod species (Dong et al., 2014; 

Loughney et al., 1989). This exon is suspected to be involved in the modulation of 

current flow, as removal of this region has been shown to increase current expression 

of B. germanica and V. destructor channels (Du et al., 2009a; Song et al., 2004). 

Furthermore, Chimeras L2/L4 showed alternative exon usage in a homologous position 

to that of mutually exclusive exons k/l, a variation first described in the M. domestica 

Vssc1 and D. melanogaster para VGSCs (Dong et al., 2014; Lee et al., 2002) (Figure 15). 

This region is also homologous to sites of variation documented in two other 

arthropod species, B. germanica and V. destructor. In B. germanica the same region 

contains one of three mutually exclusive exons G1, G2 or G3, with G3 encoding a stop 

codon and thus a truncated channel protein that is not functional in X. laevis oocytes 

(Tan et al., 2002). In V. destructor the same region contains exon 3, which interestingly 

is either present or absent, and thus would also encode a truncated channel protein 

(Wang et al., 2003). The arrangement of this region is homologous to, and conserved 

in, the vertebrate VGSC Nav1.6. As found in mice, humans and fish (Plummer et al., 

1997). This level of conservation suggests that alternative splicing in this region is likely 
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of ancient evolutionary origin and that it may play a role in the control of VGSC 

expression and/or function (Dong et al., 2014). Indeed it has been shown that the 

amino acid sequence within this exon region modulates the generation of a persistent 

current in the D. melanogaster para channel, with channels containing exon l showing 

greater persistent currents (so maintaining the open state for longer) than those 

containing exon k (Lin et al., 2009). This is supported by findings that alternative 

splicing that includes exon l over exon k is associated with increased neuronal activity 

(Lin et al., 2012). All chimeric constructs created in the present study show a slightly 

greater level of similarity to exon l in D. melanogaster para (Figure 6.4). However, 

Chimera LC and the R. microplus PCR product (Chapter 5) (Section 10.1 Appendix 1) 

show less similarity to this exon than do Chimeras L2/Chimera L4, and interestingly 

these sequences also show less similarity to the published sequence for I. scapularis 

and V. destructor. It could be therefore that Chimera LC and the R. microplus PCR 

product represent an “exon k” or “G2” type variant in R. microplus.  
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Figure 6.4: A Comparison of the Conserved Variable Region in Domain III Segments 3 and 4 of Arthropod VGSCs 

 

(A) 

 

 
(B) 

 

Comparison of the variable region found in Domain II Segments 3 and 4 of selected arthropod VGSCs. (A) The region with no highlighting. (B) The region highlighting 
differences to the sequence consensus. The sequence for D. melanogaster and M. domestica was taken from Lee et al 2002, B. germanica from Tan et al 2002, and V. 
destructor from Wang et al 2003. Sequences for R. microplus and chimeric constructs are from the current study.  
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It would be interesting to investigate the use of alternative exons found in this study in 

R. microplus, including in different developmental stages and tissue types, as this could 

help target pyrethroid control strategies to a particular tick life-stage. Variation in 

expression is already seen in exon G1/G2/G3 in different life stages of B. germanica 

(Tan et al., 2002). This could be informative from an acarine control perspective, as 

such variation in channel structure could affect pyrethroid action at the R. microplus 

VGSC, given that pyrethroids act by increasing current persistence (Davies et al., 2008) 

and considering the link between exon k/l variation and current persistence reported 

(Lin et al., 2009). Furthermore, D. melanogaster para VGSCs expressing the k exon 

variation have been reported to be 24 times less sensitive to the pyrethroid 

deltamethrin than those expressing the l exon variation (Burton, 2012), Further work 

could therefor also involve inserting the suspected R. microplus exon “l” and “k” 

sequences separately in place of the same region in the D. melanogaster para or V. 

destructor VGSC. By employing the same investigative methods as in Chapter 7, it 

would then be possible to investigate the effects of R. microplus “exon k/l” usage on 

pyrethroid sensitivity using electrophysiological methods.  
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7 Electrophysiological Studies of Acarine and Insect VGSCs 

 

7.1 Chapter Introduction and Aims 

 

The aim of this chapter was to compare insect and acarine VGSC function and test the 

idea, proposed by O’Reilly et al 2014, that residue 933 is involved in pyrethroid 

selectivity; to this end both native and mutated versions of the arthropod VGSCs were 

expressed in X. laevis oocytes. Differences in VGSC responses to pyrethroid insecticides 

with large and small halogenated-groups could then be recorded using TEVC 

techniques (Section 3.6). Disappointingly, a R. microplus/D. melanogaster chimeric 

channel could not be successfully maintained in E. coli (Chapter 6) so the studies were 

done using native and mutant VGSCs from D. melanogaster and the honeybee mite V. 

destructor. The native VGSC constructs used were D. melanogaster para 13-5 (as 

cloned by Feng et al 1995) (Section 6.2.1) and V. destructor 13-5 (the plasmid vector 

pGH19 containing the V. destructor VGSC flanked by the 5’ and 3’ untranslated X. laevis 

beta-globin sequences, as cloned by Joel González-Cabrera at Rothamsted Research).  

 

7.2 Chapter Specific Methods 

 

7.2.1 Mutagenesis of D. melanogaster para VGSC at Residue 933 

 

Mutagenesis of the D. melanogaster para VGSC construct D. melanogaster para 13-5 

was carried out using the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent 

Technologies) (Section 4.15). Primers (Table 7.1) were designed to change the residue 

from a cysteine in most native insect VGSCs, including the D. melanogaster para VGSC, 

to either: 

 An alanine: As found in some mite species at position 933.  

 A glycine: As found at position 933 in all tick and most mite species sequenced to 

date. 

 A valine: As found at position 933 in R. microplus ticks which are sensitive to 

cypermethrin (which has a relatively small acidic moiety), but resistant to 

flumethrin (with a relatively large acidic moiety)  (Jonsson et al., 2010). 
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Table 7.1: Primers Used to Change Residue 933 of the D. melanogaster para VGSC 

Name Sequence 5'-3' Base Pairs 

ParaMutC933AF 
GTAATCTGACATTTGTACTTGCCATT

ATCATCTTCATCTTTGCGGTGATG 
50 

ParaMutC933AR 
CGCAAAGATGAAGATGATAATGGCA
AGTACAAATGTCAGATTACCCAAAG 

50 

ParaMutC933GF 
GTAATCTGACATTTGTACTTGGCATT

ATCATCTTCATCTTTGCGGTGATG 
50 

ParaMutC933GR 
CGCAAAGATGAAGATGATAATGCCA
AGTACAAATGTCAGATTACCCAAAG 

50 

ParaMutC933VF 
GTAATCTGACATTTGTACTTGTCATT

ATCATCTTCATCTTTGCGGTGATG 
50 

ParaMutC933VR 
CGCAAAGATGAAGATGATAATGACA
AGTACAAATGTCAGATTACCCAAAG 

50 

 

All mutagenesis reactions were cycled using the cycling parameters shown in Table 7.2 

 

Table 7.2: PCR Conditions Used for Mutagenesis of Residue 933 of the  

D. melanogaster para VGSC 

Segment Cycles Temperature Time 

1 1 95°C 1 minute 

2 18 

95°C 50 seconds 

60°C 50 seconds 

68°C 10 minutes 

3 1 68°C 10 minutes 

 

Following mutagenesis, 2µl of each sample was transformed into Stratagene’s XL1 Blue 

ultracompetent cells and with non-mutated D. melanogaster para 13-5 was used as a 

growth control (Section 4.10). Following growth at 30°C, small colonies that grew in 

the same way as the control colonies containing the native D. melanogaster para 13-5, 

were picked, along with a control colony, and grown in LB liquid media containing 50 

µg/ml Amp. After 24-48 hours, plasmid DNA from colonies that grew at the same rate 

as the native D. melanogaster para 13-5 control were purified using a mini-prep 

(Qiagen), plasmid DNA was also purified form a colony of the native D. melanogaster 

para 13-5 control (Section 4.13). Extracted plasmids were then used as templates in 

PCR reactions that amplified the D. melanogaster para VGSC gene region of the 

constructs, along with the 5’ and 3’ untranslated X. laevis beta-globin sequences. This 

allowed an increase in the amount of VGSC gene DNA available for sequencing. PCR 
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reactions were carried out using New England Biolabs’s Q5® High-Fidelity DNA 

Polymerase (Q5) the reagents, pGH19-specific primers, and cycling conditions are 

shown in Tables 7.3 and 7.4. 

 

Table 7.3: PCR Reagents Used in the Amplification of VGSCs in D. melanogaster para 

13-5 

Component Negative Control Reactions [Final] 

5X Q5 Reaction Buffer 10 µl 10 µl 1X 

10 mM dNTPs 2 µl 1 µl 400 µM 

10 µM 5’_UTR_3_F Primer 
GGGATGTGCTGCAAGGCGATTAAG 

2.5 µl 2.5 µl 0.5 µM 

10 µM 3’_UTR_3_R Primer 
GTATAGATACTCAAGCTAGCCTCG 

2.5 µl 2.5 µl 0.5 µM 

Template 0.5 µl dH2O 0.5 µl para 
13-5  

Template 

 

Nuclease-Free Water 32 µl 32 µl  

Q5 High-Fidelity DNA Polymerase 0.5 µl 0.5 µl 0.02 U/µl 

 

Table 7.4: PCR Reaction Conditions Used in the Amplification of VGSCs in  

D. melanogaster para 13-5 

Step Temperature Time 

Initial Denaturation 98°C 30 seconds 

35 Cycles 98°C 10 seconds 

68°C 20 seconds 

72°C 7 minutes 

Final Extension 72°C 5 minutes 

Hold 10°C ∞ 

 

The products of the PCR reactions were analysed for the presence of the required PCR 

product using gel electrophoresis on a 1% agarose gel in 1xTAE. The DNA was then 

precipitated (Section 4.2) and sent for sequencing (Section 4.14) using the primers 

shown in Table 7.5, to check the success of the mutagenesis reaction and confirm that 

no additional mutations had occurred during the transformation into E. coli. 
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Table 7.5: Primers Used to Sequence VGSCs in D. melanogaster para 13-5 

Name Sequence 5'-3' Base Pairs 

598_F_Dm TGCCCGTTTACGTATCTTAGAG 22 

705_R_Dm TCGCAGGGCTGCTAGATTAC 20 

1251_F_Dm TTTGATTTTGGCCATTGTTG 20 

1353_R_Dm AGCTTCTTCCGCTTCACGTA 20 

1909_F_Dm TATACCTCGCATCAGTCCCG 20 

2001_R_Dm CTCCTTGGTCATTGTGCTGA 20 

2548_F_Dm TATTTCTTCACCGCCACCTT 20 

2640_R_Dm GAAGATGTTCCAGCCCTCCT 20 

3203_F_Dm GGGTTAAGCGTAATATTGCTGA 22 

3854_F_Dm TGAGTAGCTTAGCTTTGGCA 20 

3953_R_Dm AATATAACCGTAAATATTCTGTCCA 25 

4497_F_Dm ACCAATTCGTGAAACGAACA 20 

4594_R_Dm TGATAACACCAATGAACAGATTGA 24 

5158_F_Dm CTGTTCAACATCTGCCTGCT 20 

5800_F_Dm GAGATTGGTGAGATAGCGGC 20 

5898_R_Dm GATTAGCCGGGCGCAGTA 18 

 

7.2.2 Mutagenesis of the V. destructor VGSC at Residue 933 

 

Mutagenesis of the V. destructor VGSC was done as described in 7.2.1 using the 

QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies) (Section 4.15). 

Primers were designed (Table 7.6) to change the residue at position 933 in the V. 

destructor VGSC to either: 

 A cysteine: As found at position 933 in most insect species including  

D. melanogaster. 

 A valine: As found at position 933 in R. microplus ticks which are sensitive to 

cypermethrin (which has a relatively small acidic moiety), but resistant to 

flumethrin (with a relatively large acidic moiety)  (Jonsson et al., 2010). 
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Table 7.6: Primers Used to Change Residue 933 of the Varroa 13-5 at Residue 933 

Name Sequence 5'-3' Base Pairs 

VarroaMutG933CF 
GCTCTGGGTAACCTGACCTTT
GTGTTGTGCATTATCATCTTC 

42 

VarroaMutG933CR 
GATGATAATGCACAACACAAA
GGTCAGGTTACCCAGAGCTCC 

42 

VarroaMutG933VF 
GCTCTGGGTAACCTGACCTTT
GTGTTGGTAATTATCATCTTC 

42 

VarroaMutG933VR 
GATGATAATTACCAACACAAA
GGTCAGGTTACCCAGAGCTCC 

42 

 

All mutagenesis reactions were cycled using the cycling parameters shown in Table 7.7. 

 

Table 7.7: PCR Conditions Used for Mutagenesis of Residue 933 of the V. destructor 

VGSC 

Segment Cycles Temperature Time 

1 1 95°C 1 minute 

2 18 

95°C 50 seconds 

60°C 50 seconds 

68°C 10 minutes 

3 1 68°C 10 minutes 

 

Following mutagenesis samples were cloned into Stratagene’s XL1 Blue and XL10 Gold 

ultracompetent cells and Invitrogen’s MAX Efficiency® Stbl2™ competent cells a non-

mutated D. melanogaster para 13-5 was used as a growth control (Section 4.10).  

 

Following growth at 30°C, small colonies that grew in the same way as the control 

colonies were picked, along with a control colony and grown in LB liquid media 

containing 50 µg/ml Amp. The same colonies were used in colony PCR reactions 

(Section 4.11) to obtain the full-length V. destructor VGSC gene region of the V. 

destructor 13-5 constructs, along with the 5’ and 3’ untranslated X. laevis beta-globin 

sequences needed to stabilize the heterologous cRNAs when expressed in X. laevis 

oocytes (Liu et al., 1996). Following colony PCR, the wild-type V. destructor 13-5 

construct and each amplicon was used as a template in a nested PCR reaction to 

amplify the gene region of the V. destructor 13-5, along with the 5’ and 3’ untranslated 

X. laevis beta-globin sequences. This allowed an increase in the amount of DNA 

available for sequencing and provided linear products for reverse transcription. PCR 
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reactions were carried out using New England Biolabs’s Q5® High-Fidelity DNA 

Polymerase (Q5). The reagents, pGH19-specific primers and cycling conditions in 

Tables 7.8 and 7.9. 

