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Abstract 

 

 

Oil refineries underpin modern day economics, finance and engineering – without their refined 

products the world would stand still, as vehicles would not have petrol, planes grounded without 

kerosene and homes not heated, without heating oil.  In this thesis I study the refinery as a financial 

asset; it is not too dissimilar to a chemical plant, in this respect.  There are a number of reasons for 

this research; over recent years there have been legal disputes based on a refiner's value, investors 

and entrepreneurs are interested in purchasing refineries, and finally the research in this arena is 

sparse.  In this thesis I utilise knowledge and techniques within finance, optimisation, stochastic 

mathematics and commodities to build programs that obtain a financial value for an oil refinery.  In 

chapter one I introduce the background of crude oil and the significance of the refinery in the oil 

value chain.  In chapter two I construct a traditional discounted cash flow valuation often applied 

within practical finance.  In chapter three I program an extensive piecewise non linear optimisation 

solution on the entire state space, leveraging off a simulation of the refined products using a set of 

single factor Schwartz (1997) stochastic equations often applied to commodities.  In chapter four I 

program an optimisation using an approximation on crack spread option data with the aim of 

lowering the duration of solution found in chapter three; this is achieved by utilising a two-factor 

Hull & White sub-trinomial tree based numerical scheme; see Hull & White (1994) articles I & II 

for a thorough description.  I obtain realistic and accurate numbers for a topping oil refinery using 

financial market contracts and other real data for the Vadinar refinery based in Gujurat India. 
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Introduction 

Background and main contribution 

 

Without the flow and refining of petroleum, planes would be grounded, plastic containers 

ridiculously expensive, butane for lighters non existent, the heating of homes all over the US would 

be impossible to maintain. Without this multi-billion dollar industry, many would be unemployed.  

It is without doubt one of the most significant and interesting sectors of the global economy and 

refineries themselves are the foundation of the flow from raw crude to the final products that the 

market purchases.   

 In recent years many refineries have gone under due to the difficult climate; in the seven 

years up to January 2015, the four main EU countries in refining lost a total of 2M barrels per day, 

b/d, of operable refining capacity, that is approximately 23%, IEA (2009-2015).  The UK has closed 

two refineries in the last five years, with France closing four.  The WTI and Brent crude oils have 

hit huge lows, with Brent going below $30 per barrel in Jan 2016 and WTI at $31 per barrel in the 

same period.  This benefit to the consumer has been contrasted by a volatile environment and oil 

organisations altering their business and investment strategies.  However, refineries will be required 

as long as there is a demand for kerosene, butane, gasoline, and others, but the processes need to be 

more efficient, more environmentally friendly, and the complexes themselves, will not survive 

unless their complexity increases inline with the most advanced refiners.  The decision to alter 

output product prices needs to be done in a way that means, volumetrically, profits are maximised 

within applicable constraints.   

 High tech refineries can refine very heavy raw crude; regarded as lower quality due to the 

waste inherent in this type of oil but it is in a businesses ability to adapt that ensures its survival.  A 

measurement named the Nelson Complexity factor measures the technology level of a refinery; a 

number of 9 is regarded as a high level; yet the highest currently is the former BP Texas refinery, 
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acquired by Marathon Petroleum with an index of 15.3.  To expand the complex up to this level can 

be expensive, but in the right local or market region it can be extremely profitable – enabling the 

refinery to serve overseas customers with inexpensive crude input.  There are many types of 

software packages in use at a refinery complex, from health and safety reasons to optimising the 

quality within the  crude distillation unit, or CDU, and the catalytic cracker; in this thesis we 

investigate how optimisation of the volumetric decisions affects the profit for the owner, who can 

buy crude oil on the market, and choose to produce as much as physically possible of the best 

performing petroleum products.  This, to our knowledge, is yet to be achieved in the literature.  It is 

important to note that we are in a setting of incomplete markets as we cannot replicated the value of 

the refinery with available assets in the market - the refinery is an illiquid asset in a part of the 

world without relevant available financial contracts.  We attempt to produce a credible range of real 

asset values; in that they are realistic in the sense that the approach to represent value is logical and 

representative of the oil refinery's business incorporating the underlying commodities.  Whilst using 

a risk neutral assumption on the price return series of the commodities the embedded optionality of 

choosing an alternative refined product is captured by the numerical method presented.  There is in 

fact no available method to remove the uncertainty in the refinery cash flows; with this in mind we 

include a value at risk figure on the final wealth of the refinery applicable to the horizon 

represented.  Due to this real option valuation considering all seven refined products it means that 

the owner has the embedded optionality of many more products than usually considered in refinery 

approaches.  If the correlated commodity price trees are constructed correctly it means that we have 

a numerical method that can value the refinery based upon this choice of refining more or less of a 

particular product at a certain point in time. 

 The spine of the thesis is the topping refinery itself - one of four standard types of refinery 

and considered the most basic; this category of refiner has been chosen despite the cracking 

refinery, a very advanced refinery, being ubiquitous, as the linear programs used in industry are 

very difficult to obtain for investigative purposes, whereas for the topping programs there are many 
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open source code bases which can be accessed.  Throughout the thesis a standard linear program for 

a topping oil refinery, which is detailed in the appendix is used as the foundation for each valuation.  

In addition to providing a valuation, the optimisations provide a number of other useful outputs not 

explored in the literature.  It is also important to note that wherever in the thesis there is a 

calibration present it is the returns of the prices that have been input into any program and not the 

absolute prices - despite this as frequently evident in the older papers like Schwartz (1997) we 

graph the price series and not the returns to display the movements of the commodities in reality. 

 In this thesis we firstly introduce the industry and describe the characteristics of the products 

in a statistical analysis; petroleum product moments and events in the time series are analysed along 

with an introduction to the mathematical programming literature available in the refining space. 

 In chapter two, we describe a standardised discounted cash flow valuation, which is 

representative of the financial market's way to value a real asset.  Many auditors and finance 

professionals will use an income based approach to value an asset.  In this chapter we discuss the 

various approaches and the lag to the more advanced methods within the industry, like the real 

option approach. 

 In chapter three we go beyond standard calculations and introduce a real option valuation; 

that is more complex and computationally more demanding, but proves to be a worthwhile 

investigation, and in terms of the uncertainty within the prices, continuous stochastic equations are 

chosen.  It is trivial to discretise them onto a relevant simulation tree to enable a dynamic program 

to be optimised at each node.  The choice of equations is based on models required that would 

enable a number of aspects to be included for a realistic and dynamic commodity price series - the 

valuation is higher than DCF reveals and despite being an incomplete market settings gives a range 

of values that represent the optionality for the refinery owner.   

 Finally, in chapter four we find ways to value the complex, using a dimensional shortcut 

based on using the crack-spread rather than seven prices, which can be compared to other real 

option valuations within an oil refinery linear program.  Due to the simplification introduced in 
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chapter four we can elaborate on the complexity of the underlying stochastic processes.  To our 

knowledge, the valuation procedure introduced in chapter four is the only real option valuation of 

an oil refinery in the current literature including the option pricing analyses.  The method we use is 

also a unique combination of stochastic mathematics to represent the commodity prices over time 

and numerical methods to obtain a value. The program created is able to manage the extensive state 

space due to the use of dynamic set assignment; to our knowledge not applied in the refinery 

literature.  Too many studies, theoretical or numerical, avoid implementing a model if solving over 

a colossal dimensional space.   

 We provide various alternative but realistic valuations in chapters two to four and the paper 

published in the appendix. These procedures open the door to further areas of research worth 

studying.  The main contribution of this thesis is to provide a valuation for a refinery complex. An 

additional contribution is the combination of the stochastic simulation, with the discretisation onto a 

trinomial tree, into the eventual dynamic program implemented in GAMS, which introduces a 

number of computational shortcuts to find the valuation - including the dynamic set construction. 

 

 

 

Assumptions 

 

The main assumptions in obtaining a valuation in this thesis are: investors are rational and we are 

making calculations in a risk neutral setting; despite being in incomplete markets with no available 

financial contracts for replication.  Many refinery papers in this area assume the same, as it allows a 

depth of equations and techniques for option pricing that can be manipulated without additional 

extraneous tampering, and they can be justified in a real market. 
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 One of the common issues within pricing is finding a market price of risk, which is 

representative in various scenarios.  The market price of risk is the return expected above the risk 

free-rate that the market demands as compensation for taking the specified risk.  In classic 

economics no rational investor would commit their own resources without expecting to earn above 

the risk free rate.  The market price of risk is usually measured as a ratio of the expected return for 

the asset over the risk-free rate divided by the standard deviation of returns.  In option theory we 

often attempt to model the state variables as random.  This stochasticity leads to risk, how much 

should we expect to earn for taking this risk?  Is this quantity directly tradable in the market? 

 If the quantity is traded directly in the market then we can hedge away the risk in an option 

by dynamically buying and selling a particular quantity of the underlying.  The refinery does not 

have this luxury due to it being an illiquid real asset in a remote and deregulated market.  Despite 

the issues we aim to construct a risk neutral valuation that takes into these practical considerations 

and provides a statistically correct value.  Throughout we assume no financial trading transactions 

costs, as is commonly applied in option pricing as it is not the focus of our problem.  We do not 

consider stochastic interest rates however, but apply a deterministic risk free curve whenever 

discounting is required, built using standard products for treasuries and swaps using appropriate 

data from Bloomberg.   

 Where we use specific techniques, we explicitly state the assumptions made, for example in 

chapters three and four we use a Hull and White trinomial tree (1994). There are very standard 

assumptions for this tree, like the size of the step relative to the volatility, along with others 

described in detail later in the thesis.   

 The major assumption inherent in the final two chapters, which carry out unique valuations 

and comparisons respectively is that the oil refinery asset value can be represented as a daily strip of 

monthly European call options on the crack spread.  This is described in depth in chapters three and 

four, but simplistically means the owner has optionality on each day to defer or execute production 

at the refinery – the advantages and disadvantages of our approach is discussed in depth.  In terms 
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of the refinery itself we ignore taxes and transaction costs, along with preventative maintenance and 

assume start up and shutdown costs are considered insignificant.   

 

 

Current state of research  

 

As mentioned there is no current oil refinery valuation methodology within either the engineering or 

finance literature, whereas in practice, a very basic and flawed method, DCF, is commonly applied 

to real assets; see Brandao (2002 & 2005) for a detailed discussion on replacing DCF with real 

option approaches.  There is an extensive literature on refinery planning and on balancing the fluid 

flows in chemical engineering; Neiro and Pinto (2003), Pongsadki (2005) and Nan and Marc (2013) 

all provide refinery planning optimisations at different timescales. There is also a literature on the 

financial valuation of real assets utilising real option approaches, but the relevant techniques are yet 

to be applied to oil refineries. This is the first such study.   

 Benyoucef (2010) considers a mixed integer non linear program applied to a network of 

refineries, but not an individual complex and without a financial valuation being the objective.  

Pindyck and Dixit (1994) develop the theory, especially in the dynamic programming space for real 

option valuations, but do not implement the methods to actual plants or any real assets.  Hull and 

White (1994-1995) provide many numerical and mathematical tools applied to real options and the 

stochastic simulation of the relevant equations for forecasting purposes, yet no valuation for a 

refinery is provided.   There are a number of engineering papers: Lin et al (2009) and Cao et al 

(2009), and others, that consider the oil refinery owner's decisions over one period (commonly 

known as two stage stochastic programming), although very similar in terms of the objective 

function, and also being extremely helpful, the formulations are basic when compared to a multi-

period solution, hence used as a foundation for this thesis.  Ribas et al (2012), examine the detailed 
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fluid movements within a Brazilian refinery; the authors optimise at a granularity that is extremely 

detailed and useful in terms of the mathematical program constructed; yet we are interested in the 

financial ramifications.  Leiras et al (2011) collect refinery planning papers and provide a thorough 

comparison of methods and results; very few authors in these studies attempt to capture the 

uncertainty of petroleum prices, especially using continuous stochastic equations, which are adept at 

capturing the relevant bespoke commodity behaviour.  In this study there are many two stage 

programs, discrete normal simulations but rarely are there financial objectives.   

 We leverage off these previous studies, that use linear programming for financial goals; 

Aldaihani and Al-Deehani (2010) examine the efficiency of the Kuwaiti stock exchange using an 

optimisation for an equally weighted basket of stocks – despite its simplicity in terms of the 

dimension of the problem, the authors find a way to lower risk for investors for a threshold of 

specific return.  Elkamel and Al-Qahatani (2011) use discrete scenario generation, where an 

assumption of the probability of each scenario is applied to a PVC complex on top of a refiner – a 

sample average approximation is applied; despite being non-deterministic, the method leaves space 

for stochastically fluctuating uncertainty.  The type of problem we are developing comes under the 

bracket of tactical midterm refining planning; this is very complex and can be optimising different 

units in the refinery for example, efficient catalytic cracking – in our case we concentrate on the net 

present value over multiple periods.   

 Decision based systems at refiners aim to aid the process; PIMS (AspenTech) is a complex 

system designed to perfect the chemical flows within the parts of the refinery to create the best 

product possible.  It utilises mathematical programming and this is the most common system 

implemented at refineries in the world (Kelly and Mann, 2003).  Wang (2013) manages the 

optimisation by using a finite planning horizon with periodic preventative maintenance, and random 

failure; however, his optimisation is discrete and cannot manage the dimensional problem.  An 

extensive literature review is provided at the start of each chapter relevant to that chapter's 

objective.  Before moving onto the first attempt at valuing the refinery we provide some context by 
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introducing the refining industry and lay the foundations for the mathematical models introduced in 

later chapters. 
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Chapter 1 

 

An introduction to the oil industry and its refineries 

 

 

“It is wise to apply the oil of refined politeness to the mechanism of friendship.” Sidonie Gabrielle 

Colette. 

 

In this first chapter we begin with a discussion of the petroleum industry and its most important 

products, i.e. the refined outputs from a typical cracking or topping oil refinery.  In recent months  

prices on the WTI and Brent products have dropped dramatically – the effects in the outer economy 

are widespread, but within the oil industry itself it is unprecedented.  We leave the fundamental 

drivers of this market within the macro economy to others but emphasise the detailed refinery 

processes and their importance.  Next, we give a grounding in the basics of the technical indicators 

of crude and its by products; along with some historical context and applications of modelling 

within the oil industry – highlighting statistical moments and graphing typical behaviour of the spot 

prices.  The refining sector is a multi billion dollar industry with huge impacts on the global 

environment, global economy and the global energy industry, hence the significance of the prices of 

the products derived from crude and its refining.  Oil refineries are studied in detail within 

chemical engineering, but analysis of the optimisation of decisions of a refinery owner and its 

knock on effects to the market products is sparse – the financial impacts are even more rare; 

leaving space for investigation and discovery in linking financial and oil refinery analytics.  Here 

we discuss the individual refined products, their behaviour and their significance in the refiner's 
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decision process.  We conclude with a discussion of the risks associated with refineries, and the 

main products utilised to managed these risks.  

 

 

 

 

The goal in this thesis is to investigate the details of an optimisation model that will maximise the 

profit of an oil refinery, subject to a standard set of Topping refinery constraints.  The final model is 

required to be optimal from a statistical perspective in that probability distributions are obtained for 

the commodity prices, and their financial risk can then be included if required.  There are a number 

of standard models derived in the 1950 and 1960s that form the foundation of the current 

mathematical programming models developed for refinery optimisation software.  These ideas 

underpin the optimisation model throughout the thesis. 

 

1.0 Introduction to crude oil and its refined products 

 

The subject of crude oil and its products is so rich and varied that it cannot be fully covered; hence a 

number of issues will not be discussed in this work, for instance the technicalities of oil production 

and exploration or the details of crude transportation across the globe and its oceans.  However, 

ideas based upon why the world has depended on oil for centuries, and will continue to do so for a 

long time yet, are described in this chapter.  Secondly, what constitutes crude oil and its refined 

products, and what practical uses they have is exemplified.  Finally, the refined product price series 

characteristics are analysed through statistics applied to the data over the last ten years. 

The price of crude oil affects us all; it has direct and indirect effects on inflation, cost of 

production in corporations, mining activities and agricultural farming.  Its price volatility moves the 
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value of some of the largest funds heavily invested in the petroleum family, and it is often imputed 

as one of the causes for Governments to go to war.  There are many variations of raw crude oil and 

its refinement upholds the entire transport industry due to the gasoline product.  The diverse 

products refined from petroleum are classified by a number of properties, the most important ones 

being: American Petroleum Institute (API) gravity (a measure of how heavy or light a petroleum 

fuel is relative to water, most values fall between 10 and 70 API gravity degrees); the “cetane” 

number (a measure of light distillate diesel oil’s ignition delay); octane number (a measure of 

resistance to detonation of the fuel) and sulphur content.  Crude oil is considered light if it has a low 

density, and sweet if it contains little sulphur.  There are a profuse number of factors that influence 

the type of products that a refinery will create, the primary ones being the modernity of the refinery 

and the distilled products’ prices in particular.  Most refineries are at ports due to the expensive 

costs of the raw crude transportation1.  The most abundantly refined output product is petrol 

(gasoline in the US) for use in the transportation industry.  A higher yield of petrol comes from light 

crude and there are fewer environmental problems with the sweet type; hence, light sweet types of 

crude are more expensive.  The benchmark in the US and all over the world until 2009 was the 

West Texas Intermediate (WTI) crude.  It is held, after extraction, in huge facilities before travelling 

across America’s pipelines.  It is a high quality, sweet, light oil delivered at Cushing, Oklahoma as 

far as the NYMEX Futures contracts are concerned (this financial contract trades in units of 1,000 

barrels).  The U.S. Governments’ decontrol of oil prices, starting in January 1981, influenced the 

volumes and transparency of the spot markets in oil.  The decontrolling of oil prices created the 

circumstances for the development of the WTI contract in 1983 priced on crude at Cushing.  More 

recently, the Brent contract has replaced WTI, in that it is used as a benchmark for over two thirds 

of the world’s crude oil.  The differential between WTI and the Brent oil contract is a large area of 

research, and many experts believe this shift is only temporary until WTI is not landlocked.  The 

Brent blend in comparison, entails 15 oils from different fields in the East Shetland Basin.  

                                                 
1
 The Port of Antwerp provides an example of a refinery cluster: http://www.portofantwerp.com/en/chemical-cluster 
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Benchmarks for crudes were fashioned as there are globally many different varieties of the raw fuel 

demanded.  The Brent crude is regarded as the benchmark crude in Europe; Dubai-Oman is used as 

the benchmark for the Middle East.  In this recent decade the Platts Dubai benchmark has become 

the reference for deliveries of crude out of the East Siberian port of refineries: Kozmino; its price on 

Sep 28th 2015 was $44.5 per barrel.  The physical is underpinned by several million barrels per day 

derivative spread trades on the Brent/Dubai difference.  In practise, the physical trade is miniscule 

in comparison to the paper market; paper contracts have provided investors with the instrument to 

buy and sell this versatile commodity in a liquid, hence reliable way.  Figure 1.1 captures a history 

of crude oil and some significant events. 

 

 

(Figure 1.1: A hundred years history of crude oil prices) 
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1.1 Trading crude and its products 

 

The first Futures contracts can be traced to European trade fairs in the 12th century.  In this 

period, travelling with large quantities of goods was perilous.  Vendors resorted to taking the road 

with simple samples and sold Futures for quantities to be delivered at future dates.  These contracts 

have become the primary mechanism for trading crude oil and other fossil fuels in the modern 

financial arena.  Crude oils, as discussed, can be of various compositions, enabling a medley of 

products to be processed.  Trading of these various oil and oil related products, is carried out all 

over the world at exchanges with specific contracts.  The exchanges transacting the largest volumes 

are the New York Mercantile Exchange (NYMEX) and the Intercontinental Exchange (ICE), which 

absorbed the International Petroleum Exchange (IPE) in June 2001.  Dubai, Mumbai and Tokyo 

have become the other large trading platforms for crude oil.  These financial contracts enable oil 

companies, refiners and investors to buy or sell crude oil for future dates.  Trading of these 

contracts on Exchanges directly determines the market prices for crude and its products.  Refineries 

are interested in buying crude in physical form, and selling the distilled products back to the market.  

However, due to the growth of the financial markets in the oil industry, derivative contracts related 

to an asset “on paper” have seen a meteoric rise in transaction volume.  Theretofore, paper contracts 

are frequently utilised to hedge the refinery’s exposure to the volatility of crude prices. 

Refineries create a variety of products using processes known as distillation, cracking and 

purification.  Refinery products demanded by the market are liquid petroleum gas (LPG), gasoline, 

fuel oil, heating oil, naphtha, residues and many others.  Therefore, crude oil needs to be first 

refined to be valuable, hence useful to the end customer.  For example, gasoline is refined in the 

largest cut of the slate due to its use as a fuel for vehicles; retail prices at the “pump” in the UK in 

mid 2012 were around 149 pence per litre2.  There are different grades and combinations of 

products that can be distilled to produce over 4,000 petrochemical products for the market.  Once 
                                                 
2  BP ultimate 28/06/2012 
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refined, the uses of crude throughout industries all over the world are phenomenal.  In the US and 

Canada, the transportation industry leads all others in volumes of crude processed by a large 

margin.  Elsewhere, it is exploited for energy production and is globally a key ingredient to the 

agricultural industry that feeds the world’s population.  

 

  

 

(Figure 1.2: US Refinery capacity and locations in Jan 2012 - EIA) 

 

The survival of refineries is dependent upon the type of crude they can buy and the 

technology available at that particular refinery - the raw crude and its quality can make or break the 

local region's refinery; see figure 1.2 for density of refineries on the Gulf Coast of the US.  Market 

data on crude oil has an indispensable impact: prices, reserve levels and volumes traded on the 

financial markets all act as significant indicators of the worldwide economy and global trade levels.  

Current estimates from the Energy Information Administration (EIA) state that 30% of the world’s 

energy needs are being met by crude oil.  On average, a substantial proportion of a country’s GDP 

is directly accounted for by the energy sector - for example, the UK’s energy sector was 4.4% of 

GDP in 20113.  Products from petroleum account for huge proportions of a number of countries 

                                                 
3  DECC UK Government research, 2011 
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export's value.  For example, the UK exported 38 million tonnes of petroleum-related products in 

2011, roughly equal in value to $26 billion.   

  Environmentalists are concerned about the crude oil sulphur content, and therefore try to 

ensure governments increase regulatory specifications.  The mechanism that Governments usually 

employ to meet these specifications is to introduce a specific taxation based on the amount of 

sulphur contained in the crude - for example, in 2012 the UK government was attempting to 

introduce increases in taxes on refined products4, but not without fierce opposition from the 

Grangemouth refinery in Scotland.  As this wave of opposition has grown, the oil industry has 

adapted.  Many companies now have entire budgets devoted to green technology and corporate 

responsibility.  For instance, advanced technology based car companies are attempting to reduce 

transportation reliance upon crude oils due to its diminishing reserve numbers.  The Gas Journal 

(Dec 21st 2009) states that Saudi Arabia holds the world’s largest reserves at 262.4 billion barrels, 

but these are rapidly declining.       

 

 

                                                 
4  http://www.falkirkherald.co.uk/news/local-headlines/grangemouth-meeting-gets-the-message-across-1-2537090 
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(Figure 1.3: A quadratic fit to US oil extraction projection from 2015 onwards) 

 

A number of bespoke companies now invest in research that attempts to obtain crude oil 

reserve numbers to predict depletion rates.  Crude oil reserve forecasting is usually calculated using 

Hubbert curves.  Recent research predicts that at the current pace of exploration and development, 

the world has less than 50 years left of traditional oil5; see figure 1.3 for a standard quadratic fit to 

EIA crude extraction figures.  In 1956, Hubbert formulated a model for estimating future production 

for fossil fuels.  His main assumption was that after reserves of coal, oil and other fossil fuels are 

discovered, the production curve follows a distinct shape.  Production at first increases 

exponentially; at some point a peak is reached, and finally production brings an exponential decline.  

Hubbert curves on crude take into account current oil reserves; forecasted usage; forecasted 

discoveries and copious other factors.  In response to the data on depletion rates, unconventional oil 

extraction techniques have sprung up in the last ten years.  For example, oil sands – an 

unconventional extra heavy petroleum deposit - represent 97% of Canada’s oil reserves.  Despite 

the fact that it will be many years before reserves have noticeably diminished, investment from a 

proportion of companies has noticeably shifted towards those product areas that could replace or 

substitute refined products.  In the short term however, a sudden supply blockage, unusual weather 

or other logistical issues will dramatically impact the pricing of refined products.  This statement 

holds true only if an entire region important to the refining market is impacted, for example the Gulf 

Coast of the United States - in 2005 when hurricane Katrina hit the Gulf Coast, Florida and Texas, 

its effects had a major impact on gasoline prices, amongst the other disastrous environmental 

effects.  WTI oil Futures reached record highs of $70 per barrel and gasoline prices more than 

tripled in areas such as Louisiana.  On August 31st, eight of the Gulf of Mexico refineries remained 

shut down.  By September the 7th, Gulf oil production had returned to 42% of normal levels.  Out of 

                                                 
5  Gas Journal (Dec 21st 2009) 
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ten refineries that were closed, four were back at full capacity within a week, whereas the other 

refineries were out of commission for months.   

In the midterm, under normal market circumstances, it is the cost of refining that has the 

largest impact on the market price of oil products.  In what is regarded as the standard oil market 

model, spare capacity at refineries used to be common; these days, it has reduced dramatically.  In 

2003 spare capacity had dropped from 3 million barrels per day (bpd) to 1 million barrels per day.  

During the gasoline season (April to August), the price of gasoline can reach highs of $3.406 per 

Gallon to consumers6.  In general, demand increase occurs every year in the summer period.  There 

are innumerable other factors that can impact oil prices, including wars, political interventions, 

government policy announcements and news from organisations such as OPEC. 

 

1.2 OPEC 

The Organisation of the Oil Exporting Countries, OPEC, was founded in Baghdad, Iraq, in 

1960.  It has its’ headquarters in Vienna and is an inter-governmental group of 12 oil producing 

states, ranging from Algeria to the United Arab Emirates.  It was known as the Organisation of 

Arab Petroleum Exporting Countries or OAPEC (consisting of the Arab members of OPEC, plus 

Egypt, Syria and Tunisia) in the early 1970s.  One of its principal goals is the safeguarding of the 

governments involved in the organisation.  Another is stabilisation of the oil price within 

international markets; ensuring a predictable income for those nations involved, and predictable 

costs for importing countries.  Despite these published goals, OPEC was blamed for the 1973 oil 

crisis by implementing oil embargoes in response to the U.S. decision to re-supply the Israeli 

military during the Kippur war. 

                                                 
6  EIA website April 2012 
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(Figure 1.4: OPEC production’s relationship with the WTI crude price over ten years) 

 

OPEC was the key provider to the West for oil and in the past, maintained control of the prices.  

Since the discoveries in Alaska and the Gulf of Mexico, the control of prices has loosened 

somewhat, nevertheless the members of OPEC still own somewhere near 80% of proven world 

crude oil reserves7. 

In 1974, after the end of the Bretton Woods agreement, OPEC announced that they would 

price a barrel of oil against gold8.  Following these events, the volatility and price of oil both 

increased and have remained in and around this new threshold since.  The overall effect of the Arab 

oil embargo in economic terms was to increase the real price of crude oil to the refineries.  In 1972, 

the price of a barrel (bbl) of crude oil was $3; by the end of 1974 it had quadrupled to $12 per 

barrel.  In recent times, the price of WTI crude has hovered around $85 a barrel (after a peak to 

                                                 
7  OPEC’s annual statistical bulletin (2012). 

8  Cohen, Benjamin. "Bretton Woods System", 28/06/2001. 
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$140 in July 2008 and a collapse to $38 in December 2008).  In 1988 OPEC decided to use Brent, 

underlying the IPE/ICE Futures contracts, as the reference price of crude oil in its trading activities. 

Note that only 25% of the physical market at anytime constitutes the commercial crude oil market. 

The price variations depend highly on the choices made at the heart of the value chain, i.e. the 

refinery.  As figure 1.4 shows, oil price changes are correlated with OPEC production levels.  Oil 

related businesses, investors and the general public are the parties that can suffer from high or 

volatile oil prices.   

 

1.3 The IEA 

The International Energy Association is an autonomous Paris based intergovernmental 

organisation established in 1974 in response to the 1973 oil crisis9.  It acts as a policy advisor to 28 

member states.  Its aims are to ensure that oil policies are focused on energy security, economic 

development and environmental protection.  It comes under the umbrella of the Organisation for 

Economic Co-Operation and Development (OECD) – it originated in 1961 to stimulate economic 

progress and world trade.  The OECD was first established to help administer the Marshall Plan for 

reconstruction of Europe after World War II.  It is also famous for promoting climate change related 

policies and alternate energy sources.  In 2011, the IEA stated that the $409 billion of fossil fuels 

subsidies were the cause of wasted energy and a viable policy to address this problem would be to 

cut subsidies.    

The influence of organisations like OPEC is certainly significant for the price of crude; the 

IEA is less influential in constructing environmental and economic policies, but can act on 

preponderant short-term issues: for instance, it intervened on the oil markets three times by 

releasing oil stocks in 1991 during the Gulf War; in 2005 for a month after Hurricane Katrina, and 

                                                 
9  http://www.iea.ma/fr/ 
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recently in 2011 to offset the Libyan civil war.  IEA member countries are currently required to 

maintain stock levels equivalent to 90 days of the previous year’s net imports.   

 

1.4 The refinery’s role 

There are currently around 655 oil refineries in the world, located in 116 countries, with a 

daily total capacity of 88 million barrels per day10.  The annual throughput is roughly 75 million 

barrels a day with an average utilisation rate of 85%.  The refinery is built around the process of 

acquiring crude oil and ensuring that converting it into the market products is as smooth and 

profitable a process as possible.  The equipment is very expensive and the technology and 

complexity of most refineries lag behind the top performers within the industry.  There is a notable 

correlation between greater profits and refineries with a high Nelson complexity index11.  This 

index was created by Wilbur Nelson in 1960 to quantify the relative costs of the components of a 

refinery.  It is associated with equipment that can refine even the heavier crudes effectively and 

extract the products that are in high demand. The increased regulation surrounding the sulphur 

content of the raw crude has meant that only the most complex refineries, capable of refining both 

the heaviest and the lightest oils, are able to manage a volatile Gross Refining Margin (GRM): 

equal to the total value of the petroleum products from one barrel of crude after cracking, minus the 

cost of one barrel of crude oil.  This measure is often reported within the industry as an indicator 

over time of refinery profit.  In a regulated business environment, the GRM is most likely set by an 

agency, but in open markets like the US and Europe it is determined openly without regulatory 

interference.  In tough economic conditions, the GRM can become negative, i.e., -$1.6/bbl12.  In 

times of high demand with very little spare capacity a GRM of $20/bbl is not uncommon.  Shown 

                                                 
10  Source: BP Statistical Review of World Energy, June 2011   

11  Reliance Industries: http://www.ril.com/downloads/pdf/business_petroleum_refiningmktg_lc_ncf.pdf 

12  ftp://ftp.eia.doe.gov/pub/oil_gas/petroleum/analysis_publications/petroleum_issues_trends_1996/CHAPTER7.PDF 
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below in figure 1.5 is the evolution of the GRM of a typical coking refinery in the US over ten 

years.  A topping refinery is a basic form of refinery, usually unable to produce gasoline.  A hydro-

skimming refinery is slightly more complex, and produces gasoline and excess fuel that is often in 

low demand.  A cracking refinery is even more complex and allows the cracking of residual fuel 

into the middle distillates.  The middle distillates comprise a wide range of products stemming 

from, jet fuel and kerosene to diesel.  Finally, a coking refinery has an additional coking unit 

enabling the secondary unit to turn residues into high quality products.  The Topping category is a 

small share of global refineries as the cracking type is the most prevalent - yet we focus in this 

thesis on a Topping type that can produce gasoline due to the ease of access to Topping linear 

programs. 

 

 

(Figure 1.5: Typical historical GRM for a Coking Refinery over ten years) 

 

If the refinery does not have the inherent flexibility to meet the demand in its location, then it may 

import the required products.  In recent times, conversion refineries run at full utilisation, but if the 
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market prices of the refined products dip dramatically, and the refining margin goes below some 

pre-specified threshold, the operator can switch the refining equipment off.  Utilisation rates of 

refineries highlight the market conditions, which have seen much lower spare capacity over the last 

ten years.  To recognise the state of the oil market, one can observe the market prices of crude 

versus the cracked products. 

The location and complexity of a refinery determine which strategy it will choose to operate 

on the crude assay, as the markets across the globe demand alternate variations on the typical crude 

slate.  In the US, the main domestic demand in summer is for gasoline, and switches to heating oil 

in winter.  Both of these product’s demand is not met by domestic refiners and large amounts are 

therefore imported.   

 

 

(Figure 1.6: Dependency of the US on crude imports) 

 

After the sophisticated refineries in the Middle East were destroyed in 1990, the US invested in 

light and middle distillate refineries to supply Europe and the Far East.  Consequently, the US 
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became a net exporter of distillates whilst remaining a huge importer of gasoline.  Shipping a 

product reduces profits dramatically; hence if a refiner can meet demand in its local market, it will 

focus its efforts there.  The refineries in Northern Europe, especially in Amsterdam and parts of 

Italy, supply the majority of their gasoline to the US.  Shell’s Pernis Refinery in the Netherlands is 

one of the company’s largest, with pipelines serving the Schiphol airport in Amsterdam – it has a 

crude oil processing capacity of 416,000 barrels per day (bpd).   