 

Table 7.8: Reagents Used Nested PCR to Amplify V. destructor 13-5 Products 

Following Colony PCR 

Component Negative Control Reactions [Final] 

5X Q5 Reaction Buffer 10 µl 10 µl 1X 

10 mM dNTPs 2 µl 1 µl 400 µM 

10 µM Nested 5’_UTR_3_F 
GGCGATTAAGTTGGGTAACG 

2.5 µl 2.5 µl 0.5 µM 

10 µM Nested 3’_UTR_3_R 
TACTCAAGCTAGCCTCGAGG 

2.5 µl 2.5 µl 0.5 µM 

Template 0.5 µl dH2O 0.5 µl Varroa 
13-5  

Template 

 

Nuclease-Free Water 32 µl 32 µl  

Q5 High-Fidelity DNA 
Polymerase 

0.5 µl 0.5 µl 0.02 U/µl 

 

Table 7.9: Nested PCR Conditions Used in the Amplification of Varroa 13-5 Products 

Following Colony PCR 

Step Temperature Time 

Initial Denaturation 98°C 30 seconds 

35 Cycles 98°C 10 seconds 

64°C 20 seconds 

72°C 7 minutes 

Final Extension 72°C 5 minutes 

Hold 10°C ∞ 

 

The products of the PCR reactions were analysed for the presence of the required PCR 

product using gel electrophoresis on a 1% agarose gel in 1xTAE (Section 4.2). The DNA 

was then precipitated (Section 4.12) and sent for sequencing (Section 4.14) using the 

primers shown in Table 7.10, to check the success of the mutagenesis reaction and 

confirm that no additional mutations had occurred during the transformation into  

E. coli. 
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Table 7.10: Primers Used to Sequence V. destructor VGSC Products from Colony PCR 

and Nested PCR Amplification of Varroa 13-5 Constructs 

Name Sequence 5'-3' Base Pairs 

T7* TAATACGACTCACTATAGGG 20 

Vd_420_R CTCTACAGGTGTGGCGATCA 20 

Vd_653_F CCGAAACAATATTCACGACG 20 

Vd_1356_F CAATCTGATTCTCGCCATTG 20 

Vd_2043_F CGTAGACGCTCAGGAACACC 20 

Vd_2751_F TTTCTTCACCGCTACCTTCG 20 

Vd_3448_F GGTAAACAGCGCAACCAGAT 20 

Vd_4146_F CGCAGAAGGAAAAGAAAACG 20 

Vd_4846_F GGCAGATTCTACCACTGCGT 20 

Vd_5560_F CTTTCGATCCTTGGCACAGT 20 

Vd_6251_F AGTACAAGCTGATCGCGCTG 20 
*T7 Universal Primer designed to anneal to the T7 promoter sequence found in pGH19 (Sambrook and 
Green, 2012). 

 

7.2.3 Preparation of DNA for in vitro Transcription 

 

Prior to in vitro transcription of VGSCs contained in pGH19, the plasmids were 

linearized using the NotI as shown in Table 7.11. 

 

Table 7.11: Components of Plasmid Linearization Reactions Using Not1 

Component Amount 

para 13-5 DNA ~3 µg 

Buffer FastDigest 10X* 3 µL 

Fast-Digest NotI* 3.5 µL 

Nuclease-Free H2O To 30 µL 
* ThermoFisher Scientific 

 

Samples were incubated at 37 °C for 2 hours before the addition of 20 µL of distilled 

nuclease-free H2O; giving a final volume of 50 µL. To this, 2 µL of proteinase K (5 

mg/mL) was added to a final concentration of 200 µg/mL, along with 2.5 µL of 10% SDS 

to a final concentration of 0.5 %. Samples were incubated at 50 °C for 30 minutes prior 

to the addition of 2.5 µL of 0.5 M EDTA to a final concentration of 25 mM.  Following 

incubation, samples were purified by the addition of a ½ volume of saturated phenol 

(28.5 µL) and a ½ volume of chloroform (28.5 µL). Samples were mixed by vortexing, 

then centrifuged at 16168 x g at 4°C for 5 minutes. The aqueous phase (upper) layer 

was pipetted into a new tube and 57 µL of chloroform added, before vortexing and 
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then centrifugation at 16168 x g at 4°C for 1 minute. Another phenol:chloroform 

purification was done and the final aqueous phase (upper) was pipetted into a new 

tube and the DNA precipitated using 1 volume of 4 M Ammonium Acetate and 5 

volumes of ice cold 100% ethanol (500 µL) incubated overnight at -20 °C. The samples 

were then centrifuged at 16168 x g for 20 minutes at 4 °C and the supernatant 

carefully removed. The remaining pellet was washed with 500 µL of ice cold 70% 

ethanol, centrifuged at 16168 x g for 5 minutes at 4 °C, the supernatant was carefully 

removed, and samples vacuum dried until no liquid was present. The pellets were re-

suspended in 10 µL nuclease-free water and 0.5 µL was run on a 1 % agarose gel to 

check the purity of the product (Section 4.2).  

 

In addition to VGSC constructs, another pGH19 construct containing cDNA needed to 

transcribe the D. melanogaster TipE protein, was also prepared for in vitro 

transcription. TipE is a VGSC accessory protein shown to greatly enhance activity of D. 

melanogaster para VGSCs in X. laevis oocytes (Feng et al., 1995). The TipE construct 

used in this study was made by Vais et al in 2000. 

 

7.2.4 Preparation of cRNA Transcripts for Expression in X. laevis Oocytes 

 

Linearized VGSC or TipE pGH19 plasmids, or already linear V. destructor VGSC PCR 

products, were used as DNA templates for in vitro transcription to created capped 

cRNA for use in X. laevis microinjection. This protocol was carried out using 

ThermoFisher Scientific’s T7 mMESSAGE mMACHINE® kit. The starting mix was as 

shown in Table 7.12. 

 

Table 7.12: Reverse Transcription Mix 

Template DNA 2 X NTP/CAP* 
10 X 

Buffer 
GTP Enzyme Water 

PCR Product or  
linearized 
plasmid 

1 µg 5 µL 1 µL 0.5 µL 1 µL To 10 µL 

 

* 2X NTP/CAP is a neutralized buffered solution containing ATP (15 mM), CTP (15 mM), UTP (15 mM), 
GTP (3 mM), 5’ RNA cap analog m7G(5')ppp(5')G (12 mM). 
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Samples were incubated for 2 hours at 37 °C. For each 10 µL reaction, 0.5 µL Turbo 

DNAse was added and samples were mixed then incubated for 15 minutes at 37 °C. 57 

µL distilled Nuclease free H2O and 7.5 µL ammonium acetate stop solution were added 

to a final volume of 75 µL. Samples were then purified by phenol:chloroform 

precipitation as described in 7.2.3. The final pellets were re-suspend in 10 µL nuclease-

free water and the concentration of the RNA was checked using a nanodrop 

spectrophotometer (ThermoScientific). Samples (~500ng of RNA) were run on a 1 % 

agarose gel (Section 4.2) to check the products. All cRNA transcripts were stored at -

80°C.  

 

7.2.5 Preparation of X. laevis Oocytes 

 

X. laevis ovaries were obtained from The European Xenopus Resource Centre (EXRC) at 

Portsmouth University, details of housing and production conditions can be found 

at:http://www.port.ac.uk/research/exrc/holdingandproducingconditions. At least ten 

separate batches of oocytes were used to collect the data found in this work. The 

ovaries were delivered on wet ice in EXRC Modified Barth’s Solution (MBS) containing 

NaCl (88 mM), KCl (1 mM), NaHCO₃ (2.4 mM), MgCl₂ ·6H₂O (0.82 mM), Ca(NO3)2 x 2H2O 

(0.33mM), CaCl2 x 6H2O (0.41mM) and HEPES (10mM) pH 7.5 - pH 7.6, with a final 

concentration of 5 U/ml penicillin and 5 µg/ml streptomycin. Once received, the X. 

laevis ovaries were torn into approximately 1cm3 pieces and placed into Ca2+-free MBS, 

containing NaCl (88 mM), KCl (1 mM), Tris pH 7.6 (15 mM), NaHCO₃ (2.4 mM) and 

MgCl₂ ·6H₂O (0.82 mM), this was adjusted to pH 7.5 using hydrochloric acid before 

filtering using a 2 µm Nalgene vacuum filtration system. To this solution 1-2 mg/ml 

Type 1A Collagenase enzyme (Sigma-Aldrich) was added and oocytes were treated for 

30-45 minutes at room temperature with gentle shaking to remove connective tissue. 

The oocytes were then washed in fresh Ca2+-free MBS  a minimum of five times to 

remove excess collagenase and to prevent total loss of the follicular tissue which 

surrounds each egg. The healthiest oocytes of the correct development stage (stage IV 

or V) were then selected according to the guidelines for shape, size, and colour 

developed at Nottingham University (Eldursi et al., 1997). Follicular tissue was then 

removed from the oocytes using forceps.  
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7.2.6 Microinjection of cRNA Transcripts 

 

Microinjection of cRNA transcripts was done with an auto-nanolitre-injector, Nanoject 

II (Drummond Scientific) at a volume of 50.6 nl of cRNA per oocyte. Injecting tips were 

pulled from 3.5 nanolitre glass capillaries (World Precision Instruments) using a 

horizontal pipette puller. Prior to injection, the ends of the tips were opened by 

carefully breaking under the microscope to give a slanted tip of approximately 10 µM 

diameter. Injection tips were filled with mineral oil and secured onto the Nanoject II 

needle to create an injection pipette. cRNA transcripts for native or mutant D. 

melanogaster para 13-5 and for Tip E were diluted with sterile nuclease-free water to a 

final concentration of 0.5 ng/nl and mixed at a ratio of 1 part Tip E transcript, 1 part 

VGSC transcript and 3 parts nuclease-free water, giving a final concentration for each 

cRNA of 0.1 ng/nl. Native or mutant V. destructor 13-5 transcripts were diluted with 

nuclease-free water to a final concentration of 1 ng/nl but these were not mixed with 

Tip E, as this has been shown to hinder expression of the V. destructor VGSC (Du et al., 

2009a). Transcript cRNA was gently drawn into the injection pipette, taking care to 

avoid any air bubbles. Defolliculated oocytes were then placed in a bath of Ca2+-free 

MBS (Section 7.2.5) where they were each injected with 50.6 nl of transcript solution. 

Following injection, the oocytes were incubated for either 2-4 days for D. 

melanogaster para 13-5/TIP E transcripts or 4-5 days for V. destructor 13-5 transcripts 

at 18°C in 24 well VWR® multi-well plates (VWR) with no more than 3 oocytes per well. 

Each well contained Ca2+-containing MBS, which was Ca2+-free MBS (Section 7.2.5) 

with the addition of CaCl₂·2H₂O (0.77 mM), penicillin (100U/ml), streptomycin 

(100µg/ml), kanamycin (4 µg/ml), and tetracycline (50 µg/ml), antibiotics were added 

as advised by Alin Mirel Puinean and as used in (Puinean et al., 2013). Once TEVC 

recordings had begun on a batch of VGSC-expressing oocytes any remaining cells from 

that batch were stored at 4°C.  
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7.2.7 Recording VGSC Signals Using TEVC Electrophysiology 

 

TEVC, as introduced in Section 3.6, was used to measure current flow at fixed voltages 

across an oocyte membrane. Oocytes were placed in sterile disposable 35 mm petri 

dishes containing 2ml of Xenopus Ringer: NaCl (96 mM), KCl (2 mM), CaCl2 (1.8 mM), 

MgCl2 (1 mM), and HEPES (5 mM), adjusted to pH 7.5 with NaOH. Electrodes inserted 

into the oocyte for recording (E1) and injecting (Ei) current were prepared from 

Borosilicate thin walled Clark capillary glass (with filament, OD 1.5 mm, ID 1.17 mm, 

Length 100mm) (Harvard Apparatus) using a micropipette puller (model P-97, Sutter 

Instrument Company). Electrodes were filled with 0.7 M KCL and 1.7 M K+ citrate, then 

connected to the amplifier using 0.37 mm Teflon coated silver wire (Advent Research 

Materials); where the Teflon coating at the tip had been removed and coated with 

silver chloride to allow conductance. When inserted into an oocyte these electrodes 

gave a resistance of 1-2 MΩ; which allows sufficient current to pass rapidly into the 

oocyte to give fast voltage-clamping. A third electrode, E2, is connected to the bath via 

a platinum wire (Goodfellow) encased within an agar bridge, which acts to confirm 

that the bath is clamped and give an accurate record of membrane potential. The 

electrophysiology experiments were carried out at the University of Nottingham using 

a CA-1B amplifier (Dagan Instruments), which allows use of a protocol whereby the 

inside of the cell is held at “zero” (a virtual ground state compared to the bath) whilst 

the bath is voltage clamped. This results in much faster clamping speeds allowing the 

investigation of rapid changes in current as seen in VGSCs. All oocytes used needed to 

be of sufficient quality able to survive testing, as determined by a resting membrane 

potential more negative than -10 mV (though upwards of -15 mV was preferred) and a 

leakage current of below -150 nA when clamped to -70 mV (all voltages stated are 

relative to the virtual ground) (Figure 7.1).  
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Figure 7.1: The TEVC Experimental Design 

 

 

 
A representation of TEVC Electrophysiology  as used in this study. The oocyte is placed in a disposable 
Petri dish containing Xenopus Ringer and impaled with two glass micro-electrodes, Ei and E1, which 
are in turn connected to an amplifier. An agar bridge in the Xenopus Ringer connect a third electrode, 
E2, to accurately confirm the oocyte membrane potential and that the bath is clamped during 
experiments. Ei and E1 are shielded by a grounded metal dividing plate, reducing coupling between 
the two electrodes. Voltage protocols are generated in Win-WCP and pass to the amplifier via an ITC-
16 computer interface (Instrutech Corporation), which converts the digital signal to analogue. Signals 
from the amplifier are passed back to the computer via this interface, which then converts the 
analogue signal to digital, and results are stored on the computer hard drive. 
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Once clamped, the oocytes underwent a series of voltage protocols to investigate the 

activity of the VGSC they were expressing. All protocols were designed and recorded 

using the WinWCP programme (John Dempster, University of Strathclyde) and were 

developed at Nottingham University in the lab of Ian Duce and Ian Mellor (Usherwood 

et al., 2007; Usherwood et al., 2005). For each protocol, 4 leak-subtraction pulses per 

test potential were performed to counter any membrane leakage in the oocyte. Four 

different electrophysiological protocols were used: 

 

Voltage Protocol 1 

This protocol (Figure 7.2) allowed the study of activation and fast-inactivation of a 

VGSC in the presence and absence of a toxicant (Usherwood et al., 2005). The  oocytes 

were clamped to -70 mV before the voltage was increased, with a 30 ms step 

depolarisation, to the test potential (VT). Test potentials ranged from -65 mV to +45 

mV and increased in 5mV increments.  

 

Figure 7.2: Voltage Protocol 1 

(A) 
 

 

 

 

 

 
(B) 

 

 
 
 
 
 
 
 
 
 
 
 
 
(A) A representation of Voltage Protocol 1 showing the baseline clamped potential of -70 mV, 
followed by a 30 ms step depolarisation from -70 to +45 mV in 5 mV increments. (B) Exemplar raw 
data resulting from the application of Voltage Protocol 1 on X. laevis oocytes expressing the V. 
destructor native VGSC. 
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Voltage Protocol 2 

This protocol (Figure 7.3) allowed the study of steady state inactivation of a VGSC in 

the presence and absence of toxicants. Oocytes were clamped to -70 mV before the 

application of a 200 ms inactivation pre-pulse (VT.inact). This pre-pulse ranged from -90 

mV to -20mV and was increased in 5 mV increments. Following each pre-pulse, the 

cells were subjected to a VT of -10 mV of 30 ms duration, this would cause immediate 

activation in a native VGSC. However, the extent of activation seen is dependent on 

the value of the pre-pulse potential, the more positive this potential, the more VGSCs 

would be in an inactivated state come VT, and the smaller the resultant sodium current 

would be. 

 

Figure 7.3: Voltage Protocol 2 

(A) 

 

 

 

 

 
 
 
(B) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
(A) A representation of Voltage Protocol 2 showing the baseline clamped potential of -70 mV, 
followed by the 200 ms step depolarisation from -90 to -20 mV in 5 mV increments. A 30 ms test pulse 
at -10 mV at the end of the protocol was designed to investigate VGSC inactivation. (B) Exemplar raw 
data resulting from the application of Voltage Protocol 2 on X. laevis oocytes expressing the V. 
destructor native VGSC. Current shown is that recorded during the 30 ms VT of -10 mV following the 
stated pre-pulse value. 
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Voltage Protocol 3 

This protocol (Figure 7.4) allowed the study of a characteristic feature of VGSCs 

expressed in oocytes and treated with pyrethroids, known as the tail current. Tail 

currents are the observable manifestation of the action of pyrethroids, when they  

slow channel inactivation/deactivation (Vais et al., 2001). Oocytes were clamped to -70 

mV before the application of 100 0 mV conditioning pulses of 5 ms duration, each at a 

frequency of 66 Hz. Between each conditioning pulse there was a 10 ms interval, 

allowing time for any recovery of VGSCs from open (at 0 mV) to closed-resting state (at 

-70 mV). Because pyrethroids bind preferentially to the open confirmation of 

arthropod VGSCs (Vais et al., 2000a), binding of these insecticides to the VGSC is 

encouraged during this pre-conditioning step. Following the pre-conditioning pulses, a 

single 12 second repolarisation pulse of -110 mV was applied, a voltage step that 

should induce VGSCs into an inactivated then deactivated state (Figure 18). During this 

repolarisation pulse, the VGSCs which have undergone modification by pyrethroid 

insecticides will show a delay in closing, and a residual current peak will be observed 

(Figure 28). The amplitude and duration of any residual current can then be measured 

to give a value for the percentage modification of a VGSC by a pyrethroid insecticide 

(Usherwood et al., 2007; Vais et al., 2001).  

 

Figure 7.4: Voltage Protocol 3 

 

 
 
 
 
 
 
 
 
 
 
 
 
A representation of Voltage Protocol 3 showing the baseline clamped potential of -70 mV followed by 
100 5 ms pre-conditioning pulses to 0 mV. A 12 second repolarisation pulse to -110 mV at the end was 
designed to investigate VGSC inactivation/deactivation. 
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Voltage Protocol 4 

This protocol (Figure 7.5) allowed the study of the block of arthropod VGSCs caused by 

Tetrodotoxin (TTX). Oocytes were clamped to -70 mV before the voltage was increased 

to -10 mV for a single 35 ms step depolarisation. This protocol was repeated 25 times. 

 

Figure 7.5: Voltage Protocol 4 

 

 
 
 
 
 
 
 
 
A representation of Voltage Protocol 4 showing the baseline clamped potential of -70 mV followed by 
a single 35 ms test depolarisation step to -10 mV.  

 

7.2.8 Application of Toxicants to VGSCs Expressed in Oocytes 

 

TTX is a potent neurotoxin known to block mammalian and insect VGSCs and as such 

can be used to confirm that it is expressed VGSCs that are responsible for any 

observed voltage-dependent current fluctuations in X. laevis oocytes (Agnew et al., 

1980; Catterall, 2000, 2012; Feng et al., 1995; O'Dowd and Aldrich, 1988). To this end a 

final bath concentration of 2 µM TTX (dissolved in nuclease-free water) was applied to 

the oocytes which had been injected with cRNA encoding arthropod VGSCs after 12 

repeats of Voltage Protocol 4. All pyrethroid toxicants were dissolved in dimethyl-

sulphoxide (DMSO) to make 10-2 M working stocks prior to application. The final bath 

concentration of DMSO did not exceed 1% of the total volume, which previous studies 

(Burton, 2012; Usherwood et al., 2007) have shown has no effect on the arthropod 

VGSCs. This was confirmed in the current study (data not shown). The pyrethroids 

deltamethrin, flumethrin , permethrin and tau-fluvalinate were each all added to the 

bath in concentrations ranging from 1 nM to 10 µM. All toxicants and DMSO were 

added to the bath in 2 µl volumes by pipetting, actives were allowed to diffuse through 

the bath for 10 minutes, during which time their circulation was aided by gentle 

blowing across the bath, before commencement of the voltage protocols.  
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7.2.9 Data analysis of  TEVC Recordings 

 

All data analyses and graph plotting was done using GraphPad Prism 6 (GraphPad 

Software) available at: https://www.graphpad.com/ 

 

Following Voltage Protocol 1 (Section 7.2.7) the amplitude of the current recorded at 

each voltage step was plotted against the test potential to give a current-voltage 

relationship for the activation of the expressed VGSCs. Following leak-current 

subtraction (in Win WCP), current peak data was baseline corrected using the mean 

current amplitude of the first three test-potentials were no VGSCs were activated. 

Baseline corrected data was then transformed by -1 and normalised, then transformed 

back to negative values. This processing accounted for differences in current amplitude 

that were due to different VGSC expression levels between oocytes. The mean and 

standard error of the mean (SEM) for each current peak was calculated at each test 

potential, then fitted using a modified Boltzmann equation (Equation 1) to give a 

current-voltage relationship curve. This allowed the determination of the half-

activation potential (V50.act), the voltage at which half the VGSCs in the cell can be 

considered to be active, and the reversal potential (Vrev), the voltage at which there is 

no net movement of sodium ions across the membrane. 

 

Equation 1: 

Ipeak = Gmax((VT-Vrev)/(1+exp((VT -V50.act)/k)) 

Where Ipeak is the peak sodium current elicited by the step depolarisation test potential (VT ), Gmax is 
the maximum sodium ion conductance, Vrev is the reversal potential, V50.act is the test potential that 
would give a half maximum Ipeak, and k is the slope factor in mV. 

 

Recordings from Voltage Protocol 1 also enabled the fitting of a normalised 

conductance-voltage relationship. Maximum conductance (Gmax) and reversal-potential 

(Vrev) values for baseline corrected current peak data from each cell were calculated 

using Equation 1. The normalised conductance (G/Gmax) for each value of VT was then 

calculated from baseline corrected data for each cell using Equation 2.  
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Equation 2:  

G/Gmax = (Ipeak/(VT-Vrev))/Gmax 

Where Ipeak is the peak sodium current elicited by the step depolarisation test potential (VT ), G is the 
conductance at VT, Gmax is the maximum sodium ion conductance, and Vrev is the reversal potential. 

 

The mean and SEM of these data was taken, giving the mean normalised conductance 

(G/Gmax) for each VT. These values were then fitted using Equation 3, a Boltzmann 

sigmoidal, to give a normalised conductance-voltage relationship curve and a 

calculation of V50.act based on conductance. 

 

Equation 3:  

G/Gmax = B+(Top-B)/(1+exp((V50.act-VT)/k)) 

Normalised conductance (G/Gmax) is given a function of the depolarising step test potential (VT), 
normalised conductance varies from a minimum (B) value to a maximal Top value, V50.act is the half-
activation potential (at which 50% of the channels would be activated), and k is the slope factor in mV. 

 

Following Voltage Protocol 2 (Section 7.2.7) the amplitude of the current recorded 

following each VT.inact (Ipeak) was divided by the maximal peak current elicited for the 

series of -10 mV VT pulses (Imax), to give the normalised current for steady-state 

inactivation of the expressed VGSCs. Following leak-current subtraction (in Win WCP), 

Ipeak data was transformed and normalised, to account for differences in current 

amplitude due to different levels of VGSC expression in different oocytes. Normalised 

current (Ipeak/Imax) was plotted against each VT.inact, then fitted using a Boltzmann 

equation (Equation 4). This allowed calculation of the half-inactivation voltage, the 

voltage at which half the VGSCs in a cell could be considered inactivated (V50.inact). 

 

Equation 4:  

Ipeak/Imax = B+(Top-B)/(1+exp((V50.inact-VT.inact)/k)) 

Normalised current flow (Ipeak/Imax) is given a function of inactivating pre-pulse (VT.inact), where Ipeak is 
the peak sodium current given by a single VT.inact pre-pulse, and Imax is the maximum peak current 
elicited by a series of VT pulses. Normalised current varies from a minimum (B) value to a maximal Top 
value, where V50.inact is the half-inactivation potential (at which 50% of the channels would be 
inactivated), and k is the slope factor in mV. 
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In more recent studies (Burton, 2012; Burton et al., 2011; Usherwood et al., 2007) 

Equation 5 has been used to analyse the tail current area by determining the integral 

modification (Mi) of a VGSC in the presence and absence of a pyrethroid. This takes 

into account, not only the peak current elicited during a tail current, but also the 

duration of the depolarisation event (Usherwood et al., 2007). Following leak-current 

subtraction (in Win WCP), current peak data obtained by application of Voltage 

Protocol 3 (Section 7.2.7) was transformed by -1 and early data points (corresponding 

to duration of the pre-conditioning pulses) were excluded. The area under the curve 

(AUC) of transformed data was calculated, including only those peaks above the 

baseline. AUC data were then re-transformed by -1 to give the value Itail.integral (a 

multiplication of the negative peak amplitude of the tail current by the time the peak 

remains negative). Following this processing the tail current data was fitted to 

Equation 5 to give the Mi value for that cell and pyrethroid concentration. These values 

were pooled to calculate mean and SEM Mi data for test pyrethroids. 

 

Equation 5:  

Mi = ((Itail.integral /(VT-Vrev))/Gmax)x100 

Integral modification (Mi) is given a function of Itail.integral (a multiplication of the negative peak 
amplitude of the tail current by the time the peak remains negative) divided by the depolarising step 
test potential (VT) minus the reversal potential of the cell in the absence of any toxicant (Vrev). Divided 
by the maximum conductance of the cell (Gmax), again in the absence of any toxicant. In this case, VT is 
-110 mV. Data is multiplied by 100 to give a percentage value. 

 

7.3 Results 

 

7.3.1 Varroa 13-5 and para 13-5 VGSC Mutagenesis and Expression 

 

D. melanogaster para 13-5 mutants C933A/G/V were successfully made into cRNA 

transcripts and were  injected into X. laevis oocytes, as was the native D. melanogaster 

para 13-5. As data for the C933A mutant has already been published (Usherwood et al., 

2007), and as this is not a native residue in V. destructor mites or ticks, this mutant was 

abandoned. Of the two remaining D. melanogaster para 13-5 mutants, C933G has 

shown expression in X. laevis oocytes but this was intermittent and poor, and the 

C933V mutant failed to express, most likely due to oocyte quality at the time. In the 
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past, the native V. destructor 13-5 VGSC has suffered badly from random mutagenesis 

in E. coli, and has proven difficult to maintain in both Stratagene’s XL1 Blue and XL10 

Gold ultracompetent cells (Joel González-Cabrera personal communication). Perhaps 

not surprisingly, given the difficulties maintaining native V. destructor 13-5, only the V. 

destructor 13-5 G933V mutant was obtained, and correct clones were only obtained 

through transformation into Invitrogen’s MAX Efficiency® Stbl2™ competent cells 

followed by colony PCR (Section 4.10 and 4.11). However, this was successfully made 

into a cRNA transcript and injected into X. laevis oocytes, as was the native V. 

destructor 13-5, for testing using TEVC Electrophysiology; both the native V. destructor 

13-5 VGSC and the V. destructor 13-5 G933V mutant showed expression in X. laevis 

oocytes, as did the native D. melanogaster para 13-5 VGSC when co-expressed with Tip 

E (Feng et al., 1995; Warmke et al., 1997). These three constructs allowed investigation 

into potential differences in pyrethroid binding between insect and acarine channels, 

particularly involving residue 933, and so were taken forward for use in TEVC 

experiments. 

 

7.3.2 Characterisation of Arthropod VGSCs 

 

7.3.2.1 Activation 

 

Mean values (along with SEMs) for V50.act and Vrev for arthropod VGSCs in the absence 

of any toxicant, calculated using Equations 1,2 and 3, are listed in Table 7.13. Current-

voltage relationships for these VGSCs and conductance-voltage relationships are 

shown in Figure 7.6. 

 

Table 7.13: Values of V50.act and Vrev for Arthropod VGSCs in the Absence of Any 

Toxicant 

VGSC Source V50.act (mV) Vrev (mV) (n) 

D. melanogaster para -29.33 ± 0.32 174.70 ± 9.71 37 

V. destructor Native -17.98 ± 0.50 64.75 ± 2.10  32 

V. destructor G933V Mutant -18.26 ± 0.63  70.15 ± 3.24  27 
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Figure 7.6: Activation Relationships of Arthropod VGSCs  

 

(i)  

 

  

 

 

 

 

 

 

 

 

 

 

(ii) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(i) Current-voltage relationships of arthropod VGSCs recorded using Voltage Protocol 1 (Section 7.2.7) 
and fitted using Equation 1 (Section 7.2.9). (ii) Conductance-voltage relationships of arthropod VGSCs 
recorded using Voltage Protocol 1 (Section 7.2.7) and fitted using Equations 1, 2 and 3 (Section 7.2.9). 
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7.3.2.2 Steady-State Inactivation 

 

Mean values (along with SEMs) for V50.inact values for arthropod VGSCs in the absence 

of any toxicant, calculated using Equation 4, are listed in Table 7.14 and normalised 

current-voltage (pre-pulse) relationships for these VGSCs are shown in Figure 7.7. 

 

Table 7.14: Values of V50.inact for Arthropod VGSCs in the Absence of Any Toxicant 

VGSC Source V50.inact (mV) (n) 

D. melanogaster para -48.14 ± 0.18 38 

V. destructor Native -30.33 ± 0.86 40 

V. destructor G933V Mutant -28.61 ± 0.75 34 

 

Figure 7.7: Steady-State Inactivation Relationships of Arthropod VGSCs  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Voltage dependence of inactivation for arthropod VGSCs as recorded using Voltage Protocol 2 (Section 
7.2.7) and fitted using Equation 4 (Section 7.2.9). 
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7.3.3 Effects of Pyrethroid on Arthropod VGSCs 

 

Pyrethroids toxicants were applied to X. laevis oocytes (Section 7.2.8) to assess their 

effects on activation, steady-state inactivation, and their ability to induce tail currents. 

 

7.3.3.1 Effects of Pyrethroids on Activation 

 

Mean values (along with SEMs) for V50.act of arthropod VGSCs in the absence of any 

toxicant and in the presence of 100 nM of each pyrethroid, as calculated using 

Equations 1, 2, and 3, are listed in Table 7.15. Conductance-voltage relationships for 

these VGSCs are shown in Figure 7.8. These relationships show how the activation of 

each arthropod VGSC is affected by individual pyrethroid toxicants, with a shift to the 

left demonstrating that activation is occurring at a more negative voltage. Such a shift 

would be expected to correlate with increasing concentrations of a pyrethroid toxicant, 

their mode of action being previously demonstrated to involve stabilising arthropod 

VGSCs in the active conformation, thus more channels would be open and conductive 

at lower voltages (Vais et al., 1997). 
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Table 7.15: Values of V50.act for Arthropod VGSCs in the Absence of Any Toxicant and in the Presence of 100 nM Pyrethroid 

 

VGSC Source Pyrethroid Applied V50.act (mV) P-Value (Toxicant-Control)* (n) 

D. melanogaster None -29.33 ± 0.32 N/A 37 

D. melanogaster 100 nM Deltamethrin -37.58 ± 1.05 <0.05 7 

D. melanogaster 100 nM Flumethrin -37.57 ± 1.23 <0.05 9 

D. melanogaster 100 nM Permethrin -35.57 ±  0.84 <0.05 6 

D. melanogaster 100 nM Tau-Fluvalinate -32.05 ± 0.65 <0.05 8 

V. destructor Native None -17.98 ± 0.50 N/A 32 

V. destructor Native 100 nM Deltamethrin -19.71 ± 0.87 <0.05 9 

V. destructor Native 100 nM Flumethrin -10.83 ± 1.22 <0.05 4 

V. destructor Native 100 nM Permethrin -21.13 ± 2.22 <0.05 6 

V. destructor Native 100 nM Tau-Fluvalinate -28.46 ± 1.13 <0.05 4 

V. destructor G933V Mutant None -18.26 ± 0.63  N/A 27 

V. destructor G933V Mutant 100 nM Deltamethrin -7.99 ± 2.71 <0.05 6 

V. destructor G933V Mutant 100 nM Flumethrin -26.09 ± 0.57 <0.05 3 

V. destructor G933V Mutant 100 nM Permethrin -15.57 ± 4.14 <0.05 6 

V. destructor G933V Mutant 100 nM Tau-Fluvalinate -26.90 ± 1.73 <0.05  5 

 