 

 

(Figure 1.7:  The leading role of Western Europe in petroleum exports to the US) 

 

Refined products are traded all over the globe; hence the possibilities for geographical arbitrage by 

trading houses can be huge.  In 2006, 30 million tonnes of gasoil/diesel were traded from the CIS 

(Commonwealth of Independent States) region to Europe; 28 million tonnes of naphtha were 

exported from the Middle East to Asia, and 26 million tonnes of gasoline from Europe to the US.  

In Western Europe, there are a large number of sophisticated refineries able to import low quality 
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feedstock from Russia and the Middle East and turn them into high quality gasoline and kerosene 

for exporting mostly to the US. 

The US is likely to continue to be a net importer of gasoline for some time, although the 

investment in more complex refineries is gathering traction as shown by figure 1.7 below.  The US 

is increasingly able to manage oil supply disruptions after the government in 1980 implemented a 

policy that ensured at least 1 billion barrels of crude were stored to hedge against volatile imports13.  

This was a reaction to the Yom Kippur War and the Arab Oil Embargo’s effects.  Consumption in 

the US has not slowed and more refineries are closing due to production having fallen.  Recently, 

the US government has acted to change this situation with more refinery upgrades and lower 

taxation on gasoline production requirements.  This is in direct contrast to the increase in taxation 

on the European refineries. 

 

 

(Figure 1.8: The US problem of growing consumption and reduced production) 

                                                 
13  Carter energy: http://www.pbs.org/wgbh/americanexperience/features/primary-resources/carter-energy/ 
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Despite the recent trend in general production, gasoline production seems to be rising, the number 

of refineries has been falling for a long time due to increased strains economically and 

operationally.  In 1980, not long after the oil embargo, there were around 250 oil refineries in the 

United States capable of supplying petroleum products demanded by the market.  Now there are 

only 150, as shown in figure 1.8.  Industry experts speculate that the reason why this number is so 

low is that this is a rigorous effort by the oil majors to squeeze the market14.  Others state that the 

planning restrictions in the US have increased and not allowed the growth demanded by energy 

politicians.  The report released in March 2011 from the US department of energy, stated that 

federal regulations were a significant factor in the closing of 66 US refineries15. 

 

 

(Figure 1.9: Count on active US refineries) 

 

Various economic and industrial changes have occurred over the past 30 years, yet, the refining 

product yield has stayed more or less constant as displayed in figure 1.10.  Gasoline is usually the 

                                                 
14  Wall Street Journal: http://online.wsj.com/news/articles/SB10001424052702304591604579291432462690714 

15  http://www.instituteforenergyresearch.org/2012/05/03/over-regulation-of-the-nations-refineries/ 
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highest yield from a barrel of crude oil and is on average 47% of the barrel.  In the US, Liquid 

Petroleum Gas (LPG) is at a lower yield per barrel whereas in the Middle East, due to 

petrochemicals, LPG is in higher demand.  Since the demand for middle distillates has grown, and 

the capacity for its refining in the US has recently increased, there has been a growing trend in 

fewer imports. 

 

 

(Figure 1.10:  Amount of product yield from a barrel of crude in the US (Retrieved 08/01/2013)) 

 

Capacity over the last 30 years in the US has stayed approximately constant and the trends in sales 

remain coupled with the state of the economy.  After the financial recession hit the US in 

2008/2009, the sales of gasoline by refineries to retail outlets fell dramatically to 25 billion gallons 

per day as depicted in figure 1.11.  This was close to levels seen in the early 1980s and a clear strain 

on the revenues of the oil majors.  The retailing of petrol and gasoline is the lion's share of the profit 

for oil majors but also a significant contributor to the world economy. 
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(Figure 1.11: Sales volumes of gasoline over time (Retrieved 08/01/2013)) 

 

The entrance of retail stores into the domestic oil market has meant the closure of many smaller 

filling stations.  In spite of this, sales had been increasing until the global recession of 2008.  The 

large demand of unleaded and leaded petrol in the UK at the pump is the main driver for UK 

refineries.  In mid 2012 the price of unleaded petrol was approximately 149 pence per litre; with 75-

90% being taxes, VAT and costs - leaving well under 40 pence for the refiner per litre16.  Globally, 

as constraints on refiners has grown the number of refiners has decreased. 

 

 

                                                 
16  Source: Wood / Mackenzie, http://www.ukpia.com/files/pdf/understanding-pump-prices-april-2012.pdf 
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(Table 1.1:  Summary of UK Refining Capacity, (2010)) 

Refinery Owner Primary Distillation 

Capacity (Million tonnes 

per annum, MTA) 

Primary 

Distillation 

Capacity 

(Thousands of 

barrels per day, 

KB/D) 

Nelson 

Complexity 

Factor 

Fawley ExxonMobil 15.9 326 9.1 

Stanlow  Shell 14.4 296 7.4 

South 
Killingholme 

ConocoPhillips 10.8 221 11.3 

Lindsey Total 10.8 221 5.9 

Pembroke  Chevron 10.2 210 8.6 

Grangemouth Ineos 10.0 205 7.9 

Coryton Petroplus 8.4 172 8.3 

Milford Haven Murphy 5.2 106 8.0 

Eastham Shell/Nynas 1.3 27 3.5 

Dundee Nunas 0.6 12 3.5 

Total  87 1796  

 

 

Table 1.1 illustrates that the UK market is much smaller than that of the US.  The US has a refining 

capacity of approximately 15 million bbl/day, whereas the UK processes 1.796 million bbl/day.  

However, the UK capacity has grown in the last 30 years despite increased regulation and refinery 

closures.  The most complex refinery in the UK is the one at South Killingholme owned by 

ConocoPhillips.  The largest capacity is at the Fawley refinery owned by ExxonMobil, with a 

primary distillation capacity of 326,000 barrels per day.   

 Crude and its derivatives are of prime importance to many areas of local and global 

economies, yet alternative energy sources are continuously being researched and examined.  The 

transition has begun, with many groups of people interested in the emergence of climate friendly 

fuel sources and a removal of polluting fuels.  It will take many years for these changes to have a 

practical impact on the energy industry, but it is inevitable according to senior scientists and 
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petroleum practitioners17.  The economy’s dependency on crude oil is known ubiquitously and this 

reliance has stemmed from a number of significant events.   

 

1.5 A brief history of petroleum 

 

Crude oil has been in use for thousands of years.  It is mentioned in the Bible for building purposes 

in Babylon: oil pits near Ardericca are described as having great quantities on the banks of the river 

Issus.  The “black sludge” is mentioned in the literature all over the Middle East.  The oil wells 

drilled in China in 347AD were some of the earliest known.  In Japan, petroleum was known as the 

burning water in the 7th century.  In the 9th century the first oil fields were exploited in Azerbaijan, 

mainly used for lighting purposes.  In 1745 the first oil well and refinery was built in Ukhta
18.  In 

1745 Russia, most households still relied upon candles for lighting.  The Russians realised that 

through distillation of “rock oil” or petroleum, a type of kerosene could be obtained.  This technique 

was then used by Russian churches in oil lamps.  It was only after Lukasiewicz had improved 

Gesner’s19 method to develop a means of refining kerosene from “rock oil” that the first oil 

extraction well was built in central Poland.  This knowledge diffused around the world and by 1861, 

the first modern Russian refinery was built in Baku.  Momentum gained and at some point Russia 

was producing 90% of the world’s oil.  From data records in 1842 from the Caspian Chamber in the 

Department of State Property Ministry, it was found that around 23,000 barrels per year were 

extracted and most frequently sent to Persia.  The first recorded economic oil boom was in 1871, 

when an Armenian entrepreneur in Baku built the first wooden oil derrick.  Consequently, the 

                                                 
17  Raymond Kopp: http://www.rff.org/Publications/Resources/Pages/Replacing-Oil.aspx 

18  Roman Ambramovitche's home town: http://www.themoscowtimes.com/beyond_moscow/ukhta.html 

19  Inventor of Kerosene: http://en.wikipedia.org/wiki/Abraham_Pineo_Gesner 
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industry exploded and in 1901 Baku’s share of production fell to only half of the world’s oil at 

212,000 barrels per day.  

        The modern uses of crude oil really began in the era when the internal combustion engine was 

invented in 1889 by Gottlieb Daimler20.  Before this, engines ran on steam.  With the turn of the 

century came Ford’s implementation of the assembly line for car production; hence, Texas and 

Oklahoma became the epicentres of US crude production.  Even with the American and British 

“Seven Sisters” (the seven great oil corporations that dominated the international oil industry from 

the 1920s to the 1970s), the Middle East began to gain oil concessions.  After World War II, the 

Middle East became a major supplier of oil and joined the list of already profitable fuel producing 

countries. 

 

1.5.1 The modern oil industry 

 

Within the modern oil industry, there are three levels in the supply chain: upstream, midstream and 

downstream.  Upstream is the drilling, exploration and production of the crude oil.  The midstream 

is the transportation and trading of the crude oil to refineries.  Refining the raw crude into its 

marketable products is the downstream business; this includes storage and marketing of the refined 

products.  The collection of these segments constitutes the oil value chain. 

 

                                                 
20  The main precursor to today's modern cars: 

http://inventors.about.com/od/dstartinventors/a/Gottlieb_Daimler.htm 
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(Figure 1.12: The oil and gas value chain) 

 

From procurement of the oil out of the fields, the crude is then delivered through products into the 

engines or hands of the consumers.  Shown in figure 1.12 are the stages of the oil value chain: 

development, production, processing, transportation and marketing of the products. 

The level of production is driven by the demand of customers.  The major companies in the 

oil and gas business are: ExxonMobil, Shell, BP, Chevron, Total, ConocoPhillips, Petrobras and 

many others.  These companies are often structured to be vertically integrated.  This means having 

economies of scale: owning the infrastructure within the entire value chain.  This can greatly reduce 

risks that are not easily avoidable by companies only involved in one part of the chain.  Most of the 

companies mentioned above dominate the oil market globally, and are either international oil 

companies (IOCs) or national oil companies (NOCs).  Currently, the industry is in a transition, 

moving from investment in its refineries to focusing on the upstream parts of the business.  The 

expansion of the oil reserves remains at the core of the business: the more crude found in the 

underground reserves, the safer the revenues in the future will be.  Although many refineries have 

closed in the last decade, the ones that are left are utilising capacities at much higher rates to meet 

market obligations. Nationally owned companies are regularly seen in the top rankings of oil 

companies by revenues and this is primarily because they have access to expansive oil reserves.  

Natural 
Gas 

Crude Oil 
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Table 1.2 shows key financial trading figures published in the press of the oil industry’s benchmark 

crudes.  

(Table 1.2: Basic Features of Benchmark Crudes, Q1 2010 averages by Argus) 

 ASCI 

(Argus 

Sour 

Crude 

Index) 

WTI CMA + 

WTI P-Plus 

(Calendar 

Month 

Average & 

Postings Plus) 

Forties 

(First 

substantial 

oil field 

discovered 

in British 

Territory) 

BFOE (Average of 

21 days in Brent, 

Forties, Oseberg 

and Ekofisk) 

Dubai  Oman  

Production 
*(MBPD)  

736  300-400  562  1,220  70-80  710  

Volume Spot 
Traded 

(MBPD)  

579  939  514  635  86  246  

Number of 
Spot Trades 

per Cal Month  

260  330  18  98  3.5  10  

Number of 
Spot Trades 

Per Day  

13  16  <1  5  <1  <1  

Number of 
Different Spot 

Buyers per 
Cal Month  

26  27  7  10  3  5  

Number of 
Different Spot 
Sellers per Cal 

Month  

24  36  6  9  3  6  

Largest 3 
Buyers % of 
Total Spot 

Volume  

43%  38%  63%  72%  100%  50%  

Largest 3 
Sellers % of 
Total Spot 

Volume  

38%  51%  76%  56%  100%  80.00% 

Source: Argus  

*Million Barrels per day 
 

 

As is evident in table 2.1, the crude produced in the largest volume is Brent at 1.22 billion bpd and 

WTI is the most spot traded crude at 939 million bpd.  

The current financial trading of petroleum products is a trillion dollar business 

predominantly carried out in electronic form.  It is a complex network of buyers and sellers with 

differing positions, agendas, algorithms and complex software to reach their profit targets.  Black 
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box trading21, carried out at large investment banks, aims to buy and sell different commodities 

without the market observing the trade.  Products like calendar swaps allow trading of one 

commodity for another at a future date, with the trade being protected by the exchange upon which 

it occurs.  The market has grown more dynamic and complicated but the petroleum economic 

fundamentals still underpin and constitute the petroleum business.  Capturing the underlying 

behaviour using sophisticated models and statistics is the cutting edge trading mechanism.   

 

1.6. Statistics of crude oil and petroleum products over the last 10 years 

 

Prices quoted on oil related markets are usually stated as either FOB (free on board, which means 

that the buyer pays for shipment and loading costs) or CIF (Cost, Insurance and Freight, a term 

expressing that the seller arranges for insurance and transportation of goods to a port and provides 

the buyer with documentation) for imports of cargoes.  These costs are important for refiners that 

need to export outside their domestic targets.  As Indian and other Asian refiners come on line at an 

ever increasing pace, the European gasoline export business is expected to experience a stiffer 

competitive climate.  The Middle East will find it increasingly more efficient to import gasoline 

from Asian refineries.  According to the EIA, in Europe there is limited growth expected until 2020 

for gasoline - 120 million tonnes, compared to 330 million tonnes for diesel.  Demand for diesel has 

been growing within Europe due to the number of diesel engine cars sold in the last decade.  This 

can also be explained by taxation: while gasoline is being taxed as a consumer “luxury” good, 

diesel is being taxed at a lower rate, due to its use in the construction and transportation industries. 

 Experts in the analysis of time series data, rigorously search historical prices for  a grasp on 

at least four key characteristics: the trend, level, noise and seasonality components of the data.  

                                                 
21  Definition and example: https://www.quantopian.com/posts/black-box-trading-sample-algorithm-explanation 
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Prior to the construction of a trading model, an analysis of each commodity refined and processed is 

required. 

 

1.6.1 WTI Crude Oil  

 In the US, one barrel of oil is equivalent in units to 42 gallons.  For the WTI future contract 

the underlying oil, if settled physically, is for 1,000 barrels.  Contracts on the Chicago Mercantile 

Exchange (CME) are the widest listed of options and futures of any exchange on commodities in 

the world.  Crude oil futures are generally listed nine years forward using a particular schedule.   

 

 

(Figure1.13: NYMEX Futures price on the front month contract over 28 years) 
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Shown here are descriptive statistics of the price series for the two most popular crude contracts in 

the world.  The statistics are analysed within three different time periods and show the large swings 

in price between the two contracts. 

(Table 1.3.1: Descriptive Statistics, WTI Oklahoma Contract 
22

 and the European Brent Spot Price 

FOB, ($/bbl) over 20 years) 

Jan 1983 – Dec 2001:  WTI Brent 

Mean 21.50015 19.24116 

Standard Error 0.080589 0.081241 

Median 20.1 18.43 

Mode 18.67 18.48 

Standard Deviation 5.525491 4.947685 

Sample Variance 30.53105 24.47959 

Kurtosis -0.48625 1.858936 

Skewness 0.552815 1.172789 

Range 30 32.35 

Minimum value 10.42 9.1 

Maximum value 40.42 41.45 

Number of observations 4701 3709 
Jan 2002 – Dec 2008: WTI Brent 
Mean 54.74521871 52.86125 
Standard Error 0.645720219 0.641014 
Median 53.555 50.86 
Mode 26.86 25.51 
Standard Deviation 26.19746695 26.28938 
Sample Variance 686.3072745 691.1314 
Kurtosis 1.084630188 0.959895 
Skewness 1.084774994 1.064137 
Range 127.32 125.78 
Minimum value 17.97 18.17 
Maximum value 145.29 143.95 
Number of observations 1646 1682 
Jan 2009 – Dec 2012: WTI Brent 
Mean 80.5739154 85.25954 
Standard Error 0.620011611 0.798837 
Median 81.245 80.115 
Mode 87.81 93.52 
Standard Deviation 18.82631338 24.20358 
Sample Variance 354.4300753 585.8135 

                                                 
22  Data are split into three  sub periods: up to end of 2001, up to August 2008 and after August 2008  
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Kurtosis -0.217778406 -1.00624 
Skewness -0.37987559 -0.0736 
Range 91.23 94.41 
Minimum value 33.87 33.73 
Maximum value 125.1 128.14 
Number of observations 922 918 

 

1.6.2 Brent Crude Oil 

 

 

(Figure 1.14: Spot FOB European Brent over 25 years, ($/bbl)) 

 

Dated Brent, the 15 day contract, collapsed a number of energy trading firms in 1986; the resultant 

replacement Brent crude futures contract (IPE 1988) transformed the market from a physical one to 

a purely financial market;  this is a cash settled contract, figure 1.14 is for the underlying’s price.   
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1.6.3 Gasoline 

 Gasoline exists as premium leaded and regular unleaded for the automotive industry, and the 

US is globally the largest importer.  Gasoline is different from most other products as its price is 

posted outside gas stations and there are very few substitutes.  The retail price of gasoline is usually 

two to three times higher in Europe than in the US due to various factors.  For instance, on Mar 13th 

2012 the cost of filling the same 39-gallon tank on a Chevrolet Suburban in the US was $2.26, in 

Norway it was $9.97.  Across the globe, the $/gallon price of gasoline is generally closely inline 

before taxes; following taxation the oil prices widely vary from region to region.  In Italy for 

example, the taxes are approximately three times higher than those in the US. 

 

 

(Figure 1.15:  NYMEX Futures price of front month Gasoline contract, ($/gallon)) 
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(Table 1.3.2: New York Harbour Conventional Gasoline Regular Spot Price FOB ($/Gallon) 

Jan 1983 – Dec 2001: New York Harbour Conventional Gasoline 
Mean 0.587061 
Standard Error 0.002235 
Median 0.559 
Mode 0.516 
Standard Deviation 0.140056 
Sample Variance 0.019616 
Kurtosis 1.045828 
Skewness 0.975132 
Range 0.813 
Minimum value 0.29 
Maximum value 1.103 
Number of observations 3927 

Jan 2002 – Dec 2008:  

Mean 1.498597 
Standard Error 0.016161 
Median 1.407 
Mode 1.235 
Standard Deviation 0.655859 
Sample Variance 0.430152 
Kurtosis -0.13778 
Skewness 0.691086 
Range 2.909 
Minimum value 0.507 
Maximum value 3.416 
Number of observations 1647 
Jan 2009 – Dec 2012:  

Mean 2.214921 
Standard Error 0.019357 
Median 2.1235 
Mode 2.862 
Standard Deviation 0.587775 
Sample Variance 0.345479 
Kurtosis -0.74927 
Skewness -0.17852 
Range 2.542 
Minimum value 0.788 
Maximum value 3.33 
Number of observations 922 
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1.6.4 Heating Oil 

 Heating oil commonly refers to No.2 Fuel Oil, often used in the US as distillate home 

heating oil.  Its old names included: range oil, stove oil and coal oil.  It is the fraction from 

distillation regarded as a residue.  Heating oil has a seasonal pricing series23, with demand growing 

in the winter.  In the UK it is the office of fair trading who deal with adverse price reactions for 

customers.  Weather and logistical issues often hit the price of heating oil, which some customers 

rely upon, along with LPG, for hot water and heating.  Futures contracts are usually employed to 

trade heating oil on the markets. 

 

 

(Figure 1.16: NYMEX Futures price of front-month Heating Oil contract, ($/gallon)) 

 

 

 

                                                 
23  http://commodities.about.com/b/2010/09/06/is-there-a-seasonal-trade-in-heating-oil-this-year.htm 
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(Table 1.3.3: New York “Harbour” No. 2 Heating Oil Spot Price FOB ($/Gallon)) 

Jan 1983 – Dec 2001: No. 2 Heating Oil Spot Price 
Mean 0.566397 
Standard Error 0.002291 
Median 0.538 
Mode 0.551 
Standard Deviation 0.143515 
Sample Variance 0.020597 
Kurtosis 3.591524 
Skewness 1.408758 
Range 1.481 
Minimum value 0.284 
Maximum value 1.765 
Number of observations 3925 
Jan 2002 – Dec 2008:  

Mean 1.518494 
Standard Error 0.018653 
Median 1.506 
Mode 0.747 
Standard Deviation 0.75698 
Sample Variance 0.573018 
Kurtosis 1.110434 
Skewness 1.066993 
Range 3.576 
Minimum value 0.507 
Maximum value 4.083 
Number of observations 1647 
Jan 2009 – Dec 2012:  

Mean 2.308702 
Standard Error 0.020148 
Median 2.155 
Mode 3.048 
Standard Deviation 0.611789 
Sample Variance 0.374286 
Kurtosis -1.25683 
Skewness 0.012403 
Range 2.314 
Minimum value 1.121 
Maximum value 3.435 
Number of observations 922 
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1.6.5 Kerosene 

 The word kerosene is derived from the Greek word for “wax”.  A Persian scholar named 

Razi (Rhazes)24 was the first to distil this fuel in the 9th Century.  Its major use in industry began in 

1854 in New York.  Throughout Europe, it was firstly used in lamps and then became a fuel for 

engines after they were invented.  In the UK there are 2 popular basic grades: premium kerosene 

class C1 which is used for lanterns and in some combustion engines; and class 2, a heavier distillate 

used in domestic heating oil.  Its main role on the market and real value is for its use as a fuel for jet 

engines and rockets.  In the UK in 2006, jet fuel demand grew heavily due to low cost airlines.  Post 

the 2008 financial recession this demand dipped and declined 5.2% in 2009 to 11.5 million tonnes.  

Demand slightly increased in 2011 and growth is expected in the near future because of plans for 

two major new airports in the UK. 

 

(Figure 1.17:  Spot prices of Kerosene FOB, ($/Gallon), Gulf Coast) 

                                                 
24http://elementsunearthed.com/tag/kerosene/ 
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(Table 1.3.4:  U.S. Gulf Coast Kerosene-Type Jet Fuel Spot Price FOB ($/Gallon)) 

Jan 1983 – Dec 2001: Kerosene-Type Jet Fuel 
Mean 0.588439 
Standard Error 0.002863 
Median 0.551 
Mode 0.496 
Standard Deviation 0.155811 
Sample Variance 0.024277 
Kurtosis 2.840876 
Skewness 1.359925 
Range 1.149 
Minimum value 0.282 
Maximum value 1.431 
Number of observations 2961 
Jan 2002 – Dec 2008:  

Mean 1.575769 
Standard Error 0.019791 
Median 1.557 
Mode 0.68 
Standard Deviation 0.803197 
Sample Variance 0.645126 
Kurtosis 0.689352 
Skewness 0.949616 
Range 3.702 
Minimum value 0.505 
Maximum value 4.207 
Number of observations 1647 
Jan 2009 – Dec 2012:  

Mean 2.350438 
Standard Error 0.021219 
Median 2.184 
Mode 3.079 
Standard Deviation 0.643952 
Sample Variance 0.414674 
Kurtosis -0.93374 
Skewness 0.114147 
Range 3.703 
Minimum value 1.111 
Maximum value 4.814 
Number of observations 921 
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1.6.6 Diesel Fuel 

 Diesel is used as fuel for diesel engines; the word is derived from the name of the German 

inventor, Rudolf Diesel, who invented the diesel engine in 1892 and unveiled it to the public at an 

exhibition in Paris in 190025.  Diesel engines are lean burn engines, burning the fuel in more air than 

is necessary for the sparking reaction.  Due to the high compression of the engine and it having no 

throttle, diesel engines are more efficient than standard spark-ignited (SI) engines.  In many parts of 

the world, diesel will be priced higher than petrol.  This is due to demand where diesel cars are 

more popular.  Diesel has a slightly higher density than that of ethanol free petrol (gasoline), and it 

offers the same net heating value.  The polluting emissions of diesel are lower than those of petrol, 

with most SI engines producing ten times the amount of CO and slightly more C02.  The demand 

for this fuel usually rises in the colder months, corresponding with rises in heating oil.  The reason 

for less production in recent years on the slate compared to petrol is increases in the sulphur 

controls introduced in the US.  A consequence of these controls, is that the diesel in the US has a 

lower “cetane number” (a measure of ignition quality and the primary measure of diesel quality) 

than European diesel; resulting in worse cold weather performance and some increase in emissions.  

The taxation levied on each refined product varies and is a component of the refinery’s crude slate 

decision process, in that it is incorporated into the market price of the product.  The taxes applied to 

diesel fuel are generally lower than those applied to gasoline but are higher on the diesel vehicles 

themselves.  

 

 

 

 

 

 

                                                 
25  http://www.tested.com/tech/454861-inventions-debuted-worlds-fair/item/diesel-engine-1900/ 
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(Figure 1.18: Spot prices of Diesel, ($/gallon), New York) 

 

(Table 1.3.5: Los Angeles, CA Ultra-Low Sulphur Diesel Spot Price ($/Gallon)) 

 

Jan 1983 – Dec 2001: Diesel Spot Price 

Mean 0.725304 

Standard Error 0.00507 

Median 0.72 

Mode 0.875 

Standard Deviation 0.191914 

Sample Variance 0.036831 

Kurtosis 0.029947 

Skewness 0.435905 

Range 0.905 

Minimum value 0.375 

Maximum value 1.28 

Number of observations 1433 
Jan 2002 – Dec 2008:  
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Mean 1.679812 
Standard Error 0.019436 
Median 1.683 
Mode 0.83 
Standard Deviation 0.788793 
Sample Variance 0.622194 
Kurtosis 0.41353 
Skewness 0.78469 
Range 3.62 
Minimum value 0.513 
Maximum value 4.133 
Number of observations 1647 
Jan 2009 – Dec 2012:  

Mean 2.378716 
Standard Error 0.02106 
Median 2.23 
Mode 2.129 
Standard Deviation 0.639467 
Sample Variance 0.408918 
Kurtosis -1.16353 
Skewness 0.01105 
Range 2.428 
Minimum value 1.099 
Maximum value 3.527 
Number of observations 922 

 

 

1.6.7 Naphtha 

 Naphtha is a product resulting from the distillation process applied to petroleum, coal tar or 

peat.  It is an all encompassing term, as it refers to the lightest and most volatile fractions of the 

hydrocarbons in petroleum.  In the US, refined Naphtha is primarily used as feedstock for high 

octane gasoline.  It can also be used as a solvent.  It boils between 30 and 200 degrees Celsius; has a 

specific gravity of 0.7 and is volatile and flammable.  There are a number of categories for Naphtha, 

these can generally be split into less dense lighter Naphtha and more dense heavier Naphtha.  The 

lighter Naphtha is referred to as paraffinic Naphtha26.  These are mainly used as feedstock of 

olefins; sometimes these are also called “Light Virgin Naphtha”, LVN, or “straight run gasoline”, 

                                                 
26  http://www.petroleumhpv.org/docs/gasoline/052003_gasoline_robustsummary_pnaphthas_revisedfinal.pdf 
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SRG.  The heavier or denser types are richer in aromatics and naphthenes, known as “N&A s” or 

“straight run benzene”, SRB.  N&As are used in the reformate part of the refining process, where 

the heavy Naphtha is cracked into butane. 

(Table 1.3.6:  OSN Naphtha CFR Japan Front month Contract ($/tonne)) 

Jan 1983 – Dec 2001: 

Naphtha CFR Japan Front month 

Contract 
Mean 188.3587698 
Standard Error 0.743143425 
Median 180 
Mode 177 
Standard Deviation 46.49251614 
Sample Variance 2161.554057 
Kurtosis 2.052506241 
Skewness 1.167322624 
Range 345 
Minimum value 87.5 
Maximum value 432.5 
Number of observations 3914 
Jan 2002 – Dec 2008:   

Mean 493.3758978 
Standard Error 5.65536246 
Median 460.5 
Mode 245.5 
Standard Deviation 226.49709 
Sample Variance 51300.93179 
Kurtosis 0.614234028 
Skewness 0.934071984 
Range 1087.5 
Minimum value 167 
Maximum value 1254.5 
Number of observations 1604 

Jan 2009 – Dec 2012:  

Mean 739.5837099 

Standard Error 7.038602064 

Median 738 

Mode 735 

Standard Deviation 204.1194598 

Sample Variance 41664.75389 

Kurtosis -0.622241093 

Skewness -0.393942553 

Range 862.5 

Minimum value 244 

Maximum value 1106.5 
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Number of observations 841 
 

 

1.6.7 Fuel Oil  

 This is a term used to refer to only the heaviest commercial fuel that can be obtained from 

petroleum distillation: heavier than that of gasoline and Naphtha.  In the US there are six grades of 

fuel oil and its uses vary from stove oil to heating oil for the home.  Due to the recent widespread 

penetration of natural gas, the heating oil has had less use in homes and sales over the last decade or 

so have decreased dramatically.  There are many areas in the US where it is however still copious.  

Residual fuel oil is less useful due to its viscosity, it must be heated with a special system before 

use and it contains a high level of sulphur.  However, it is very cheap and it can be used as fuel on 

boats or small ships and as fuel for power plants.  Fuel oil is transported worldwide by super tankers 

from ports all over the world including: Houston, Singapore and Rotterdam.  In Europe, the Rhine 

is used for the transportation of fuel oil.  Throughout the thesis Fuel oil will refer to No.4 Fuel Oil 

alias Residual Fuel Oil, it is frequently utilised in the US as commercial heating oil for burner 

installations. 
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(Figure 1.19: Refiner prices of fuel oil, ($/gallon)) 

 

(Table 1.3.7:  US residual fuel oil ($/gallon)) 

Jan 1983 – Dec 2001: US residual fuel oil 
Mean 0.438219 
Standard Error 0.008312 
Median 0.402 
Mode 0.42 
Standard Deviation 0.125513 
Sample Variance 0.015754 
Kurtosis -0.73377 
Skewness 0.69265 
Range 0.451 
Minimum value 0.259 
Maximum value 0.71 
Number of observations 228 
Jan 2002 – Dec 2008:  

Mean 1.049215 
Standard Error 0.052855 
Median 0.978 
Mode 1.252 
Standard Deviation 0.469787 
Sample Variance 0.2207 
Kurtosis 1.72599 
Skewness 1.279405 
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Range 2.291 
Minimum value 0.433 
Maximum value 2.724 
Number of observations 79 
Jan 2009 – Dec 2012:  

Mean 1.827756 
Standard Error 0.078414 
Median 1.692 
Mode 2.473 
Standard Deviation 0.502092 
Sample Variance 0.252096 
Kurtosis -1.09027 
Skewness 0.122145 
Range 1.673 
Minimum value 1.021 
Maximum value 2.694 
Number of observations 41 

 

 

1.7 Refinery Optimisation 

 Crude oil by itself is not of any practical use; to use the hydrocarbon energy the chains must 

be broken.  Hydrocarbons are practical for two reasons; the first is that the chains contain a 

significant amount of energy, and the second is that they take on many different structures.  Why 

does a refiner need an optimisation model?  The scheduling of crude oil unloading, inventories, 

blending and feed to oil refineries is a complicated decision process requiring optimising.  There are 

a number of exogenous and endogenous factors that affect the choices being made by the refinery 

owner.  All these separate areas can and are in fact modelled with linear programs in practise and 

within academia.  In this thesis we have a financial objective for a refinery owner - with the 

objective of maximising the profit: we construct a mathematical model for the optimisation of 

chemical processes under uncertainty in the medium term.  In spite of the fact that many refineries 

have closed down due to decreasing gross refining margins (GRMs), there are those recording 

bumper profits.  This is sometimes due to location, where a refinery has closed and another is left 

servicing the same demand.  In the Midwest US where the imports from Canada are easily 
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transported, the refineries are very profitable.  However, there are certainly cases where demand in 

a location is at its lowest in recent times yet the refinery is running at full capacity and recording 

strong profits27.  This is not due to new capacity or increasing demand.  Western Europe and the 

USA have not seen refinery capacity increases in the last 20 years due to the environmental 

difficulties.  India is however a different case, growth in petroleum products consumption has been 

growing for a long time and refineries are constantly expanding to meet the new demand.  We seek 

a model that works for a refinery within India but the results are globally applicable.  Despite the 

increase in demand, a number of refineries closed in the early 2000s due to the intense competition.  

A set of competitive optimisation decisions allows a refiner to survive: they need alternative 

strategies and more efficient operations than their competitors.  Within the industry a GRM of 

$4/barrel is historically profitable: many refinery owners argue it should be closer to $9/barrel.  To 

reduce the effect of operating costs eating into the fluctuating margins the only choices the refinery 

has is either to refine more efficiently, or expand using newer technology, which emanates in a 

higher GRM.  If a refiner concentrates on optimising one unit, for example the Coker in a blending 

optimisation, it does not guarantee a complete set of optimal decisions.  This is due to there being 

many integrated units and a web of nested decisions that need to be made to produce an optimal 

result.  Consequently, refiners often concentrate on two key areas when optimising: 

 

1 – Raw input crude selection – if the choices or decisions made early on are the correct ones over 

time, it saves huge effort changing them later.  Once the crude slate is chosen, the opportunity for 

optimisation is much more limited. 

 

2 – Feedstock quality management – ensuring that the right crude mix, i.e. specification of the oil, is 

accurately produced by the refinery along the processes reaching yield levels within the individual 

units.   

                                                 
27  http://uk.reuters.com/article/2013/07/19/usa-fuel-exports-idUKL1N0FO1HG20130719 
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Linear Programming techniques are relatively mature and many commercial software systems are 

implemented onsite at most refineries including: Aspen PIMS (AspenTech), GRTMPS (Haverely 

Systems), TRIOS (UOP Limited) and many others.  In the short term, the problem for a refiner is 

the mechanical day to day decisions: operational optimisation, i.e. analysing units for elementary 

composition mixes have great affects on the physical properties and processing required for 

producing saleable products.  This is a large area of research in chemical engineering.  In practise, 

there is a lack of systematic integration between intertemporal planning and operational blending 

optimisation - this is the gap we will exploit in this thesis.  The software listed above can be utilised 

to focus on the medium term decision sets.  The midterm planning arena is starting to be examined 

using ideas from mathematical finance as the price series dynamics of the crude and the refined 

products are vital to the mathematical programming problem at this scale.  This is still a very open 

area, and the model formulation in this thesis seeks to address this problem. 

Dependent on the market that the particular refinery is serving, it may be more profitable to 

invest in cutting edge refining equipment.  This could enable the refining of heavier crude oil and 

allow products to be sold that can only originate from the cheaper, less pure and more common 

crudes.  An example, would be the Vadinar refinery owned by Essar Energy, in Gujarat, India - we 

use data for this refinery in our linear program optimisation.  Recent investment for an additional 

CDU and Cracker has introduced an extra 100,000 barrels per day throughput.  The denouncement 

from an expansion usually more than offsets the investment in the equipment that allows heavier 

crudes to be processed within the first year of operation.   

In the UK, ever since the 1990s, the refining margin has been squeezed.  This is due to the 

increased burden of regulation on the refinery’s operations and the increase in competition from 

emerging markets.  The UK government has increased mandates looking for cleaner processing and 

customers have demanded higher quality refined products, laterally the supply has become heavier.  

This had made life for the refiners strenuous, and demand for huge improvements and adaptations 

to the optimisation software has increased.  This software has to cope with the stricter regulation on 
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the removal of sulphur and nitrogen; the choice of crude oil to purchase and the decision yields to 

maximise in the profit function in the face of all the various constraints present at the refinery. 

The refiner must make the correct set of decisions at each refining period based on the 

internal and external factors that affect the price of petroleum and its constituent products.  There 

are restrictions on, for instance, the physical constraints present at the facilities in the refinery.  The 

capacity constraints state the maximum volumes permitted to be stored by the refinery, typically the 

storage containers split this 50:50 between crude oil and its products.  The mass balance constraints 

are applied at each unit used to process the crude within the refinery, for example the crude 

distillation unit (CDU).  Internally, the mass balance equations have to ensure that the amounts of 

fuel entering and exiting any refinery unit are balanced.  Externally, the local and global market 

prices of the refined products impact the decision maker’s choices of amounts to produce and 

consume.  It is generally assumed within optimisation models, that these decisions do not however 

have an impact on the exogenous prices.  This can easily been seen if one imagines the impact of 

one refinery out of the world’s 700 - it can only be a price taker.  The cost of the raw crude, is 

influenced by: product quality, shipping costs, global petroleum prices, local taxes and logistics.   

The market prices of refined products can have a huge effect on the cost of raw crude.  For 

example, in 2009 there was a major blockage in getting jet fuel to destinations across the US from 

bottlenecked Cushing, Oklahoma.  Consequently, not only did the price of kerosene go up but the 

cost of crude to the refineries dropped.  Optimisation models can use market data as input, hence if 

calibrated correctly, will price in these external fundamental factors for accurate and realistic 

modelling.   

Refining crude, not only means acquiring a raw fuel and processing it, but decision makers 

must attempt to manage the uncertainty in the prices of the end products to lock in value.  The 

volatility of gross refining margins is a sign of the complications within the industry.  Where is this 

volatility coming from?  One of the driving factors is the crude oil price.  The crude futures curve, 
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which depicts the expectations of the spot price, dramatically affects the future prices of the refined 

products.   

 

 

(Figure 1.20: Futures curve expectations) 

 

 

In the US refiners are holding less spare capacity; therefore, any negative event on the refining 

cycle has a larger impact than has previously been the case.  The fundamentals that affect this price 

volatility have shifted, and recently, the spread between sweet and sour crude oil was at an 

historical high.  The spread between Brent and WTI has gone from an average of $4 to $25 per 

barrel in Jan 2013, to only ~ $1 per barrel in September 2014.  
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(Figure 1.21:  WTI/Brent spread over the last five years) 

 

In terms of managing this spread, the refiner usually purchases the cheapest crude, obviously 

dependent upon its refining complexity, and hedges using a relevant contract on an exchange. 

Market prices of both the crude and the refined products change continuously every day, the 

more volatile these prices relative to each other become, the more uncertainty introduced into the 

decision process.  The refinery revenues over a year must exceed its operating costs, asset 

depreciation and corporate taxes.  To maximise this return on investment, the refinery manager, 

intends to pay the lowest price for crude oil, and sell the yield of the products at the highest market 

value, whilst controlling operating and regulatory costs.  During the 1980s and 1990s, there was 

huge refining capacity over the globe and GRMs were low.  After the demise of the majority of 

these refineries, the GRMs began to increase again up to the year 2000.  Knowing that the GRM can 

drop so low, the largest US oil majors slowed investment and this has by and large remained the 

case ever since.  However, outside the OECD regions there have been many refinery expansions 

despite for instance, the high capital costs required, the increase in the costs of steel and the 

restrictions placed on the refined products quality.  The solicitation of optimisation models has thus 

boomed – the risks needing representation in these models, in practise, is vast. 
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1.4.1 Refinery Risks  

 There are a number of key risks that impact the refinery owner’s profits.  Price Risk relates 

to the fluctuation of crude oil prices and refined petroleum prices affecting margins.  Operating 

efficiency and access to crude oil of the required quantity, quality and price has a significant impact 

on the refinery’s performance.  While refined products normally track the changes in the feedstock 

prices, there is a lag which can impact short-term working capital requirements.  

Foreign Exchange Risk relates to the foreign exchange fluctuations that impact the refinery 

due to its imports and exports as a part of its general operations.  This is an area where refiners’ risk 

management teams can learn from professional foreign exchange analysts, as often huge amounts of 

capital can be lost due to this hedging risk exposure28. 

Reputational Risk relates to the potential commercial and reputational damage that could 

result from health, safety or environmental incident or conflicts with local communities, terrorism, 

or the geo-political location of the refinery29. 

“Crack risk” refers to the oil refiner’s crack spread.  This is a term used in the industry for 

the difference between the price of crude oil and the products extracted from it; or in other words, 

the profit the refinery can expect to make by “cracking” the crude.  The oil majors are vertically 

integrated, ergo they own the supply chain from exploration, to production, to retail; in this case 

there is already a natural hedge in place.  For independent refiners however, like those renting the 

refinery’s equipment, adverse price movements provide the bulk of the risk, whereas oil majors 

already own the crude.  A refiner can utilise the futures market and purchase relevant contracts to 

lock in fixed prices.  To  hedge the crack spread exposure a DM could remain neutral by longing 

crude futures and shorting the refined products contracts separately.  However, instead of 

purchasing so many contracts, the basis risk is usually managed by using a “3-2-1 crack spread 

option”; or some constructed alternative based on the specific products refined in the refiners’ 

                                                 
28  http://people.stern.nyu.edu/igiddy/fxrisk.htm 

29  http://www.ft.com/cms/s/0/84d6a0cc-9977-11e3-91cd-00144feab7de.html#axzz308BTG7mI 
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region.  The “Chicago 3-2-1” is the most popular quoted crack spread contract in terms of volumes 

traded on the NYSE.  The 3-2-1 refers to the volume ratio of the commodities being hedged; from a 

petroleum refinery one would expect two barrels of gasoline and one barrel of heating oil from three 

barrels of crude.  For a premium, a refiner can then execute the option to alleviate the uncertain 

crack spread.  Hedging strategies require the refiner to tie up funds in a margin account to trade 

options or futures.  Alternatively, swaps and more complicated OTC trades can also be executed by 

the refiner to manage its price risk. 

Liquidity is usually in excess in the futures market for crude contracts on the near month 

contract: the issue for refiners is the availability of contracts for each market product at future dates.  

This is can be implied by the prices for the contracts on the financial exchanges.  Some refiners will 

tie in a futures price by entering into an OTC transaction, or use a future contract for example, to 

sell gasoline up to 1 year ahead.  If the price increases above the agreed contracted level, then the 

trader has lost profit, managing the expectations of these future prices is the foundation of the 

hedging business.  Hurricanes and weather events are risks that remain very significant.  This is 

certainly more significant for refineries in the US on the Gulf Coast.   

The following chapters detail a refining optimisation model including relevant constraints 

and financial risks.  The primary goal of such a model is to aid the refinery decision maker in 

maximising profitable choices, however, with a number of alterations the model can be 

implemented to obtain a financial valuation of the refinery as an asset, whilst still outputting the 

decision set for the entire crude assay. 
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Chapter 2 

 

Valuing an oil refinery with discounted cash flows  

 

 

“Thus the art and science of valuation has seen a constant debate between what something is worth 

versus what the market thinks it’s worth and versus what a strategic or motivated buyer thinks it’s 

worth.”
30

 

 

Financial valuation relies upon one of three pillars: comparable company analysis, discounted 

cash flow calculation or transaction analysis.  Auditors generally apply traditional accountancy 

calculations rather than out of the box financial option related approaches as provided by 

professional valuers of businesses and assets.  In this chapter we provide a standard calculation to 

set the foundation for more complex and accurate approaches in the following chapters; this  

valuation is done as standard within industry, it is practically useful for many reasons from tax and 

litigation to mergers and financial reporting.  In traditional financial theory it is assumed that 

investors are rational and risk averse; hence requiring some additional return to accept risk – the 

time value of money, means that we can discount expected future cash flows (DCF) to value the 

refinery asset today, using an applicable rate of interest for the investor in question.  Finally, we 

collect standard financial values from an oil refinery in Gujurat India, and using these ratios 

                                                 
30  Keith Spence, Hons. B.Sc., MBA 

     Export Development Corporation 

    Co-Chair, CIM Valuation Committee (CIMVal) 
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produce a DCF calculation that gives a present value as a standard auditor would within industry – 

this calculation has been verified by a fully qualified ACA accountant of the ICAEW.   

 

 

2.1 A traditional valuation of an oil refinery 

 

Valuing a project or a company is a vital process for investors and the company itself; the three most 

common applied approaches are: the asset-based approach, the market approach and the income method.  

The asset-based method, values the business on the sum of the parts of the business, the market approach 

compares the company to be valued on companies within the same industry or a comparable entity, whereas 

the income based method, attempts to calculate the benefit stream of the business.  Combinations of the 

above do exist, the traditional Discounted Cash Flow (“DCF”) analysis, capitalisation of earnings, and the 

excess earnings method are the most common utilised to value a financial entity where the economic 

principle of expectation is suitable: valuing a company relying upon the expected economic benefit subject to 

a relevant level of risk.  Surveys have been carried out on the FTSE 100 companies in the UK which 

consistently show that for a project’s NPV, Net Present Value is the most commonly applied business 

valuation method by far31.  There are many valuation methods and some more relevant depending on the 

nature of the company or project.  The refinery is an illiquid asset, hence prices are not observable; the DCF 

calculation needs to address this.  The two most acceptable valuation methods in the UK, dependent upon the 

type of company, are asset based methods and income based methods.  Most often the valuation is calculated 

using DCF analysis, an income based method.  Corporations generate profits in various ways; yet generally 

projects are undertaken after some amount of analysis has indicated that they are worthwhile, i.e. there needs 

to be evidence of profitability.  This is a simple method which takes into account the time value of money 

and the cost of capital to the company in question; the cost of capital is a open and difficult to calculate.  The 

                                                 
31  http://www.rics.org/site/download_feed.aspx?fileID=2369&fileExtension=PDF, Royal Institute of Chartered 

Surveyors 
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capital asset pricing model (CAPM) is one way to determine the discount rate to apply in a business 

valuation.  NPV itself, is a tool that dates back at least to the 19th century, Karl Marx wrote: 

 

 “The forming of a fictitious capital is called capitalising.  Every periodic repeated income is 

capitalised by calculating it on the average rate of interest, as an income which would be realised by a capital 

at this rate of interest. “ 

 

Why is it important to be able to value a company, for example an oil refinery?  Here are two examples from 

the financial news: 

 

A)       A private investor Gary Klesch was close to buying Total’s (TOTF.PA) British Lindsey Refinery 

for as much as £2 billion, as reported by the Sunday Telegraph on April 2010.  This refinery 

produces 223,000 barrels per day and employs 500 people. 

 

      B)      In the US on October 16th 2009 there was an important dispute about the method to value a Dutch 

      Oil refinery Lyondell Basell, which claimed its refinery was worth $3.43 billion where as an   

      alternative value by auditors gave it a value of $950 million.  This refinery produces 105,000    

      barrels a day.  

  

Clearly the methodology to value is vital for many reasons whether it be as a fair price for investors or a 

dispute in the courts. 

 

The financial statements that apply to a number of years of operation of an oil refinery based in India will be 

examined to value it with the traditional method of DCF analysis.  This will give a fair value, according to 

UK accountancy rules, and allow a comparison to be made of other methods used to value the refinery in the 

future chapters using statistics and more extensive mathematical models. 

 For an oil refinery there are a number of figures on the financial statements that will be different to 

other businesses.  Officially under International Financial Reporting Standards (IFRS) rules, a valuation 

needs to be carried out using an official method: 
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• Absolute Value models determine the present value of an asset’s expected future cash flows, these 

are either multi-period like DCF or single period like the Gordon Growth model. 

• Relative Value models obtain a price by using market prices of similar assets. 

• Option pricing models are used less frequently but are used for certain type of assets, most often 

derivatives.  Black-Scholes (1973) and lattice models are the most common. 

 

The choice between these methods is made when there is no active market in which to value the asset.  The 

IFRS has a key role to play within the world of valuation, in IAS 39 fair value accounting is described.  IFRS 

13 was adopted in May 12, 2011 and provides guidance on performing fair value measurement under IFRS 

but it is not defined in which situations these measurements should be done.  Generally they state that a 

financial statement should reflect the true and fair view of the business affairs of an organisation.  The 

financial reports are seen by various constituents of society and need to reflect the true value and financial 

position of an organisation at a point in time.  FAS 157, issued on September 2006, states that the fair value 

on an asset is the value that it could be sold at to a willing party.  This conflicts with the historical cost 

method that says for example, if a piece of land was bought in 1980 for $1 million, it would still be recorded 

on the balance sheet as a historical cost basis.  The fair value tries to capture the current price, in the Efficient 

Market Hypothesis, the market incorporates new information quickly and so the market price is assumed the 

fair price - yet there are strong and weak forms of this hypothesis, and it assumes that prices are observed.    

Within behavioural finance there are anomalies, as agents are influenced by irrationality and so prices in the 

market are believed to diverge from fair value.  The IFRS authorise three underlying assumptions, which 

define how professionals should incorporate the concepts behind valuation: 

 

1 – Going concern: An organisation will continue for the foreseeable future under the historical cost 

paradigm and using units of constant purchasing power paradigm. 

2 – Stable measuring unit assumption: Accountants should consider the changes in purchasing power of the 

functional currency up to 26% per annum for 3 years in a row as immaterial.  

3 – Units of constant purchasing power: considering remedies for an indefinite time period the erosion 

caused by the historical cost accounting of the real values of constant real value non-monetary items. 
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Under these three assumptions the framework under FAS 157 has three levels for inputs to a calculation 

when valuing: 

 

1. The first level prefers inputs to valuation that are “quoted prices in active markets for identical assets 

or liabilities”, for example a stock traded on the New York Stock Exchange.  This is based on direct 

observations of transactions. 

2. The second level is based on market observables, acknowledging that active markets for identical 

assets and liabilities are relatively uncommon and even if they exists there may be little liquidity.  

An example would be the price of an illiquid option based on the Black-Scholes model (1973) using 

implied volatility techniques.  Here fair value is estimated using a valuation technique, the use of 

inputs on the markets is sometimes required. 

3. This level is regarded as “unobservable”, if one and two inputs are not available a valuation 

technique is required, however, significant assumptions which are not observable on the market are 

required, this is known as mark to management. 

 

IFRS 13 gives guidance on carrying out the measurement of valuation, these show where new methodologies 

could be of benefit: 

 

[IFRS 13:11] An entity should consider the properties of the asset or liability being measured that an investor 

would consider when pricing at a particular date. 

 

[IFRS 13:15] Fair value measurement conjectures that a transaction is carried out orderly between buyer and 

seller under the current market conditions. 

 

[IFRS 13:24] Fair value measurement conjectures that the transaction takes place in the most advantageous 

market at that period in time. 

 

[IFRS 13:27] A fair value measurement of a non-financial asset considers the highest and best application. 
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[IFRS 13:34] A transaction of an entity’s own equity products is given to an investor without settlement, 

extinguishment or cancellation at the valuation date. 

 

[IFRS 13:42] The fair value of a liability represents the credit and non-performance risk before and after the 

transaction. 

 

[IFRS 13:48] An exception is applied for financial assets and financial liabilities with positions or 

counterparty credit risk that offsets the original transaction, with disclosure. 

 

Annual reporting periods beginning after the 1st January 2013 can apply IFRS 13.  A previous accounting 

time period can make use of these valuation definitions but it must be stated on the financial reports. 

 

Most of the value of a business is in its ability to generate profit.  Within business the term Gross Margin is 

often used as an input to EBITDA which gives a guideline to a company’s value when inserted into a DCF 

analysis.  EBITDA is earnings before interest, tax, depreciation and amortisation.  A significant reporting 

figure calculated in the refining industry is the gross refining margin (“GRM”), this represents the difference 

in the cost of crude oil and the selling prices of the refined products sold.  Another is the Gross Marketing 

Margin (GMM), this is a figure quoted heavily by managers within the industry; the GMM represents the 

price from the refinery to selling to the retail customers, for example petrol stations.  The GRM can be 

calculated differently dependent upon the company and that is why the IFRS does not recognise it as an 

official measure32, but management and investors within the industry consider it an important figure 

representative of the profitability of an oil refinery.  The issue with the GRM is it does not take into account 

the operating expenses.  Another significant financial figure is the refinery cash margin. 

 

                                                 
32   FAS 130 
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2.2 Refinery cash margin, RCM  

 

RCM ($/bbl) = product price ($/bbl) – cost of crude ($/bbl) – operating expenses ($/bbl)   (1) 

 

Here we assume that the RCM multiplied by crude throughput (the capacity for refining crude oil over a 

given period of time) is roughly equal to EBITDA.  It is a measure of cash earnings or profit / (loss) in 

accrual accounting.  This is another figure that the IFRS does not recognise but it is utilised within industry 

by investors comparing the performance of companies in the same sectors as credit periods, which will be 

broadly similar.  EBITDA may not be representative of the Company’s historical operating results and it is 

not meant to be forecasted.  However, it is a measure commonly sought by investors to get a handle on a 

company’s performance.  The RCM is then a convenient calculation to represent the performance of the 

refinery in annual terms.  We also assume that if the throughout annually is multiplied by the RCM for a 

reporting period it will represent a valuation figure.  This is primarily due to the fact that an oil refinery 

generates profits on the difference between the prices of the refined product slate and the cost of crude oil, 

therefore, the RCM will encapsulate most of its business value.  This will not include all capital expenditures 

and some other important financial figures, like the associated debt, but we argue that it is a relevant estimate 

of how much profit is being intrinsically generated.  There are however many types of refinery in different 

geographical complexes.  The aim was to set up a standard valuation for an average oil refinery in terms of 

size and complexity; laying the groundwork for others.  A useful measure within the industry to represent a 

refinery’s complexity is the Nelson Complexity Index. 

 The Nelson Complexity Index is a useful figure to gage the level of refining complexity being 

carried out at a particular refinery.  It assigns a factor to each piece of refining machinery that stems from its 

complexity and cost compared to the basic process of crude distillation (a complexity factor of 1.0).  

Multiplying this factor by the throughput ratio as a fraction of the distillation capacity gives the complexity; 

aggregating these final values together for each part of the refinery gives the final Nelson Complexity Value.  

It was developed by Wilbur L. Nelson as described in the Oil and Gas journal (1960).  The greater this index 

number, the greater the cost of the refinery, and the higher the value of its products.  US refineries on 

average rank the highest in complexity index with a value of 9.5, Europe at 6.5; the Jamnagar refinery owned 
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by Reliance Industries Ltd is one of the most complex in the world at 14; the most being the 

Texas City Refinery at 15.3.     

 We sought a refinery that has a Nelson Complexity Index above 5 in order for an optimisation to be 

worthwhile; the less complex refineries, on the whole, do not generate enough revenue for a comparison of 

alternative decisions within the program to be valid.  A Nelson Complexity Index lower than this, means that 

only a few products are refined and the selection choices for optimisation are simplified.  Those refineries 

that exist with a lower complexity index are finding the economic environment much more strenuous, due to 

their smaller range of products, giving them less flexibility and a fraction of the revenue of the major 

refineries. 

 It is important to obtain realistic financial data to test the methods of valuation that are being 

researched and calculated.  In this chapter the following refinery’s financial statements are examined with 

the aim of creating an additional optimisation analysis based on available company information from 

Companies House UK or on company web pages: 

 

• Grangemouth, Scotland 

• Coryton (Owned by Petroplus), England 

• Humber (Owned by ConcoPhillips), England 

• Lindsey Oil (Owned by Total), England 

• Fawley (ExxonMobil), England 

• Pembroke (was sold to Valero for £750 million in 2009), England 

• Milford Haven, England 

• Stanlow (Owned by Essar energy), England 

• Vadinar, India 

 

We decide that the Vadinar refinery in Gujurat is the most appropriate to analyse and value, due to its huge 

expansion ambitions and its slightly greater than mid level complexity. 
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The Vadinar Refinery owned by Essar energy is a relatively new and medium sized refinery in India, yet it 

has plans to be one of the biggest in the next couple of years.  Inserting numbers from the Vadinar oil 

refinery in India into a formula, the Nelson Complexity Index of the refinery is equal to 6.1 and is supposed 

to increase to 11.8 following completion of the Phase I Refinery Project and to 12.8 after Phase II of the 

refinery capacity expansion project.  The following is a calculation of the Vadinar refinery’s GRM: 

2.3. Vadinar gross refining margin calculation  

 

For example, the financial statements for the Vadinar refinery for the year ended 31 March 2009 enable a 

calculation of the GRM: 

(Table 2.1: Reconciling Revenue from the refining part of the business to GRM, for the 

period 1 May 2008 – 31 March 2009 and the 9 month period to 31 December 2009) 

 
       Period Ended Period Ended 
       31 Mar 2009 31 Dec 2009 

Revenue – Refined Petroleum Products ………..       7,689.8    4,965.3 

Cost of crude oil     ……………………………….      (7,331.2) (4,771.9)  

Sales tax incentives ……………………………….         256.3      168.4 

Commodity hedging gains/losses …….………….         78.9    (40.0)   

GRM (including sales tax incentives) ...………....         693.8      321.8 

GRM (excluding sales tax incentives) ...………....         437.5     153.4 

 

Number of barrels (in millions)………………….   87    72 

GRM per barrel (including sales tax incentives)…       7.97    4.46 

GRM per barrel (excluding sales tax incentives)…       5.02    2.12 

 

[The IEA benchmark was US$2.33 per barrel in the same period.] 
[All values are in US$ millions] 
 

 

Revenue above is defined as the cash inflows in the period for producing petroleum products.  The cost of 

crude oil is the cash outflow for the barrels of the raw crude needed to produce the refined products.  Sales 

tax incentives are allowances made by the state of Gujurat that may not allow tax breaks to continue and may 

not allow a direct comparison of GRMs with other refineries. 

 The Vadinar refinery processed 11.95 million metric tonnes (mmt) of crude oil between 1 May 2008 

and 31st March 2009 and 9.90 mmt of crude oil between 1 April 2009 and 31st December 2009.  Hence in 
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this period, the throughput was approximately 75.24 million barrels, see above, approximately 72 million 

barrels (see calculation below). 

 

In this period the refinery sold 9.26 mmt of refined petroleum products. 

 

The on average conversion factor used is: 

1 metric tonne = 7.6 barrels of crude oil.  

 

The Vadinar refinery’s current refining operating costs are $1 lower than the average across the industry, 

below in table 2.2 are the operating costs per barrel, based on data from their financial statements made 

public, for the 9 months ended 31 December 2009. 

(Table 2.2: Operating Costs per barrel at the Vadinar refinery) 

 
Cost Item         US$/barrel 
Asset Management Costs1 …………………………………………………. 0.30 
Manpower Costs ………………………………………………………….. 0.15 
Purchased energy …………………………………………………………. 0.31 
Other overhead Costs ……………………………………………………... 0.39 
Operational variable Costs ………………………………………………... 0.19 
Total Costs ………………………………………………………………... 1.34 
 
(1) Includes costs of shutdowns, turnarounds, maintenance and repair and other routine maintenance 
 

The company in this period also had corporate and marketing expenses of US$ 0.96 per barrel. 

In total, operating costs were $US 2.29 per barrel.  Therefore an estimate of the refinery’s profitability for 

one year is: 

 

RCM = [($4.46 – $2.29)*(72e6 barrels)]*(12/9) = US$ 208.32 million (With tax incentives) 

 

Below table 2.3 shows the value each refined product adds to the refinery complex. 

(Table 2.3: Production of the refinery broken down by refined product ) 

 
               1 May 2008 to    1 April 2009 to 

               31 March 2009    31 December 2009 

                                Percentage          Percentage 
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                                              of total                of total 

 

                                mmt production  mmt production 
Production: 
Liquefied petroleum gas . . . . . . . . . . . . . . . . . . . . . . . . 0.46    3.8%    0.40    4.1% 
Naphtha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.03    0.3%     0.11    1.1% 
Motor spirit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.10    17.6%     1.67    16.8% 
Kerosene/Aviation turbine fuel . . . . . . . . . . . . . . . . . . .  0.57    4.8%     0.66    6.7% 
High speed diesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.10     42.7%     4.02    40.6% 
Fuel oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.72     22.7%     1.97    19.9% 
Sulphur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.07     0.6%     0.06    0.6% 
Bitumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.13     1.1%     0.40    4.1% 
Fuel loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.77     6.4%     0.61    6.1% 

Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.95   100%     9.90    100% 
[Motor Spirits is Gasoline and Petrol] 
 

 

The above Vadinar Refinery figures meant that the revenue could be broken down into the value generated 

per refined product.  Even though the price of each refined product will have been fluctuating over this 

period, using an average price we can depict the value per product sold during this period. 

(Table 2.4: Revenue generated by each refined product during periods shown ) 

                  1 May 2008 to  1 April 2009 to 

                31 March 2009  31 Dec 2009 

                                   Percentage        Percentage 

                                                 US$ millions of total US$ millions of                

             revenue    total revenue 

     
Production: 
Liquefied petroleum gas . . . . . . . . . . . . . . . . . . . . . . . .      $292.21     3.8% $203.56    4.1% 
Naphtha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    $23.07       0.3%  $54.62      1.1% 
Motor spirit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   $1353.45   17.6% $834.17  16.8% 
Kerosene/Aviation turbine fuel . . . . . . . . . . . . . . . . . . .      $369.11     4.8% $332.68    6.7% 
High speed diesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    $3283.55   42.7%  $2015.92  0.6% 
Fuel oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $1745.58    22.7% $988.09    9.9% 
Sulphur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   $46.14       0.6%  $29.79      0.6% 
Bitumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .$84.59      1.1%  $203.58    4.1% 
Fuel loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .$492.15    6.4%  $302.88    6.1% 

Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $7689.8    100%  $4965.3   100% 
 

 

Growing a company through project value is considered under investment decisions; typically this is 

analysed with the hegemonic discounted cash flow analysis.  Net Present Value (NPV), the internal rate of 

return (IRR), and payback period, are key methods to evaluate the attractiveness of investments within the 

finance industry.  This is true whether it is an acquisition of a company or an asset that is to be purchased. 
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 The goal of discounted cash flow analysis is to determine: 

• The net present value of a stream of expected future cash revenues and expenditures 

• The rate of return which the expected future cash flows will yield on a given level of initial 

investment 

 

The oil refinery presented here has fixed operational costs, hence the analysis of costs in the refinery will not 

be as involved as the valuation of the commodity prices of crude bought and refined products sold - this is 

the greatest source of financial risk the refinery has.  Applying income based methods is industry consistent; 

the calculation here is in 2 parts: 

 

• Calculation of each cash flow for some future number of years 

• The aggregation of the present value worth of each cash flow 

 

A refinery is generating its profits from the net difference between the price of a barrel of crude oil and the 

value of the refined products.  On top of this, the cost of operating the refinery (fuel and staff costs) and the 

costs of freight to the port of the refinery must be injected into the calculation.  Example figures are given 

below: 

 

The Vadinar Gross refining margin in US$ for December 2009 for 11 months is: US$2.12 per barrel.  On 

average it takes the Vadinar refinery 20-30 days to process crude oil from the day it receives the crude oil, 

hence producing an estimate for the refining process sold timeline.  Each month’s price series can be 

forecasted, in terms of optimising the profits of the process with a mathematical model.  The higher the GRM 

the more profitable the refinery will be.  The way to increase the GRM is to refine as efficiently as possible 

the particular crude assay into the highest priced market products for each time period.  In general 

transportation fuels are the most valuable, however, one particular barrel of crude yields approximate 

volumes of each product, barring yield uncertainty in the CDU and an amount due to CDU reactions that can 

increase the production of particular products.  After we obtain the DCF valuation of the refinery with 
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traditional methods, the goal for the next chapter is to create a model to optimise the refinery’s processes and 

maximise its GRM each month over a number of years.   

 Any valuation should take into account the risk of an investment, and although the refinery’s greatest 

risks are the prices of the commodities involved, other valuation risks are investigated.   

 

2.4 Valuation risks to the Oil Refinery  

 

Risks for a typical oil refinery would be as follows: 

 

• Fluctuation of crude oil and refined petroleum product prices and refining margins 

• Inability to enter into term contracts for mid to long term crude oil purchases 

• Contract dependence on more favourable pricing of its refined petroleum product sales to the 

markets and companies the refinery is located in 

• Ability to find, develop and commercially exploit resources and reserves 

• Foreign exchange currency fluctuation risk 

 

Most oil refineries purchase third party software to determine how to optimise the refinery’s product slate 

due to the many factors that impact the chemical engineers decision.  In the following chapter the uncertainty 

from a financial aspect based upon choices of which products to market (planning) are considered in a 

model, but there is also uncertainty present in crude delivery time (scheduling), yield uncertainty processed 

in the CDU (blending), quality specifications and these decisions adhere to all the physical, mass balance and 

financial constraints on the refinery.  This decision process is far too complex for a human to completely 

manage no matter how experienced the refiner.  Some companies creating optimisation industry software 

that deal with some or all of these complexities are: IBM, Deliotte and Touche, Aspens Process Industry 

Modelling Systems, PetroSim (KBC, kinetic based models used in over 100 refineries worldwide) and Spiral 

software optimisation (claimed in person that they can save an average complexity refinery $8.5 million per 

year through blend optimisation).  Optimising the buying and selling of the products is vital to the 
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performance of the refinery in a very competitive business that has recently seen many smaller refineries 

close down and pushed the majors into shrinking their refining interests.  It is vitally important that the risks 

of the refinery are taken into account in its financial valuation. 

   

A more accurate valuation methodology implemented less often due to its slight increase in complexity is the 

Real option valuation approach.  In practise, however, DCF and NPV are applied ubiquitously.  

2.5 Discounted cash flow value (DCF) 

 

The real option approach utilises an option pricing equation in the investment decision.  A real option is one 

in which the user has the right, but not the obligation, to commit to a decision or not, to purchase a real asset 

at a particular fixed price, named the strike price.  For example, the option to invest in a gold mine or not, 

would be a real call option approach to valuing the mine, where the gold value is the state variable and the 

strike price would be the investment cost.  It is a logical approach with which to value an investment, whilst 

taking into account the uncertainty often present in financial decisions, that are missed by static income 

based methods.  Industry usually deliberates between using the standard methods for an investment decision, 

NPV, DCF or the more advanced Real option approach.  The DCF approach has to be calculated for at least 

6 to 10 years into the future, dependent upon the type of company, to estimate a fair value of the company or 

asset; for instance, all UK/US courts in a financial prosecution regard it as an official method with which to 

value a company33.  It is not sensible for certain types of businesses and so the real options approach can be 

adopted instead.  There are arguments within the literature that claim option pricing is over valued.  

Trigeorgis and Mason, 1987 argue that the existence of a ‘twin security’ is implicitly assumed in NPV for 

purposes of estimating the required rate of return.  The assumptions underlying the application of option 

pricing to real assets are no stronger than the assumptions underlying the application of NPV to real assets.  

The accuracy of using NPV relies however on the assumption of market completeness; the underlying asset 

itself for the refinery here is not traded.  The DCF analysis is an approximation of the value of the refinery if 

                                                 
33  http://www.nybusinessdivorce.com/2012/08/articles/delaware/recent-fair-value-cases-in-the-delaware-chancery-
court/ 
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it were traded.  The random behaviour of the underlying assets that must be applied with real options is an 

approximation of the future behaviour that the refinery would have if it were traded.  Consequently, the real 

option value is an estimate of the value the option would have if the underlying assets were traded and 

behaved in the manner that the random prices are depicted.  The majority of real asset option-pricing 

applications are where the option value depends on the market price of a commodity such as crude oil.  