*P-Values were calculated using GraphPad Prism 6 by comparing conductance-voltage relationship curves using an extra sum-of-squares F test. Values of less than 0.05 
demonstrate that for a given pyrethroid and VGSC the V50.act values generated by these curves in the absence or presence of pyrethroid were significantly different to one 
another. 
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Figure 7.8: Conductance of Arthropod VGSCs Treated with Pyrethroid Toxicants 
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(B) 
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Conductance-voltage relationships of arthropod VGSCs recorded using Voltage Protocol 1 (Section 
7.2.7) and plotted using Equations 1, 2 and 3 (Section 7.2.9) in the presence of no toxicant and (A) 1-
100 nM Deltamethrin; (B) 1-100 nM Flumethrin; (C) 1-100 nM Permethrin; (D) 1-100 nM Tau-
Fluvalinate. 
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7.3.3.2 Effects of Pyrethroid on Steady-State Inactivation 

 

Mean values (along with SEMs) for V50.inact values for arthropod VGSCs in the absence 

of toxicant and in the presence of 100 nM of each pyrethroid, as calculated using 

Equations 4, are listed in Table 7.16 and normalised current-voltage (pre-pulse) 

relationships for these VGSCs are shown in Figure 7.9. These relationships show how 

the fast inactivation of each arthropod VGSC is affected by individual pyrethroid 

toxicants, with a shift to the right demonstrating that fast inactivation is occurring at a 

more positive voltage. This positive shift would be expected to occur in line with 

increasing pyrethroid concentration, as pyrethroids have been previously 

demonstrated to block arthropod VGSCs moving from an open to an “inactivated” 

closed state, meaning VGSCs would be promoted to the inactivated conformation at 

more positive VT potentials following pyrethroid application. (Vais et al., 1997). 
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Table 7.16: Values of V50.inact for Arthropod VGSCs in the Absence of Any Toxicant and in the Presence of 100 nM Pyrethroid 

 

VGSC Source Pyrethroid Applied V50.inact (mV) P-Value (Toxicant-Control)* (n) 

D. melanogaster None -48.14 ± 0.18 N/A 38 

D. melanogaster 100 nM Deltamethrin -49.67 ± 0.32 <0.05 5 

D. melanogaster 100 nM Flumethrin -48.81 ± 0.57 0.20 3 

D. melanogaster 100 nM Permethrin -49.53 ± 0.37 <0.05 5 

D. melanogaster 100 nM Tau-Fluvalinate -48.63 ± 0.34 0.27 8 

V. destructor Native None -30.33 ± 0.86 N/A 40 

V. destructor Native 100 nM Deltamethrin -36.32 ± 0.79 <0.05 10 

V. destructor Native 100 nM Flumethrin -29.80 ± 1.20 <0.05 9 

V. destructor Native 100 nM Permethrin -31.10 ± 0.80 0.44 10 

V. destructor Native 100 nM Tau-Fluvalinate -31.59 ± 1.18 0.22 10 

V. destructor G933V Mutant None -28.61 ± 0.75 N/A 34 

V. destructor G933V Mutant 100 nM Deltamethrin -33.11 ± 0.99 <0.05 8 

V. destructor G933V Mutant 100 nM Flumethrin -27.57 ± 0.70 <0.05 5 

V. destructor G933V Mutant 100 nM Permethrin -33.91 ± 2.17 <0.05 10 

V. destructor G933V Mutant 100 nM Tau-Fluvalinate -28.72 ± 1.57 <0.05 10 

 

*P-Values were calculated in GraphPad Prism 6 by comparing voltage dependence of inactivation curves using an extra sum-of-squares F test. Values of less than 0.05 
demonstrate that for a given pyrethroid and VGSC the V50.inact values generated by these curves in the absence or presence of pyrethroid are significantly different to one 
another.  
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Figure 7.9: Conductance of Arthropod VGSCs Treated with Pyrethroid Toxicants 
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(B) 
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Stead-state inactivation relationships of arthropod VGSCs recorded using Voltage Protocol 2 (Section 
7.2.7) and plotted using Equation 4 (Section 7.2.9) in the presence of no toxicant and (A) 1-100 nM 
Deltamethrin; (B) 1-100 nM Flumethrin; (C) 1-100 nM Permethrin; (D) 1-100 nM Tau-Fluvalinate. 
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7.3.3.3 Pyrethroid Induced Tail Currents 

 

Tail currents allow the observation of action of pyrethroid insecticides, whereby they 

slow VGSC inactivation/deactivation, this can be translated into a percentage 

modification (Mi) of each type of arthropod VGSC by each pyrethroid toxicant, with 

levels of modification being previously shown to increase in line with pyrethroid 

concentration in native arthropod VGSCs (Vais et al., 2001). Mean values (along with 

SEMs) for Mi values for arthropod VGSCs in the absence of toxicant and in the 

presence of 100 nM or 1 µM of each pyrethroid, as calculated using Equations 4, are 

listed in Table 7.17 and shown in Figures 7.10 and 7.11 respectively. 
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Table 7.17: Values of Mi (%) for Arthropod VGSCs in the Presence of 100 nM and 1 µM of Pyrethroid Toxicant 

VGSC Source Pyrethroid 
100 nM 1 uM 

Mean Mi (%) SEM (n) Mean Mi (%) SEM (n) 

D. melanogaster para Deltamethrin 142.23 89.58 9 487.85 307.58 6 

D. melanogaster para Flumethrin 192.69 64.12 10 401.54 223.13 7 

D. melanogaster para Permethrin 47.93 22.29 8 215.03 75.55 8 

D. melanogaster para Tau-Fluvalinate 108.03 52.94 10 392.27 163.38 7 

V. destructor Native Deltamethrin 4.79 1.23 10 99.01 31.78 10 

V. destructor Native Flumethrin 2.05 0.84 5 4.92 1.64 5 

V. destructor Native Permethrin -0.076 0.15 9 2.46 1.35 9 

V. destructor Native Tau-Fluvalinate 21.91 11.05 8 253.14 57.55 8 

V. destructor G933V Deltamethrin 3.73 3.02 6 58.17 35.19 6 

V. destructor G933V Flumethrin 2.71 0.79 5 7.82 2.72 5 

V. destructor G933V Permethrin 0.17 0.21 8 1.68 0.73 8 

V. destructor G933V Tau-Fluvalinate 72.89 49.96 7 269.10 68.30 7 

 

Mean Mi (%) response of a VGSC to pyrethroid pesticides at 100 nM and 1 µM concentrations. Values were calculated following Voltage Protocol 3 using Equation 5 (Section 
7.2.9) in Graph Pad 6. 
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Figure 7.10: Integral Modification of Arthropod VGSCs Treated with 100 nM 

Pyrethroid Toxicant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Mean Mi (%) response of a VGSC to 100 nM concentrations of pyrethroid pesticides. Values were 
calculated following Voltage Protocol 3 using Equation 5 (Section 7.2.9) in Graph Pad 6. 
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Figure 7.11: Integral Modification of Arthropod VGSCs Treated with 1 µM Pyrethroid 

Toxicant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Mean Mi (%) response of a VGSC to 1 µM concentrations of pyrethroid pesticides. Values were 
calculated following Voltage Protocol 3 using Equation 5 (Section 7.2.9) in Graph Pad 6. 
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7.3.4 TTX Effects on D. melanogaster para and V. destructor VGSCs 

 

Voltage Protocol 4 (Section 7.2.7) was used to measure the effects of 2 µM TTX applied 

to arthropod VGSCs (Section 7.2.8). Results of this experiment in the present study can 

be seen in Figure 7.12. The concentration of TTX delivered gave approximated a 50% 

block of V. destructor VGSCs and a complete block of the D. melanogaster para VGSC, 

as reported previously (Burton, 2012; Du et al., 2009a). 

 

Figure 7.12: Results of an Application of 2 µM TTX on the D. melanogaster para and 

V. destructor Native and G933V Mutant VGSCs 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Inhibition of arthropod VGSCs by 2 µM TTX using Voltage Protocol 4. The mean response of a total 
number (n) of 3 cells for each VGSC type is shown along with 95% confidence intervals of the means 
(small dots). 
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7.4 Discussion 

 

7.4.1 Activation of Arthropod VGSCs in the Absence of Any Toxicant 

 

In the absence of any toxicant the D. melanogaster para channel V50.act value reported 

in this study of -29.33 ± 0.32 (n= 37) is lower than values previously reported for native 

versions of this VGSC (Burton et al., 2011; Usherwood et al., 2007; Usherwood et al., 

2005; Vais et al., 2000a; Warmke et al., 1997). However, it is not significantly different 

to values reported for a D. melanogaster para VGSC containing the naturally-occurring 

mutation L932F (P>0.05 One-Way ANOVA with Dunnett post-test using Graph Pad 6), 

which should not induce major changes in the kinetic properties of the VGSC, amongst 

other mutant versions of this channel (Usherwood et al., 2007). Thus, the V50.act value 

obtained in this study for the native D. melanogaster para VGSC is likely representative 

of variation seen in this channel and is within expected parameters. Values of V50.act for 

the V. destructor native and G933V Mutant VGSCs in the absence of any toxicant were 

-17.98 ± 0.50 (n = 32) and -18.26 ± 0.63 (n = 27) respectively. These values were not 

expected to differ significantly from one another as the mutation incurred is naturally 

occurring and would not be expected to impact on channel gating due to its position 

within the VGSC (Jonsson et al., 2010; O'Reilly et al., 2006; Usherwood et al., 2007). 

Indeed both V. destructor VGSC V50.act values are not significantly different to one 

another, or to the value for the V. destructor native channel previously obtained by Du 

et al 2009 of -18.23 ± 3.33 (n = 5) (P>0.05 One-Way ANOVA with Dunnett post-test 

using Graph Pad 6). This strongly suggests that V50.act values for V. destructor VGSCs 

found in this study accurately represent values for these VGSCs when expressed in X. 

laevis oocytes. Interesting, this implies that the insect and acari VGSCs tested show 

distinct properties in terms of their kinetics of activation (Tables 7.13 and 7.14), and 

these values are in fact significantly different to one another (P<0.05 One-Way ANOVA 

with Dunnett post-test using Graph Pad 6). However, V50.act values obtained for V. 

destructor VGSCs in this study are statistically comparable to those previously reported 

for both native and mutant D. melanogaster para VGSCs (P<0.05 One-Way ANOVA 

with Dunnett post-test using Graph Pad 6) (Burton et al., 2011; Usherwood et al., 2005; 

Warmke et al., 1997). As V50.act values for D. melanogaster para VGSCs seem to show a 
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degree of variation in the literature, it is not prudent to suggest that they are truly 

distinct. Further experimentation may shed light on the nature of the variation seen in 

V50.act values for the D. melanogaster para native VGSC. For example, investigations as 

to whether Tip E co-expression plays a role, as unlike D. melanogaster para VGSCs, V. 

destructor VGSC expression in X. laevis oocytes is not enhanced by the co-expression 

of an auxiliary protein (Du et al., 2009a; Warmke et al., 1997). 

 

7.4.2 Inactivation of Arthropod VGSCs in the Absence of Any Toxicant 

 

In contrast, values of V50.inact for D. melanogaster para VGSCs in the absence of any 

toxicant are more comparable between experiments. The V50.inact value of -48.14 ± 0.18 

(n = 38) reported in this study is not significantly different to that reported for the 

native D. melanogaster para VGSC in Burton et al 2011 and 2012 (P>0.05 One-Way 

ANOVA with Dunnett post-test using Graph Pad 6), and is comparable to those values 

reported in the literature (Usherwood et al., 2005; Vais et al., 2000b; Warmke et al., 

1997). Values of V50.inact for the V. destructor native and G933V Mutant VGSCs in the 

absence of any toxicant were -30.33 ± 0.86 (n = 40) and 28.61 ± 0.75 (n = 34) 

respectively. Again, values were not expected to differ significantly from one another, 

due to the position of the G933V mutation within the channel (Jonsson et al., 2010; 

O'Reilly et al., 2006; Usherwood et al., 2007), and both V. destructor VGSC V50.inact 

values are not significantly different to one another; or to the value for the V. 

destructor native channel previously obtained by Du et al 2009 of -29.16 ± 1.72 (n = 5) 

(P>0.05 One-Way ANOVA with Dunnett post-test using Graph Pad 6). Thus, it is likely 

that the V50.inact values for V. destructor VGSCs found in this study also accurately 

represent values for these VGSCs. Unlike V50.act values obtained for V. destructor VGSCs,  

V50.inact values in this study are also statistically different to those previously reported 

for native D. melanogaster para VGSCs (P<0.05 One-Way ANOVA with Dunnett post-

test using Graph Pad 6) (Burton et al., 2011; Usherwood et al., 2005; Warmke et al., 

1997). The V. destructor VGSC V50.inact values in this study shift to the positive when 

compared to those for D. melanogaster para VGSCs, indicating that these VGSCs 

inactivate at a more positive potential, therefore these channels close at a higher 

membrane potential after activation. As pyrethroids are thought to bind preferentially 
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to open VGSCs, stabilising the “activated” state (Bloomquist, 1996; Soderlund and 

Bloomquist, 1989), this suggests that V. destructor VGSCs could be more susceptible to 

the effects of pyrethroids than D. melanogaster para VGSCs. The observed tendency 

towards inactivation at higher potentials would increase the probability of pyrethroid 

binding, as the time period during which VGSCs are open, or “activated”, would be 

increased.  

 

7.4.3 Activation of Arthropod VGSCs in the Presence of Pyrethroids 

 

Analysis of V50.act values for VGSCs after exposure to 100 nM pyrethroid revealed a 

significant shift towards the positive for V. destructor native VGSCs treated with 

flumethrin and V. destructor G933V VGSCs treated with deltamethrin or permethrin 

(Figure 7.8) (Table 7.15). In contrast, in previous studies with the D. melanogaster 

native VGSC, V50.act values shifted towards the negative following pyrethroid 

application (Burton et al., 2011). As do all D. melanogaster para VGSCs tested with 

pyrethroids in the present study. This negative shift is in line with the theory that 

pyrethroids stabilise arthropod VGSCs in the “activated” open conformation, meaning 

more VGSCs are promoted to the open state at more negative VT potentials following 

pyrethroid application. All other pyrethroids applied to both native and mutant V. 

destructor VGSCs produced a significant shift in the negative direction, as in line with 

previous work, and the conductance-voltage relationship graphs for those producing 

positive shifts show large errors (Figure 7.8). The reasons for this positive shift are 

currently unknown, but as pyrethroids tested were shown to modify the V. destructor 

VGSCs by application of Voltage Protocol 3 (Section 7.3.3.3) the reason behind this 

anomaly unlikely to be due to a lack of pyrethroid action on the VGSCs.  

 

7.4.4 Inactivation of Arthropod VGSCs in the Presence of Pyrethroids 

 

The proposed theory that V. destructor VGSCs could be more susceptible to the effects 

of pyrethroids than D. melanogaster para VGSCs, due to their tendency towards 

inactivation at higher membrane potentials, is supported by the response of arthropod 

VGSCs to pyrethroid toxicants in this study. Analysis of V50.inact values for VGSCs after 
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exposure to 100 nM pyrethroid revealed a significant shift towards more negative 

values for D. melanogaster para VGSCs treated with deltamethrin or permethrin, V. 

destructor native VGSCs treated with deltamethrin or flumethrin, and V. destructor 

G933V VGSCs treated with any pyrethroid. In prior studies with the D. melanogaster 

native VGSC, V50.inact values shifted towards the positive following pyrethroid 

application (Burton et al., 2011), as do other VGSCs tested with pyrethroids in the 

present study (Table 7.16) (Figure 7.9). Namely D. melanogaster para VGSCs treated 

with flumethrin or tau-fluvalinate, and V. destructor native VGSCs treated with 

permethrin or tau-fluvalinate. This positive shift is in line with the theory that 

pyrethroids block arthropod VGSCs moving from an open to an “inactivated” closed 

state, meaning VGSCs would only be promoted to the inactivated closed conformation 

at more positive VT potentials following pyrethroid application. The theoretic cycling of 

the VGSC between states is shown in Figure 3.5 (Replicated in Figure 7.13 below).  