Simulating the random prices and solving with a lattice approach, however, enables the valuer to solve a 

much wider set of valuations than ever before, in a manner that ensure managerial support due to its 

simplicity. 

 The cash flows generated in the future for the DCF are estimated from industry wide figures like 

forecasted macro-economic figures or relevant demand figures published by respected organisations (KBC 

regularly carry out in depth reports on these exact figures).  The issue with the DCF is that it is a static 

measure due to the growth rate of projected cash flows is already ignoring the instability or behaviour of 

asset prices in financial markets and neglecting management’s right to alternate strategies.  The real option 

approach deals with these issues.  

 In the DCF approach, only the most likely outcomes are considered, and the flexibility of the 

decisions available to management is ignored, a statistical approach to the random variables in question are 

not considered.  The future cash flows are discounted back to present value, but the rate at which this is done 

leaves much room for error.  The company that is being valued usually cannot borrow and lend at the risk 

free rate and has risk attached to its operations.  Trying to capture this risk by a number called the cost of 

capital is an intricate and often inaccurate calculation.  The NPV approach assumes a capital investment once 

committed is left to play out and so is fixed.  With a varying cost of capital calculations do not properly 

account for the changes in risk over the lifecycle of the business.  Whereas, the real option approach assumes 

that the investment can be modified contingent upon the various scenarios that can happen, this is its 

advantage.  Many methods of valuation require an estimation of uncertain cash flows; an example would be 

the Gordon Growth Dividend model.   
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“If future outcomes are uncertain, then any estimation of growth and risk may not be sufficiently well-

informed that the assumptions underlying the simple dividend discount model can be rejected.”34 

 

In the real option approach the underlying concept is that of risk adjusted valuation, or applying the risk 

neutral measure.  Typically the real options approach gives a greater value than the NPV; attaching an 

amount of value to alternative strategic decisions.  The initial assumptions inherited for a DCF or a NPV 

approach is the same for a real options approach.  Complete markets and absence of arbitrage are formally 

required for the calculation to hold.  The aim here is to calculate a DCF value for the Essar Oil refinery and 

then show that the real option approach could be more representative.  The real option approach is a difficult 

calculation in comparison to DCF, hence a method with a one period stochastic program is developed to 

value the refinery whilst accepting the inherent uncertainty.  In the process of understanding NPV analysis it 

is assumed that all future cash flows are certain for the next six to ten years, based on historical figures, 

which removes the uncertainty inherent in the generated cash flows of a business.  The exact assumptions 

behind NPV analysis are listed below: 

 

Assumption 1) any new cash flow stream can be exactly replicated by a combination of securities that 

already exist in financial markets.  (Complete markets) 

 

Assumption 2) the financial markets do not allow arbitrage. 

 

Any NPV valuation that is positive is considered to be adding value, meaning it should be undertaken.  The 

advantage of DCF over other traditional methods are numerous, for instance often P/E ratios and multiples 

are forecasted and implemented in a valuation.  These multiples are not of much use if an entire sector is 

over or undervalued, whereas DCF will give a fair value in comparison to this approach, but it can over or 

under value to an extent if the economic environment becomes different to the historical values injected as 

inputs.  For a NPV calculation, the vital component is the discount rate; an input to the valuation formula, 

and it is generally calculated with the method named Weighted Average Cost of Capital (WACC) or CAPM.  

                                                 
34  The idea is that the stock is valued by using predicted dividends and discounting them back.  It has no relevance for 
companies that do not pay dividends. 
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If the asset being valued is illiquid then the discount rates must be adjusted; there are three typical ways in 

which this can be done: 

 • Estimate the value of the refinery as if it were a liquid asset and then discount that value for 

 illiquidity  

 • Adjust the discount rates and use a higher discount rate for the refinery  

 • Estimate the illiquidity discount by looking at comparable refineries and recording how much 

 their values are impacted by illiquidity 

 

As carried out by KBC we value the Vadinar refinery using a cost of capital using WACC, which is adjusted 

for the industry we are in; the petroleum sector. 

 

2.6 Weighted Average Cost of Capital (WACC) 

 

Weighted average cost of capital, WACC, is the rate of return a company pays on average to all its 

shareholders.  The company must earn this rate on its’ investments and services in order to satisfy all 

shareholders and interested parties.  The WACC takes into account the capital structure of the company and 

averages all the relative weights of value generated by the different sources of capital within it.  What should 

this discount rate be for the oil refinery?  The challenges that arise in applying CAPM or WACC to illiquid 

real assets, such as a chemical plant or a refinery raise a fundamental issue.  How do we assess risk in illiquid 

asset classes where market prices cannot be observed (as is the case 

for an Indian refinery) and hence subject to substantial uncertainty?  

 

A simple version of this discount rate calculation is shown below: 

 

WACC = ke*(E/(E+D)) + kd*(D/(E+D))         (2) 

 

Where:  D = the value of debt 
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  E = the value of equity 

 

(Note that kd is the cost of debt after tax) 

 

Evaluating the WACC for a company is different than evaluating the WACC for an individual energy 

project.  When WACC for a company is evaluated, we are often trying to determine (under imperfect 

information) what a company's costs of capital are.  In this case we would utilise as much financial data as 

possible to estimate the various terms in the WACC equation.  For an individual energy project, the various 

terms in the WACC equation are determined in large part by the type of investment being made, the type of 

market (regulated versus unregulated) in which the investment is occurring and the individual making the 

investments.  Historically, (looking at KBC reports)35 the petroleum industry has financed around 15-20% of 

its activities through debt (this can be seen on the "cost of capital by sector" web page 36, there are sector 

numbers available for India and KBR reports support the numbers within 2 decimal places; see the second to 

last column in the petroleum rows - showing the ratio of debt to equity).  Hence, we can estimate that Essar 

energy (the owners of the Vadinar refinery) would finance 15% of its activities with debt.  Oil company 

bonds have historically high ratings, so we assume that Essar energy's bonds are AAA; we see that the 10 

year AAA corporate bond would have a yield of 3.08% (at the time of this writing) - the cost of debt 

financing.  Turning now to the cost of equity financing, we need the return on the safe asset; the market risk 

premium; and the Beta for the petroleum industry.  The yield on the 30 year treasury bond was 3.78%.  We 

can assume a risk premium of 5% and from the cost of capital web page we see beta for the petroleum 

industry is between 1.17 and 1.45.  Thus, the cost of equity for Essar energy would be 0.0378 + (1.45 x 0.05) 

= 11%.  The WACC represents the discount rate that a company should use in conducting a discounted cash 

flow analysis of a given energy project.  We use the cost of equity of 3.08% and a cost of debt as 11%, which 

is very close to KBC's calculations for the same period. 

 In a state of the economy where a payoff is less likely, investors are willing to pay more for it.  This 

is where the confusion of the discount rate can arise.  Each future state of nature has its own unique discount 

                                                 
35

 http://www.essar.com/upload/pdf/EOL_AR_2012-13.pdf 

36
 http://people.stern.nyu.edu/adamodar/New_Home_Page/datafile/wacc.htm 
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rate, but the DCF approach does not take this into account.  As an example consider a power plant; this can 

be switched on and off based on demand - a DCF calculation ignores this embedded optionality in this real 

asset, there is value attached to being able to switch strategy.  An important real option approach was created 

by Cox, Ross and Rubinstein (CRR) (1979), they apply the binomial method.  This is due to Harrison and 

Kreps (1979), where the risk neutral probabilities are actually state prices for securities scaled by the risk 

free factor.  If markets are complete and free of arbitrage opportunities, then there exists a unique set of ‘risk-

neutral probabilities’ that can be found.  Usually option pricing techniques can only be applied if markets are 

complete and free of arbitrage opportunities. 

 This is enough to claim that if a manager is willing to use DCF analysis on an illiquid new 

investment, a gold mine, factory or structured product, then the assumptions behind real option analysis have 

already been assumed and the benefits should not be ignored.  Valuation of the refinery is similar to asking 

the following: if the refinery was bought and then immediately sold to the financial markets, what would it 

be worth?  The present value of the cash flows generated by the refinery are those that the capital markets 

would pay for now.  The NPV is the difference between the price actually paid for the new real asset (the PV 

of the outflows) and the price that would be received for the cash flows on the refinery in the financial 

market (the PV of the inflows).  Therefore the capital budgeting method of valuation is figuring out what the 

cash flows of the refinery are worth to the financial markets.  A static approach to valuation is applied first to 

gage the result and consequently uncertainty is introduced.  Surveys completed by corporate finance 

practitioners have continuously found that real options are only used at most in 25% of cases37. 

 A DCF method generally relied upon in the FTSE 100 and S&P 200, is the Free Cash Flow 

approach, FCF - see Graham and Campbell (2001) for an example and analysis of various valuations.  

Investment analysts compute the free cash flow:  Free Cash Flow is equal to Operating cash flow, less 

expenditures to maintain assets (not including increases in working capital) less the interest charges.  It is the 

actual amount of cash that the company has left from its operations that could be invested to pursue 

profitable projects to enhance shareholder value.  The method itself has less vagueness in its calculation than 

the net income approach, hence manipulation is trickier.  For companies with stable capital expenditures, 

                                                 
37  Graham, J. and H. Campbell, “Theory and Practice of Corporate Finance: Evidence from the Field,” Journal of 

Financial Economics, 60 (2001): 187-243. 
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free cash flow will be approximately equal to earnings, see Jensen C, (1986).  The steps for the Vadinar 

refinery in Gujurat are shown below. (This is the free cash flow method to the firm, FCFF). 

2.7. Free Cash Flow Method (FCFF) 

Step 1 - Calculate the free cash flow 

The free cash flow is defined as: 

FCF = Earnings before interest and taxes (EBIT) 

Less: Tax on EBIT 

Add back: Non-cash charges 

Less: Capital Expenditure 

Less: Net Working Capital Increases 

Plus: Net Working Capital Decreases 

Plus: Salvage Values received 

 

Step 2 - Forecast FCF and the terminal value 

For a time horizon of six years the following values are estimated: FCF1 → FCF6, the terminal value.  Six 

years is chosen as Vadinar refinery's owner is a large company with expansion plans for the next five to ten 

years, values beyond this are generally discounted into much smaller values, hence considered irrelevant for 

our purposes.  When forecasting these cash flows many factors should to be taken into account as they are 

estimated by obtaining a growth rate.  The economic environment globally, locally, the industry the company 

is in, the company’s current status amongst its plans and its leverage level are all relevant in estimates of 

future cash flows. 

   

FCF1 FCF2 FCF3 FCF4 FCF5 FCF6   
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Step 3 - Calculate the weighted average cost of capital (WACC) 

 

The WACC is calculated using the cost of equity (ke) and the cost of debt (kd) 

(See equation (2) above) 

Step 4 - Discount the free cash flows at WACC and aggregate to obtain value of the 

firm 

Step 5  - Calculate the equity value 

Firm value = Equity + Debt          (3) 

 

2.8. Oil refinery FCF calculation 

Step 1  

FCF = NI + NCC + [ Int * (1- tax rate)] – FCInv – WCInv      (4) 

Where: 

NI = net income 

NCC = non-cash charges 

Int = interest expense 

FCInv = fixed capital investment (capital expenditures) = Change in Gross PP&E 

WCInv = working capital investment = Change in working Capital Accounts = Change in (AcctsRec + 

Inventory – AcctsPay) 

 

We can also start with earnings before interest, taxes, depreciation, and amortization (EBITDA) to arrive at 

FCF: 

 

FCF = [EBITDA * ( 1- tax rate)] + (Dep * tax rate)- FCInv – WCInv     (5) 

Where: 
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EBITDA = earnings before interest, taxes, depreciation, and amortization 

FCF can also be estimated by starting with cash flow from operations (CFO) from the statement of cash 

flows: 

 

FCF = CFO + [Int * (1- tax rate)] – FCInv        (6) 

 

Where: CFO = cash flow from operations. 

Indian corporation tax rate as December 2009 = 33.99% 

Depreciation for 31
st
 March 2009 to 31

st
 December 2009 = US$ 89.9 million 

WCInv = - US$ 80.10 million 

 In table 2.5 the calculation for the free cash flows for the company Essar Energy are obtained and by 

making an assumption on how much value is generated by refining, the value of the refinery follows: 

 

(Table 2.5: FCF Calculation38) 

 

1) Calculate the free cash flow      

  All figures in US$millions   $m    

        

 FCF = Earnings before interest and taxes (EBIT) 
           
363.00    

        

 EBITDA  Dec 09  
     
433.10     

  Power  
     
120.80      

  Oil  
     
312.30      

   
     

433.10      

        

 Less tax on EBIT   - (27.60)    

        

 Add back non-cash charges   
              
89.90    

        

 Less cap expenditure    -   (405.50)  Cash flow statement 
        

                                                 
38  Obtained by using official material from the ICAEW, The Institute of Accountants for England and Wales 
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 Less net working cap increases   -   (656.60)  Cash flow statement 
        

 Plus net working cap decreases   736.7 Cash flow statement 
        

 FCF   99.9   

        

 Per (12/9months)   133.2   
        

     

        

 (WACC = Ke*E/(E+D) + Kd*D/(E+D))  10.77%   

        
 

 

Main Assumption for valuation: 72% of profits and costs are due to the oil refinery the rest are due to the 

company’s power business; therefore as an estimate, numbers generated above representing the free cash 

flow value are multiplied by 72%: 

 

FCF Oil Refinery: 0.72*133.2 = US$ 95.9 million 

 

Step 2 

 There are 2 methods generally applicable to forecasting the cash flows, one is to calculate the 

historical free cash flow and apply a growth rate, under the assumptions that the growth will be constant and 

fundamental factors will be maintained.  The second method, is to forecast the underlying components of 

free cash flows: costs, revenues, tax changes for each year in the future and calculate each year separately.  

The simpler first method is utilised here as a first draft calculation.  How does one estimate growth?  This is 

entirely down to discretion and a full in depth economic report of predicted oil demand and prices within the 

Indian region by a company called KBC39 is  referenced for growth figures in this region. 

 

Gross Profits for the refinery in US$ millions for the following years were: 

2007 2008 2009 

40 74.9 681.7 

                                                 
39  KBC’s (2011) Outlook for the World Refining Industry 
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The last figure is a big jump and is down to the refinery profits being realised and some derivative contracts 

maturing. 

 If in 2011, the phase I project is realised for the refinery, the capacity will double meaning twice the 

products can be refined.  These figures were difficult to estimate due to the current economic climate. 

 Instead we apply KBC forecasts for the oil demand for the next 6 years going from 3107kbpd to 

4262kbpd, due to the growth in the region, a growth rate per year is applicable to the refinery of: 

3107 *(1+g) 7 = 4262, therefore g = 4.62% 

(KBC are a company that carry out extensive research in the commodities space and have been hired by 

Essar Energy). 

 Global oil demand in Europe and the US will most likely decline and the majority of demand in the 

next decade will be from the Asia-Pacific region as shown below in table 2.6: 

 

(Table 2.6: Indian refined product demand, -’000 bbl/d) 

2008  2009  2010  2011  2012  2015  

LPG . . . . . . . . . . . . . .  406  416  432  450  468  526  

Naphtha . . . . . . . . . . .  336  352  352  366  380  426  

Gasoline . . . . . . . . . . .  260  299  332  363  394  478  

Kerosene . . . . . . . . . .   303  301  316  329  344  395  

Gas/Diesel . . . . . . . . .   1050  1112  1184  1246  1314  1553  

Fuel Oil . . . . . . . . . . .   390  404  402  401  400  398  

Others . . . . . . . . . . . .   362  379  395  412  429  487  

Total . . . . . . . . . . . . .   3107  3264  3414  3568  3729 4262  

Source: KBC 

 

 

Step 3 

WACC was calculated as approximately equal to 10.77% 
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Step 4 

FCF1 = 96 *(1.0462)   = 100.33 

FCF2 = 96 *(1.0462)
2
 = 105 

FCF3 = 96 *(1.0462)
3
 = 110 

FCF4 = 96 *(1.0462)
4
 = 115 

FCF5 = 96 *(1.0462)
5
 = 120.20 

FCF6 = 96 *(1.0462)
6
 = 126 

 

Step 5 

Fair Value of the Vadinar Refinery = ($100.33/ 1.1077) + ($105/ 1.1077 
2
) + ($110/ 1.1077

3
) + ($115/ 

1.1077
4
) + ($120.20/ 1.1077

5
) + ($126/ 1.1077

6
) = US$ 569.75 million 

 

With the refining capacity of Vadinar currently at around 267 kbpd this is on the lower side of estimates, but 

looking at the latest share price for Essar Energy it looks like a reasonable estimate of terminal value.  (Share 

Price of Essar on June 2011 is [ESSR on LSE] 405 pence). 

 The problem with the above value is that it does not take into account the variation in the profits of 

the oil refinery; due to the estimates of the economic variables being static.  If a weather event for example 

hits India, this could seriously affect profits for a number of business quarters.  This method states that 

growth will be consistent with estimates of oil demand over the next decade.  Another effect ignored is that 

of management changing strategic decisions, they could for example decide to change output products due to 

various economic effects that there is no control over.  This would drastically alter the nature of the cash 

flows over time.  Another issue is the calculation of the cost of capital for the company, which is always an 

equivocal calculation.  An alternative would be to use a cost of capital that is industry wide accepted, 

sometimes printed by various financial organisations, to take account of the capital structure of the company.  

Again although DCF is a reliable and tractable method, it has many pitfalls.  The FCF method gave an 

approximate value of $570 million for the refinery complex; in contrast a financial market data calculation 

which is applied in the next chapter. 
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2.9 Real Option Approach 

 

Most refinery related contracts are traded on NYMEX; where there are numerous contracts that 

expose quantities and values related to the refinery market.  These exchanges trade what is referred 

to as “light-sweet” crude oil and a single contract, or “lot”, refers to the purchase or sale of 1,000 

barrels of oil.  A large fraction of the activity on oil Futures markets is concentrated on delivery for 

the next three months.  In our mathematical model we will specify the delivery to be one month 

ahead, or 30 days.  The quoted Futures price is the price at which the owner of the contract will 

buy/sell crude or the refined products during this delivery period per 1000 barrels.  For each buying 

or selling of the contract, we do not consider transaction fees or a bid-ask spread.  “Fair value” of an 

asset or liability should be based on the current market price, this is known as marking-to-market.  

This type of accounting can change values on the balance sheet as the financial markets evolve.  It 

supersedes the historical cost account based on past revenues.  A book value should always be 

compared to a fair value.  In substitution of the above method, companies often apply marking-to 

model, where a market for the asset or product is not available.  Models can give an artificial 

illusion of liquidity but are absolutely necessary for illiquid or complex assets.  Any advanced 

model dealing with valuation should attempt to capture market stress whence bid-ask spreads 

widen.  In 2003 Warren Buffet was famous for saying “mark-to-myth” when referring to the 

methods applied by financial institutions to value their derivative positions, a statement that 

emphasises the difficulty in making fair a valuation. 

 Distillation of a liquid can occur almost instantaneously, in the refinery however the 

production is not taking place instantaneously; imagine the process time line present for the oil 

refiner: 
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(Figure 2.1: Timeline for refinery decision maker) 

 

Contracts listed on an exchange that manage the differential risk between crude and its products, 

can be purchased by the refiner to lock in a refining margin and ensure that either long term 

contractual obligations are met or the crack risk is hedged accordingly.  Chicago board of trade 

(CBOT) offers a number of contracts on refinery spreads that are relevant to refineries throughout 

the US.  Initially, before production and sales are decided, the DM can assess the market dynamics 

and consider trading financial contracts to manage the inherent risk.  The table below defines 

factors that are significant to the decision maker considering hedging or speculating on the crack 

spread’s value.   

 

This data shows that the financial contracts listed can be indicative of the profit that can be 

extracted from the crack spread, as they enable traders to manage the factors impacting the refiner’s 

profit margin. 

 A standard real option comparison was the next stage in assessing the financial worth of the 

refinery.  An oil refinery is similar to a chemical plant in many ways and can be considered a 

producer with exposure to a differential spread.  The real difficulty in an option approach is the 

pricing of the choices embedded within it.  The choices available to real assets usually fall into one 

of the following categories: the option to expand, the option to abandon and the option to defer.  

Specific to the oil refinery is the choice available to the decision maker to vary purchasing and 

production decisions of the crude and refined products.  The risk-neutral valuation approach can be 

extended to allow real option valuation of land, plant, equipment and assets.  This approach does 

not require risk adjusted discount rates but it does need market price of risk parameters for all 

t0              
Hedging 
Decision 

t1 

Commitment 
to production 

t2         
Purchase of 

crude oil 

t3                 
Sale of outputs 
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stochastic variables.  Many investments are underpinned by uncertainty connected to future prices.  

These future prices can be used explicitly to estimate the risk-neutral stochastic processes involved 

in the calculation and avoid the requirement to obtain a market price of risk for the random 

variables exemplar set. 

 Based on the decision maker's (DM) initial set of decisions the other choices available 

would have been altered due to the knock on effects of the limitations on the particular crude assay 

being refined.  For example, producing more gasoline means less heating oil can be produced.  The 

CDU must maintain the mass balances at all times, therefore some choices are not possible, e.g. 

producing all kerosene or no Naphtha at all.  If for instance the refiner knew that residual fuel oil 

would be the highest valued product in one month time, then as much of this fuel oil as could be 

physically stored could be processed.  The refiner has an embedded option that is strictly 

constrained due to the chemical processes that are viable.   

 This is investigated as a cacophony of commodity future prices and correlations in the 

following chapter.  Trivially this value can be captured by the 3-2-1 crack spread.  There are a 

number of spreads available on financial exchanges, an example of a few follow: 

 

• 1:1 one crude oil versus one gasoline or one heating oil  

• 2:1:1 two crude oil versus one gasoline and one heating oil 

• 3:2:1 three crude oil versus two gasoline and one heating oil 

• 5:2:1 five crude oil versus two gasoline and one heating oil 

 

The 3-2-1 contract is the most frequently traded spread contract and represents the amount of value 

in a barrel of WTI crude refined into its two most valuable products, gasoline and heating oil.  

Utilising data from CBOT on the 3-2-1 crack spread an option approach of valuation is built.  If the 

refining cash margin is positive the DM should refine, if negative, the refinery should be switched 

off.  
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 This idiosyncrasy of pricing would be of interest in the current commodity climate, where 

independent traders, private equity firms and even airlines are invested heavily in the refining 

industry40.  This is due to companies either yearning to be vertically integrated or investing to 

capture diversification opportunities.  Delta airlines for instance bought the Trainer refinery, 

185,000 bpd, in June 2012 and reconfigured it to produce more jet fuel.    

 At any period in time, without purchasing additional financial contracts, the refiner is short 

crude oil, as it needs buying, and is long the refined products, as the DM has the ability to produce 

them.  Therefore the refiner is long the crack spread.  In practise refinery traders will construct 

trades on the constituents of the crack spread based on their estimation of the spread being under or 

overvalued.  If for instance a dispersion trader feels the crack spread is overvalued then it will be 

sold short, and vice versa.  The hedging replication argument allows the refinery to be valued using 

a strip of crack spread options; it is then compared to the DCF valuation previously calculated. 

 

  “The discounted cash flow (DCF) criterion induces investment too early (i.e., when prices are too 

low), but the real options approach induces investment too late (i.e. when prices are too high) when 

it neglects mean reversion in prices”.   

 

2.10. Problems with simple real option approach 

 

In practice, the valuation of the refinery will involve a mixture of positions in each commodity in 

forward contracts to secure future revenues whilst allowing for maximisation in the next time 

period.  These contracts are however correlated and this is one of the difficulties with a commodity 

pricing model.  This valuation is calculated whilst always taking into account the physical 

constraints; if for example there is a surplus of crude oil from one period to the next, the model 

                                                 
40  http://www.ft.com/cms/s/0/e1c96862-9516-11e1-ad72-00144feab49a.html#axzz2V9JYyX17 
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needs to address this as there is less available to then refine in the following period.  The valuation 

is more difficult than the strip of options as the choice on one option affects the next, and the option 

is not as simple as a call; it is in fact an option with choices on the weights of each refined product 

minus the crude cost.  There are two underlying stochastic processes that represent the commodities 

that constitute a spread, Si,j. 

 

The Si and S1 are correlated, and the above spread is subject to the physical constraints of the 

refinery.  There are several methods that can be envisioned to solve the corresponding optimisation 

problem described. 

 

• The most elementary one consists in using the current forward curve to find the optimal 

portfolio of long and short forward contracts attached to the refining period of one 

month up to 10 years for a legitimate financial valuation.  The corresponding values are 

the intrinsic value of the refinery facility. 

• Stochastic optimisation on a tree or through Monte Carlo simulations: the quantity of 

cumulative production denoted Qt and one can work back in time to solve the 

optimisation problem, this is a dynamic programming approach. 

 

This former method is precisely the approach that is considered in the following chapter that to 

investigate the possibilities of obtaining a much more accurate representation of the uncertainty 

facing the refinery DM.  In the next chapter an accurate way to value the refinery, the prevalence of 

the financial market risks and the uncertain behaviour of the commodity price series are analysed 

extensively. 
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Chapter 3 

 

A multi-period dynamically consistent valuation of a topping 

oil refinery, with mass balance and capacity constraints 

 

 

 

“The only thing that makes life possible is permanent, intolerable uncertainty; not knowing 

what comes next.” Ursula K. Le Guin.  

 

Valuing an oil refinery is similar but not the same as obtaining a market price for a chemical plant 

or a hydropower station; it is a real asset that generates a commodity product/s sold on the market 

that enable it to continue to operate.  A real option approach can capture the optionality of the 

owner's decision process, which can be deferred or executed, and if the future returns of the 

commodities are simulated accurately, enable a realistic and robust valuation.  We present the 

issues surrounding the modelling of the underlying commodity prices and design a calculation for 

optimising the volumes of crude to purchase and refined outputs to be sold on the market – all 

whilst adhering to the capacity and fluid flow constraints present at a topping oil refinery.  The 

valuation relies upon the assumptions in dynamic programming and maximising profit as a rational 
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and risk adverse agent; a trinomial tree is utilised along with mean reverting stochastic equations 

to simulate the prices and produce the volumetric decisions over the lifetime of the oil refinery.  To 

our knowledge this is the first application of dynamic set assignment to the valuation of a refinery 

in the literature.  The valuation program is created within GAMS and the optimisation is convex, 

non-linear and therefore it can be shown that the value is unique locally and globally.    

 

 

 

 

3.1 INTRODUCING COMMODITY LINKED ASSET VALUATION 

 

Commodity linked investment provides investors with a way to diversify beyond traditional stocks 

and bonds, whether they are related to food, energy or precious metals.  Historically, investors 

wishing to purchase commodities had many barriers to entry; significant amounts of money, 

expertise and time were required.  There are now a number of avenues enabling investors to 

participate in this dynamic asset class, from specific products to investing in the real assets 

themselves.  Consequently, there has been increased activity in commodity related investment, risk 

management and asset valuation.  The uncertainty associated with commodities has a particular 

impact on commodity linked asset valuation.  The aim is to investigate how a stochastic one factor 

model impacts the investment decisions and valuation associated with an oil refinery.  In 

constructing improved models for commodity prices we have a two sided problem; increased 

realism through extra factors, such as jumps, and the difficulty of solving for the contingent claims 

that rely upon them.  This chapter searches for a tractable model that captures the main features of 

the refined commodity processes and can be incorporated into the real option valuation of the 

refinery.  This will contribute to the understanding of the valuation of commodity linked 



103   

investments applying optimal decisions where the commodity prices have active futures markets 

available.   

        The real option valuation technique has been used extensively over the last decade to improve 

upon the errors apparent in discounted cash flow analysis (DCF).  As mentioned in chapter two, the 

problem with DCF valuation is that it fails to account for the value of managerial flexibility inherent 

in many types of projects and assets.  The options derived from managerial flexibility are 

commonly called “real options” to reflect their association with real assets rather than financial 

assets see Brandao, Dyer and Hahn (2008) for details.  In Eydeland and Geman (1999), the authors 

construct a model to value electricity derivatives; a particularly onerous calculation due to the 

specific properties of electricity prices.  It is noted however, that operating a merchant power plant 

is financially equivalent to owning a portfolio of daily options between electricity and fuel (spark 

spread options).  Therefore, obtaining a model to price these options enables the power plant itself 

to be valued as a real asset.  We will use a similar approach in chapter four, where we use a strip of 

crack spread options to value the refinery.   

Valuation of options on real assets has been limited by the mathematical complexity of the 

approach, the restrictive theoretical assumptions required, and by the lack of its intuitive appeal.  

This complexity stems from the fact that the problem requires a probabilistic solution to a firm’s 

optimal investment decision policy, not only at present but also at all instances in time up to 

maturity of its options.  To solve this problem of dynamic optimisation, the evolution of uncertainty 

in the value of the real asset over time is first modelled as a stochastic process.  Then the value of 

the firm’s optimal policy is represented, if possible, by a partial differential equation - obtained as a 

solution to a value function represented by Bellman’s principle of optimality, see Bellman (1957), 

where appropriate boundary conditions reflect the initial conditions and terminal payoff 

characteristics.  When closed-form mathematical solutions are not possible, which is usually the 

case for more complex problems, where the asset may be subject to several sources of uncertainty 

and more than one type of option, numerical methods and discrete dynamic programming must be 
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applied to obtain a solution.  Generally, a discrete approximation to the underlying stochastic 

process can be achieved enabling a computationally efficient model of the valuation problem.  The 

first example of this was a binomial tree that converges weakly to a lognormal diffusion of stock 

prices as shown in Cox et al. (1979).  The binomial tree can be implemented to accurately 

approximate solutions from the Black-Scholes-Merton continuous-time valuation model for 

financial options – it provides solutions for the early-exercise American options and enables the 

pricing of exotic options in a tractable manner.  However, the use of traditional option-pricing 

methods and the replicating portfolio approach is complicated by the fact that, for most real assets, 

no such replicating portfolio of securities exists, so markets are incomplete.  With this in mind, 

Pindyck and Dixit (1994) suggest the use of dynamic programming, using a subjectively defined 

discount rate.  An oil refinery is impacted by a number of uncertain market prices, and although it 

can be approached as an option on these sources of volatility, it gives the owner a complicated set 

of knock on decisions to make over the refinery’s lifetime.            

 

 

 

 

 

3.1. The Refiner’s Optionality 

 

Fundamentally, the refining plant’s aim is to produce a high quality product sold in local and global 

markets while taking into account efficiency and regulatory requirements.  The decision makers 

recognise that they possess vast “optionality” but do not correctly extract it.  At each point in time 

the refiner can decide to refine or not based on whether it is profitable to do so.  If the price of the 

raw crude spikes producing a gross refining margin that is negative then choosing not to refine is 

the most sensible decision.  In fact, this is just one of the decisions available to the refinery 
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manager.  In standard market conditions it is the volumes of each refined product that constitute the 

majority of the decision making.  If the price of jet fuel increases enough, the shift in the refinery 

processes should be towards producing more of it, whilst adhering to the strict physical, mass 

balance and blending constraints inherent in the refinery’s processing.  This is a complex and 

dynamic set of decisions that can be augmented by the optimisation calculations.  In this work we 

construct a model to aid the refiner in deciphering the optimum amounts of petroleum products to 

purchase and sell.  To our knowledge, this modelling and quantifying of the optionality is yet to 

have been achieved in the literature.  The goal of this work is to quantify and better understand the 

optionality of oil refineries without access to liquid crack spread products, under a model of optimal 

refinery management.  We have three major findings: 

 

(a) the stochastic model for the asset prices fits historical prices of crude and refined 

petroleum product’s futures well 

(b) the actual optionality that could have been extracted allows a valuation much higher than 

DCF reveals 

(c) the model can be run in a reasonable time 

 

We show that the mean reversion present in the commodity price series, which is exploited by the 

embedded refinery optionality, appears to increase the value of the refinery to a much higher price 

than DCF indicates.  One reason for this is the opportunity for the owner to switch to another 

product if one is not performing well.  The model is calibrated on real financial and refinery data, 

and results obtained after using a large enough simulation indicate that a statistically consistent 

valuation is accomplished - despite the strong assumptions present. 

 

3.1.1 Real data from an Indian Oil Refinery 
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India currently has over 22 refineries and has accomplished much in a short period through 

expanding its capacity and complexity to compete on a global scale.  It is emerging as a refinery 

hub and with capacity clearly exceeding demand; the country’s refining capacity has grown from 62 

million metric tonnes per annum (MMTPA) in 1998 to 215 MMTPA in 2012 – 4.4% of global 

capacity.  Out of the 22 refineries – 17 are public sector, three are private sector and two are joint 

venture.  Since August 2009, India is the largest exporter of petroleum products in Asia (Platts 

assessment).  The Vadinar refinery in Gujurat, has an installed capacity of 10.5 MMTPA, 

equivalent to 210,000 barrels per stream day (BPSD) of crude along with secondary processing 

units like: fluidised catalytic cracking, naphtha and diesel hydrotreater, vis breaker and product 

treating units.  Capacity was increased to 20 MMTPA on June 5th 2012.  We use this refinery in our 

analysis to analyse the model’s capabilities. 