 

Figure 7.13: The Four States of the VGSC 

 

A diagrammatic representation of the four states of the VGSC: i) Closed resting, ii) Open, iii) 
Inactivated, iv) Deactivated. Where A) indicates the inactivation gate and B) indicates the activation 
gate. During Voltage Protocol 2 net VGSC movement from an open to an inactivated state is measured. 

 

Pyrethroids bind preferentially to open forms of the arthropod VGSC, and are known 

to inhibit deactivation (Bloomquist, 1996). However, their effects on inactivation, and 

the movement of the inactivation gate, are primarily investigated using Voltage 

Protocol 2. It could be that pyrethroids play a varied role in this fast inactivation, or do 

not affect it at all, and variations seen in V50.inact values following their application in 

this study are due to experimental variation. Though significant, the shifts are small, 

with the largest being around 6 mV (V. destructor native VGSC tested with 
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deltamethrin) (Table 7.16). This is much lower than the 17 to 20 mV shift range seen 

when comparing D. melanogaster para VGSCs to V. destructor VGSCs in the absence of 

any toxicant (Table 7.14) (Figure 7.7). Further investigation of this property of 

pyrethroids could be of interest following the current study, especially given the shifts 

in V50.inact  seen between the insect and acari VGSCs tested in the present work in the 

absence of any toxicant. It may be that this property is not important for pyrethroid 

insecticidal action. 

 

7.4.5 Pyrethroid Induced Tail Currents at Arthropod VGSCs 

 

Tail currents allow the observation of action of pyrethroid insecticides, whereby they 

slow VGSC inactivation/deactivation (Vais et al., 2001). In the present study, tail 

currents were recorded to give the Mi (%) of a VGSC in the presence and absence of a 

pyrethroid toxicant. This figure takes into account not only the peak current elicited 

during a tail current but also the duration of it (Usherwood et al., 2007). Previous 

studies have shown that tail currents recorded for pyrethroids acting on insect VGSCs 

stay below a defined zero current baseline (Burton et al., 2011; Du et al., 2006; Liu et 

al., 2006; Tan et al., 2002; Usherwood et al., 2007; Usherwood et al., 2005; Vais et al., 

2001; Vais et al., 2000b). This point, set at VH = -70 mV, marks a zero point for the 

calculation of the area under the curve required to give the Mi (%) for a VGSC. In the 

present study, while D. melanogaster para VGSCs followed this pattern, tail currents 

recorded for the pyrethroids deltamethrin, flumethrin and tau-fluvalinate rose above 

the current recorded at VH = -70 mV for both native and mutant V. destructor VGSCs 

(Figure 7.14). This tail-current rise tended to increase with pyrethroid concentration 

and was not present in the absence of toxicant. This phenomenon suggests a different 

pyrethroid response in acarine VGSCs compared to insects, and presented a problem 

in analysis by acting to artificially reduce the Mi (%) value recorded for these VGSCs. If 

the baseline for V. destructor VGSCs was set at VH = -70 mV this effect would be 

enhanced. Therefore, in this study, the baseline from which the area under the curve 

was calculated for V. destructor VGSCs was set at the end of the recording, at 

approximately 13.45 seconds. 
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Figure 7.14: Raw Data Showing Tail Currents from Arthropod VGSCs  

 

(A) VGSC Tail Currents in the Absence of Toxicant 
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(B) D. melanogaster para VGSC Tail Currents with 100 nM Pyrethroid 
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(C) V. destructor native VGSC Tail Currents with 100 nM Pyrethroid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

155 

(D) V. destructor G933V VGSC Tail Currents with 100 nM Pyrethroid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example tail currents (A) In the 
absence of toxicant and in the 
presence of 100 nM pyrethroid for (B) 
D. melanogaster para, (C) V. destructor 
native and (D) V. destructor G933V 
VGSCs. Channels were expressed in X. 
laevis oocytes and exposed to 
pyrethroid toxicant (Section 7.2.8) 
before the application of Voltage 
Protocols 1, 2 and 3 (Section 7.2.7). 
Data shown was extracted from 
WinWCP following Voltage Protocol 3 
(John Dempster, University of 
Strathclyde) and illustrates tail-current  
rise above the Time ≈ 0 baseline seen 
in V. destructor VGSCs (red line). 
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Pyrethroids with suggested selective acaricidal activity differ from other pyrethroids by 

having large halogenated substituents in their acidic moiety (Figure 7.15). According to 

the model proposed by O’Reilly et al 2014, pyrethroids with these larger moieties 

could be accommodated in acarine channels, such as the V. destructor native VGSC, 

which have a smaller glycine at position 933, but not so well by insect channels, such 

as the M. domestica VGSC, which has a larger cysteine residue in this position, nor by 

the mutated V. destructor G933V VGSC. This result is supported by the findings of 

Jonsson et al 2010, that R. microplus cattle ticks resistant to flumethrin but not to 

cypermethrin carried the G933V mutation in their VGSCs.  

 

Figure 7.15: Pyrethroids Used in Electrophysiological Studies of Arthropod VGSCs 

 

Permethrin, Flumethrin, Deltamethrin and Tau-Fluvalinate shown as examples of pyrethroids with 

relatively large and small acidic moieties. Areas of interest within the acidic portion are highlighted by 

green boxes. All pyrethroid structures are from ChemSpider 2016. 

 

If the O’Reilly et al 2014 model were to hold true, we would expect both flumethrin 

and tau-fluvalinate to show reduced activity at the D. melanogaster para and the V. 

destructor G933V mutant VGSCs compared the V. destructor native VGSC. To this end, 

comparisons of VGSC Mi (%) were made to see if VGSCs from different species 

responded significantly differently to each of the pyrethroids tested (Table 7.17). The 

only significant result found was that for permethrin; where the D. melanogaster para 

VGSC showed significantly greater modification in response to permethrin application 

than either the V. destructor native or the V. destructor G933V VGSCs. This was true at 
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both 100 nM and 1 µM permethrin (P<0.05 One-way ANOVA with Dunnett post-test 

using Graph Pad 6), a finding which does not support the model proposed by O’Reilly 

et al 2014. Furthermore, the fact that G933V was seen to be a selective resistance 

mutation to flumethrin in R. microplus (Jonsson et al., 2010) contradicts conclusions in 

this study. Even within species this work found that arthropod VGSC Mi (%) varied little 

between pyrethroids; in fact for D. melanogaster para VGSCs the mean Mi (%) 

response of a VGSC to one pyrethroid did not differ significantly in its response to any 

other at either 100 nM or 1 µM pyrethroid concentration (P>0.05 One-way ANOVA 

with Dunnett post-test using Graph Pad 6). For V. destructor native VGSCs only the 

mean Mi (%) response of VGSCs exposed to tau-fluvalinate differed significantly in their 

response to other pyrethroids. These VGSCs showed a greater Mi (%) than permethrin 

at 100 nM and at 1 µM pyrethroid concentrations, and deltamethrin and flumethrin at 

1 µM concentrations only (P<0.05 One-way ANOVA with Dunnett post-test using 

Graph Pad 6). This result is similar to that for the V. destructor G933V VGSC, where 

only the mean Mi (%) response of VGSCs exposed to tau-fluvalinate differed 

significantly in their response to other pyrethroids, again giving a greater Mi (%), but 

this time only at 1 µM concentrations for all three other pyrethroids (P<0.05 One-way 

ANOVA with Dunnett post-test using Graph Pad 6). Clearly future work is needed 

before firm conclusions are drawn about the action of pyrethroids at insect versus 

acarine VGSCs. During testing, X. laevis oocytes injected with V. destructor VGSCs and 

exposed to deltamethrin frequently lost membrane clamp at pyrethroid 

concentrations high enough to induce a tail-current, suggesting an opening of the 

VGSCs triggered by the pyrethroid leading to irreversible current flow. However, the 

rise seen in deltamethrin tail currents at higher pyrethroid concentrations may mean 

that some of the effects of deltamethrin, and the other Type II pyrethroids tested, 

could be unrecorded and therefore their action underestimated. To combat this, any 

future work will involve a modified version of Voltage Protocol 3 that extends the 

hyperpolarising phase. This will allow observation of tail currents in V. destructor 

VGSCs to see if they eventually decline. Furthermore, now that the work in this study 

has established suitable pyrethroid concentrations to induce tail currents in V. 

destructor VGSCs, it would be sensible to test each oocyte with one concentration only 

per pyrethroid in future, as pre-bound pyrethroid could explain the rising tail currents 
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seen. Work should also be expanded to other Type I and Type II pyrethroids (Khambay 

and Jewess, 2005), as it is interesting to note that in this study only the Type II 

pyrethroids (those with α-cyano group at the α-benzylic position; Namely deltamethrin, 

flumethrin and tau-fluvalinate)  produced the effects seen. Such work could inform 

discussion into the nature of pyrethroid binding at the arthropod VGSC, as the tail 

current rising above the baseline could suggest that type II pyrethroids bind for a 

longer period to acarine VGSCs than to those of insects. It will also be necessary to 

design an experiment to see if certain pyrethroids can bind at voltages during which 

the V. destructor VGSCs should be closed, another factor which could cause the 

observed tail currents. Finally, as it has been shown that pyrethroids can bind to other 

channels besides the VGSC (Casida et al., 1983), it would be interesting to use TEVC 

techniques to examine pyrethroid binding at different ion channels in acarine and 

insect species, to see if this explains differences in pyrethroid selectivity seen between 

species. 

 

7.4.6 TTX Effects on Arthropod VGSCs 

 

TTX has long been used as a means of confirming that an observed current in TEV 

electrophysiology is due to the expression of a VGSC. Though TTX has been shown to 

block the D. melanogaster para VGSC effectively in numerous studies (Burton, 2012; 

Feng et al., 1995; O'Dowd and Aldrich, 1988; Warmke et al., 1997), it is significantly 

less potent at the V. destructor VGSC (Du et al., 2009a). The concentration of TTX 

causing 50% response inhibition from VGSCs (the IC50) was found to be around 0.2 nM 

for D. melanogaster para VGSCs co-expressed with D. melanogaster TipE (Feng et al., 

1995). In contrast the IC50 for TTX was found to be 1.05 ± 0.28 µM for the native V. 

destructor VGSC and 1.45 ± 0.50 µM for a V. destructor VGSC lacking a region 

corresponding to optional exon b in B. germanica (Du et al., 2009a). As removal of this 

region did not significantly affect TTX binding at the V. destructor VGSC, the maximum 

possible concentration to gain a 50% block of the V. destructor VGSC can be estimated 

as ~1.95 µM. Thus, the application of TTX to a final bath concentration of 2 µM in the 

current study gave a full block of D. melanogaster para VGSC signals and 

approximately 50% block of V. destructor native and G933V mutant VGSC signals 
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(Figure 7.12). This is in keeping with the findings of Du et al 2009 with regards to the V. 

destructor VGSCs and of previous work by Warmke et al 1997 and Burton 2012 (for 

example) with regards to the D. melanogaster para VGSC.  
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8 Pyrethroid Bioassays of Acarine Species and M. domestica 

  

8.1 Chapter Introduction and Aims 

 

Comparison of the D. melanogaster para and V. destructor VGSCs expressed in oocytes 

using electrophysiological methods showed that, although there was a significance 

difference in the response of these channels to permethrin, there was no significant 

difference in the sensitivity of the insect and mite channels to pyrethroids with large-

halogenated groups (Section 7.4.5). This chapter aims to test whether similar 

sensitivities to these compounds are found in whole insects/acari using contact 

bioassays. Four ticks (A. americanum, I. ricinus, R. sanguineous and D. variabilis), a 

representative insect (M. domestica) and the mite, V. destructor were tested using the 

same 4 pyrethroids used in electrophysiological studies in Chapter 7: Permethrin, 

deltamethrin, flumethrin and tau-fluvalinate. 

 

8.2 Chapter Specific Methods 

 

8.2.1 Arthropods  

 

A. americanum, D. variabilis, I. ricinus, R. sanguineous, M. domestica, and V. destructor 

were sourced as described in Section 4.1. The V. destructor were collected from adult 

bees rather than capped worker bee brood combs as in previous studies (Kamler et al., 

2016; Kanga et al., 2010), due to a lack of availability of brood combs. Samples for 

bioassay where taken from storage boxes; for the ticks this was done within a heated 

frame to prevent escape of individuals and for M. domestica this was done under 

carbon dioxide, with flies treated a maximum of two times with an incapacitating dose. 

V. destructor were taken from the field at the hive site (The Honey Farm, Imkerei 

Ullmann, Erlensee, Germany), with the being mites being removed from captured 

adult bees using a soft paint brush, and placed immediately into the treatment vials. 
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8.2.2 Contact Bioassays 

 

A glass vial technique (Plapp et al., 1987) was used to measure the response of adult 

arthropods to insecticides in the laboratory. The tests were done in 25 ml volume glass 

scintillation vials, which were coated with a solution of insecticide in 0.25 ml acetone 

and rolled gently on their sides using a commercial roller until the acetone evaporated 

leaving an even coating of dried insecticide on the vial’s inner surface. Vials were 

prepared a maximum of one day before use. To estimate the toxicity of the 

pyrethroids, increasing doses were used along with two controls; a blank vial with no 

coating and a vial coated in 0.25 ml acetone only. All species were tested with the 

same pyrethroid concentrations at five-fold dilutions, except for I. ricinus, which was 

tested using ten-fold dilutions (see Table 48). Five adult arthropods were placed into 

each vial and the vials were closed with plastic caps containing small air holes. The vials 

were then incubated according to species; A. americanum, D. variabilis, I. ricinus, M. 

domestica and V. destructor were kept in the dark at 85% humidity and 21°C, and R. 

sanguineus in the dark at ambient room conditions (approx. 40-60% humidity and 

21°C). Pyrethroid effects were observed at 2, 4, 6, 24 and 48 hours after exposure 

depending on the species. The exact experimental test conditions were established 

from range-finding trials. These were performed once for all tick species, with one 

replicate per pyrethroid concentration. Raw-data are detailed in Section 10.4 Appendix 

4. For V. destructor the range-finding trials used a comparatively reduced number of 

doses, due to a lack of mites. Raw-data from these trials is also detailed in Section 10.4 

Appendix 4. Each experimental test was replicated a minimum of 3 times. 

Concentrations used and recording times for these experiments are shown in Table 

8.1. At each observation stage individuals unable to move when subjected to a 

stimulus (heat or carbon dioxide for tick species, or tapping of the vial for V. destructor 

or M. domestica), were considered dead, those with unusual or minimal movement 

compared to control individuals (and thus unable to infect a host animal) were 

considered to show a knockdown effect.  
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Table 8.1: Concentrations and Recording Times for Pyrethroid Contact Bioassays 

 

Species Concentrations Used (ppm) Recording Times (Hours) 

M. domestica 
1650, 330, 66, 13.2, 2.64, 

0.528, 0.1056, 0.02112 
2, 4, 6, 24 

D. variabilis 
1650, 330, 66, 13.2, 2.64, 

0.528, 0.1056, 0.02112 
4, 24, 48 

R. Sanguineus 
1650, 330, 66, 13.2, 2.64, 

0.528, 0.1056, 0.02112 
4, 24, 48 

I. ricinus 
1650, 165, 16.5, 1.65, 0.165, 
0.0165, 0.00165, 0.000165 

4, 24, 48 

 

8.2.3 Statistical Analysis 

 

The data obtained from the bioassays were subjected to probit analysis (Finney, 1947), 

using counts of dead or knockdown individuals, for each insecticide and assessment 

time, allowing a comparison of EC50 values (the dose required to affect 50% of 

individuals). This allowed comparisons between the tick species with those for, M. 

domestica.  Models were fitted using the probit analysis implementation in GenStat for 

Windows 18th Edition (VSN International, Hemel Hempstead, UK; www.vsni.co.uk), 

assuming an underlying binomial distribution for the counts and a logit link function 

and relating the proportion affected to the log 10 transformed pyrethroid doses (ppm). 