       Owners of refineries buy crude and have the right to refine for an indefinite period of time – 

assuming financial solvency.  There are of course daily minimum and maximum refining rates as 

the different products induce various choices to the owner.  As the owner refines, two types of 

transaction costs are present: the financial transaction cost if the financial market is used to sell the 

products, a percentage charge, and the commodity charge, a dollar amount associated with the 

operational costs of refining a barrel of crude.  We choose to focus on the uncertainty in the gross 

refining margin (GRM) costs, simply the sale price minus the overall cost of purchasing and 

refining the crude; rather than the detailed operational costs of refining.  This is achieved by 

modelling the financial decision set.   

As posited in Carmona and Ludkovski (2010), the storage of a commodity that has 

optionality when being sent to market, derives from the ability to exploit the mean reverting trends 

in the crude and refined products markets.  The authors value a gas dome storage facility and a 

hydroelectric pump using optimal switching and stochastic optimal control.  The authors use a 

numerical method to deal with the path dependency, which is based on an old quasi-variational 

inequality approach.  The difference with a refining complex in contrast to a natural gas dome 
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storage complex, is the ability to “shift” to an alternative product if the price is more favourable on 

the market.  Oil majors, for example, have financial traders working within their refineries doing 

just this: capturing the optionality with hedging and speculating transactions.  In the short term, 

current forward/future prices on crude and the refined products provide information regarding the 

expected spot price mean reversion.  This mean reversion derives from demand and supply 

characteristics on the market; refined petroleum products are a major part of the developed world’s 

GDP.  In the next section, we introduce the one period program and show how the model would 

capture value in this simplified setting, laying the foundation for the multi-period optimisation. 

No such models, to our knowledge, have been developed to capture this refining value; this 

is mainly due to the huge dynamic programming “curse-of-dimensionality” that exists.  A global 

auditing firm, for example KPMG, value oil refineries as financial assets, like the one in Gujurat – 

US GAAP of UK ICAEW rules are commonly applied due to their extensive application.  To obtain 

a valuation under UK accountancy standards: a typical DCF is employed over six years, with seven 

random variables representing the decision variables, taking years in monthly blocks, and assuming 

a deterministic optimisation, a state space of 7 x 72 exists.  However, commodity prices are in 

constant flux on the market and a representation of this uncertainty is required for the model to be 

considered realistic.  Even a small increase in uncertainty can alter a valuation “materially”; see 

Pindyck and Dixit (1994), this is because it increases the upside potential payoff of the refiner’s 

option, leaving the downside potential unchanged at zero – assuming a downside decision to switch 

off the refinery and incur no operational costs.  Stochastic modelling is a minefield, and this 

addition to the model increases the state space further.  This is a huge computation for any optimiser 

– here we choose to discretise the stochastic prices onto a trinomial tree to alleviate the complexity; 

such as those used by Hull and White (1997).  By including the uncertainty in decision trees the 

investment problem is much more effective, as there are now alternative investment strategies that 

can be evaluated.  The value of the investment option must be calculated for each possible rule and 

is a function of the number of paths on the tree.  The difficulties associated with generating accurate 
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discretisation processes is discussed in Zenios (1995).  The author applies a discrete space binomial 

process for generating interest rate scenarios for asset liability management of fixed income 

securities.  The generation of return scenarios concentrates on fixed income securities with 

contingent claims, and it is emphasized that the future prices are Markov.  The focus in this part of 

the model is to generate a scenario tree; decision analysis and stochastic programming rely heavily 

upon its accuracy.  Another method commonly applied to capture uncertainty is via a Monte Carlo 

simulation as shown in Carmon and Ludkovski (2010).  For reasons explained later, discrete trees 

are more realistic within this framework.  Alternatively, stochastic optimal control as seen in Chen 

and Forsyth (2007) can be applied.  The authors use a regime switching price model with storage 

characteristics - these models capture the uncertainty by finding a control function that represents 

the refinery manager’s set of choices over time.  At the time of writing, no model utilising optimal 

refining management, optimal control theory applied to the refinery decision problem, has been 

constructed or back tested on historical data to quantify its optionality - ultimately providing a 

financial valuation. 

For our valuation model we examine a one-factor tree model of optimal refining 

management that can be back tested, meaning we focussed on: (a) developing a realistic price 

model (mean-reverting) of spot and forward price processes, and (b) developed a methodology for 

capturing the embedded optionality in a refining complex, given all the physical and mass balance 

constraints and the uncertain price processes.  Ensuring that the price model is calibrated to the 

market and constructing a tree that enables each commodity to be optimised is difficult due to the 

state space.  Strong assumptions must be made to implement this model calibration due to being in 

an unregulated market without access to liquid futures contracts and having no certain cost of 

capital.  As described in Schwartz (1997) the mean reversion behaviour of the commodities is an 

important feature to capture with a representative model - the coefficients of calibration are shown 

in the results.  Risk-neutrality is an important assumption when using dynamic programming in real 

options valuation; where it is common to use a constant discount rate. 
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In back testing the model over the same period that our DCF value was calculated with, we 

found it was very successful at consistently capturing vast amounts of optionality.  In chapter four 

we tested the model using crack spread data over the same period of ten years using US contracts 

available on the Chicago board of trade (CBOT).  The sensitivity of the model to investor risk 

aversion, mean reversion level of the commodity prices and the granularity of decision making were 

investigated.  Inventory of petroleum products on site at the refinery is significant.  Having zero 

inventory means we cannot choose to refine immediately; only crude can be bought, whereas being 

partly filled means refining can happen or be delayed if the price is not trending high enough.  A 

fully stocked refinery gives us optionality to refine, but not to buy crude, hence if the products 

move much lower and crude much higher, this crude trade cannot physically be made.  This is 

indicative of the embedded option available to the owner.  An interesting computational extension 

would be to consider how the optionality is affected by the refinery inventory level at the beginning 

and end of the horizon – as these values clearly impact dramatically the value obtained for this 

asset. 

     The optionality in this problem is similar to an American option valuation.  An American 

call option gives the investor the right to exercise the contract at any point in time up to maturity.  

The underlying will be bought at a specified strike, stated in the contract, enabling the owner of the 

option to observe market prices and execute if the momentum moves into favour, see Longstaff and 

Schwartz (2001) for a least squares Monte Carlo valuation approach.  The owner can decide to 

remain dormant allowing the contract to expire if conditions are not profitable; one difference in 

comparison to the refinery is that there is a continuous batch of contracts, each day the decision to 

refine and in what proportion can be executed.  Further, there is not just one underlying as is the 

standard case with an American option, where a stock or a bond represents the intrinsic value – the 

refinery has seven underlyings and each one is correlated with one another.  Finally, the underlyings 

are not stocks, where features such as geometric Brownian motion and dividends are significant, 

they are commodities, which exhibit particular properties and idiosyncratic qualities that 
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differentiate them from other asset classes.  For instance, the futures on commodities display a 

fundamental difference to those on stocks as they approach maturity – their at the money volatility 

decreases in comparison with shorter dated contracts rather than increasing at any given date, this is 

known as the Samuelson  effect; hence each futures volatility itself increases as it approaches its 

own maturity date - see Geman (2005) for a detailed discussion.  To construct a realistic model, we 

investigate these peculiarities and the specifics of the refinery that underpin our construction.  In the 

next section, we describe the risks facing the owner and introduce the refinery planning literature.   

 

 

3.1.2. The refinery’s risk 

 

Price, safety, operational, regulatory and economic risks are just a few of the concerns facing the 

owner of the refinery.  Recently, as mentioned in chapter one, the refining environment has become 

particularly competitive.  Hence risk management becomes a more pressing issue for refiner 

consumers and producers, and knowledge of the product prices can help reduce this risk.  The 

refiner's portfolio includes his own production and a set of sales and purchases over periods of time.   

The goal of using such an approach is to reduce the economic risk and ultimately obtain a 

value for the asset.  This is connected to the fact that the oil spot price may be highly volatile due to 

the various different unpredictable reasons; geopolitical factors, OPEC decisions, wars and to the 

possibility of unknown market factors.  When the refinery buys or sells the commodities, it is 

exposed to the risk that the spot price and the futures price do not converge on expiration of the 

future contract; this is known as basis risk.  The basis risk factors here are: the wholesale spot crude 

price and the refined products spot prices.  The refiner is a price taker with respect to the crude and 

refined products’ prices.  Since we want to concentrate on the financial risks; the detailed 

operational refinery flows (known as system planning), the operational uncertainties, like yield 
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uncertainty in the crude distillation unit (CDU), are ignored.  The data generated by the mid-term 

production planning problem, however, can be used as input data to the scheduling problem, which 

determines detailed crude oil processing schedule, process unit schedule, blending and shipping 

schedules. 

There are two mathematical terms that explain the decision that confronts the refinery 

owner.  At the start of the first period, the decision maker chooses the production variables - the 

volumes of crude to buy and refined products to sell, whereas, the second term considers the risk 

that the profit induces.  Due to the nature of the Vadinar refinery, the hedging decisions will be 

volumes of the refined products to buy or sell when the uncertain prices have unfolded at the end of 

the period.  The literature on this subject differs in the way the expectation and the risk is 

considered when optimising over one time period.  Rarely considered in the literature, is to 

approach the problem as a multi-period sequence of decisions over some fixed time horizon.  This 

approach enables a financial valuation to be obtained, as the cash flows can be modelled over time 

and discounted back to the present day.  This area is considered significant in finance as it impacts 

valuation risk; the risk that the asset is overvalued and is worth less than expected when it matures 

or is sold, as investigated in Mun (2006).  There are two main contributors to this valuation risk: 

 

(a)  The risk that valuations are incorrect due to control, operational and management errors. 

(b)  The valuation uncertainty due to model risk and assumptions underpinning a valuation 

calculation. 

 

Dependent upon the asset being valued, factors such as tail risk, credit risk and many others can 

have differing and substantial effects on a value.  The ubiquitous DCF approach in the case of an oil 

refinery gives erroneous values and is often the cause of financial value disputes.  In the next 

section we discuss the current planning literature.   
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3.1.3. Introducing refinery planning 

 

There are four common types of refinery: coking, cracking, topping and hydro-skimming.  Due to 

the detailed analysis in the literature available for the topping type, its granular construction was 

considered parsimonious and representative enough for a real refinery model.  Ravi and Reddy 

(1996) present a one period model to capture the set up of a modern topping refinery, which we 

utilise here but extend it over all time periods until maturity.  They present a fuzzy (a form of many-

valued logic; approximate rather exact sets) fractional programming approach to the optimisation of 

operations at an oil refinery.  This is optimising using a ratio within the objective function, in this 

case, very similar to the Sharpe ratio for the refinery.  The authors set as an objective function the 

mean profit divided by a function representing risk – it is named fuzzy as it is based on simple 

fuzzy logic.  This term applies when the objectives cannot be expressed as “true” or “false” but 

rather as “partially true”.  The authors have 22 constraints to represent mass balances, and two 

fuzzy goals, which maximise profit relative to capacity; here the objective goals are between zero 

and one.  They elicit a very small increase in profit over previous deterministic studies.  The authors 

avoid the inclusion of uncertainty and relevant risk functions in their optimisation.    

 A great introduction to stochastic programming is discussed in Sen and Higle (1999).  

Historically, optimisation models of chemical plants were mostly linear due to the computational 

issues: Gao et al (2008) use a mixed integer linear programming model for the midterm planning 

problem of a fuel-oil plant in China; Micheletto et al (2007) use a MILP model for a refinery over 

multiple periods of time where demand satisfaction is the focus.  Neiro and Pinto (2003) present the 

problem of managing multiple refinery operations using a mixed integer non linear program.  Their 

objective function maximises the net present value under raw material and product inventory 

constraints.  These include mass balance and operating constraints for each refinery in their network 

and demand scenarios are used to include uncertainty.  Although the authors claim advantages over 

single refinery optimisation by considering the supply chain, the risk preferences of the decision 
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maker are not explored. 

 

A number of studies in the chemical engineering literature approach the refinery as a blendshop 

problem (considering the results from blending of the fractionated products on a very short time 

scale), see Grossman and Zamora (1998), which is clearly necessary in short term planning, but 

exogenous effects or the financial side of the problem are usually not integrated at this time horizon.  

Pongsadki (2005) presents a mathematical program that maximises the profit whilst minimising the 

risk of the refinery.  Their model uses data from the Bangchak Petroleum refinery to decide on the 

production level for given forecasts of demand.  The scenario generation is drawn from normal 

distributions and incorporates constraints of cost payments for the decision maker not meeting the 

client demand.  They plot the expected gross refining margin against value at risk; the authors 

emphasise the dramatic improvement of the optimisation when replacing variance.  Three 

independent scenarios are generated and the optimisation summed over one-period at a time; where 

one period is separate to another, hence a static optimisation is represented; computational details of 

the mathematical program are not provided but no alternative to procedural programming is 

described. 

   

3.1.4. Multi-period refinery planning 

 

As mentioned in the previous section, Mathematical programming (MP) models applied to 

refineries are mostly deterministic; although, often the one-period approaches mentioned are used in 

practice by the oil majors for decision making.  A more realistic model for valuation is a multi-

period program.  The multi-period approach is much more difficult due to the computational issues 

that arise.  Authors consider the entire supply chain or a network of refinery capacities rather than 

approaching the difficulties with the state space or the stochastic nature of the commodity prices.  
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Benyoucef (2010) applies a multi-period stochastic program to refinery capacity management up 

until the year 2030.  Random commodity price variables are not included, and the author optimises 

a network of refineries; algebraic modelling language (AML) details are again avoided.  Marianthi 

et al. (1997) provide a multi period optimisation with uncertainty for short term scheduling, it is not 

at the granularity we require but is useful in the way the authors introduce risk to the refinery 

scheduling.  Bernardo (1999) et al introduce a specialised cubature technique for solving high 

dimensional problems but it is only suitable for Gaussian distributions.  The authors claim 

computational performance gains over efficient sampling techniques and is applied to engineering 

processes.  This paper highlights even more the problems faced by researchers when there is a large 

state space but no alternative approach to optimising over such a state space using an AML is 

provided.                         

 In the next section, we introduce the physical constraints present in this particular refinery 

model, along with the relevant data.  In section three we discuss the multi-period construction.  In 

section four, we introduce uncertainty via the random spot commodity prices and derive how they 

are related to the forward curve.  In section five, we solve the optimisation refinery model using a 

unique AML representation.  In section six, we discuss the results and their implications, and finally 

in chapter four we compare the previous refinery valuations to a strip of crack spread options. 

 

3.2. STOCHASTIC PROGRAMMING FOR OIL REFINERIES 

 The construction in Ravi and Reddy (1998) is utilised to formulate the foundations of a 

linear deterministic program.  As described in chapter one, the petroleum flows and streams in a 

refinery plant are complicated movements through each of the units present at a particular category 

of refinery.  Figure 3.1 below depicts the raw crude being pumped into the distillation tower after 

being desalted, and on the right the exit, producing a typical set of marketable products.   
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(Figure  3.1: Crude oil distillation and fractionation)41 

 

In any oil refinery there are a number of restrictions on the flow of crude and refined products that 

move through the crude oil distillation units (CDUs).  Strict limits are present on how much 

hydrocarbon liquid can be held in storage within the refinery and the amounts that can be released 

onto the refined markets; see Moro and Pinto (2000) for a detailed description.  The following 

section describes the structure of the linear program. 

 

3.2.1. Refinery physical flow constraints 

 

It is necessary to provide some background on the processes that occur when refining is carried out 

on crude oil to precursor the construction of the refinery model.  This illustrates how in the real 

world the refiner’s decisions come to affect the marketable products.  Crude oil is refined into 

                                                 
41  https://rbnenergy.com/complex-refining-101%E2%80%93distillation-no-test-and-no-math-guaranteed 
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useable products such as gasoline; hence gasoline has a higher cash value on the market.  Extracting 

this monetary value is a complicated process that involves isolating mixtures according to their 

boiling point range.  Gasoline boils from 40 to 200 degrees Celsius; figure 3.2 shows the boiling 

point range of the various fractions.  Crude oil distillation separates the hydrocarbons into the 

fractions; the separation occurs in a large tower operated at atmospheric temperature.  Light 

materials like naphtha are removed in the upper section; heavier materials such as residual fuel oil 

are withdrawn from the lower section.  Residual fuel oil can be further separated into vacuum gas 

oil and vacuum residua - the vacuum gas oil goes to the catalytic cracking unit.  In a modern 

refinery, the cracker carries out the most significant process; it cracks long chain hydrocarbons into 

shorter chain molecules.  It enables the refiner to convert raw material into gasoline and distillate; if 

one compares the prices of raw fuel oils to those of gasoline, the advantage is conspicuous.  

 

 

 

(Figure 3.2: Fractionation of crude oil)
42

 

 

The refined products are obtained through blending of various fractions of crude within the refinery 

units.  Petroleum products have many specifications; some linear programs are constructed to 

                                                 
42 http://www.ril.com/downloads/pdf/about_jamnagar.pdf 
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optimise only the blending process in detail, rather than optimising the cash flows generated 

through the refining process.  The linear program in this case would need mathematical terms for 

the properties of the hydrocarbon fluids.  For instance, gasoline has the following specifications: 

 

• Octane - a measure of harmful components, too high and it wastes power in a      

combustion engine.  

 •   Viscosity - how easily the fuel flows.  

 •   Sulphur - important for regulation reasons 

 

In Ravi and Reddy (1996), the variation in the types of crude that can be purchased are not 

considered, one type of crude is assumed, this can be unrealistic for some refineries and the option 

for the decision maker to select from a number of crudes would not be a difficult extension.  We 

adhere to the most suitable crude to elicit value from, in a model capturing cash flow value rather 

than yields from blending error. 

           The aim of the following section is to depict the dynamics of the commodity spot prices and 

forward curves to insert into the revenue refining model.  It is standard practise to use current spot 

and forward prices to mark-to-market a book of physical and/or financial contracts; the forward 

curve providing information about the market perception of future spot prices.  However, the prices 

observed today can be wildly inaccurate when used for decisions about future activity; a set of 

future prices are however required for valuation purposes. 

The goal is not to provide a forecasting method but to apply a fundamental model of 

commodities to obtain information of possible future prices to be used within an optimisation 

model.  In applying real market data to represent the spot price, S, of each refined product, our 

concern is threefold: 

 

• To find the most appropriate mathematical structure for S, i.e. the type of process 
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• Once we have chosen S(t), a stochastic process, there will be parameters that can be 

estimated from liquid markets and clean data 

• From a trajectories standpoint, the Monte Carlo methods and/or trees, on average must 

generate data that looks like the observed ones; from a statistical standpoint - the moments 

of the distribution of S(T) (for T>t) must coincide with the empirical moments, at least for 

the first four  

 

In comparison to stock prices, which grow on average, commodity prices do not exhibit trends over 

long periods.  The evolution of the futures and spot prices in the next section may show sharp rises 

during short periods, over a long period they revert to “normal levels”.  This is a consequence of 

mean reversion with spikes caused by shocks in the supply/demand balance.  In creating a realistic 

model of the stochastic process it is important to observe the time series over the required time 

period to analyse the specific features and details important to the particular commodity.  The 

refined products future prices from NYMEX used in this chapter and the notation for formulating 

the mathematical model are presented in the following section.  

 

 

 

 

 

 

 

 

 

 

3.2.2. Refined oil products market data 

The following data was obtained using the EIA data repository. 
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(Figure  3.3: WTI crude front month contract historical price series) 
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(Figure  3.4: Diesel fuel low sulphur historical price series ) 
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(Figure  3.5: NY RBOB gasoline front month contract historical price series) 
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(Figure  3.6: Daily jet fuel retail historical price series)  
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(Figure  3.7: New York Harbor No. 2 daily heating oil historical price future contract series) 
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 (Figure  3.8: Propane front month future historical price series) 

  

The above figures depict the mean reversion despite the noted increase in price series value 

as the commodities approach 2006; there is a increasing trend which then dips aggressively in 2008 

due to the financial credit crunch.  There is clear random variation and the correlation amongst the 

different petroleum products above is conspicuous.  The figures for correlation and mean reversion 

are shown in the following sections.  There is a clear difference in behaviour in comparison to stock 

price movements and it is this characteristic commodity behaviour that must be accurately captured 

in the model; see Schwartz (1997) for a thorough description. 

In the next section, we describe the foundation of the refinery model, including the 

relevance of the optimisation time period. 
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3.2.3. The producer midterm planning framework 

 

Refining is modelled at the level of detail common in tactical mid-term refinery planning, with a 

granularity of one month at its finest and the start-up and shut-down costs considered not 

significant.  The model’s decisions are considered in monthly periods consequently, a set of 

decisions remain constant for a month’s refining – this is known as a refinery run in the market; 

each review period corresponds to a futures price maturity.  The refinery consists of a number of 

units, the Crude Distillation Unit (CDU), the cracker and the Vacuum Distillation Unit (VDU).  For 

example, Neiro and Pinto (2003) model the units of the refinery and their flows, using nodes and 

arcs, constructing a one-period model to capture the uncertainty.  This requires that the uncertainty 

in the yields that are transferred from the CDU to the rest of the refinery are modelled using the data 

inside the CDU; there is an uncertain amount of error associated with the volumes chosen by the 

refinery owner. 

In this work however, the uncertainty is attached to the prices of the outputs rather than the 

volumes from the refining process itself and the producer must schedule the production of each 

refined product.  These decision variables of the refinery scheduling problem are stated below.  

Each of the variables represents the flow rate of a potential product within the refinery in units of 

tons/day over a refining run.   

 

3.2.4. Decision Variables 

 

Xi,t
43 [tonnes/day] : volume of product i bought or sold on this particular day 

 

• X1,t: Crude Oil 

                                                 
43  In the multi-period setup these decision variables become per node and per time period: X1(n, t) 
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• X2,t: Gasoline  

• X3,t: Naphtha (after the splitter) 

• X4,t: Jet Fuel 

• X5,t: Heating Oil 

• X6,t: Fuel Oil 

• X7,t: Naphtha stream exiting the PDU 

• X8,t: Gas Oil 

• X9,t: Cracker Feed 

• X10,t: Residuum 

• X11,t: Gasoline after splitting of Naphtha exiting the PDU 

• X12,t: Gas Oil after the splitter 

• X13,t: Gas Oil stream entering the fuel oil blending facility 

• X14,t: Cracker Feed after the Splitter 

• X15,t: Cracker Feed stream entering the fuel oil blending facility 

• X16,t: Gasoline stream exiting the cracker unit 

• X17,t: Stream exiting the cracker unit into the splitter 

• X18,t: Heating oil stream after splitting of cracker output 

• X19,t: Cracker output stream 

 

In the final model’s objective function, only the first six and the 14th decision variables defined 

above are included - the rest are auxiliary variables required to represent the structure of a real 

refinery and present within the mass balance or constraint equations.  As the variables in the 
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objective function are the volumes that can be sold, the other variables aid in the representation of 

the flows within the refinery and contribute to the mass balance (weight into a refinery unit must 

equal the weight out), fixed blends (assuming fixed cuts from a barrel of crude) and unrestricted 

balance equations (without the auxiliary variables, an unrealistic set of volumes from the cracking 

process would be represented).  The set of constraint equations that represent the flows shown in the 

next section, take on a variety of forms dependent on whether the structure is that of a topping, 

cracking, hydro skimming or coking refinery.  The main reason why the mathematical framework 

applied here was selected is that there are a large number of studies on the topping refinery within 

the engineering literature that can be used for comparison purposes; additionally, it is trivial to alter 

these equations given a different type of refinery complex.  The values assigned to the decision 

variables must satisfy the following constraints that describe the physical restrictions on this 

particular refinery:  

 

• The capacity constraints  

• Raw Material Availability  

 

The mass balance constraints are required for the following units: 

 

• Primary Unit 

• Cracking unit 

 

The increasing oil price has over the years encouraged refiners to search for solutions to extract 

more from the dregs of the barrel.  Refiners are increasingly using solvent deasphalting and 

debottlenecking of existing vacuum and coking units.  For example, the ROSE process, invented by 

KBR uses special internals and designs that permit extraction of maximum high-quality oils and 
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fuels from vacuum residues and other heavy petroleum feedstock.  Without discussing the internal 

mechanics, this would alter the yield specification on the model, hence impacting the optimal 

volumes of refined products; additional blending technology in the modelling process is usually 

implemented in a finer granularity refining model than required in midterm planning. 

In this model, we represent the yields emanating from each separate units: the CDU, the 

VDU and the cracker, as fixed according to the equations below, (the below set-up is taken from 

Ravi and Reddy (1996) where the X variables are defined as above in section 3.2.4. as the volumes 

of the commodities, but here the objective function is converted to a multi-period problem where 

each node is, n, and each time period, t) - for another type of refinery, e.g. a Coking refinery, the 

following equations would be still be required but would consist of different coefficients. 

The equations below essentially capture the primary distillation unit and a middle distillation 

cracker.  The primary unit splits the crude oil into the following refined products: naphtha (13% 

yield), jet fuel (15%), gas oil (22%), cracker feed (20%) and residue (30%).   

 

3.2.4.1. Fixed Yields 

 

Primary unit:   

 

-0.13 X1(n, t) + X7 (n, t) = 0           n N∀ ∈                                          (3.1) 

   

-0.15 X1 (n, t) + X4 (n, t) = 0                     n N∀ ∈                                          (3.2) 

  

-0.22X1 (n, t) + X8 (n, t) = 0                      n N∀ ∈                                         (3.3) 

   

-0.20X1 (n, t) + X9 (n, t) = 0                      n N∀ ∈                                         (3.4) 
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-0.30 X1 (n, t) + X10 (n, t) = 0                    n N∀ ∈                                        (3.5) 

 

Cracker:  

 

-0.05X14 (n, t) + X20 (n, t) = 0                  n N∀ ∈                                          (3.6) 

   

-0.40X14 (n, t) + X16 (n, t) = 0                 n N∀ ∈                                         (3.7) 

   

-0.55X14 (n, t) + X17 (n, t) = 0                 n N∀ ∈                                         (3.8)  

 

With the higher utilisation of heavy crude oils, refiners often encounter higher residual loads with 

higher levels of contaminants, increased aromatics content, and more often than not, higher acids 

content in their feeds.  On the other hand, the gas oil content of the new feeds will be lower, 

creating a potential loss of feed downstream such as in the FCC units.  Due to the chemical 

composition of the petroleum crude, there is a limit on how much of each product can be blended 

within the complicated production of refinery outputs.  We state below the equations that define 

these fixed blending compositions: 

 All the constraints below are in the form of equalities; there are three types of constraint: 

fixed yields, fixed blends and unrestricted balances.  Unless there is a shutdown of the plant or 

adverse storage movements the right hand side of the balance constraint is always zero.  Naphtha 

and jet fuel products are straight run, heating oil is a blend of 75% gas oil and 25% cracked oil.  

Fuel oil can be blended from the primary residue, cracked feed, gas oil and cracked oil in any 

proportions.  Yields for the cracker are flared gas 5%, gasoline blend stock, 40%, and cracked oil 

55%.  This information along with the flow describes the physical system.   
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3.2.4.2. Fixed Blends 

 

Gasoline blending:  

 

0.5X2 (n, t) - X11 (n, t) = 0                      n N∀ ∈                                             (3.9) 

   

0.5X2 (n, t) - X16 (n, t) = 0                      n N∀ ∈                                           (3.10) 

   

Heating oil blending:  

 

0.75X5 (n, t) - X12 (n, t) = 0                      n N∀ ∈                                         (3.11) 

   

0.25X5 (n, t) - X18 (n, t) = 0                      n N∀ ∈                                        (3.12) 

   

3.2.4.3. Unrestricted balances 

 

Naphtha:     

X7 (n, t) + X3 (n, t) + X11 (n, t) = 0                      n N∀ ∈                             (3.13) 

   

Gas Oil:      

-X8 (n, t) + X12 (n, t) + X13 (n, t) = 0                      n N∀ ∈                        (3.14) 

 

Cracker feed:     

-X9 (n, t) + X14 (n, t) + X15 (n, t) = 0                      n N∀ ∈                        (3.15) 
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Cracked oil:     

-X17 (n, t) +X18 (n, t) + X19 (n, t) = 0                        n N∀ ∈                      (3.16) 

  

Fuel oil:          

-X10 (n, t) + X13 (n, t) + X15 (n, t) + X19 (n, t) + X6 (n, t) = 0   n N∀ ∈         (3.17) 

 

 

Each refinery complex has a maximum amount of petroleum that it can physically store.  These 

containers are at a size that is economically optimal for the region the refinery operates in.  The 

below equations represent the limits on this refinery’s production in tons per petroleum product per 

node and per month: 

3.2.4.4. Raw material availability constraints 

 

Gasoline:    

X2 (n,t) ≤ 2700 / month            n N∀ ∈                                (3.18) 

   

Naphtha:    

X3 (n,t) ≤ 1100 / month            n N∀ ∈                              (3.19) 

   

Jet fuel:    

X4 (n,t) ≤ 2300 / month            n N∀ ∈                                    (3.20) 

   

Heating oil:    

X5 (n,t) ≤ 1700 / month            n N∀ ∈                                        (3.21) 
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 Fuel oil:           

X6 (n,t) ≤ 9500 / month                       n N∀ ∈                          (3.22) 

 

The refinery owner is interested in maximising the net profit, which is simply the costs subtracted 

from the revenues; this objective is a simple function over one period. 

 

3.2.5. Deterministic objective function 

 

The deterministic objective function for profit of Ravi and Reddy (1996) represents the profit in 

dollars over one time period, where the decision variables are as explained in section 2.4 and are in 

tonnes: 

 

Maximise 

Profit = - 8.0 X1 + 18.5 X2 + 8.0 X3 + 12.5 X4 + 14.5 X5 + 6.0 X6 – 1.5 X14           (3.23) 

 

One serious issue with this function in the chemical engineering literature, the random commodity 

prices are replaced with their mean prices using a set of normal distributions, when in fact it is 

known that commodity price series are not normally distributed, see Moro et al. (2007) for details.  

Further, the above model is deterministic and does not consider the risk or the uncertainty of the 

commodity prices in the next period when they are actually sold.  The move to a multi-period model 

introduces the time series themselves and the analysis of the refined products statistically.  We leave 

for others the examination of the cointegration via an Engle-Granger test; we aim to model the 

commodities from continuous stochastic equations rather than approaching them via econometrics 

using a Euler discretisation of integrating the separate commodities.  Our approach is along the lines 

of Schwartz (1997) where the author discretises the continuous mean reverting equations and finds 
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the parameters via the Kalman Filter. 

        In practice many refiners use Futures contracts or other derivatives to hedge their price risk.  

We use data for our oil refinery that does not use crack spread contracts to hedge, as is common in 

the US; in the region where this refinery is located there is an absence of liquid crack spreads.  An 

oil Future contract is a standardised contract between two parties to buy or sell a specified type of 

oil of standardised quantity and quality for a price agreed today.  In the case of crude oil, the main 

Futures exchanges are the New York Mercantile Exchange (NYMEX) and the Intercontinental 

Exchange (ICE) where the West Texas Intermediate (WTI) and North Sea Brent crude oil are 

traded.     

The delivery periods in the model are fixed to each of the 12 calendar months (M1, M2,…, 

M12) for each year.  We ignore differences in trading and delivery period in the model and assume 

each lot sold is for one month ahead using the financial market rather than the physical spot market.  

To capture the market risk we introduce a number of risk measures within our optimisation, with the 

goal of finding the most effective measure whilst retaining tractability – a valuation however does 

not require this addition.  In terms of decision making over time this is a significant step for a 

number of reasons; one is that optimising with variance is computationally inefficient and is also 

not used in practice as it is now considered an unrealistic representation of financial risk.  Secondly, 

this enables an investigation of the most realistic risk-reward model when we extend to a multi-

period setting.  The first step was to consider how to introduce the uncertainty in the price series 

into the static linear program.  