Because there was limited information available for responses between the extreme 

responses of 0% and 100% of individuals being affected, a common slope parameter 

was assumed for each assessment time for each insecticide. These analyses provided 

estimates of the EC50 values for each species, together with standard errors (using 

Fieller’s theorem), on the log 10 dose scale, from which 95% confidence limits were 

constructed on the log 10 dose scale.  EC50 values and associated 95% confidence limits 

were then back-transformed to the raw dose scale.  A further logistic regression 

analysis (also implemented in GenStat for Windows 18th Edition) provided a 

parameterisation of the fitted probit model, allowing a direct assessment of the 

difference in the logit intercept parameter (effectively the logit transformation of the 

proportion affected at a log 10 dose of zero) for each tick species relative to M. 

domestica.  A two sided z-test of these differences identified where the intercept 

parameter (and hence EC50 value) for each species was significantly different (p <0.05) 
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from that for M. domestica (a more negative intercept value being associated with a 

larger EC50 value, a more positive intercept value being associated with a smaller EC50 

value than that of M. domestica).  Observed proportions of affected individuals and 

the fitted probit curves were plotted on the log 10 dose scale, illustrating the parallel 

nature of the fitted curves on this scale as a consequence of assuming a common slope 

parameter. 

 

8.3 Results 

 

8.3.1 Range Finding Trials  

 

Initial range-finding trials were done with tick species A. americanum, D. variabilis, I. 

ricinus, and R. sanguineus using ten-fold dilutions for each pyrethroid and starting at a 

concentration equivalent to 1 g/Ha (or 1650 ppm). It was concluded that five-fold 

dilutions would be the best, with some of the lower concentrations not being needed. 

The exception to this was for I. ricinus, where it was found that clear results were 

produced using a ten-fold dilution factor. This was probably due to the smaller body 

mass of I. ricinus, compared to the other species tested. Range finding trials were not 

possible for M. domestica because not enough flies were available, but since it has a 

mass comparable to the larger tick species, five-fold dilutions were assumed to be 

suitable. For V. destructor only range-finding trials were possible, due to limited 

availability of mites. The results of range-finding trials can be found in Section 10.4 

Appendix 4.  

 

8.3.2 Insect and Acari Comparative Contact Bioassays 

 

Replicated bioassays were carried out with the ticks D. variabilis, I. ricinus and R. 

sanguineus, and the insect M. domestica. A. americanum could not be used due to lack 

of availability. The EC50 values, along with their lower and upper 95% CIs, are shown 

below, after 4 Hours pyrethroid exposure in Table 8.2 and after 24 hours pyrethroid 

exposure in Table 8.3. The EC50 values and their respective CIs are also presented as 

histograms in Figure 8.1 and as dose response curves in Section 10.5 Appendix 5. 
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Table 8.2: EC50s for Pyrethroids (ppm) After 4 Hours Exposure 

 

Species Pyrethroid EC50 (ppm) Lower 95% CI Upper 95% CI 

M. domestica Deltamethrin 0.24 0.14 0.39 

D. variabilis Deltamethrin 11.83* 8.44 15.89 

R. Sanguineus Deltamethrin 2.37* 1.69 3.18 

I. ricinus Deltamethrin 1.13* 0.67 1.60 

M. domestica Flumethrin 5.90 3.34 10.42 

D. variabilis Flumethrin 21.38* 12.13 37.75 

R. Sanguineus Flumethrin 1.06* 0.60 1.87 

I. ricinus Flumethrin 1.78* 0.91 3.45 

M. domestica Permethrin 1.30 0.80 2.10 

D. variabilis Permethrin 425.70* 274.20 670.20 

R. Sanguineus Permethrin 29.50* 18.40 47.30 

I. ricinus Permethrin 7.80* 4.20 13.80 

M. domestica Tau-Fluvalinate 5.90 3.71 9.40 

D. variabilis Tau-Fluvalinate 208.50* 132.14 324.30 

R. Sanguineus Tau-Fluvalinate 6.60 4.17 10.50 

I. ricinus Tau-Fluvalinate 5.20 2.74 9.90 
 
* = Significantly different to the M. domestica EC50 value for the same pyrethroid. As determined by a 
two sided z-test of these differences which identified where the intercept parameter for each species 
(and therefore EC50) was significantly different (P<0.05) from that for M. domestica (Section 10.5 
Appendix 5). 
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Table 8.3: EC50s for Pyrethroids (ppm) After 24 Hours Exposure 

 

Species Pyrethroid EC50 (ppm) Lower 95% CI Upper 95% CI 

M. domestica Deltamethrin 0.24 0.15 0.37 

D. variabilis Deltamethrin 11.54* 7.79 16.73 

R. Sanguineus Deltamethrin 2.31* 1.56 3.35 

I. ricinus Deltamethrin 0.17 0.12 0.26 

M. domestica Flumethrin 1.18 0.74 1.88 

D. variabilis Flumethrin 0.08* 0.05 0.11 

R. Sanguineus Flumethrin 0.12* 0.08 0.18 

I. ricinus Flumethrin 0.14* 0.09 0.21 

M. domestica Permethrin 1.20 0.70 2.10 

D. variabilis Permethrin 318.20* 183.20 557.60 

R. Sanguineus Permethrin 3.80* 2.20 6.70 

I. ricinus Permethrin 0.70 0.40 1.40 

M. domestica Tau-Fluvalinate 5.90 3.53 9.90 

D. variabilis Tau-Fluvalinate 50.71* 30.53 84.00 

R. Sanguineus Tau-Fluvalinate 6.59 3.94 11.00 

I. ricinus Tau-Fluvalinate 3.15 1.72 5.90 
 
* = Significantly different to the M. domestica EC50 value for the same pyrethroid. As determined by a 
two sided z-test of these differences which identified where the intercept parameter for each species 
(and therefore EC50) was significantly different (P<0.05) from that for M. domestica (Section 10.5 
Appendix 5).
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Figure 8.1: EC50 Values of Pyrethroids (ppm) for Acarine Species and M. domestica after 4 and 24 Hours Exposure  
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8.4 Discussion 

 

8.4.1 V. destructor Bioassay Range-Finding Trials 

 

At the time the trials were carried out control mortality in acetone-treated and blank 

vials was high, possibly due to fluctuations in humidity or to the age of the mites. 

Other successful studies used mites taken from the brood comb (Kamler et al., 2016; 

Kanga et al., 2010) rather than from adult bees as for the present study, and this may 

have affected mite health and survival during the bioassays. Because of concerns over 

mite survival, a scoring method for determining affected vs unaffected mites was used 

that involved observation through the glass of the vials. However, this may have led to 

wrong estimates of the number of affected/dead mites and the more robust method 

of Kanga et al 2010 and Kamler et al 2016, which involved tipping mites out and 

observing their motility, would have been more appropriate. As a further complication, 

the pyrethroid resistance status of the available mites was not known and so the 

results could have been skewed by the presence of pyrethroid resistance. These 

factors combined means that in this study it is not possible to draw any conclusions 

from the bioassays on V. destructor. It is the intention that improved studies will be 

carried out by Bayer Crop Science when a larger number of wild-type mites from brood 

combs are available. This will allow an expansion of the range of concentrations used, 

and improvements in control mortality and scoring methods, so that the 

determination of EC50 values for test pyrethroids against V. destructor will be possible.  

 

8.4.2 Insect and Acari Comparative Contact Bioassays 

 

Pyrethroids used in bioassays are shown in Figure 7.15 (Section 7.4.5) and are 

replicated in Figure 8.2.  
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Figure 8.2: Pyrethroids Used in Electrophysiological Studies of Arthropod VGSCs 

 

Permethrin, Flumethrin, Deltamethrin and Tau-Fluvalinate shown as examples of pyrethroids with 

relatively large and small acidic moieties. Areas of interest within the acidic portion are highlighted by 

green boxes. All pyrethroid structures are from ChemSpider 2016. 

 

Both Deltamethrin and Permethrin have smaller halogenated substituents in their 

acidic moiety. Pyrethroids with suggested selective acaricidal activity differ from other 

pyrethroids by having large halogenated substituents in their acidic moiety. According 

to the model proposed by O’Reilly et al 2014, pyrethroids with these larger moieties 

could be accommodated in acarine channels, such as the tick channels tested in the 

contact bioassays above, which have a smaller glycine at position 933, but not by 

insect channels, such as the M. domestica channel, which has a larger cysteine residue 

in this position. If this model were to hold true, we would expect neither deltamethrin 

nor permethrin to show selective acaricidal activity, as they have comparatively 

smaller acidic moieties. This appears to be the case here, where both pyrethroids show 

no greater potency for acarine species compared to M. domestica. In fact, both 

deltamethrin and permethrin show a statistically significantly greater effect on M. 

domestica compared to D. variabilis and R. sanguineus (P<0.05 two-sided z-test) (Table 

8.3).  

 

Interestingly, the effects of these two pyrethroids varies between tick species. When 

compared to D. variabilis at 24 hours, deltamethrin has a ~5 fold greater effect on R. 

sanguineus and a ~67 fold greater effect on I. ricinus, while permethrin has a ~83 fold 
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greater effect on R. sanguineus and a ~455 fold greater effect on I. ricinus (Table 8.3). 

These differences in efficacy could be due to a number of complex differences 

between the tick species tested; such as body mass, metabolic processes, cuticle 

composition, and symbiont presence or absence. Further investigations are merited 

into the reasons behind the significantly more pronounced effects that these 

pyrethroids have on I. ricinus and R. sanguineus compared to D. variabilis, as this may 

aid development of more effective tick control.  

 

Pyrethroids with larger acidic moieties used in comparative bioassays were flumethrin 

and tau-fluvalinate (Figure 8.2). According to the model proposed by O’Reilly et al 2014, 

both of these pyrethroids would show selective acaricidal activity. After 4 hours 

exposure to flumethrin, the EC50 value for D. variabilis was significantly higher than 

that for M. domestica (P<0.05 two-sided z-test), implying that more of this pyrethroid 

would be required to kill or knockdown this tick species compared to M. domestica. 

However, for R. sanguineus and I. ricinus the EC50 values were significantly lower 

(P<0.05 two-sided z-test) than that for M. domestica, implying that less of this 

pyrethroid would be required to kill or knockdown the acari tested compared to M. 

domestica (Table 8.2). After 24 hours exposure to flumethrin, the EC50 values for all 

acarine species tested were significantly lower than that for M. domestica (P<0.05 two-

sided z-test), implying that less of this pyrethroid would be required to kill or 

knockdown the tick species tested compared to M. domestica (Table 8.3). Thus results 

with flumethrin after 24 hours support the O’Reilly model that pyrethroids with larger 

halogenated groups in their acidic moieties show increased acaricidal selectivity. 

However, results after 4 hours show that this pyrethroid was significantly slower to act 

on D. variabilis compared to the other tick species and to M. domestica (P<0.05 two-

sided z-test). As D. variabilis is an important disease vector species fast action of 

acaricidal compounds to cause a knockdown or kill effect on this species are critical, to 

prevent the spread of disease to humans and other animals (Deplazes et al., 2016; 

Service, 2012). It is currently unclear what may slow the action of flumethrin on this 

species, but investigations into this mechanism represent useful future work. 
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After 4 hours exposure to tau-fluvalinate, the EC50 value for D. variabilis was 

significantly higher than that for M. domestica (P<0.05 two-sided z-test), implying that 

more of this pyrethroid would be required to kill or knockdown this tick species 

compared to M. domestica (Table 8.2). After 24 hours of tau-fluvalinate exposure, the 

EC50 values for all acarine species had reduced; however, the EC50 value for D. variabilis 

still significantly higher than that for M. domestica by ~9 fold (Table 8.3) (P<0.05 two-

sided z-test). The EC50 values for R. sanguineus and I. ricinus are not significantly 

different to that for M. domestica after both 4 and 24 hours exposure (Figure 8.1) 

(P>0.05 two-sided z-test). So although tau-fluvalinate has a comparatively larger 

halogenated moiety (Figure 8.2) it does not appear to show greater acarine over insect 

selectivity, at least in those species tested in this study. This suggests that the model 

proposed my O’Reilly et al 2014 does not completely cover the complexity involved in 

pyrethroid selectivity. Further bioassays involving more individuals and more species 

would be required to confirm this, but in conclusion, results here suggest that 

acaricidal selectivity is complex and dependent on more than the target protein; it is 

possible that metabolic or structural mechanisms combine with target-site differences 

to pay a role in selectivity. Further investigations into the reasons behind pesticide 

specificity should be undertaken to look into differences in the exoskeletal structure 

and metabolic processes between species before the O’Reilley et al 2014 model of 

pyrethroid selectivity at the arthropod VGSC involving residue 933 can be confirmed or 

denied. 
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9 General Discussion and Future Directions 

 

This chapter summarises the main findings of this thesis and suggested future work to 

build on these discoveries is outlined.  

 

9.1 Acarine VGSCs and Pyrethroid Resistance 

 

Chapter 5 demonstrated that acarine species show high levels of conservation in the 

amino-acid sequence of the membrane spanning domains of their VGSCs, including the 

putative pyrethroid binding site proposed by O’Reilly et al 2006. Similarly, there is 

conservation between the acarine channels and those of the insect M. domestica. 

However, subtle sequence differences were found between individuals that could 

affect pyrethroid toxicity and specificity. Specifically, this work identified two 

mutations conferring amino acid substitutions in the VGSC of ticks. One, V1010F, found 

in R. microplus, is in a position not reported previously to be involved in resistance and 

the other, F1538L, found in R. sanguineus, is in the same position as F1538I, previously 

shown to be associated with pyrethroid resistance in pollen beetles. Both warrant 

further investigation regarding their influence over VGSC sensitivity using 

electrophysiological methods.  

 

Alongside F1538L, R. sanguineus ticks were found to also have the L925I substitution, 

which has been confirmed to be responsible for pyrethroid resistance (Morin et al., 

2002; Rinkevich et al., 2013; Usherwood et al., 2007) and G933V, suspected to confer 

selective pyrethroid resistance  (Jonsson et al., 2010). In one individual tick (RST3), 

G933V and F1538L were found heterozygously on opposite alleles, as seen previously 

for  G933V and L925I in R. microplus ticks resistant to flumethrin but not cypermethrin 

(Jonsson et al., 2010). The model proposed by O’Reilly et al 2014 predicts that G933V 

would give resistance to pyrethroids like flumethrin, with comparatively large 

halogenated groups, but not to permethrin, with comparatively small halogenated 

groups (Figure 29). Thus, if the model were correct, then G933V/F1538L ticks would 

not be resistant to permethrin, unless F1538L alone gives target site resistance. This 

has been suggested for pollen beetles with heterozygous F1538L (Wrzesinska et al., 
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2014). Alternatively, metabolic resistance could also be involved and such resistance 

has been characterised previously in R. sanguineus (Miller et al., 2001). It would be 

useful to gather more R. sanguineus samples from the same geographical area to 

examine the phenotypic and genotypic causes of any resistance in more detail. 

 

9.2 Chimeric VGSCs 

 

Chapter 6 described attempts to create chimeric R. microplus/D. melanogaster VGSC 

constructs for functional studies. Although none of the attempts were totally 

successful, the creation of Chimeras L2/L4 and Chimera LC constructs highlighted 

possible alternative exon usage in the R. microplus (Parkhurst) VGSC comparable to 

that seen in other arthropods (Figure 15). Firstly, alternative exon usage in an area 

which encodes optional exon b in other arthropods (Dong et al., 2014; Loughney et al., 

1989), a region suspected to be involved in the modulation of current flow, because 

removal of this exon increases peak current of B. germanica and V. destructor VGSCs 

(Du et al., 2009a; Song et al., 2004). Secondly, alternative exon usage in an area which 

encodes mutually exclusive exons k/l in other arthropods, a variable region found in 

several animal species, including the acari V. destructor (Dong et al., 2014; Lee et al., 

2002). This area is interesting because it has been shown to modulates the generation 

of a persistent current in the D. melanogaster para channel, with channels containing 

exon l showing greater persistent currents (so maintaining the open state for longer) 

than those containing exon k (Lin et al., 2009). All chimeric constructs created in the 

present study show a slightly greater level of similarity to exon l in the D. melanogaster 

para VGSC (Figure 15). However, Chimera LC shows less similarity to exon l than do 

Chimeras L2/L4, therefore Chimera LC could  represent an “exon k” type variant in R. 

microplus. This is interesting given that D. melanogaster para VGSCs expressing the k 

exon variation have been reported to be 24 times less sensitive to the pyrethroid 

deltamethrin than those expressing the l exon variation (Burton, 2012). Further 

examination of R. microplus exon usage would help clarify the potential importance of 

alternative splicing in this species with regards to pyrethroid resistance and VGSC 

properties. 
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9.3 Electrophysiology with Arthropod VGSCs 

 

Chapter 7 reports the first use of electrophysiological to determine the effects of 

pyrethroids on V. destructor VGSCs. Although the results do not support the prediction 

of the model by O’Reilly et al 2014, that pyrethroids with large halogenated moieties 

(flumethrin and tau-fluvalinate) should show increased selectivity for the V. destructor 

native VGSC, when compared to the V. destructor G933V or D. melanogaster para 

VGSCs, they do offer novel information. The substitution G933V does not appear to 

give selective resistance to flumethrin or tau-fluvalinate, as was reported in Australian 

R. microplus ticks (Jonsson et al., 2010), but this needs to be confirmed by more 

electrophysiological testing, particularly given the rising ail currents seen with Type II 

pyrethroids and V. destructor VGSCs (Figure 28). This phenomenon prevents firm 

conclusions being drawn from the recordings because the inward current baseline and 

the end point of tail currents cannot be determined. However, it hints at important 

information regarding the binding capacity of pyrethroids to acarine VGSCs compared 

to those from insects. The unexpected results from the V. destructor VGSCs needs to 

be further investigated, using different experimental conditions, to see if there really is 

a fundamental difference in the functioning of acarine VGSCs compared with those 

from insects, which have been much more widely studied. 

 

9.4 Contact Bioassays with Arthropods 

 

As with permethrin resistance found in R. sanguineus in Chapter 5 and the 

electrophysiological studies in Chapter 7, the contact bioassays reported in Chapter 8, 

suggest that the model proposed by O’Reilly et al 2014 does not completely cover the 

complexity involved in pyrethroid selectivity between acarine and insect species. In 

particular tau-fluvalinate, a pyrethroid with a larger halogenated group (Figure 29), did 

not show the increased acaricidal specificity that the model would predict. All tick 

species tested were sequenced in this thesis (Chapter 5) and were confirmed to have 

similar sequences across membrane-spanning domains of their VGSCs, including the 

potential pyrethroid binding areas (Du et al., 2013; O'Reilly et al., 2006) and to have a 

G at position 933 (O'Reilly et al., 2014) (Section 10.2 Appendix 2). This suggests that 
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other factors besides selectivity at the VGSC, could be contributing to the action of 

pyrethroids on whole arthropods, notably metabolic or structural mechanisms. This 

possibility is supported by observations within tick species, that D. reticulatus is 

relatively insensitive to permethrin, deltamethrin and tau-fluvalinate, compared to R. 

sanguineus and I. ricinus. This is of particular interest as this tick was not relatively 

more resistant to Flumethrin. Further bioassays are needed to look into possible 

differences in exoskeletal structure and hence uptake of the pyrethroids, and into 

metabolic differences between species.  

 

9.5 Future Directions 

 

As a result of the findings in this thesis, the following future work is proposed: 

 

1. Results from the sequencing of the VGSC form R. sanguineus ticks resistant to 

pyrethroids were limited due to a lack of individuals. More samples could be taken 

from the same geographical area, so the extent of the resistance can be accurately 

assessed and management strategies imposed. Furthermore, testing of individuals 

for resistance to a pyrethroid with a comparatively large halogenated group, such as 

flumethrin, and one with a comparatively small halogenated group, such as 

permethrin, would enable further investigation of the model of pyrethroid 

selectivity proposed by O’Reilly et al 2014. The one or two individuals carrying 

G933V examined in this study are not sufficient to confirm or reject the hypothesis 

proposed for the role of residue 933 in pyrethroid selectivity 

 

2. Future work on the chimeric R. microplus/D. melanogaster VGSC constructs made in 

Chapter 6 might produce a functional channel. One option to deliver this would be 

moving the chimeric VGSC (and X. laevis Beta-globin sequences) to different 

bacterial expression vectors to attempt to stabilise the construct in E. coli. Another 

option is to move these regions to an insect expression vector and attempt 

expression in insect cells, using patch-clamp electrophysiology to monitor 

expression levels. 
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3. As exon variation can affect pyrethroid action at the R. microplus VGSC (Burton, 

2012; Lin et al., 2009), it would be interesting to investigate the use of the 

alternative exons found in this study in R. microplus, looking at different 

developmental stages and tissue types. This could inform targeting of tick control 

strategies. 

 

4. Investigation of the suspected R. microplus exon “l” and “k” sequences using 

electrophysiological methods might  be accomplished by inserting these separately 

in place of the same region in the D. melanogaster para or V. destructor VGSC and 

then testing for pyrethroid selectivity 

 

5. Chapter 7 showed rise tail currents for V. destructor VGSCs (Figure 27). This 

phenomenon warrants further investigation so that firm conclusions can be drawn 

regarding pyrethroid interactions at these channels. Initial advanced investigations 

have shown that testing each oocyte with Voltage Protocols 1-3 (Section 7.2.7) prior 

to pyrethroid application, then applying 10 µM pyrethroid and running Voltage 

Protocol 3 only, removes the rise in tail currents previously seen. This methodology 

with therefore be employed to attempt to measure the Mi for pyrethroids at 10 µM 

concentrations (Figure 9.1). 
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Figure 9.1: Tail-Currents in Native V. destructor VGSCs Resulting from Modified 

Protocol Application 

 

Example tail currents in the presence of 10 µM pyrethroid for V. destructor native VGSCs. Channels 
were expressed in X. laevis oocytes and exposed to pyrethroid toxicant (Section 7.2.8) before the 
application of Voltage Protocol 3only (Section 7.2.7). Data shown was extracted from WinWCP (John 
Dempster, University of Strathclyde) and illustrates the removal of the tail-current rise above the 
Time ≈ 0 baseline previously seen in V. destructor VGSCs (red line). 
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6. TEVC electrophysiology experiments in Chapter 7 did not conclusively prove or 

discount the proposal by O’Reilley et al 2014, that differences in the amino acid 

residue at position 933 in the VGSC of arthropods could determine pyrethroid 

selectivity for insects or acari. Therefore, the technique of genome editing using the 

CRISPR/Cas9 system could be used to replace the cysteine at residue 933 in the D. 

melanogaster VGSC with a glycine, as found at position 933 in most acarine VGSCs 

(Cong et al., 2013). If the resultant mutant D. melanogaster were found to have 

increased sensitivity to pyrethroids with large halogenated groups when compared 

to flies with native VGSCs, this would help to confirm the model put forward by 

O’Reilley et al 2014 that this residue leads to acari having greater susceptibility to 

these compounds. 

 

7. The bioassays reported in Chapter 8 produced interesting results regarding 

pyrethroid specificity both between acarine and insect species and within the acari. 

However, these were limited in their scope and should be extended to more 

replicates, with each species and more types of pyrethroids.  

 

8. Bioassays in Chapter 8 showed differences in the effectiveness of different 

pyrethroids, not just between insects and acari, but between different tick species. 

Interestingly, work in Chapter 6 showed that R. microplus has variable exon k/l 

usage within its VGSC, a region which has been linked to the modulation of 

persistent current in the D. melanogaster para channel, with channels containing 

exon l showing greater persistent currents and susceptibility to pyrethroids (Burton, 

2012; Lin et al., 2009). Therefore, further work examining the amino acids in the 

region corresponding to exon k/l in those ticks tested in Chapter could determine if 

any differences in the sequence present, or in the expression level of exon variants, 

would account for the differences in pyrethroid activity seen between tick species. 

Such differences could then be further examined using TEVC electrophysiology and 

could inform pyrethroid use against these tick species. 
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Overall, the work reported here has looked at the interactions of VGSCs from insects 

and acari using bioassays, cloning/sequencing and electrophysiology. Each has 

provided valuable and interesting preliminary data, but each approach has its own 

drawbacks, and further optimisation is required to draw the results together. This 

could then offer ideas for the selective control of acari, an area of great importance in 

the field. 
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10 Appendices 

 

10.1 Appendix 1 

 

The R. microplus VGSC as sequenced from in this study following cDNA PCR amplification. 

The sequence spans from the 5’ end of the channel before Domain I past the end of the protein coding sequence and into the 3’ UTR. 

Membrane-spanning segments and the domains to which they belong are indicated by blue bars, these were estimated using information from the V. 

destructor mite channel as sequenced by Wang et al 2003. 
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10.2 Appendix 2 

 

The VGSC domain-spanning regions from A. americanum, A. hebraeum, D. gallinae, D. reticulatus, D. variabilis, I. ricinus, P. ovis and R. sanguineus as 

sequenced from in this study following cDNA PCR amplification. 

Membrane-spanning segments and the domains to which they belong are indicated by blue bars, these were estimated using information from the V. 

destructor mite channel as sequenced by Wang et al 2003. 
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A. americanum Domain I 
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A. americanum Domain II 
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A. americanum Domain III 
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A. americanum DIV 
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A. hebraeum DI 
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A. hebraeum DII 
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A. hebraeum DIII 
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A. hebraeum DIV 
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D. gallinae DI 
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D. gallinae DII 
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D. gallinae DIII 
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D. gallinae DIV 
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D. reticulatus DI 
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D. reticulatus DII 
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D. reticulatus DIII 

 



 

 

206 

D. reticulatus DIV 
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D. variabilis DI 
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D. variabilis DII 
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D. variabilis DIII 

 



 

 

210 

D. variabilis DIV 
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I. ricinus DI 
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I. ricinus DII 
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I. ricinus DIII 
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I. ricinus DIV 
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P. ovis DII 
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P. ovis DIII 
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P. ovis DIV 
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R. sanguineus DI 
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R. sanguineus DII 
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R. sanguineus DIII 

 



 

 

221 

R. sanguineus DIV 
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10.3 Appendix 3 

 

The chimeric R. microplus and D. melanogaster para VGSC constructs Chimera L2/L4 and Chimera LC in the expression vector pGH19 (Warmke et al., 

1997). The construct includes the 5’ and 3’ untranslated X. laevis beta-globin sequences, indicated by purple bars, to stabilize heterologous cRNA 

expressed in X. laevis oocytes (Liu et al., 1996). Membrane-spanning segments and the domains to which they belong are indicated by blue bars, and 

were estimated using information from the V. destructor mite channel, as sequenced by Wang et al 2003. The 5’ and 3’ flanking D. melanogaster 

para regions are indicated by pale green bars, and the R. microplus VGSC domain-spanning insert is indicated by a pink bar. The position of a NotI 

restriction site in the native R. microplus channel is shown by a bright green bar, this site was removed by site directed mutagenesis to allow plasmid 

linearization for cRNA transcript preparation. The position of the stop codon in Chimera LC is indicated by a black bar. 
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Chimera L2/L4 
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Chimera LC 
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10.4 Appendix 4 

 

Raw data from range-finding pyrethroid contact bioassays with tick species and V. destructor mites. Each tick species was tested with all four 

pyrethroids on the same day. Five adult acari were used per test vial, giving a total n = 5 per concentration. V. destructor mites were tested with one 

pyrethroid per day due to mite availability (as stated in Section 8.2.2). *A = Affected in these tables, the sum total of knockdown and dead individuals 

for the given pyrethroid dose or control. 
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Species and Species Details: Amblyomma americanum. Hatched 03/04/16. Delivered 06/05/16. 

Compound Concentration (mg/Ha) Concentration (ppm) 

Time 

4 Hours 24 Hours 48 Hours 

A* Kdr Dead A Kdr Dead A Kdr Dead 

Deltamethrin Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

Deltamethrin Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

Deltamethrin 1000 1650 5 5 0 5 5 5 5 3 2 

Deltamethrin 100 165 5 5 0 5 3 2 5 2 3 

Deltamethrin 10 16.5 5 5 0 5 5 0 5 4 1 

Deltamethrin 1 1.65 3 3 0 0 0 0 0 0 0 

Deltamethrin 0.1 0.165 0 0 0 0 0 0 0 0 0 

Deltamethrin 0.01 0.0165 0 0 0 0 0 0 0 0 0 

Deltamethrin 0.001 0.00165 0 0 0 0 0 0 0 0 0 

Deltamethrin 0.0001 0.000165 0 0 0 0 0 0 0 0 0 

Flumethrin Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

Flumethrin Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

Flumethrin 1000 1650 5 1 4 5 1 4 5 0 0 

Flumethrin 100 165 4 4 0 5 3 2 5 0 0 

Flumethrin 10 16.5 3 3 0 5 4 1 5 0 0 

Flumethrin 1 1.65 0 0 0 5 3 2 5 2 3 

Flumethrin 0.1 0.165 0 0 0 0 0 0 3 3 0 

Flumethrin 0.01 0.0165 0 0 0 0 0 0 0 0 0 

Flumethrin 0.001 0.00165 0 0 0 0 0 0 0 0 0 

Flumethrin 0.0001 0.000165 0 0 0 0 0 0 0 0 0 
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Compound Concentration (mg/Ha) Concentration (ppm) 

Time 

4 Hours 24 Hours 48 Hours 

A Kdr Dead A Kdr Dead A Kdr Dead 

Permethrin Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

Permethrin Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

Permethrin 1000 1650 5 5 0 5 5 0 5 1 4 

Permethrin 100 165 5 5 0 5 4 1 4 0 4 

Permethrin 10 16.5 5 5 0 1 1 0 0 0 0 

Permethrin 1 1.65 0 0 0 0 0 0 0 0 0 

Permethrin 0.1 0.165 0 0 0 0 0 0 0 0 0 

Permethrin 0.01 0.0165 0 0 0 0 0 0 0 0 0 

Permethrin 0.001 0.00165 0 0 0 0 0 0 0 0 0 

Permethrin 0.0001 0.000165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 1000 1650 0 0 0 5 5 0 5 5 0 

Tau-Fluvalinate 100 165 0 0 0 1 1 0 3 3 0 

Tau-Fluvalinate 10 16.5 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 1 1.65 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 0.1 0.165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 0.01 0.0165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 0.001 0.00165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 0.0001 0.000165 0 0 0 0 0 0 0 0 0 
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Species and Species Details: Dermacentor variabilis. Hatched 01/12/15. Delivered 13/01/16. 