 

3.2.6. Solving the deterministic objective function 

 

Adopting the deterministic objective model in (3.23) using today’s futures prices in tons, as shown 

in Ravi and Reddy, and not the returns of the price series of crude and the refined products gives:  
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Maximise  

 Profit    -385X1 + 726X2 + 385 X3 + 471X4 + 520X5 +251X6 -72X14           (3.24) 

 

The negative values are the purchasing and operational costs, the positive values are the saleable 

product prices.  This includes the same constraints as model (3.23), shown above for one time 

period.  This is a static linear optimisation problem, and so the CPLEX algorithm was used to solve 

it within the optimisation program, General Algebraic Modelling System (GAMS).  The solution to 

equation (3.24), the deterministic objective function, under the constraints defined in section 3.2.5, 

is given below: 

Model 1: Objective Value = $285,418 per day; optimal crude purchased: 1500 tons; time to solve: 

negligible  

 

The solution is trivial computationally:  there are 22 constraints, all equations including the 

objective are linear and there are a total of 18 decision variables.  Now we extend the static 

optimisation incorporating the uncertainty in the commodity price series.  This can be done in a 

number of ways; forecasting any random variable in practise is a vast area of research.  In practice it 

is done by drawing a random number from a recommended probability distribution for the data 

generating process.  When cash flow forecasting, the chemical engineering literature applies 

deterministic values, which misses the range, sensitivity and behaviour of the cash flows – we 

discuss this issue in detail in section four where we describe our choice of the set of stochastic 

processes.  In the following section we detail how the one period model can be reformulated and 

consolidated with future periods to build the multi-period model including commodity price 

uncertainty. 
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3.3 MULTI-PERIOD OPTIMISATION  

 

The legacy of Markowitz Portfolio Theory (MPT)44 means that optimisation problems are often 

categorised by how the efficient frontier can be drawn; this was added to MPT in 1958 by James 

Tobin45.  Each of the underlying assumptions has been challenged in various papers; delving into all 

of these is beyond our scope.  The three main assumptions that are investigated or utilised in this 

refinery model are: 

 

• Investors are price takers, and their actions do not influence external market prices 

• The correlations between assets are always fixed and constant 

• Returns on assets are normally distributed 

 

There have been various extensions to deal with these assumptions; studies have, for example, 

managed to capture fat tails and asymmetry and included these within their optimisations to address 

assumption (c).  In this model, ultimately we wish to maximise risk expected return for a given 

level of risk.  The statistical concept of covariance captures this risk by implying that an investor 

should choose assets that do not crash together.  In terms of the refinery this is difficult, due to all 

assets being heavily correlated, hence exposure to the crack spread46 is the main risk to manage.  In 

portfolio optimisation, we often consider variances and covariance matrices in our decisions, i.e. a 

multivariate joint probability density function (pdf) of returns is required; this proxy for risk is valid 

if asset returns are jointly normally distributed, however there are problems.  If returns are not 

                                                 
44 Markowitz, H.M. (March 1952). "Portfolio Selection". The Journal of Finance 7 (1): 77–91.  

45 Tobin, James (1958). "Liquidity preference as behaviour towards risk". The Review of Economic Studies 25 (2): 65–

86.  

46  The crack-spread is a term used in the industry for the differential between the price of the refined products and 

the raw crude oil; indicating the profit margin that can be extracted from “cracking” crude. 
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normal then variance is no longer a valid risk measure.  Despite this issue, a mean-variance model 

used to maximise returns and minimise risk, is a good place to begin.  A modern portfolio 

optimisation approach is thus characterised by the following desirable features: firstly, it enables for 

realistic return distributions, secondly, it builds on a realistic risk measure, thirdly, it is 

computationally tractable, and finally, it enables for a parsimonious robust formulation.  We 

contribute to the literature by proposing a refinery portfolio model that encompasses all of these 

features.  Our approach is based on derived distributions from a discretised set of stochastic 

differential equations; it can rely upon a quantile risk measure, and leads to, after an approximation, 

a convex optimisation problem, enabling robustness checks that confirm its stability.   

             To build our argument, we start with a simple example using future cash flows to define 

optionality.  The example requires that cash flows should be discounted using (a) a constant risk-

free rate of interest of 5% (which would be unrealistic for a period of one month but is used to 

illustrate the value of optionality over a period of time) and assumes (b) a constant cost of crude oil, 

for example, crude is priced at $74 per barrel; these will both be made stochastic in the final 

model’s implementation.  Although in our final results we will use continuous compounding for the 

sake of simplicity we show here the calculations using simple compounding.  In the next section, to 

extract optionality from this behaviour, we analyse how one period’s refining decisions are related 

to the next.   

 
 

3.3.0.3. N-period (N+1 dates) optimisation 

 

By adding one more period of price uncertainty, our refining problem becomes more complicated.  

There are now five different investment strategies that can be implemented.  Optimally, we could 

(a) refine now; (b) wait a month and refine if it has risen, but never refine if it has decreased; (c) 

wait a month and invest if the price has risen, but if it decreases wait another month and then refine 

if it has risen; (d) wait two months and only refine if it has risen twice in a row; or (e) never refine.  
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Which strategy to undertake depends on the initial cost of a barrel of crude and the initial set of 

refined products’ prices, and the value of the refining option should be calculated for each path.    

             The other complicating factor here is that while we can still compute the value of the 

investment option by constructing a risk-free portfolio, the makeup of that portfolio will not be 

constant over the two months; we will have to alter the number of crack-spread contracts in the 

short position after the price of the refined petroleum products changes at t=1.  Keeping the refining 

portfolio riskless by changing its composition is known as dynamic hedging.  Without calculating 

the option value explicitly we state that the value of the option to invest as function of initial 

products prices has a piecewise-linear function.  The, F0, is always a convex function of the RPS0, 

and is greater than or equal to the net payoff from exercising the option today, RPS0 – Costs0.  This 

is a powerful result as we allow investment to fluctuate in continuous time and this means we 

require stochastic processes, see section 3.3. 
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      t = 0                 t = 1                          t=2                                t=3                  … 

                      

 

                                                                             RPS3uuu = $337 

 

                                                                RPS2uu = $225 

                                                                                               

                                RPS1u = $150                                             RPS3duu = $150 

                    q 

RPS0 = $100              RPS2ud = $100  

         1- q       

                                RPS1d = $50                                             RPS3ddu = $50 

 

                                                               RPS2dd = $25 

 

        RPS3ddd = $17.50 

(Figure  3.11: Three period optimisation) 

 

Approaching this valuation using option pricing methods; we wish to calculate the option to refine 

at t=0, F0, as a function of the initial RPS0, as well as the optimal refining rule.  To do this we can 

work backwards solving two separate investment problems looking forwards from t=1, first for 

RPS1u and then for RPS1d.  In each case we determine F1, the value of the option at t=1, by 

calculating a risk free portfolio and calculating its return.  Given two possible values for F1, we then 

move to t=0 and determine, F0 by calculating a risk free portfolio.  The descriptions above 
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exemplify the fact that the refinery owner has optionality and that the value of this real option 

contains path dependence.  The terminal value depends on the value of the underlying commodity 

prices, not only at this time, but also at prior points in time.  Specifically, the refinery option’s 

terminal value depends upon the “path” taken by all the underliers over the life of the refinery.  This 

refinery has another condition, as the value of the option to refine today depends on the quantity of 

crude available, which itself depends on the last time the owner refined.   

                 In the next section, we describe a deterministic trading strategy to define the intrinsic 

value of the oil refinery, and follow this by describing a stochastic dynamic program that captures 

the optionality.  

 

3.3.2. Foundation of the oil refinery intrinsic value 

 

We now define the intrinsic value as the expected value of the refinery assuming risk-neutral 

dynamics, conditional on following the best initial deterministic set of decisions.  We start out with 

the set of initial forward curves and find today’s intrinsic plan.  From this decision set we lock in the 

refining decision set today.  If the decision is to purchase an amount of crude, the cost of purchasing 

follows from the current crude spot price and the volume of crude in its storage container.  

Additionally, if there are decisions to sell, the refining units are activated and the revenue flows 

from the current forward curves on the market for the petroleum products.  If the decision is to not 

refine, there is no cash flow and the refinery is unaltered. 

                  Next we simulate a realisation for tomorrow’s forward curve conditional on today’s 

forward curve and the given appropriate price dynamics.  For this new forward curve, tomorrow’s 

intrinsic plan is determined.  This problem is updated for the refining decision set that is already 

locked in as well as the passage of time (one day closer to the terminal date).  This plan is used to 

lock in the storage decision regarding tomorrow.  We continue this procedure until we reach the 
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terminal date of our refining problem.  This procedure gives us one possible realisation of daily 

cash flows from refining over the relevant time horizon.  We then repeat the procedure above to 

obtain the desired number of possible cash flow realisations.  The value of the refinery is given by 

the average net present value of simulated daily cash flows.  The problem with this intrinsic 

approach is that it misses the full flexibility available at each decision date being a deterministic 

approach; to capture this flexibility we need to also consider the fact that the financial markets 

provide us with alternative stochastic decisions at each point in time. 

               The stochastic dynamic programming approach is similar, but simulates possible spot 

price path realisations for each commodity.  Each path is mapped into a discrete spot price state 

space.  Based on the discrete spot price path realisations, we can solve the problem to optimality by 

stochastic dynamic programming.  We consider the problem with a six-year horizon and our 

objective is to obtain the value of the cash flow from operating the refinery. 

               With the approach chosen, we now describe this method for N periods, including 

definitions for the refinery owner’s specific choice variables and conditional random variables. 

        Adopting a discrete time setting, with a finite horizon, the decision periods are denoted θi, 

i=1,….., T (months): 

 

 

 

                          θ1                                                         θ2         …                                          θT                        

(Figure  3.12: N period optimisation)  

 

On each decision date, spaced apart by one month, a number of decisions are required: q1 – q7, these 

are the volumes in tons of the crude to buy, and refined products to sell both decided on the same 

date.  We can represent the vector of qs as a control vector, U.  To model the uncertainty over these 

future time periods a stochastic equation representative of the uncertain prices is selected.  The 

Period 1 Period 2 Period T 
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refinery’s current status is described by a state variable x, the current value, xt, being known, but 

future values, xt+1, xt+2, random variables, are not.  Assuming this process is Markov, all the 

information relevant to the determination of the probability distribution of future values are 

summarised in the current state, xt.   

 At each period t, the volumes of commodities are available as choices to the refinery, and we 

represent them by a control vector U.  The value, Ut, of the control at time, t, must be chosen only 

using the information that is available.  The state and control at time, t, affect the refinery’s profit 

flow, which we define as, πt (xt, Ut).  We let Φ(xt+1 | xt, Ut) be the cumulative probability distribution 

function of the state next period, conditional upon current information (state and control variables). 

 The discount factor between any two periods is, 1/(1+ρ), where, ρ, is the discount rate.  The 

ultimate goal is to choose the set of controls, {Ut}, over time that maximise the expected net present 

value of the payoffs; where the termination payoff function is defined by πT (xT). 

 At date t, the refinery owner chooses control variables Ut, the immediate profit flow is, πt (xt, 

Ut).  In the following period, (t+1), the state will be xt+1.  Optimal decisions onwards will extract 

value, Vt+1(xt+1).  This is random as viewed from time t, so the expected value is required, 

Et[Vt+1(xt+1)].  This is known as the continuation value, formally we have: 

 

1 1 1 1 1[ ( )] ( ) ( | , )t t t t t t t t tE V x V x d x x U+ + + + += Φ∫         (3.31) 

 

Discounting this back to period t, the sum of the immediate profit from refining and the 

continuation value is: 

 

Vt (xt) = πt (xt, Ut) + 1/(1+ρ) Et[Vt+1(xt+1)]       (3.32) 

 

The manager will choose the control vector, Ut, to maximise the sum of these two functions, and the 

result will be the value Vt(xt). 



142   

  Hence, we write the value of the refinery at date t as: 

 

1 1

1
( ) max{ ( , ) [ ( )]}

1t

t t t t t t t t
U

V x x U E V xπ
ρ + += +

+        (3.33) 

 

This is also known as the Bellman equation; see Bellman (1957) for a more rigorous derivation.  

Here we have a fixed horizon of six years, and knowing that we have an independent optimisation 

at the maturity, we start at the end of the horizon and optimise backwards.  We assume that at the 

end of the horizon, the refinery gets a termination payoff, πT(xT).  Therefore, the value in the period 

previously is: 

 

( 1)
1 1 1 1 1

1
( ) max{ ( , ) [ ( )]}

1T

T T T T T T T
U

V x x U E V xπ
ρ−

− − − − −= +
+       (3.34) 

 

Knowing the value function at, T-1, enables us to solve the maximisation problem for, UT-2, leading 

to the value function, VT-2(xT-2), and we continue with this process until the present, t=0.     

 

In equation (3.34) the value process does not consider the risk, in the published paper within the 

appendix we combine the mean-risk approach into the value process for decision making purposes.  

In this work we have left to others, the rigorous mathematical proofs of existence and uniqueness of 

solutions; we treat the limit to continuous time in a heuristic way; see Fleming and Rishel (1975) 

for a detailed background.  In the following section we describe the data flow required to capture a 

financial valuation or create a decision process considering the risk. 

      

3.3.2.1. Optimisation data flow chart 
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(Figure 3.13: Flow chart process behind the refinery optimisation) 

 

As the figure above depicts, the ultimate goal is to have the optimum amounts of decision variables; 

in a multi-period setting, this is known as the policy function.  Not only is variance a symmetric risk 

measure but it is also time inconsistent, we discuss this property in section 5.2., see Geman and 

Ohana (2008) for a proof.  In referring to the literature, when including random product prices into 

an optimisation model, it is done in one of three ways: 

  

    • Mean values replace the stochastic variables  

    • Continuous distributions are utilised  

    • Scenario generation (using discrete distributions)  

 

Other moments are replaced using the historical data but most literature in this area assumes a 

normal distribution.  The prices of refined products are made stochastic and the problem solved 

using scenario generation, type (3) above.  However, the refinery model is required over N time 

periods, and therefore a stochastic differential equation (SDE) is more realistic, enabling a dynamic 

probability distribution to be modelled.  In section four we discuss why we use SDEs, and describe 
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the spot price process used to capture uncertainty in the commodity prices.  In the following section 

we introduce the valuation methodology in a simplified setting. 

 

3.3.3. Stochastic commodity behaviour 

 

A model should be robust, in that the parameters should not move erratically from one day to the 

next, leading to a complete change in the refinery portfolio value.  We make a distinction between: 

(a) the probability that the price of oil, S(T), in for example, July 2014 goes over $120.  This 

number represents the probability, p, of that event, ω, under the real measure denoted as, P, and (b) 

the price market practitioners are willing to pay today to receive $1 if the market price of oil at date 

T=1, July 2014, if the market price does go over $120.  We refer to this number as the probability of 

the event, ω, under the pricing measure denoted as,ℚ .  This is clear if one considers for example, a 

market player considering now whether to purchase for, July 2014 a virtual oil refinery, getting the 

refined products without owning or running the complex; the player is interested in the probability 

of the same event under the pricing measure,ℚ ; this number includes the risk aversion component 

as well as human judgement about how much the market is willing to pay to secure refined products 

for July 2014.       

         Crude and refined product prices are intertwined in a complex way, as seen in figure 3.14 

below, which shows daily spot prices for crude and the refined product futures prices quoted on 

NYMEX for the last decade.   
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(Figure 3.14: NYMEX future price data on refinery commodities) 

 

In this figure prices seem to revert towards a long term mean in the first half; after the financial 

recession in 2008, this mean seems to exist again but at a higher level.  This mean reversion is often 

evidenced in the literature (see, for instance, Geman and Nguyen, (2003), for the case of 

agricultural commodities; and Pindyck (2000), for energy commodities).  Specifically, these 

commodity prices fluctuate with a daily volatility of over 3.5% on average, which is high; yet, it is 

clear that they are not emanating a random walk as present in stock prices evolution.  Furthermore, 

there is no clear seasonality here as shown in natural gas prices for example; evidence from simple 

tests shows that there are strong and weak months of the year for crude and gasoline for example, 

but high year-to-year volatility by month inhibits exploitation.  Any acceptable commodity-linked 

valuation model must (a) account for mean reversion and (b) value the optionality given the volume 

and other refinery constraints.  An additional feature that is often evidenced is the fact that the 

returns series exhibit tails that are fatter than those of a normal distribution; this easily seen by 

obtaining a QQ-plot of the level or log returns.  If attempting to model the fat tails, one can consider 
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jumps within the stochastic process or use GARCH modelling introduced by Bollerslev (1986).  

Our strategy is to develop a one factor tree model, since the one factor here has constant volatility it 

does not replicate some movements of the futures curve, this is not perfect, however since the state 

space is colossal; this one factor approach is more tractable.  This will sidestep the dynamic 

volatility structure considerations; yet, one factor tree structures still capture optionality.  Valuing 

contingent claims using multifactor models indicates that the more complexity the less likely an 

analytical solution exists.  In the next section, we examine a continuous time price model of spot 

and forward prices.  The chosen process is then extended into a discrete time model to be used in a 

pricing tree.   

 

3.3.3.1. The Ornstein Uhlenbeck process 

 

To model the commodity spot price we require a continuous time stochastic formula that exhibits 

mean reverting behaviour, for example:   

 

S(t + dt) = S(t) + a(b – S(t))dt + σdWt               (3.3.1) 

 

Which, at date t, is an affine function of dWt; this is also known as the Ornstein Uhlenbeck process, 

where the: a, b and σ are positive constants, for a thorough explanation see Vasicek (1995). 

 

Where: 

 

b : the long term mean level – all future trajectories will evolve around a mean in the long run 

a : the speed of mean reversion – it characterises the velocity at which such trajectories will regroup 

around b in time. 

σ : instantaneous volatility – measuring instant by instant the amplitude of randomness entering the 
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system. 

The nice feature here is that the model can represent upward-sloping, downward-sloping or slightly 

humped shapes of the future price term structure.  Hence, S(t+dt), is like dWt, normally distributed, 

but it may take negative values, which is obviously an undesirable feature for commodity prices.  

The above is a one factor equilibrium model; a no-arbitrage model would fit the initial term 

structure.  Gibson and Schwartz (1990) describe a two factor stochastic model where the spot price 

of the commodity and the instantaneous convenience yield are assumed to follow a joint stochastic 

process; with Brownian motions under the objective measure and correlated in time.  This not only 

enables parallel but also twisting movements of the forward curve to be captured.  This is more 

realistic, and as applied and discussed in the case of crude oil, gold and copper by Schwartz (1997), 

two factor models exhibit much difference in the long term over one factor models, when used for 

pricing contingent claims or the valuation of real assets; they are also more accurate in depicting the 

term structure of the future prices.  A single factor model has very different implications about the 

volatility of future price returns as the maturity of the contracts increase, and is incapable of 

describing the volatility of the futures data.  This has important knock-on effects for valuation when 

the models are applied for longer term real assets.  The author’s analysis includes stochastic interest 

rates on futures price data, calibrated with the Kalman filter; despite the improvements over a single 

factor model, for shorter maturity contracts the difference is minimal, considering we require a 

valuation, the extra complication associated with the additional stochastic convenience yield was 

considered adverse to our objective; a two factor model is introduced in chapter four as an 

enhancement to the valuation method used here.  In the next section we discuss the relevant 

properties of the stochastic one factor model.   

 

3.3.3.2. The Samuelson effect, mean reversion and positivity 

 

Futures prices can be used as a proxy for spot prices, however, they can be unavailable for various 
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reasons - please note where we construct a continuous future time series we apply the standard 

Panama approach to manage rolling effects47.  The Schwartz (1997) model is a popular framework 

for energy commodity futures prices that resembles the geometric Brownian motion (GBM), whilst 

introducing mean-reversion to a long-term value θ, and ensuring positivity by using a logarithm 

function on the spot price.  Due to commodity prices neither growing nor declining on average over 

time; they tend to mean-revert to a level which may be viewed as the marginal cost of production.  

Unfortunately, it is non-trivial to define the price of petroleum commodities exhibiting mean 

reversion or showing non-stationarity, see Geman (2000) for a discussion.  Many tests exists, none 

of which dominate to conclude that mean reversion is representative.  Newman and Yin (1996) 

improve upon stationarity tests supporting stationarity and auto regression using monthly data on 

oil.  Based on these analyses we define the commodity process as: 

 

d(InSt) = a[θ - lnSt]dt + σdWt                (3.3.2) 

 

Where St is the asset price process, t is time, and Wt, a standard Brownian motion; a, is the force of 

mean reversion, θ the long-run equilibrium level  - the above model prevents negative values of the 

commodity price.  The above is a one factor stochastic differential equation: in terms of dynamics, 

the level moves are captured.  A higher number factor model would allow the volatility or 

convenience yield to be captured and ensue in more accurate dynamics; however this would also 

increase the complexity of building a valuation from a discrete tree to represent the correlated 

commodity series.  Changing variables we have: 

  

 Zt = In St          (3.3.3) 

 

Applying Ito's lemma leads to: 

                                                 
47

 https://www.quantstart.com/articles/Continuous-Futures-Contracts-for-Backtesting-Purposes 
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Now introduce the variable 
at

t tX e Z=  and use Ito's lemma again to obtain: 
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Integrating this equation between dates t and T (where T > t) provides: 
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At date t, X(t) is observed and X(T) is an affine function of the normal variable W(T-t).   

Hence: 
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And the law of ( ) ( )aTZ T e X T−=  is immediately derived as a normal variable with an adjustment of 

the mean and variance parameters of X (T): 
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            (3.3.9) 

 

Forward prices, F(t,T) = E[S(T)|Ft], if we assume that the rational expectations hypothesis holds or 

that computations were, conducted under the pricing measure ℚ :   

 

F(t,T) = exp{e-a(T-t)InSt + (1-e-a(T-t))( θ -σ2/2a) + σ2/4a(1- e2a(T-t))}   (3.3.10) 

 

The above equation is key in the building the forward curve in the numerical approach introduced 

later in the chapter.  It is clear that as T goes to infinity only the second term in (3.3.10) remains: 
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         (3.3.11) 

 

Differentiation provides the volatility of F(t,T): 
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Here we state the mean and variance of the above continuous process at date 0: 
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This is a single factor model, which can still introduce different volatilities as contracts mature at 

different dates.  We use equations (3.3.13) and (3.3.14) extensively in our calibration procedure in 
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section 4.5.  Furthermore, equation (3.3.11) suggests that forward contract volatility decreases for 

longer maturity contracts, which is in agreement with the Samuelson effect - where he argues that 

futures should exhibit increased volatility as they approach maturity but at any point in time 

volatility should decline with time-to-maturity.  An issue with this model is that the volatility goes 

to zero for long times to maturity, a property which is clearly a limitation, since it is not observed in 

practice.  Introducing a second factor for stochastic volatility would better capture the properties of 

the forward curve; conversely, the state space would be increased by another dimension, enhancing 

the complexity of the optimisation problem, see Steiglitz (1998) for a discussion.  Forward curves 

under the one factor model will exhibit level shifts, but cannot capture twists or inversions as 

commonly found by researchers using principal components analysis; despite this, correlation 

between forward curves can still be portrayed.  A balance that was important to consider when 

implementing the model, was tractability.  The tree, upon which the optimisation was applied, was 

calibrated on seven correlated forward curves.  Using the equation above ensured all commodity 

prices were mean reverting, and log normal in distribution, whilst making calibration less strenuous; 

enabling the successful implementation of the optimisation calculation over many time periods.  In 

the next section we discuss the calibration of the above SDE.   

 

3.3.4. Two period - three dates, refinery optimisation  

 

We have shown in the previous section how to simulate correlated continuous commodity prices, 

and we now discuss how we use these prices in our refinery model.  If we use only the information 

available at date 0 to optimise the value over the entire lifetime of the refinery we have solved a 

static problem.  We would choose the amount of crude to refine at each date by using today’s 

scenario tree, an intrinsic value calculation; a dynamic optimisation requires that we rebuild our 

scenario set at each date until maturity, hence capturing extrinsic value.  We begin with a 
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description of the static problem and then describe the steps to ensure a dynamic set of decisions are 

made. 

To simplify ideas, we concentrate on just two refined products, where at each date i, the spot 

price of a commodity is, Sj,i , for instance, naphtha - S2,i, and kerosene – S3,i, are refined from raw 

crude oil - S1,i.  We are ultimately interested in a valuation and hence interested in pricing the 

refinery.  Therefore, we are in a risk neutral setting – at date 0 the crude price is known, whereas the 

refined product prices in one month’s time and on into the future, are not.  We can make this 

assumption despite using market data as we can assume that producers and consumers balance out 

the market premiums on either side of a transaction, see Parsons (2013) for details including a two-

factor calibrated tree; in other words for the sake of model building the risk-neutral and objective 

measures are assumed equal.  We firstly look at the decision process over two decision steps by 

constructing a simple recombining trinomial scenario tree - recombining is computationally simpler.  

This is not always used with trinomial trees but it greatly simplifies the complexity of the numerical 

scheme: it leads to a recombining tree, which has the number of nodes growing polynomially with 

the number of levels rather than exponentially.  Boyle (1986) originally constructed the trinomial 

over the binomial to enhance the speed and accuracy for pricing purposes; as shown in the authors 

description the probabilities are specified so as to ensure that the price of underlying evolves as a 

martingale, while the moments - considering node spacing and probabilities, are matched to those of 

the distribution of the process.  At date 0, we decide the optimal volumes of crude to refine, and 

products to sell forwards for date 1 – we use today’s, i, price of crude and the prompt month prices 

to sell forwards, i+1, for the refined products.  When we next move to date 1, i+1, the spot price of 

crude will again be known, but the product prices at date 2, i+2, will not, so we again sell forwards 

using the i+2 prices.  Upon reaching the end of the horizon, date 2, we no longer decide to refine, 

but sell all remaining products on the spot market – the prices will be known.  In summary, our 

refining profit at each date where random prices are denoted by, ,j iSɶ , known commodity prices as, 
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,j iS , and decision variables by, Xj,i,z, - the volume of product, j, to buy or sell at date, i, decided on 

date, z, is: 

 

,0

3,2 3,2,1 ,2,1 ,

3,1 3,

1,1

3,2 3,2

1,0 2,

,2

1 2,1,0 1,0 1,0

2,2 2 1,1 1

2,2 2,2,2

 0 :     

 1:     

 2 :   

 

 

Date S X S X S X

Date S X S X S X

Date S X S X

+ −

−+

+

ɶ ɶ

ɶ ɶ
      (3.3.15) 

 

Previously, we created a continuous-time model of spot and forward petroleum prices that exhibited 

realistic properties.  This section describes the discrete-time version of that model for a simplified 

case of only three stochastic variables to be used in a pricing tree for valuing the refinery and the 

component optionality.  The simplified discrete-time price model is as follows: 

 

3.3.4.1. Discrete process for crude oil 

 

2
, 1,

1
( ) ( ) (1 )( )

2
a t a t

t t t t t tIn S e In S e Bθ α− ∆ − ∆
+∆ ∆ ∆= + − − + ɶ       (3.3.16) 

 

3.3.4.2. Discrete process for naphtha 

 

2 2 2
2, 2, 2 , 2,

1
( ) ( ) (1 )( )

2
a t a t

t t t t t tIn S e In S e Bθ β− ∆ − ∆
+∆ ∆ ∆= + − − + ɶ     (3.3.17) 
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3.3.4.3. Discrete process for kerosene 

 

3 3 2
3, 3, 3 , 3,

1
( ) ( ) (1 )( )

2
a t a t

t t t t t tIn S e In S e Bθ γ− ∆ − ∆
+∆ ∆ ∆= + − − + ɶ     (3.3.18) 

 

Where: 

 

 ∆t = the time step in years, 
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3

(1 )
,

2

a t

t t S t

e

a
γ σ

− ∆

∆

−
=         (3.3.21) 

 

2
1, (0, ),t tB N α∆ ∆
ɶ ∼           (3.3.22) 

 

2
2, (0, ),t tB N β∆ ∆
ɶ ∼          (3.3.23) 

 

2
3, (0, ),t tB N γ∆ ∆
ɶ ∼          (3.3.24) 

 

1, 2, 3,t t tB B B∆ ∆ ∆⊥ ⊥ɶ ɶ ɶ  .         (3.3.25) 
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The above discretisation of the continuous process is achieved by ensuring that the correlation 

property is correctly represented.  The independent Brownian motions are obtained by a Cholesky 

decomposition of the correlated Brownian motions; explained in section four, see Geman (2005) 

chapter 12 for a thorough description.  In the next section we describe how the probabilities on the 

tree are obtained to construct a consistent pricing tree. 

 

3.3.5. Transitional Probabilities 

 

Formally we let: 

 
(t, i, j, k) = a quadruple of indexes in the tree spanning time, spot price level of crude and 

spot price level of two refined products, 

 

St, i = the crude spot price associated with being at spot price level index i for node (t, i, j, k), 

 

St, j = the naphtha spot price associated with being at spot price level index j for node (t, i, j, 

k), 

 

St, k = the kerosene spot price associated with being at spot price level index k for node (t, i, 

j, k), 

 

i’ε  { the set of indexes for the three successor crude spot price levels emanating from node 

(t, i, j, k) }, 

 

j’ ε { the set of indexes for the three successor naphtha spot price levels emanating from 

node (t, i, j, k) }, 

 

k’ε { the set of indexes for the three successor kerosene spot price levels emanating from 

node (t, i, j, k) }, 

 

p(St+∆t,i’| t, i, j, k) = the transition probability to crude spot price level St+∆t,i’ conditional on 

being at node (t, i, j, k) 

 

p(S2,t+∆t,j’| t, i, j, k) = the transition probability to naphtha spot price level S2,t+∆t,j’ 

conditional on being at node (t, i, j, k) 

 

p(S3,t+∆t,k’| t, i, j, k) = the transition probability to kerosene spot price level S3,t+∆t,k’ 

conditional on being at node (t, i, j, k) 
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When transitioning to successor nodes whilst developing the tree, the transition probabilities are 

solved, and must satisfy the following for the crude and refined product prices, we therefore have 

three sets of conditions, (in this simplification we have four dimensions i, j, k and t, but in the full 

model we will need eight dimensions, one for time and the rest for the stochastic petroleum product 

prices): 

 

3.3.5.1. Crude price probability conditions 
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=
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'
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3.3.5.2. Naphtha price probability conditions 
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3.3.5.3. Kerosene price probability conditions 
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1.0 ( | , , , ),t t k

k

p S t i j k+∆
∀
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Following Hull & White (1997) and using the probability condition equations as shown above it is 

trivial to build a consistent scenario tree.  The author’s provide the probability equations for 

transition to an up, middle or down node in a risk neutral setting – in section four we build the tree 

consistent with all seven refined products. 

The figure below depicts the simplified price processes for two stochastic variables moving 

to nine successor nodes from date 0; at node, (t, i, j), in this case three dimensions.  If there are three 

stochastic processes as shown above then for node (t, i, j, k) there are, 27 successor nodes, therefore 

in the complete refinery model we will have 3^7 successor nodes, as there are seven refined 

products, this gives 2,187 successor nodes – rendering a valuation computationally intractable, 

based on standard solving times on trees as stated in Hull & White (1997); hence we introduce an 

appropriate approximation in section five. 
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(Figure 3.15 Node transitioning on the trinomial tree) 

 

Implementing a relevant approximation, with a constant interest rate, r, and, a change in the time 

increment, ∆t equal to 1/12, as it takes one month to refine the crude, we can solve the above 

optimisation problem using standard non-linear program solvers.  We now define the steps required 

for a dynamic solution to the above problem. 

 

3.3.6. Steps for a two period dynamic optimisation  
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• At time 0, build an event tree with three decision steps and three sequential branchings 

representing the possible evolution of the forward curve at times 1 and 2. (See figure 3.15 

above) 

 

• Optimise the criterion (maximise the profit over the scenario tree) and implement the date 0 

optimal decision.  The profit has to be calculated over all possible paths through the tree 

from root to leaf. 

 

• At time 1, build an event tree whose first node is information of date 1; this tree has two 

decision steps and represents the possible evolution of the forward curve over one time 

period to date 2. 

 

• Optimise the criterion at date 1 and implement the date 1 optimal decision. 

 

• Continue until date 2; here at maturity sell the remaining products on the spot market. 

 

The above procedure is carried out 1,000 times to obtain robust optimal decision values, further, 

these steps can be applied to an infinite period problem.   

In section five we will add three components to the above set up: (i) we will increase the 

number of periods from two to 72, (ii) we will increase from three state variables to seven, and 

finally (iii) we will apply an approximation to the model to ensure a valuation is obtainable on a 

standard quad core machine.  In the following section we consider the optimisation problem along 

the nodes of the pricing tree. 

 



160   

3.3.7. Refinery valuation using the backward recursion methodology 

 

In this section we discuss the backward recursion used to value the complicated embedded 

optionality in a refinery complex. 

 Considering optimal trading and price-taking actions at each node on the pricing tree, we 

begin at the terminal nodes.  We proceed by initially calculating two values for each node whilst 

adhering to the specific refinery mass balance and capacity constraints already defined: 

 

• The value of immediately trading a volume of crude oil at that node’s spot price, ensuring 

that the volume choice is within the mass balance and capacity constraints present at that 

particular node 

• The continuation value of holding the new crude oil inventory going into the following 

period 

 

The optimal spot trade for each node is the one that maximises the sum of these two values.  The 

preceding discussion implies that the optimal values at each node must be calculated for the seven 

sets of possible inventories held and spot volumes traded, which are continuous.   

 We now state this optimisation mathematically.  Let each node in our one-factor tree be 

denoted by a octuplet of indexes spanning time, a spot price level of crude and a spot price level of 

all refined products as previously introduced.  We use the following notation: 

 

 L = the set of hydrocarbon liquid inventory levels, 

 

 Ql = the permissible set of trades at the given inventory level l, 
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qj = a set of spot trade volumes that is positive for buys and negative for sales aggregated for all 

products, 

 rt = the risk-free rate over time, (for simplicity assumed constant) 

 

The optimal value at node (t, i, j, k, l, m, n, o) and inventory, l, is: 

  

( , , , , , , , )

( )
( , , , , , , , ) ( , ', ', ', ', ', ', ')( ) max[ ( ) ( ( ) | , , , , , , , )]t t

t i j k l m n o
l

r tspot

t i j k l m n o t t i j k l m n o
q Q

V l V q e E V l q t i j k l m n o+∆− ∆
+∆∈

= + +   (3.3.29) 

 

Where: 

( , , , , , , , ) ( )t i j k l m n oV l =  the optimal value at node (t, i, j, k, l, m, n, o) with current inventory l � L, 

7

( , , , , , , , ) , 1 ,1
2

( )spot

t i j k l m n o rp t rp t

rp

V q q F q S
=

= −∑  ,          ignoring transaction costs  

 

 

The dynamic program above ensures that the refinery owner weighs different actions against one 

another with the aim of maximising the direct payoff plus expected future payoffs.  On average, an 

action with a high direct payoff (selling all the gasoline) has a lower expected future payoff (lower 

inventory of gasoline for the next period).  The refinery owner needs to make a decision whilst 

considering the continuation values; see Boogert and De Jong (2006) for an example.  In terms of 

solving, the recursion starts at the terminal period nodes, where all values in the expectation term 

above are zero; thus, the optimised value for each inventory that is possible at each of these final 

nodes is the value of selling as much of the refined products and left over crude oil inventory as is 

possible.  To complete the refinery valuation, we have to calculate the above equation recursively, 

going backward through each node in the tree, until the initial period is reached.  The value of our 

refinery is the value corresponding to the current inventory level in the initial period.  This exact 
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same recursion is described in the Clewlow-Strickland (1999) - a one-factor natural gas storage 

model, and is here present in the form of a model of seven oil products within a whole valuation 

model reliant upon a different set of restrictions - the authors also have a much smaller state space 

to manage and avoid the computational implementation discussion.  Additionally, this approach is 

an extension of the recursion for a similar but less complex set of contracts, named swing options, 

used in Jaillet et al (2004) - again the authors do not discuss the difficult implementation when the 

state space is large.  In the next section we investigate how the price series data is used to obtain a 

valuation. 

 

3.4. A CONTINUOUS TIME MODEL OF COMMODITY SPOT 

PRICE PROCESS EVOLUTION 

 

3.4.0.1. The calibration of the spot price process 

 

Heretofore, we have not detailed the choice of the price model with respect to any measure context, 

objective or risk-adjusted, and the spot and forward prices must be related in this model for 

calibration purposes.  In the risk-neutral world forward prices are expected spot prices.  For crude 

oil and the refined products, storable commodities, in which the standard no-arbitrage arguments do 

not apply, we assume such behaviour exists in the real world as well.  If there were a premium in 

forward prices over spot prices, it should be miniscule; since, consumers and producers are 

influenced by the contango or backwardation in the market.  In backwardation, producers are selling 

refined products at high prices and consumers are willing to pay the premium due to the scarcity of 

the commodity.  In contango, the discount benefits the consumer and the producer is willing to sell 

at the reduced price.  Since both groups are well-dispersed and highly competitive there is no 
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bargaining power over the other in the long run; under risk aversion and large refining frictions, if 

forward prices are martingales in the real world, then the real and risk-neutral world coincide.  This 

makes real world historical data for parameter estimation extremely conducive to calibrating the 

model.  In the next section we discuss how the correlation information was implemented on the 

scenario tree. 

 

3.4.1. Generating correlated commodity forward price series 

 

It is well known that the flexibility value of an option to exchange one asset for another is zero if 

the two asset prices are perfectly correlated, see Margrabe (1978).  Despite the fact that the refined 

petroleum products are highly correlated it is not perfect.  With the chosen continuous time price 

model of spot prices, we have a single factor mean reverting equation for each commodity: 

 

Gasoline: 2 2 2 2 2 2( ) [ ]t t td InS a InS dt dWθ σ= − +        (3.4.1) 

Naphtha: 3 3 3 3 3 3( ) [ ]t t td InS a InS dt dWθ σ= − +        (3.4.2) 

Fuel oil: 4 4 4 4 4 4( ) [ ]t t td InS a InS dt dWθ σ= − +        (3.4.3) 

Heating Oil: 5 5 5 5 5 5( ) [ ]t t td InS a InS dt dWθ σ= − +        (3.4.4) 

Jet Fuel: 6 6 6 6 6 6( ) [ ]t t td InS a InS dt dWθ σ= − +        (3.4.5) 

Cracker Feed: 7 7 7 7 7 7( ) [ ]t t td InS a InS dt dWθ σ= − +        (3.4.6) 

 

Suppose as above, that a commodity, i, has a particular spot price, Si, and spot dynamics described 

by the following: 

 

( ) [ ]it i i it i itd InS a InS dt dWθ σ= − +         (3.4.7) 
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Also, Fi, is the forward price of the ith asset, i = 2…,7, and ai and σi are the speed of mean reversion 

and volatility of that asset respectively and dWi is the increment in Brownian motion.  We can also 

think of dWi as a random number drawn from a Normal distribution with mean zero and standard 

deviation dt1/2 so that: 

 

  E(dWi) = 0 and  E(dWi
2) = dt       (3.4.8) 

 

And the random numbers dWi and dWj are correlated according to: 

 

  E[dWidWj] = ρijdt,         (3.4.9) 

 

We use for example, dW1dW2 = ρ12dt, and dW2dW3 = ρ23dt, and so on until the seventh commodity.   

An interesting extension here would be to carry out the entire valuation with a comparison of 

alternative underlying stochastic processes.  Here we have used a version of the one factor model of 

Schwartz (1997) to represent price uncertainty, but how would the valuation results differ in terms 

of robustness, if this process were to be changed to a GBM or a multivariate normal or even an 

affine stochastic set of equations? 

 Continuing, we state, ρij, as the correlation coefficient between the ith and jth random walks.  

The symmetric matrix with ρij as the entry in the ith row and jth column is named the correlation 

matrix.  For example, here we have n = 7 and the correlation matrix is as follows: 

 

 

12 13 14 15 16 17

21 23 24 25 26 27 

31 32 34 53 36 37

41 42 43 45 46 47

51

1                              

    1                        

        1                  

 D =             1            

    

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ 52 53 54 56 57

61 62 63 64 65 67

71 72 73 74 75 76

             1         

                    1         

                       1     

ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

 
 
 
 
 
 
 
 
 
 
 

              (3.4.10) 
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Using NYMEX data the correlation matrix is calculated, but is not positive definite.  The matrix is 

made positive symmetric definite using an approximation to ensure that, yTDy ≥ 0.  This is 

described in the following section. 

 

3.4.1.1. Approximation for generating a symmetric positive definite matrix 

 

We use the correlation structure inherent in the prices to construct the seven dimensional trinomial 

tree.  However, the historical correlation matrix shown below was not in a form that could be used 

to build the scenario tree. 

 

A covariance matrix in the following form was derived: 

 

2
1 12 1 2 13 1 3 14 1 4 15 1 5 16 1 6 17 1 7

2
21 2 1 2 23 2 3 24 2 4 25 2 26 2 6 27 2 7

2
31 3 1 32 3 2 3
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                  ( )           
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   (3.4.11)   

 

      Table 3.1 below, shows the correlations of the futures front month prices using historical 

data from NYMEX; these are proxies for the spot price.  The log returns of the prices are used 

between two consecutive days to calculate the correlation; these are found using the Pearson 

moment correlation coefficient.  To generate the correlated forward prices tree, an approximation is 

applied to the correlations; the below matrix is not positive definite.  The standardised t-statistic is: t 

= (r - ρ)/(√(1-r2)/(n-2)), where r is the correlation coefficient, sample size n, and ρ is the true 
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correlation coefficient, with a null hypothesis that this is zero.  All t-stats are between 3 and 10 

showing significance at the 5% level.  

(Table 3.1: Correlations of commodity price return series – 10 years of futures prices 
NYMEX) 

 

  
 WTI   

Gasoline  

 

Naphtha  

 Jet 

Fuel  

 Heating 

Oil  

 Fuel 

Oil  

 Cracker 

Feed  
 WTI  1             

 Gasoline  0.6862 1           
 Naphtha  1 0.7862 1         
 Jet Fuel  0.767 0.885 0.767 1       

 Heating Oil  0.8723 0.885 0.8723 0.843 1     
 Fuel Oil  0.837 0.843 0.834 0.984 0.8901 1   
 Cracker 

Feed  1 0.8862 1 0.827 0.8723 0.837 1 

 

 

Generating the set of correlated trinomial trees is done by following Iman and Conover (1982).  The 

authors describe a method for inducing a desired rank correlation matrix on a set of multivariate 

random variables for use in a simulation study such as the one present for the refinery.  The method 

is simple to apply and is distribution free, and preserves the marginal distribution of the stochastic 

commodity variables.  The authors apply their method to study the geologic disposal of radioactive 

waste.  Without re-describing the author's construction the main idea is the following: suppose that 

a random row vector X has a correlation matrix I.  The elements of X are uncorrelated.  Let C be the 

desired correlation matrix of some transformation of X.  Due to C being positive definite and 

symmetric, C may be written as C =PP' where P is a lower triangular matrix (Scheuer and Stoller, 

1962).  Then the transformed vector XP' has the desired correlation matrix C.  This is the theoretical 

foundation for the trinomial tree simulation.   

 We apply a method to convert the above matrix into the following, which is positive 

symmetric definite; enabling the scenario tree to be constructed - including correlation information.  

This is done using an algorithm that minimises the root mean squared error between the current 
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matrix and the nearest positive definite matrix obtained by increasing and decreasing the correlation 

values by a very small amount; a matrix is found that is the nearest positive definite one available.  

The matrix used in the valuation is shown below: 

 

(Table 3.2: Correlations of commodity price return series – positive definite) 

 

  
 WTI   

Gasoline  

 

Naphtha  

 Jet 

Fuel  

 Heating 

Oil  

 Fuel 

Oil  

 Cracker 

Feed  
 WTI  1.0000             

 Gasoline  0.6932 1.0000           
 Naphtha  1.0000 0.8932 1.0000         
 Jet Fuel  0.7520 0.8593 0.7520 1.0000       

 Heating Oil  0.8570 0.8587 0.8570 0.7989 1.0000     
 Fuel Oil  0.8471 0.8604 0.8471 0.7671 0.8524 1.0000   
 Cracker 

Feed 1.0000 0.8932 1.0000 0.8520 0.8570 0.8471 1 

 

 

For an in depth description of this algorithm, see Higham (2002).  We next describe the framework 

and motivations behind the process of discretising a particular stochastic model onto a trinomial 

tree. 

 We first diagonalise the above covariance matrix above and write it as: 

 

 

1

2

7

      0...cos      -sin ... cos      -sin ...

0        ...sin        cos ... sin        cos ...

                                   

                           

λθ θ θ θ
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Where: 
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We can now write our vector of Brownian motions as: 

 

 

1 1 2 21 1
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⋮ ⋮       (3.4.15) 

 

This is the basis for simulating the correlated commodity processes; where the (B1,…,Bn) is a 

seven-dimensional standard Brownian motion.  The discretisation of the diffusion is then equivalent 

to the discretisation of seven independent standard Brownian motions.  Let X1,…,X7 be seven 

independent and identically distributed random variables taking three values (-h, 0, h) with 

probabilities (pu, pm, pd) respectively.  The idea is to use (X1,…,X7) to approximate the increments 

(B1(t+dt) - B1(t),…, B7(t+dt) - B7(t)).  Due to the independence of (X1,…,X7) the probabilities of 

getting to each one of the 21 new nodes follow.  From here, the discretisation of the price process is 

completed in the same manner as in a one dimensional tree.  We simulate the diffusion up to the 

terminal date and we optimise for the refinery owner at this point.  By backward induction we 

compute the price at the root of the tree and also optimise to find the value of the refinery and the 

optimal decision variables. 
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3.4.2. The discrete-time spot price process 

 

Often closed-form mathematical solutions are unavailable when a contingent claim or valuation is 

subject to several sources of uncertainty – this is when discrete dynamic programming can provide 

the solution.  Using stochastic variables that take on finitely many variables enables us to avoid 

measure theory.  Lattices are too complex when dealing with multiple uncertainties, path-

dependence or complex options, see Clewlow and Strickland (1998) for examples.  These problems 

can be managed more effectively with scenario trees than lattices.  Another example by authors 

pricing real options using trees, but with off the shelf software, is Brandao and Dyer (2005); the 

authors instead use a binomial tree with risk neutral probabilities to price a project using NPV and 

they apply a set of GBM processes – they leave for further research the solutions using trinomial 

trees and due to the third party software do not analyse the structure of the implementation program 

which certainly renders our current problem intractable.  Tree data structures and industrial solvers 

liked IBM's CONOPT3 are not available in DPL, a specialist decision tree software package; 

restricting the range of problems that can be solved.  Another example would be the pricing of 

compound options, which can be modelled by adding an additional decision node to a binomial tree.  

If the primary uncertainty associated with an asset is thought to be mean reverting, as in the case of 

petroleum related product prices, then Hahn and Dyer (2008) show how a binomial tree may be 

used to approximate such mean-reverting models as the one factor Ornstein-Uhlenbeck process or 

the two-factor Schwartz and Smith (2000) process; see Schwartz and Smith (2000) for a detailed 

explanation of the calibration.  However, the extra degree of freedom provided by a trinomial tree is 

more realistic for mean reversion.  We build the tree as seven-dimensional with the dimensions 

spanning the spot and forward prices, and the time to maturity, with the trinomial branches for each 

dimension.  Thus, each node leads directly into 21 successor nodes.  The discretisation of the 

continuous process is described formally by use of the Arrow-Debreu prices (see Hull and White 

1996), where we assume that as ∆t → 0, we obtain δt.   
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          Figure 3.16 below, illustrates the above concepts utilised to construct the seven correlated 

prices onto the trinomial tree; this time increment had to be at least one month over six years, 

otherwise valuation would be impossible. 
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(Figure 3.16 Node transitioning on the trinomial tree with probability inputs) 
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3.4.2.1. Trinomial tree building procedure: Stage one 

 

This procedure exactly follows Hull and White (1996), the number of branches at each period is 

variable dependent upon the number of time slots but is a function of the commodity price; it is 

important to note that we alter the branching whenever the probabilities would otherwise be 

negative, this is implemented within the code.  If the simulated process becomes negative the 

branching is altered this is also true if the price becomes too large.  The stochastic process in 

equation (4.3) is discretised onto a trinomial tree formally shown in section 5.3.2.; we now discuss 

the general procedure.  The choice of the InSt as the underlying is more computationally efficient 

than using just St; it is also convenient to use a trinomial instead of a binomial tree as it provides an 

extra degree of freedom, incorporating mean reversion as a feature on the tree.  This framework is 

equivalent to using the explicit finite difference method, for a thorough description, see Munk 

(2011).  We use alternative branching based on the whether the forward price is high, average or 

low.  Alternative branching therefore also proves practical for incorporating mean reversion: 
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(a)                                 Average price branching    

 

 

 

 

(b)                              Lower price branching 

 

(c)                              Higher price branching   

 

 

(Figure 3.17: Branching for the stochastic process along the trinomial tree) 

 

We assume that, on the discretised tree, a function of St, f(St), can be represented by the stochastic 

process shown below: 

 

   df(St) = [θ – a f(St)]dt + σdWt                 (3.4.16) 

 

This originates from the form of the spot price process chosen for the commodities; where we have 

chosen the function f, to be a logarithm function.  Hence, we start by setting Zt = In(St), (see Ross 

(1995) for an alternative to the logarithm function), so that we now have: 

 

   dZt = [θ – aZt]dt + σdWt                  (3.4.17) 

 

The tree building process starts by constructing a tree for Z* where the process is symmetrical about 
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Z*=0.  We define: 

 

dZt = [θ – aZt]dt + σdWt and  dZt* = – aZt*dt + σdWt    (3.4.32) 

 

The first stage is to build a tree for Zt*, that follows the same process as, Zt, except that θt=0 and the 

initial value is zero. 

   

For convenience in stability and convergence, the spacing between spot prices on the tree, ∆S, is set 

as: 

 

   3S tσ∆ = ∆                       (3.4.18) 

 

See Hull & White (1996) for proof of uniqueness and convergence.  This choice for spacing also 

turns out to be good for error minimisation.  The branching method at each node is then applied.  

After the geometry is constructed the transition probabilities are calculated. 

 

Define (i,j) as the node where t=i ∆t and S*=j ∆S.  (The i variable is a positive integer representing 

a time increment and the j is a positive or negative integer representing a space increment).  The 

branching method used at each node must lead to positive probabilities.  We define jmax as the value 

of j where we switch from branching figure (a) to branching figure (c); and jmin as the value of j 

where we switch from branching figure (a) to branching figure (b).  Hull and White (1994) show 

that the probabilities are always positive if jmax is set equal to the smallest integer greater than 

0.184/(a ∆t) and jmin is set equal to - jmax.  We define pu, pm, and pd as the risk-neutral probabilities of 

the highest, middle and lowest branches emanating from the node.  The risk-neutral probabilities are 

chosen to match the expected mean and variance of the change in S* over the next time interval ∆t.  
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The mean change in S* in time ∆t is: –aS*∆t, and the variance change is, σ2∆t.  At node (i,j), S* = 

j∆S.  If the branching has the form in branching figure (a), the pu, pm, and pd must satisfy the 

following three equations to match the mean, the standard deviation and sum to one: 

 

 pu ∆S - pd ∆S = -a j ∆S ∆t           (3.4.19) 

 

 pu ∆S2 + pd ∆S2 = σ2 ∆t + a2 j2 ∆S2 ∆t2          (3.4.20) 

 

 pu + pm + pd = 1             (3.4.21) 

 

Applying, 3S tσ∆ = ∆  the solution to these is: 

 

2 2 21 1
( )

6 2up a j t aj t= + ∆ − ∆                         (3.4.22) 

2 2 22

3mp a j t= − ∆               (3.4.23) 

2 2 21 1
( )

6 2dp a j t aj t= + ∆ + ∆              (3.4.24) 

 

If the branching is as in figure (b), the solution becomes: 

 

2 2 21 1
( )

6 2up a j t aj t= + ∆ + ∆             (3.4.25) 

2 2 21
2

3mp a j t aj t= − − ∆ − ∆             (3.4.26) 

2 2 27 1
( 3 )

6 2dp a j t aj t= + ∆ + ∆                       (3.4.27) 
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If the branching is as in figure (c), the solution becomes: 

 

2 2 27 1
( 3 )

6 2up a j t aj t= + ∆ − ∆             (3.4.28) 

2 2 21
2

3mp a j t aj t= − − ∆ + ∆             (3.4.29) 

2 2 21 1
( )

6 2dp a j t aj t= + ∆ − ∆             (3.4.30) 

 

We now describe the next stage of the discretisation. 

 

 

3.4.2.2. Trinomial tree building procedure: Stage two 

 

The second stage is to consists of displacing the nodes in the simplified tree to add the proper drift 

and to be consistent with the observed forward prices.   

As shown in equation 3.3.10. the forward prices are described by the following equation: 

 

F(t,T) = exp{e-a(T-t)InSt + (1-e-a(T-t))( θ -σ2/2a) + σ2/4a(1- e2a(T-t))}   (3.3.10) 

 

With the calibrated parameters and the spot price at a point in time it is trivial to build the forward 

curve -  see figure A.3 for a comparison of calibration results of the forward curve on WTI oil in 

2014 using one and two factor models. 

 We can introduce the correct time varying drift by displacing the nodes at time i∆t by an 

amount a.  The a's are selected to ensure that the tree correctly returns the observed forward price 

curve.  The value of Z at node (i,j) in the new tree equals the value of Z* at the corresponding node 

in the original tree plus ai; the probabilities remain unchanged.  The vital part here is to use forward 
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induction and the state prices to ensure that the tree returns the current prices.   

 This is all accomplished by displacing the nodes on the S*-tree so we define: 

  γ(t) = S(t) – S*(t)             (3.4.31) 

 

It follows that: 

 

  dγt = [θ – aγ t]dt                        (3.4.32) 

 

The solution to this is: 

 

  γ (t) = F(0,t) + σ2/2a2(1-e-at)2           (3.4.33) 

 

The F(0,t) is the initial forward market curve; that can easily be fit with the Hull & White tree.  The 

γ(t)’s are calculated recursively and we define γi(t) as γ (i∆t), the value of S at time i ∆t on the S-tree 

minus the corresponding value of S* at time i ∆t on the S*-tree.  We define Si,j as the present value 

of a commodity if node (i,j) is reached and zero otherwise.  If the underlying stochastic process 

were to include two factors or include a time varying mean or volatility, this tree building procedure 

can be altered to accommodate these features - in chapter four we do just this.  This does  however, 

introduce non-stationarity into the stochastic model.  We now discuss the procedure for calibrating 

the model to market price data. 

 

 

3.4.3. Forward curves calibration procedure using Levenberg-Marquardt (1944) 

 

Often when calibrating parameters academics are using a likelihood function or the Kalman filter; 

here we introduce a more efficient calibration method designed during the second world war 
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(1944).  A convenient tool suited to dealing with markets where the state variables are 

unobservable, but are generated in a Markov manner, is known as the state space form.  

Reformulating the model into this form means the Kalman filter can be used to find the parameters 

that best estimate the model, hence the time series of the unobservable state variables.  Frequently, 

the spot price of a commodity is so volatile that a near futures contract is used as a proxy instead, 

see Harvey (1989) for a survey of state space form algorithms.  The problem with using the Kalman 

filter is that it assumes a linear dynamical system, and that measurements have a multivariate 

Gaussian distribution.  Although, there are applicable extensions that could be applied to this 

refinery model set-up; we chose an algorithm that is simplistic, static and required less 

computational effort.  

 For a description of an application in simulation using trees see Hoyland and Wallace, 

(2001).  The authors construct a three period tree using volatility clumping and mean reversion; 

however, the tree quickly becomes “over specified” when the number of periods is increased over 

three.  The calibration of the parameters goes hand in hand with the generation of the scenarios; 

hence, the Hull and White trinomial tree (1994) is utilised.  To calibrate the initial stochastic 

forward curve model to the tree, and therefore to the real world, we find the parameters a, θ and σ, 

using the Levenberg-Marquardt (LM) method fitting the first two moments of the Forward curve 

model to the NYMEX future prices data.  This algorithm optimises a least squares error and is 

effective even if an initial set of starting parameters are omitted.  It does however, only find a local 

and not a global minimum; see Levenberg (1944) for the foundations.  The mean and variance were 

equally weighted, and the parameters chosen to enable the model to fit the data with minimum error.  

In general, LM fitting significantly outperforms gradient descent and conjugate gradient methods 

when used on non linear least squares applications.  The formula below minimises a measure of 

distance between the mean and variance of the constructed model, defined in equations, (3.3.13) 

and (3.3.14), and the specified values from the historical future price data: 
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2^

, ,min ( ( , , , ) )a i i VALi

T i S

w f a T Sσ θ σ θ
∈

−∑ ∑       (3.4.34) 

 

Where fi(σ,a,θ) is the mathematical formula for the statistical property being minimised, here i=1 

for the mean, or i=2 for variance, T are the maturity of the future price contracts, σ is the volatility 

in the model, wi is the weight for statistical moment, SVALi is the specified value of the statistical 

property i of S, and a is the mean reversion speed in the forward curve model.  Once the “a”, “θ” 

and the “σ” are obtained from the stochastic process calibration, all the equations needed to create 

the trinomial tree can be calculated, equations (3.4.25 – 3.4.34).  In reality on NYMEX only the 

first five contracts are very liquid and so we use these within the least squares above.  The 

parameters are those that generate the lowest squared sum difference.  GAMS is used for parameter 

calibration and after 14 iterations it takes five minutes to converge, here the tolerance was 10e-4, at 

which point the results are obtained.  There is no guarantee here that the parameters are a unique 

and global solution; therefore we alter upper and lower bounds for the initial values and use 

different sets, the values are insensitive to these tests and so we conclude that the parameters are 

locally optimal.  The results of the above calibration for crude are shown in the following section 

and appendix A.4.; standard errors are in brackets: 
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3.4.3.1. Results of forward curves calibration 

 

One Factor Stochastic Model: Crude Oil 

Period : 1/2/2002 to 01/06/2013 

Contracts : F1, F3, F5, F7, F9 

NOBS : 120 

a1   : 0.561   (0.08) 

θ1   : 3.343   (0.346) 

σ1   : 0.2955 (0.03) 

RMSE1  :   0.9993 

 

(Table 3.3: The calibration results of the stochastic one factor model over ten years using 
crude future contract prices from NYMEX.) 

 

The forward contracts in the above table from months one to nine are utilised again in the next 

chapter for calibrating a two factor model.  We could have chosen a daily granularity as the data 

was available but one should model at the same detail as price estimations are required - due to the 

state space being ten years and decisions being made monthly we choose monthly contracts.  It is 

useful to note the term structure of the forward curve under the different models which is shown in 

appendix A 3.0. 

 An example fitted forward curve for the stochastic crude process is shown below: 
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(Figure 3.18: Crude oil model prices versus futures market prices, NYMEX) 

 

Crude oil is calibrated using historical data, and the correlated prices are generated for all the 

refined product prices; see the appendix for the results.  By taking into account the historical 

correlations, a multidimensional trinomial tree is constructed.  Firstly, all the SDEs are calibrated 

and discretised onto the scenario tree, next the decision set for commodity volumes is optimised 

over the entire horizon in one sequence; further, the entire process is repeated 1,000 times and 

finally, averages of the optimal values recorded.  For example, we show prices for four periods; spot 

and futures prices for petroleum products are given below for each node on the tree: 
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(Figure 3.19: Four period (months) trinomial tree of spot crude oil market prices.) *72 

periods were calculated in practice. 

 

The values for four months of all oil related products are shown in table 3.4:  

 

(Table 3.4: The prices of crude and refined products at each node in $ per barrel)  

 

NODE F1 F2 F3 F4 F5 F6 F7 
A  80 185 80 125 145 60 15 
B 117 296 117 200 232 96 24 
C 83 236 83 155 185 76 19 
D 58 176 58 114 138 57 14 
E 163 386 163 260 301 128 35 
F 115 322 115 222 253 106 28 
G 82 264 82 179 207 86 25 
H 57 201 57 138 161 68 23 
I 41 145 41 96 114 48 17 
J 160 411 160 278 324 135 13 
K 113 350 113 238 277 116 35 
L 80 291 80 197 230 95 30 
M 56 231 56 157 183 78 24 
N 40 170 40 116 136 55 19 
O 158 475 158 319 269 152 15 
P 112 395 112 265 304 127 40 
Q 79 330 79 223 259 107 33 
R 56 269 56 183 211 88 26 
S 40 211 40 142 168 69 22 

 

Table 3.5 below is constructed using the equations (3.4.25) to (3.4.34) to show the calculated 
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probabilities of the forward curve dynamics over two years; in the final results up to at least six 

years are required.  It is important to note that in the C program used to carry out the real option 

valuation, all $/barrel values were converted to $/ton as the rest of the program is defined in these 

units, and as carried out by refinery practitioners. 

 In practise we simulate the spot and forward prices up to 72 months forwards.  We calculate 

optimal decisions at each node, along each path by using specialist software package, GAMS. 

 

3.4.3.2. Delta of the oil refinery 

 

One factor stochastic models are applied on trading desks, giving realistic pricing features; 

however, when considering the hedging of an option or a real asset there are serious issues.  In 

practice, pricing can be carried out with a one factor model but hedging requires multifactor models 

– this is also known as outside model hedging.  For example, calculating how sensitive the value of 

the refinery is to a movement in the set of prices, a type of multidimensional delta, should allow for 

many movements in the term structure.  This is however outside the scope of our work and we leave 

it for further research - a Monte Carlo simulation can be investigated for this purpose.  In the next 

section we discuss how to solve the Bellman equation on the discretised trinomial tree along with a 

relevant approximation. 
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(Table 3.5: Transition trinomial probabilities for 2 years is shown below; going from a starting node 

to the next node, with probability up, pu, probability middle pm, and probability down pd.) 
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3.5. NUMERICAL PROCEDURE FOR THE VALUATION 

 

Our model is related to the literature on the valuation of commodity and energy real options, for 

instance, see a natural gas storage valuation in Thompson et al (2002).  Often the valuations are 

based on low-dimensional representations of the evolution of the spot price.  In contrast, we create a 

discrete-time stochastic dynamic programming model, using a high-dimensional representation of 

the evolution of the underling spot prices.  Jaillet et al. value natural gas storage as an extended 

swing option.  The author’s method implements a low-dimensional model of the gas spot price 

evolution, and restricts the policy space.  Our model uses a high-dimensional approach of the spot 

prices processes, and does not apply constraints on trading decisions.  Haugh and Kogan generalise 

the work of pricing American options.  The refinery is much more difficult than this valuation 

because it features an inventory of hydrocarbon liquid that is absent in American option valuation.  

Secomandi et al. (2008) compare optimal and heuristic approaches for natural gas storage valuation.  

The authors apply a re-optimised deterministic model, restricting the spot price evolution to a one-

factor mean-reverting spot price model, which we have also applied but on seven state variables 

rather than one. 

The quantity of interest in this model is the value of a given oil refinery portfolio at the time 

of inception.  This value depends on how the petroleum product prices change over time as a 

refinery owner acts dependent on these changes as follows: buying crude and refining it at a given 

point in time, storing and doing nothing if prices are unfavourable, selling refined products at a later 

point in time.  Such a portfolio can be valued as the discounted risk-neutral expected value of the 

cash flows from optimally operating the refinery during its tenure, whilst respecting its operational 

constraints. 

The optimisation and valuation take place under the volumetric risk: the volumes of crude 



186   

and refined products; these are related to the exogenous non-traded variables such as weather and 

price risk.  Decision theory has paid attention to the problem of dynamic choice under uncertainty.  

The notation applied to the refinery optimisation problem is given below: 

 

i – time period 

 

qij – volume of oil product, j, purchased or sold (decision variables) at period i 

 

ξi -  a vector of spot and forward prices of the petroleum products 

 

f(qij, ξi) – a function relating the dependent variables to the cash flow 

 

G = (Gi)i=1,…..,T – sequence of the discrete time cash flows, 

 

(θi)i=1,…..,T – decisions are occurring at these times 

 

ω ε Ω – states of nature 

 

Vi(G, ω) – the value measure (represents the value of the sequence of cash flows) 

 

NB: Cumulative cash flows, as considered in the coherent risk measure literature, can be viewed as 

value processes.   

 

In this framework, the date θi value is assessed recursively by aggregation of the current cash flow, 

Gi, and the discounted value measure, Vi+1, seen from date θi.  It is important to state that here, Vi, is 

a iθℑ adapted process. 
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Where q1,…,T are the decision variables, ξi the vector of random prices, f(qij, ξi) is a function 

relating the dependent variables to the cash flows, i is the time period, Q is a set of feasible 

volumetric decisions ensuring non-negativity and capacity constraints, it also captures the state 

across periods.   

A set of production decisions at each date θi will result from the optimisation of the chosen 

value measure.  This optimisation not only yields the first set of decisions, q10,….q70 at date θ0, but a 

whole set of decision planning for all subsequent dates up until date θT.   

 Consider the cash flow sequence on these dates depending on decisions and a multi-

dimensional process: 1( ) : : ( , )ji i T i ji ijG f qξ ξ≤ ≤ = , here ξij is a vector of spot prices for the oil 

products, qij, is the set of all production variables, and f is a reasonably behaved function relating 

these two variables to the cash flow at each date i. 

            The state is xi, on which decisions depend at time θi.  It is supposed that, after a set of 

decisions, qij, is made at time θi, the state xi, leads to another state: 1 1( , , )i i i j ix h x q+ += ∈ , where h is a 

deterministic function, and ε is a normally distributed random variable.  We define the optimisation 

problem related to a dynamic value measure, Vi, at each time period i as: 

 

( ) ( )
( ) ( )

k k t i

i i i i
q x

J x Max V G
≥ ∈Α

=                             (3.5.1) 

 

Here, Ji, is the optimal value of maximising the value function, Vi, dependent on cash flows Gi, the, 

A(xi) are the set of admissible strategies; the set of qs are calculated to maximise the, Ji(xi) over the 

finite time horizon.  The discrete time model has a finite time horizon, i=1,……,T (months) and a 

set of decision dates (θi)i=1,…..,T.  In addition the commodity is supposed to be traded, stored and 

consumed in the same location.  Refining product j, decision variables qij, corresponding to period i, 

are subject to the standard physical refinery constraints defined in section 3.2.5, in algebraic 

modelling language (AML) described as: 
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0 ≤ qi1
buy ≤ Qi1

buy,   0 ≤ qij
sell ≤ Qij

sell,       i ≥ 1,    2 ≤ j ≤ 7    (3.5.2) 

L0 =Linit,   Li= Li-1 + qi1
buy - 

7
,

2

j sell

i

j

q
=
∑ ,   1 ≤ i ≤ T,    2 ≤ j ≤ 7              (3.5.3) 

Lmin ≤ Lij ≤ Lmax             1,..., ,    T endi T L L∀ = ≥  ,    1 ≤ j ≤ 7              (3.5.4) 

 

Where Lij is the liquid volume of hydrocarbon for product j at time period i, other notation utilised 

is defined as follows: 

 

L0 – Overall refinery complex liquid volume at date 0 

Linit – initial capacity level defined 

Lmin – minimum refinery complex capacity 

Lmax – maximum refinery complex capacity 

Lend – boundary requirement for optimisation of the refinery 

Qbuy – The maximum volume of crude that can be bought in any period  

Qsell – The maximum volume of particular refined oil that can be produced in any period 

 

Each ω ε Ω represents a realisation of the process ξi = (Fi,i,1, Fi,k,j, k>i),  i=1,….,T – here the index k 

must be greater than i as products are sold forwards, and it takes a minimum of one month to refine 

and deliver to a client.  Only forward contracts are considered where we denote by Fi,k
48 the forward 

price of the commodity end product quoted during period i for delivery in period k (k ≥ i) and Si the 

post price of a commodity, where Si = Fi,i.  All processes will be a discrete time-finite number of 

states of the world.  The assumption that the state space is discrete ensures the convexity of any 

optimal result.  The total cash flow during period, i, is denoted as Gi: 

 

                                                 
48  Here, Fi,j can be considered as the average price over all the quotation dates in the period i on forward contracts for 
delivery in period k 
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7

( ) 1
, 1

2

k ir j j

i i i k i i

j

G e q F q S
θ θ− −

=

= −∑  ,            (3.5.5) 

Where j, is refined product index, 1 is the crude oil index and other symbols are as defined 

previously.  Note that it was assumed that there is an absence of credit risk, hence equality between 

forward and futures prices. 