Compound Concentration (mg/Ha) Concentration (ppm) 

Time 

4 Hours 24 Hours 48 Hours 

A Kdr Dead A Kdr Dead A Kdr Dead 

Deltamethrin Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

Deltamethrin Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

Deltamethrin 1000 1650 5 5 0 5 3 2 5 4 1 

Deltamethrin 100 165 5 5 0 5 3 2 5 1 4 

Deltamethrin 10 16.5 3 2 1 3 2 1 3 2 1 

Deltamethrin 1 1.65 0 0 0 0 0 0 0 0 0 

Deltamethrin 0.1 0.165 0 0 0 0 0 0 0 0 0 

Deltamethrin 0.01 0.0165 0 0 0 0 0 0 0 0 0 

Deltamethrin 0.001 0.00165 0 0 0 0 0 0 0 0 0 

Deltamethrin 0.0001 0.000165 0 0 0 0 0 0 0 0 0 

Flumethrin Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

Flumethrin Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

Flumethrin 1000 1650 5 5 0 5 0 5 5 0 5 

Flumethrin 100 165 3 3 0 5 1 4 5 0 5 

Flumethrin 10 16.5 1 1 0 5 4 1 5 0 5 

Flumethrin 1 1.65 0 0 0 5 4 1 5 4 1 

Flumethrin 0.1 0.165 0 0 0 3 3 0 4 4 0 

Flumethrin 0.01 0.0165 0 0 0 0 0 0 0 0 0 

Flumethrin 0.001 0.00165 0 0 0 0 0 0 0 0 0 

Flumethrin 0.0001 0.000165 0 0 0 0 0 0 0 0 0 
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Compound Concentration (mg/Ha) Concentration (ppm) 

Time 

4 Hours 24 Hours 48 Hours 

A Kdr Dead A Kdr Dead A Kdr Dead 

Permethrin Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

Permethrin Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

Permethrin 1000 1650 5 5 0 5 2 3 5 0 5 

Permethrin 100 165 2 2 0 5 5 0 2 1 1 

Permethrin 10 16.5 0 0 0 0 0 0 0 0 0 

Permethrin 1 1.65 0 0 0 0 0 0 0 0 0 

Permethrin 0.1 0.165 0 0 0 0 0 0 0 0 0 

Permethrin 0.01 0.0165 0 0 0 0 0 0 0 0 0 

Permethrin 0.001 0.00165 0 0 0 0 0 0 0 0 0 

Permethrin 0.0001 0.000165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 1000 1650 5 5 0 5 5 0 5 3 2 

Tau-Fluvalinate 100 165 5 5 0 5 5 0 5 4 1 

Tau-Fluvalinate 10 16.5 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 1 1.65 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 0.1 0.165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 0.01 0.0165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 0.001 0.00165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 0.0001 0.000165 0 0 0 0 0 0 0 0 0 
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Species and Species Details: Ixodes ricinus. From Stables 06/04/2016. 

Compound Concentration (mg/Ha) Concentration (ppm) 

Time 

4 Hours 24 Hours 48 Hours 

A Kdr Dead A Kdr Dead A Kdr Dead 

N/A Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

N/A Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

N/A Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

N/A Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

N/A Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

N/A Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

Deltamethrin 1000 1650 5 0 5 5 0 5 5 0 5 

Deltamethrin 100 165 5 1 4 5 0 5 5 0 5 

Deltamethrin 10 16.5 5 0 5 5 0 5 5 0 5 

Deltamethrin 1 1.65 5 0 5 5 0 5 5 0 5 

Deltamethrin 0.1 0.165 5 0 5 5 0 5 5 0 5 

Deltamethrin 0.01 0.0165 4 0 4 4 0 4 4 0 4 

Deltamethrin 0.001 0.00165 0 0 0 1 0 1 1 0 1 

Deltamethrin 0.0001 0.000165 0 0 0 0 0 0 0 0 0 

Flumethrin 1000 1650 5 2 3 5 0 5 5 0 5 

Flumethrin 100 165 5 1 4 5 0 5 5 0 5 

Flumethrin 10 16.5 5 0 5 5 0 5 5 0 5 

Flumethrin 1 1.65 5 2 3 5 0 5 5 0 5 

Flumethrin 0.1 0.165 3 3 0 4 1 3 5 0 5 

Flumethrin 0.01 0.0165 3 1 2 4 1 3 5 0 5 

Flumethrin 0.001 0.00165 3 1 2 4 0 4 5 0 5 

Flumethrin 0.0001 0.000165 0 0 0 0 0 0 0 0 0 
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Compound Concentration (mg/Ha) Concentration (ppm) 

Time 

4 Hours 24 Hours 48 Hours 

A Kdr Dead A Kdr Dead A Kdr Dead 

Permethrin 1000 1650 5 1 4 5 0 5 5 0 5 

Permethrin 100 165 5 1 4 5 0 5 5 0 5 

Permethrin 10 16.5 5 1 4 5 0 5 5 0 5 

Permethrin 1 1.65 3 1 2 5 1 4 5 0 5 

Permethrin 0.1 0.165 0 0 0 1 0 1 1 0 1 

Permethrin 0.01 0.0165 0 0 0 0 0 0 0 0 0 

Permethrin 0.001 0.00165 0 0 0 0 0 0 0 0 0 

Permethrin 0.0001 0.000165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 1000 1650 5 1 4 5 0 5 5 0 5 

Tau-Fluvalinate 100 165 5 1 4 5 0 5 5 0 5 

Tau-Fluvalinate 10 16.5 5 2 3 5 0 5 5 0 5 

Tau-Fluvalinate 1 1.65 3 0 3 3 0 3 3 0 3 

Tau-Fluvalinate 0.1 0.165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 0.01 0.0165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 0.001 0.00165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 0.0001 0.000165 0 0 0 0 0 0 0 0 0 
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Species and Species Details: Rhipicephalus sanguineus. Hatched 04/03/16. Delivered 06/04/16. 

Compound Concentration (mg/Ha) Concentration (ppm) 

Time 

4 Hours 24 Hours 48 Hours 

A Kdr Dead A Kdr Dead A Kdr Dead 

Deltamethrin Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

Deltamethrin Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

Deltamethrin 50 1650 5 4 1 5 2 3 5 1 4 

Deltamethrin 5 165 5 5 0 5 5 0 5 5 0 

Deltamethrin 0.5 16.5 5 5 0 3 1 2 4 2 2 

Deltamethrin 0.05 1.65 3 3 0 2 1 1 1 0 1 

Deltamethrin 0.005 0.165 0 0 0 1 1 0 1 1 0 

Deltamethrin 0.0005 0.0165 0 0 0 0 0 0 0 0 0 

Deltamethrin 0.00005 0.00165 0 0 0 0 0 0 0 0 0 

Deltamethrin 0.000005 0.000165 0 0 0 0 0 0 0 0 0 

Flumethrin Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

Flumethrin Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

Flumethrin 50 1650 5 0 5 5 2 3 5 0 5 

Flumethrin 5 165 5 0 5 5 2 3 5 0 5 

Flumethrin 0.5 16.5 5 2 3 5 3 2 5 0 5 

Flumethrin 0.05 1.65 2 2 0 5 5 0 5 5 0 

Flumethrin 0.005 0.165 0 0 0 3 2 1 4 2 2 

Flumethrin 0.0005 0.0165 0 0 0 0 0 0 1 1 0 

Flumethrin 0.00005 0.00165 0 0 0 0 0 0 0 0 0 

Flumethrin 0.000005 0.000165 0 0 0 0 0 0 0 0 0 
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Compound Concentration (mg/Ha) Concentration (ppm) 

Time 

4 Hours 24 Hours 48 Hours 

A Kdr Dead A Kdr Dead A Kdr Dead 

Permethrin Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

Permethrin Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

Permethrin 50 1650 5 5 0 5 1 4 5 0 5 

Permethrin 5 165 5 5 0 5 1 4 5 0 5 

Permethrin 0.5 16.5 3 3 0 5 3 2 5 1 4 

Permethrin 0.05 1.65 1 1 0 2 2 0 5 2 3 

Permethrin 0.005 0.165 0 0 0 0 0 0 0 0 0 

Permethrin 0.0005 0.0165 0 0 0 0 0 0 0 0 0 

Permethrin 0.00005 0.00165 0 0 0 0 0 0 0 0 0 

Permethrin 0.000005 0.000165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate Blank Control Blank Control 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 50 1650 5 5 0 5 4 1 5 3 2 

Tau-Fluvalinate 5 165 5 5 0 5 5 0 5 5 0 

Tau-Fluvalinate 0.5 16.5 0 0 0 5 5 0 1 1 0 

Tau-Fluvalinate 0.05 1.65 0 0 0 0 0 0 1 1 0 

Tau-Fluvalinate 0.005 0.165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 0.0005 0.0165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 0.00005 0.00165 0 0 0 0 0 0 0 0 0 

Tau-Fluvalinate 0.000005 0.000165 0 0 0 0 0 0 0 0 0 
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Species and Species Details: Varroa destructor. From The Honey Farm, Imkerei Ullmann, Erlensee, Germany. Summer 2016. 

Compound Concentration (mg/Ha) Concentration (ppm) 

Time 

2 Hours 4 Hours 6 Hours 8 Hours 10 Hours 

A Kdr Dead A Kdr Dead A Kdr Dead A Kdr Dead A Kdr Dead 

N/A Blank Control Blank Control 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 

N/A Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 

Deltamethrin 100 165 5 5 0 5 3 2 5 2 3 5 0 5 5 0 5 

Deltamethrin 10 16.5 5 5 0 5 5 0 5 4 1 5 2 3 5 0 5 

Deltamethrin 1 1.65 5 5 0 5 5 0 5 5 0 5 5 0 3 3 0 

Deltamethrin 0.1 0.165 1 1 0 2 2 0 3 3 0 5 5 0 3 3 0 

Deltamethrin 0.01 0.0165 0 0 0 0 0 0 1 1 0 2 0 2 4 2 2 

Deltamethrin 0.001 0.00165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N/A Blank Control Blank Control 0 0 0 2 2 0 0 4 0 4 3 1 4 0 4 

N/A Acetone Only Control Acetone Only Control 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 

Flumethrin 100 165 5 4 1 5 1 4 5 0 5 5 0 5 5 0 5 

Flumethrin 10 16.5 3 3 0 5 1 4 5 0 5 5 0 5 5 0 5 

Flumethrin 1 1.65 3 3 0 5 4 1 5 3 2 5 0 5 5 0 5 

Flumethrin 0.1 0.165 0 0 0 3 2 1 5 3 2 5 2 3 5 1 4 

Flumethrin 0.01 0.0165 0 0 0 0 0 0 1 0 1 3 2 1 4 2 1 

Flumethrin 0.001 0.00165 0 0 0 0 0 0 2 2 2 5 2 3 5 1 4 

N/A Blank Control Blank Control 0 0 0 0 0 0 0 0 0 1 1 0 3 3 0 

N/A Acetone Only Control Acetone Only Control 0 0 0 0 0 0 1 1 0 0 0 0 3 2 1 

Permethrin 100 165 5 5 0 5 4 1 5 1 4 5 0 5 5 0 5 

Permethrin 10 16.5 5 5 0 5 5 0 5 5 0 5 3 2 5 3 2 

Permethrin 1 1.65 5 5 0 5 5 0 5 4 1 5 4 1 5 4 1 

Permethrin 0.1 0.165 0 0 0 0 0 0 4 4 0 4 4 0 4 4 0 

Permethrin 0.01 0.0165 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

Permethrin 0.001 0.00165 0 0 0 0 0 0 1 0 1 1 0 1 4 3 1 
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Compound Concentration (mg/Ha) Concentration (ppm) 

Time 

2 Hours 4 Hours 6 Hours 8 Hours 10 Hours 

A Kdr Dead A Kdr Dead A Kdr Dead A Kdr Dead A Kdr Dead 

N/A Blank Control Blank Control 0 0 0 0 0 0 2 2 0 4 4 0 4 1 3 

N/A Acetone Only Control Acetone Only Control 0 0 0 3 3 0 2 0 2 2 0 2 4 1 3 

Tau-Fluvalinate 100 165 5 5 0 5 5 0 5 5 0 4 1 3 5 0 5 

Tau-Fluvalinate 10 16.5 5 5 0 5 5 0 5 5 0 5 2 3 4 0 4 

Tau-Fluvalinate 1 1.65 0 0 0 0 0 0 1 1 0 1 1 0 2 0 2 

Tau-Fluvalinate 0.1 0.165 0 0 0 0 0 0 1 1 0 3 3 0 3 0 3 

Tau-Fluvalinate 0.01 0.0165 0 0 0 0 0 0 2 2 0 3 3 0 3 3 0 

Tau-Fluvalinate 0.001 0.00165 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 
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10.5 Appendix 5 

 

Dose-response curves for tick species and M. domestica from comparative pyrethroid 

contact bioassays. Five adult arthropods were used per test vial with three repeats, 

giving a total of n = 15 for each pyrethroid concentration.  Probit analysis/logistic 

regression assumed a common slope parameter across species for each insecticide at 

each assessment time, allowing a comparison of the EC50 values via assessment of 

differences in the logit proportion intercept parameter for each tick species relative to 

that for M. domestica.  Differences in intercept parameter values were assessing using 

a z-test, with a significant difference (p <0.05) in intercept values indicating a 

significant difference (p <0.05) in the associated EC50 estimates. 
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Species 
Difference in intercept parameter 

relative to M. domestica (proportion) 

Standard 

Error (s.e.) 
z-statistic p-value 

D. variabilis -14.14 3.34 -4.23 <.001 

R. sanguineus -8.33 2.15 -3.88 <.001 

I. ricinus -5.64 1.86 -3.03 0.002 
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Species 
Difference in intercept parameter 

relative to M. domestica (proportion) 

Standard 

Error (s.e.) 
z-statistic p-value 

D. variabilis -10.64 2.06 -5.17 <.001 

R. sanguineus -6.23 1.37 -4.53 <.001 

I. ricinus 0.849 0.811 1.05 0.295 
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Species 
Difference in intercept parameter 

relative to M. domestica (proportion) 

Standard 

Error (s.e.) 
z-statistic p-value 

D. variabilis -1.729 0.570 -3.03 0.002 

R. sanguineus 2.308 0.595 3.88 <.001 

I. ricinus 1.614 0.612 2.64 0.008 
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Species 
Difference in intercept parameter 

relative to M. domestica (proportion) 

Standard 

Error (s.e.) 
z-statistic p-value 

D. variabilis 6.81 1.28 5.34 <.001 

R. sanguineus 5.62 1.18 4.75 <.001 

I. ricinus 5.26 1.09 4.81 <.001 
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Species 
Difference in intercept parameter 

relative to M. domestica (proportion) 

Standard 

Error (s.e.) 
z-statistic p-value 

D. variabilis -12.41 1.77 -7.01 <.001 

R. sanguineus -6.67 1.13 -5.89 <.001 

I. ricinus -3.809 0.992 -3.84 <.001 
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Species 
Difference in intercept parameter 

relative to M. domestica (proportion) 

Standard 

Error (s.e.) 
z-statistic p-value 

D. variabilis -7.99 1.06 -7.54 <.001 

R. sanguineus -1.683 0.586 -2.87 0.004 

I. ricinus 0.703 0.621 1.13 0.258 
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Species 
Difference in intercept parameter 

relative to M. domestica (proportion) 

Standard 

Error (s.e.) 
z-statistic p-value 

D. variabilis -8.00 1.28 -6.23 <.001 

R. sanguineus -0.264 0.728 -0.36 0.717 

I. ricinus 0.277 0.879 0.31 0.753 
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Species 
Difference in intercept parameter 

relative to M. domestica (proportion) 

Standard 

Error (s.e.) 
z-statistic p-value 

D. variabilis -3.626 0.747 -4.85 <.001 

R. sanguineus -0.185 0.607 -0.30 0.761 

I. ricinus 1.06 0.691 1.54 0.125 
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