We denote, A(xi) as the set of (Fk) measurable admissible strategies (qk)k>i = (qik
j, qi

1) from 

state: xi = g(Li-1, ξi, ε i).  

 The fundamental Bellman equation is here: 

 

                   
1

1 [1, ] 0 1 [1, 1] 0
( , )

( , | ) max [ ( , ) ( , ) | ]
i i i i

i i i i i i i i i
q A q

V q f q V q
ξ

ξ ζ ξ ξ ζ
−

− + +
∈

= +    (3.5.6) 

 

Assuming between period independence holds for the stochastic processes that generate the cash 

flow, Gi, and at every period, i, we maximise, Gi, then at the last period above, the value function, 

VT(GT-1), is the optimal value of the above problem.  The optimal value calculated recursively until 

the present day is myopic. 

If both the decision set and the objective function are convex, and also closed, then any local 

maximum is a global maximum. 

 The optimal value Ji(xi) of the portfolio satisfies the dynamic programming equation: 

 

1 1
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i i i i i i
q x
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= +iG iq            (3.5.7) 

 

The state xi+1, is given by the state transition equation: 

xi+1 = (Li-1 -
7

2

j

i

j

q
=
∑  + qi

1, g(ξi, �i+1))           (3.5.8) 

 
Trinomial trees are often applied in real option valuation, they are simple for management to 



190   

understand and robust, see Hahn (2008).  A tree like this determines the refinery prices and 

associated probabilities over each period we select until the lifetime of the refinery.  American 

options can be priced in this way once the state space is judicious.  To understand the valuation of 

the refinery we emphasise the primary differences.  Like a standard approach our tree is 

recombining; all transitional probabilities are positive and add to one; our choice of steps is 

tractable; the mean of the trinomial distribution is equal to the mean of the stochastic process we 

have chosen; the variance also and finally, it spans enough time periods to value the asset.  

American options are often priced using lattice methods, but the number of periods is usually much 

less than six years and there is only one underlying, additionally there are very different constraints 

in place for the refinery. 

In the next section we discuss the properties that will ensure the optimisation is realistic, and 

we will describe how the above formulation is solved computationally; introducing our 

approximation and reason for faster than standard solving time. 

 

3.5.1. Numerical Approximation using stages to obtain a valuation 

 

We can scale down our problem using a parameter, k, within the GAMS code.  The number of 

periods is too high for computation; hence we start with k=1 and increase until our solution takes 

over two hours, which is at k = 11.  This period of time was chosen as the maximum that a user 

would be willing to wait for valuation purposes.  This staging shortcut was only possible due to the 

mapping shortcut described in section 3.6.5. 

 

3.5.2. Methods available to solve the dynamic program 

 

To computationally solve the problem, we use a slightly alternative stochastic programming 
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technique.  The set of realisations of commodity spot prices and the forward curve is represented on 

an event tree with nodes n ε Ν, the decisions, q(t, ω), are indexed on the nodes of the tree, and the 

terminal-date objective maximised numerically with respect to all decisions (qn)n ε Ν  using a large 

scale non-linear solver.  It is important to describe the problem in AML as many linear programs 

cannot in fact be solved or tested due to specific properties of the problem in question. 

The payoff to the refinery owner is defined as the value of refining today, plus the 

discounted expectation of refining over the life of the oil refinery, except at maturity.  The option to 

choose the optimal refining times have no analytical solution in this setting as there are too many 

state variables.  Having discretised the stochastic differential equations onto a trinomial tree, we 

have the equivalent of an explicit finite difference grid. 

 One way to think of this problem is to assume that we are again in continuous time, as if we 

could refine continuously, and to approximate all the derivatives by finite differences.  The space 

domain can be partitioned using a mesh of x0,…,xj and the time domain using a mesh t0,….,tN.  

Assuming a uniform partition in both space and time, the difference between two consecutive space 

points is h and between two consecutive time points is k.  The points become: 

 

( , ) n

j n jV x t v=  , this represents the numerical approximation of Vj,n = f(xj, tn).    

 

Maximum points are:  T = N ∆t, and X = M ∆x 

 

The value of the refinery written in continuous time is the following: 
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After some manipulation we have: 
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Following arguments from (Dixit and Pindyck and Willmott) we can form the dynamic 

programming equation as a HJB equation (3.5.10) with the one factor SDE for each commodity as a 

vector.  To solve the set-up that would follow, one would have to construct a finite difference grid 

with appropriate boundary conditions; we leave this approach for others. 

 

Due to the non-analytical solution of the above HJB equation, we develop a model of dynamic 

programming in a setting where uncertainty is modelled using discrete-time Markov processes.  

Time plays a very important role for investment decisions.  Dynamic programming is a tool that is 

particularly applicable when considering uncertainty.  It fragments a sequence of decisions into two 

parts: the initial decision, and a value function that encapsulates the consequences of all preceding 

decisions, starting with the position that results from the current decision.  In a finite horizon 

problem as we have here, the last decision at its end has nothing afterwards, and can be found using 

a deterministic calculation.  Obtaining this solution then provides the valuation function appropriate 

to the penultimate decision.  This enables a decision two periods from the end, and this continues 

until today’s decisions can be found. 

               The key problem with the oil refinery and the reason why this optimisation has been 

avoided up until now is the huge dimensional space that is present; solving over this number of 

periods for this size state space is rare in engineering applications and even more so in the finance 

literature.  The mathematical complications connected to the real option theory originates from the 

idea that the general issue cannot be solved without a probabilistic solution to a firm’s optimal 

investment decision policy, not only at date 0 but for all periods in time until the end of the real 

asset’s horizon.  For example, Brandao (2002) provides an example of the real option valuation 

application using a binomial tree; hence one less degree of freedom than ours, valuing a highway 
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project in Brazil that includes 20 time periods.  The author’s decision tree has 5.2e5 scenarios, in 

this refinery valuation there are 72 time periods; meaning we have in total 7.5e33 scenarios.  

Solving times and computational analysis are not described by the authors.  As described in Hull 

(2003) in detail, solving a real option problem on a binomial tree with periods n = 30, means 

computation takes approximately 1000 minutes to solve; we find a stochastic value utilising a 

trinomial tree with 72 time periods in just over 140 minutes.  

 

3.5.3. Mathematical issues with the valuation 

 

Many authors have successfully described the convergence properties of discrete tree applications 

of their stochastic processes.  In Heston and Zhou (2000) table 3.1 provides the order of the local 

error and the rate of convergence of multinomial models when the payoff functions are smooth 

enough.  The step size is ∆, which is proportional to 1/n in an n-period multinomial period.  The 

refinery portfolio problem is 72-periods; a step size is approximately 1/72; the trinomial tree, 

assuming payoff functions are smooth enough, converges in at least O((1/72)2).  However, the 

authors Albanese and Mijatovic (2006) go further showing the rate of convergence if the PDF of a 

continuous-time Markov chain to a Brownian motion with drift, is of the same order O(∆2).  

Convergence is assured here as shown by Hull & White (1997) that when the step size is as shown 

in section 3.4, convergence is assured and is optimal.  In the next section we provide the pseudo 

code for the solution of the valuation.  

 

3.5.4. Pseudo Code for the static refinery valuation 

 

A given refinery simulation consists of the following steps: 

• Set up the number of stages; k = 1 to 72 (The maximum possible input is the lifetime of 
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the refinery) 

• Repeat the below steps 1000 times; for j = 1 to 1000 (1000 iterations is enough for 

convergence for valuation of a real option, but usually not for a financial option)49 

• At date 0, build an event tree incorporating each commodity price in time, with 72 

decision steps and 21 sequential branches at each node; representing the possible 

evolutions of the forward curve; (The model can be rerun each day) 

call buildTrinomialTree(j) 

• Starting at Maturity, using the terminal boundary condition, optimise the criterion - 

by deciding on optimal production volumes; (At the terminal date the optimisation is 

static) 

for t=T to t=0 step -1,  

call maxObjective(j, t, k);  

 (The above function considers all possible paths at each node) 

• Move backwards recursively, deciding the previous iteration’s decision variables, 

until date 0 is reached (The problem is path dependent) 

• Record all optimal decision variables for the optimal path, and the valuation on each 

iteration of j; (Optimal values of: qji, V(i), will be obtained) 

Next j 

• Plot numerical results;   

end; 

call plotGraphs(); 

 

                                                 
49 See Albanese (2006) for convergence of a random walk with drift to its continuous-time counterpart 
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The issue with the above steps is that the valuation is carried out on today’s information only and is 

therefore a deterministic valuation.  In the following section we discuss how to convert this to a 

dynamic valuation. 

 

3.5.5. Pseudo Code for the dynamic refinery valuation 

 

Following Geman and Ohana (2008), we construct the following method to value a dynamic paper 

refinery: the realised one factor spot process of the refined products differs from the paths described 

in the event tree as we have to update the optimal strategy at each time step, i.e. we have to re-

optimise the decision variables taking into account the new state of the portfolio and information 

that has become available.  To analyse the robustness of our model with respect to this new 

information we create a simulation which dynamically reproduces strategies under price scenarios 

which are independent of the ones used for the optimisation.  Extending the steps explained in 

section 3.3.4., under a dynamic setting, the model is re-optimised at each new date k, based on new 

information, kζ  , equation (3.5.9) becomes: 
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A given dynamic optimisation has the following stages: 

 

• At time 1, build an event tree with 72 decision steps and 21 sequential branching at each 

node representing the possible evolution of the one factor spot price process. 

• Optimise the criterion from the terminal date and implement the date 1 optimal decision. 
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• Simulate the new spot price process at date 2 from equations (ones that have S(t-1)) using 

the Gaussian vector with zero mean and covariance matrix Σ. 

• At time 2, build an event tree whose first node is the information of date 2; this tree has 71 

decision steps. 

• Optimise the criterion on the remaining horizon and implement the time 2 optimal decision. 

• And so on until date 72. 

 

The above procedure is performed 1000 times, leading to 1000 simulations of a six-year refinery 

management optimisation. 

   In the table below the data shows the leaves at the end of the trinomial tree and their 

corresponding wealth and probability; there is uncertainty associated however with these cash flows 

hence we next show how the risk is considered in this calculation. 

 The previous studies that consider valuing a refinery consider at most two refined products 

due to the colossal state space and the issues with optimising over this number of variables.  The 

embedded optionality means the owner can choose an alternative product if another is not 

performing as expected within the physical constraints.  This increases the value of the refinery as 

losses can be minimised and profits maximised more efficiently.  The problem has been avoided up 

until now due to the curse of dimensionality present; we alleviate this issue by using a solver in 

GAMS that can optimise a dual or quad core computer whilst leveraging off IBM's CONOPT 

algorithm.  This state space means closed form solutions are rarely available and efficient numerical 

methods must be applied.  The choice of a trinomial tree enables dynamic programming to be 

implemented ensuring that the owner's alternative decision choices are represented accurately and 

realistically.  A limitation here is that the correlation is not investigated in a stochastic or more 

complex manner and we leave as an extension the effects on the refinery valuation due to a change 

in the correlated commodities to others. 
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(Table 3.5.1: Refinery valuation across a two year period on the trinomial tree final leaves; along 

with the associated probabilities. 

 

 

 

3.5.1. Risk 

 There are many issues with value at risk but our aim here is to capture some level of risk for 

investing in the alternative refined products in the volumes claimed maximising by the optimisation.   
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  In table 3.6 where we examine the valuation and computation time for a different number of paths 

for the refinery simulation we also include a calculation of the value at risk to the owner of the 

refinery.  This is how much value we expect to lose in a  worst case scenario over one day with 90% 

confidence - this is calculated using a Monte Carlo simulation and finding the 90th percentile of 

final wealth of the refinery.  Since we are in an incomplete market and portfolio replication is 

impossible our valuation is simply a range of values over the leaves of our tree; implying a risk-

neutral assumption on the stochastic equations that are representing the returns series of the 

commodities.  Since we are not attempting to predict values this is considered a reasonable 

approach; dynamic programming along a trinomial tree is considered a realistic approach to obtain a 

valuation for an illiquid real asset.  This is because of the state space that can be captured with 

seven correlated trees and the embedded optionality calculated using dynamic programming.  There 

are many examples of real option valuations in an incomplete market evident within the literature 

but not for a single oil refinery; see Rollins and Insely (2003) for an optimal harvest comparison.  

Here the authors construct a Markov decision process over a two factor simulation.  They claim 

ignoring the optionality present to management will result in incorrect forest valuation as we find 

with the refinery.  The option to stop, change or increase production is missed by static valuation 

methods.    The refinery is a similar problem in that the exercise price is the operational and 

management costs of the refinery; embedded in the refinery is the opportunity to refine at the 

optimum time based on refined product volumes and prices (despite the returns being modelled), as 

well as the option to abandon production or delay if the refined product prices are too low.  Our 

problem is comparable in that it is essentially an explicit finite difference approach.   

 Despite the limitation of using a constant correlation matrix to generate the trinomial trees 

the fact that correlation would fluctuate giving higher and lower valuations over time; the valuation 

is capturing the alternative choices available to owner realistically and enabling the numerical 

method to be solved in a logical manner.  If the correlation of the refined products were to increase 

the valuation would decrease and vice versa but we leave as an extension a correlation study.   



199   

3.6. DYNAMMIC PROGRAMMING USING NODES  

 

In terms of valuing an asset, a multi-period solution is required.  Multi-period valuation for an oil 

refinery has not been accomplished within the literature.  For the optimisation to be classified as 

dynamic, the decisions at each point in time must have an effect on the next time period’s available 

decision set, and a solution must contain a set for the entire planning time horizon.  This is captured 

by the equation (3.5.4) in nodal form: 

 

L0 =Linit,      Ln= Lparent(n) + qn1
buy - 

7
,

2

j sell

n

j

q
=
∑     n N∀ ∈  ,      2 ≤ j ≤ 7          (3.5.4) 

 

This equation ensures that the volume of liquid hydrocarbons held at the refinery complex across 

time is managed within physical limits.  This can be regarded as the state equation for the refinery.  

 

The refiner is assumed to be a price taker, i.e., not able to influence the crude or refined products 

market price, which is exogenous to the model.  We do not consider hedging the producer's 

portfolio by utilising Futures contracts.  We now define the nodal formulation, essential to solving 

the problem with a relevant non linear solver. 

 

3.6.1.0. Set notation for optimisation  

3.6.1.1. Decision Variables 

 

• qn1 : The amount of crude purchased at decision node n 

• qnj : The amount of refined product j sold at decision node n 
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• CWn : The cumulative wealth at node n 

• E[π] : Expected profit for the entire planning period 

• πn : profit for a particular node 

3.6.1.2. Sets and Indices 

 

• N: Set containing indexed nodes n of the event tree 

• Parent(n): Index of predecessor node to n 

• t(n) : Index of time period that corresponds to node n 

• Nend : Set containing all nodes that correspond to the last period 

• k(t, n): Set containing all the stages corresponding to a node and a time period 

 

3.6.1.3. Parameters 

 

• pn : probability of being at node n 

• Lmax : Maximum refinery hydrocarbon capacity in tons 

• Lmin : Minimum refinery hydrocarbon capacity in tons 

• Lend : hydrocarbon capacity level required at the end horizon 

• Lstart : hydrocarbon capacity level at the beginning of the time horizon 

• Tt : Years from now until period t 

• Fnj : The forward price of the refined product j sold at decision node n 

• Sn1 : The price of crude purchased at decision node n 

• prn : The production rate per month in days (refinery run rate) 



201   

3.6.2. Expected profit maximisation 

 

The nodal mathematical formulation to maximise expected profit is given by: 

q
Maximise   
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3.6.3. Maximisation of dynamic objective function 

q
Maximise  
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Subject to 

 

 Ln = Lparent(n) + qn1
buy - ∑qnj

sell   n N∀ ∈         2 ≤ j ≤ 7     n ≠ n1   (3.6.3) 

 Ln = Lend, n          endn N∀ ∈       (3.6.4) 

 Ln1 = Lstart       n N∀ ∈       (3.6.5) 

 Lmin ≤ Ln ≤ Lmax       n N∀ ∈       (3.6.6) 

            0 ≤ Sn         n N∀ ∈       (3.6.7) 

            0 ≤ Fnj      n N∀ ∈  2 ≤ j ≤ 7    (3.6.8) 

 (All other required constraints for each product are given in sections 3.2.4.1 - 3.2.4.4) 
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3.6.4. Solving the multi-period refinery portfolio model 

 

We adopt a discrete time setting, with a finite horizon.  Decision variables corresponding to period, 

θi, are subject to constraints based on mass balances and capacity constraints, see section 3.2.4. for 

details.  We consider on the tree, spot and future prices of crude to buy and refined products to sell, 

where St = F(t,t).  The crude price is known today and the saleable product prices are not – hence 

obtained from the simulated forward curve.   

  

Remark:  Cash-flows due to forward trading are in this paper registered at transaction date and 

discounted from delivery date at the risk free rate r.  We adopt this idea because we want cash-flows 

at dates θi, to only depend on date θi decisions and not on previous ones, as would be the case if 

cash-flows from forward transactions were registered at delivery date.  This only has an effect on 

the final wealth situation.  We also assume that we have liquid spot and one month ahead forward 

markets; prices then remain the same for refining over the month in question. 

 

The decision maker’s optimisation problem as given in equation (3.5.9) was: 
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   (3.5.9) 

 

To solve the problem above, the literature commonly uses a procedural function based Bellman 

approach - even if recursion is applied, procedural optimisation is much slower than the 

computation applied here.  We use a node based approximation along with a Bellman recursive 

formulation starting at the end of the scenario tree.  The set of prices on the scenario tree represent 

the information on the monthly commodity spot and forward prices.  For multi-period programming 

this is the gruelling part of the calculation.  Obtaining a realistic discretised process on a tree is a 

wily task.  Each path from the root to a leaf of the tree corresponds to one scenario, over which the 
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multi-period optimisation can be calculated.  The stochastic model is constructed in terms of the 

nodes {1,..., n, …., N} on the scenario tree and the tree structure is described by giving each node 

the probability pn, 1≤ n ≤ N.  The planning horizon is divided into k stages, to relax the 

computational onus (a number of periods can be aggregated into a stage), where each stage is k, 1 ≤ 

k ≤ K, and is associated with the time horizon of the real asset, Tk and to the associated set of nodes 

Nk.  Note that the model can be extended to varying time lengths and is optimised over nodes per 

period.  It is assumed to begin with, that we have a few stages and at maximum, that there are as 

many stages as there are months, as it takes approximately one month for a barrel of crude to arrive, 

be refined and ready to ship to the client.  We assume that the initial storage of hydrocarbon liquid 

is the same at the end of the horizon.   

 The decision variables qi,n denote the net positions.  The spot price of crude is denoted by 

S1,n, and the forward prices of the refined products are Fi,n, these are the stochastic parameters 

within the formulation.  The objective function representing the producer's profit and financial risk 

consisted of product sales minus crude oil costs and a term representing a composite risk measure 

on profits.  Assuming that the working and operational costs of the refinery were not significantly 

impacted by the stochastic parameters. 

   The nodal model was constructed with r, the risk-free interest rate, CW(n), the cumulative 

wealth at node n, and we also run the model with, U(CW) an increasing concave utility function of 

wealth describing the producer's risk aversion.  Due to the tree having a trinomial structure, it can 

be imagined that there are three realisations or states of the economy at each node.  The model 

constructed finds values of the decision variables qi,n, using: the stages set - k ε K, the products set - 

j є J, the time period set - θi є Tk, the node set - n є Nk, and finally, pn ε [0,1] – the probability set.  
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3.6.5. Maximising of final wealth  

 

One can also maximise the utility of final wealth, instead of expected profit: 
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(And all constraints as those described in equations 3.6.3 – 3.6.8, and sections 3.2.4.1 - 3.2.4.4) 

   

CWn represents the discounted present value (PV) of cumulative wealth at each node n, given in the 

set of end nodes.  The cumulative wealth is used at the leaf nodes; hence a simple sum is required 

over the nodes that belong to the last stage (n ε Nend).  To some this will seem unorthodox but it is 

equivalent to the calculation being carried out along all scenarios from root to leaf.   

The final wealth of the refinery CWT, represents the expected profit by summing up the 

nodal profits, weighted by their nodal probabilities pn.  Each cash flow is discounted by the interest 

rate r, obtained from data on the current Indian yield curve50; we choose an end of horizon of six 

years for comparison reasons but also value up to ten years to find the computational time at this 

horizon - the term structure enables us to discount the relevant cash flows with a realistic discount 

factor.  Additionally, each node has a particular conditional probability, an assigned crude price and 

an assigned set of forward product prices for its particular period θi(n). 

The initial wealth at the start of the tree is zero: 

  CW0, 0 = 0;         (3.6.12) 

 

                                                 
50  Bloomberg: India Govt Bond Generic Bid Yield 10 Year, GIND10YR:IND, 7.25 0.06 0.82% 
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And non-negativity constraints are present: 

 

  qi,n ≥ 0,  Si,n ≥ 0,  t ≥ 0,          Fi,n ≥ 0,    (3.6.13) 

 

Apart from the first node, each node has a parent function pointing to its predecessor node.  It is 

assumed that the operator can sell as much as produced of each refined product onto the oil market 

at each time period or each node as can physically be stored.  Moreover, the other physical 

constraints of the refinery system are respected at each node (please see section 3.2.4. for details). 

The objective function in code can be set to represent the expected utility of the final wealth 

or just the expected profit with composite risk as shown in equation (3.5.9) over the planning 

horizon.   

To solve the original problem given in equation (3.5.9) we apply backward induction.  

Analytical backwards induction is applicable to a wide variety of situations, but can be infeasible if 

there are too many state variables or too many time periods.  Therefore, we solve by a recursive 

calculation along the set of nodes, which are mapped to time periods starting at the end horizon; this 

is visually evident from the trinomial tree.  There is also a stage mapping; these mapping constructs 

are the main contribution of the numerical approach designed for the refinery.  From Moro & Pinto 

(2000) to Grossman (1998) to many other refinery optimisations; most computational or numerical 

procedures either do not state how they solve their objectives in enough computational detail within 

the state space or simply make approximations and solve using procedural programs; this is very 

inefficient.  The approach utilised in this chapter is named dynamic set assignment, enabling the 

problem to be solved, when mapping with the stages in O(n) time as opposed to O(2n), and it will 

replace many procedural based optimisers in the future; enabling larger and more complex state 

space optimisations to be solved. 
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3.7. Numerical Results 

 

In this section we discuss the numerical results obtained by solving the multi-period stochastic 

model.  Technically, the optimisation of this decision process contingent on the future events is 

more parsimonious when “reasoning under uncertainty” can be decoupled from the optimisation 

process itself.  This occurs when the probability distributions describing future events are not 

influenced by the decisions selected by the agent; uncertainty is exogenous to the decision process.  

The idea is to exploit the finite scenario tree approximations in order to extract a good decision 

policy for the correlated continuous commodity distributions. 

The simulation framework is based on GAMS release 23.9.1 x86, for modelling and solving 

the optimisation problem by the non-linear optimisation package, CONOPT3.  This optimisation 

problem is solved using mapping objects or in dynamic set assignment.  Suppose for example, that 

there is a simple map object, m, which maps each value of a function that has already been 

calculated to its own result, and then the function is modified to use it and correspondingly updated.  

The resulting function requires only O(n) time instead of exponential time – in recursive operations 

without this map, exponential time is standard.  This technique of storing values already found is 

called memoization (1968).  The bottom-up approach was applied where smaller values of the 

problem were found first and the larger values built from them.  It takes constant O(1) space, in 

contrast to a Bellman equation solved from the top-down approach which requires O(n) space to 

store the map.  We have used this methodology to obtain solutions to the numerical problem 

presented – this enabled a valuation in reasonable time.  

In the optimisation procedure the tree of prices must firstly be constructed; generating the 

nodes and their values takes the longest fraction of solution time.  C++ carries out all set 

assignments: time set, realisations set and probabilities; generating the files containing a seven-

dimensional correlated scenario tree of discretised prices for input into GAMS.  All trees also utilise 

a common computational data structure named simply as a tree structure.  This enables the 
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computation to gain more time as memory is utilised more efficiently.  Due to the dynamic set 

assignment the problem becomes very similar to matrix multiplication in terms calculating numbers 

per map - essentially the algorithm is closer to O(log(n)) when summing the values along the tree.   

For example, due to the way the problem is constructed in GAMS, one year can be initially 

represented by four stages, which is equivalent to 360 days.  This ability to defragment the problem 

into stages is another uniqueness to the numerical procedure; due to the mapping the program 

knows which stage belongs to which time, product price and all other set variables at any point in 

time.  For instance, with four stages the time sets entered into the code can be represented by: T1 = 

{t: 1 ≤ t ≤ 90}, T2 = {t: 91 ≤ t ≤180}, T3 = {t: 181 ≤ t ≤ 270}, and T4 = {t: 271 ≤ t ≤ 360}.  For four 

stages the nodes entered into code are the following sets: N1 = 1, N2 = {2,..., 4}, N3 = {5 ,..., 9}, N4 

= {15,..., 19}.  In the four stage one year tree, there are 19 nodes and 27 scenarios.  In the final 

model implemented to value the refinery effectively, an 11 stage tree was constructed and 

calculated; in the library of solutions the maximum k used was 72 - taking days, an extremely long 

time to compute.  With a reasonable maximum of k =11, it is possible to have a comparison to the 

static version.  For 11 stages there were 59,049 scenarios, taking four hours and 22 minutes to solve 

on an Intel(R) Pentium M 2.00 GHz processor.  It took approximately 73 minutes to solve the same 

problem on an Intel(R) Core(TM) i5-2320 CPU@3.00 GHz dual core.  The structure of the tree 

reduces the states space and ensures the solution is tractable in both cases.  This is evident from the 

number of scenarios and time taken to solve the model.  All models contain prices that were 

simulated 1000 times to obtain an average representation of the uncertain commodity price set. 

The model was solved by considering the sources of variability of the spot and refined 

product prices.  The price dynamics were captured using the mean-reverting spot price processes.  

In terms of value over and above the intrinsic value we notice an increase in the total expected value 

of the refinery at time horizon T.  Overall, the increase in the value of the objective function went 

from, $560 million to, $1131 million with optionality, over a six year period.  Results are shown in 

Table 3.6 below: 
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 Number 

of Stages 
(k) 

 Number of 

Scenarios  
(root to leaf) 

 Refinery 

Value 
$ millions 

 Time to Solve on an 

Intel(R) i5-2320 dual 

core Processor 
(seconds) 

 Risk  
(VaR for 

whole period ) 

Approx. 

Operational 

Years 

Represented 

by tree (T) 

 6  243  556 0.616 78.45 1 

7 729  590 1.257 83.20 2 

8 2,187  743 4.119 99.08 3 

9 6,561 999 34.761 109.12 4 

10 19,683 1,091 267.793 124.66 5 

11 59,049 1,131 4,375.453 136.80 6 

 

(Table 3.6:  Summary of stochastic trinomial tree optimisation of a Topping refinery with risk 
values, including the number of scenarios, and the CPU solution times) *All values were 

calculated 1000 times and then averaged. 

 

3.8. Graphical results 

 

(Figure  3.20: As the number of stages input into the program is increased the solution time 
increases in a non linear way) 
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(Figure  3.21: As the number of years increases towards six the value begins to stabilise) 
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(Figure  3.22:  The refinery owner chooses an amount of crude to refine at each monthly period 
over the lifetime of the refinery) 
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(Figure  3.23: At different periods the valuation increases more than others as the refinery 
manager optimises the decisions along the trinomial tree) 

 

 

The applicability of a portfolio optimisation approach to a real world problem does not only rely 

upon numerical tractability, but crucially also on the robustness of the model.  Deviations in input 

data should not have major consequences on optimisation results; see Zhu and Fukushima (2006) 

for an analysis.  We ran the optimisation at 100 to 100,000 times; the averages and standard 

deviations of the decision variable results of 1,000 simulations are shown in table 3.7 below:  
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3.9. Out of sample stability analysis 

 

 Crude Gasoline Naphtha Fuel Oil Jet Fuel Heating 
Oil 

Feed 

Average 
optimal 
portfolio 

1350 2700 900 4210 2300 1650 135 

Standard 
deviation in 
optimal 
allocation 

76 161 88 191 206 113 9 

 

(Table 3.7: Stability associated with scenario generation procedure decision variables.  *Trees 
were generated and optimised 1000 times) 

 

 

In general, finite difference schemes offer more flexibility than say binomial trees when handling 

complicated discretisation problems.  We use a trinomial tree, however, as with other explicit 

methods the approach suffers from stability constraints that restrict the time step size used in the 

numerical solution, and can in general extend the solution time.  We have, however, shown that our 

method solves in a reasonable amount of time despite its explicit grid nature, this is due to the 

solving technique of memoization and the other computational constructs described in the previous 

section.  

 

3.10 Analysis of the Valuation Model 

 

The main problem with the set up is the fact that we are using a one factor model – this is not 

representative of the behaviour of refined product series.  For example Koekebakker and Ollmar 

(2005) use ten factors to capture Electricity prices on Nordpool.  However, the stability and speed 
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with which the results are obtained supports the choice of a one factor model.  In practice if the 11 

stage optimisation was considered as too laborious the user can choose to drop down to a suitable 

time – they would miss some intrinsic value but there may be valid reasons for this shortcut.  An 

interesting extension would be to use different stochastic processes and investigate how this would 

affect the valuation of the refinery.  A two factor model would capture more realistic behaviour in 

the price series but strain the computational side of the solution.  The separation of the simulated 

paths and the dynamic recursion is the advantage of this approach; hence mean reversion is 

captured and value extracted from the spot price processes.   

Another piece that has not been addressed is the hedging calculation; this would entail 

creating a representative portfolio of the refinery form market products that are indicative of its 

value.  This is difficult in our case as there is no accessible liquid market for financial contracts 

within India that correlates with our simulated prices.  An approximation could be to use those 

contracts on CBOT that are representative of the required product – we discuss this and the other 

extensions in Chapter four further. 

 

 

3.11. CONCLUSION 

 

In this chapter we have introduced a one factor stochastic model for monthly midterm production 

planning of an oil refinery – enabling a valuation of the real asset to be obtained.  We have shown a 

unique approach for solving a real-option valuation for an oil refinery that is consistent with the 

assumptions of the risk-neutral pricing of options.  The approach is a straightforward and flexible 

model that can be implemented for other real-option valuations where correlated stochastic 

variables provide the uncertainty for the real asset.  The embedded optionality represents a much 

higher price than DCF reveals which is inline with many other real option valuations within the 



214   

literature.  A limitation of the approach is that we are in an incomplete markets setting hence a 

single no arbitrage price is unavailable due to replicable contracts being unavailable.  The 

embedded optionality is however captured by the correlated trinomial trees built so that dynamic 

programming can be applied.  This usually means there is no closed form setting and the numerical 

approach considered provides a range of values with their associated probabilities.  The model is a 

consistent multi-period optimisation, using dynamic programming to solve from maturity 

backwards until today.  The profit comes from the direct production of the refined products being 

sold instantly onto the spot market, where the risk is the volatility of the commodity market prices 

but can also be set in code to be a composite risk function.  We considered as the stochastic 

variables in the model, the spot prices of crude oil and the forward refined products prices.  The 

method used to generate a finite horizon multi-period value for the refinery is unique; stochastic 

prices are modelled using a trinomial tree, which captures the idiosyncratic features of petroleum 

related products.  The contribution in this chapter has been to obtain a real option valuation of a 

topping oil refinery; enabling a comparison to a static value to be made.  To our knowledge there 

has yet to have been a dynamic programming valuation on an oil refinery in the literature.  Another 

limitation is however that a constant correlation matrix is utilised to obtain the correlated tree of 

prices - this unrealistic but we leave for others the extension of investigating a stochastic correlation 

on the refinery valuation.  After the scenarios are generated on a trinomial tree, the decision 

problem is solved using non linear optimisation within GAMS to obtain a finite horizon value of 

$1,131 million.  The model considered 72 monthly periods, whilst adhering to financial and 

physical constraints at each point in time, combined with a simple intuitive decision rule by 

repeatedly maximising the intrinsic value of the refinery.  Our model captures more of the true 

management flexibility than DCF analysis, which gives a value of $556 million, and to our 

knowledge is the only dynamic real-option valuation of an oil refinery within the literature using 

computational advantages.  The contribution is three-fold; firstly, we have used a nodal 

representation of the tree structure within code – meaning that the data structures enable 
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memorization, and a very quick solution time for this state space.  Secondly, we have used a one 

factor SDE from Schwartz (1997) that is extremely tractable and can manage shifts of the forward 

curve.  Thirdly, to our knowledge this is the only asset valuation approach for the pricing of an 

entrepreneurial refinery using a Bellman equation, with all seven refined product stochastic 

processes being represented along the nodes of the tree, that applies dynamic set assignment 

ensuring that the mapping of the stages is completed in O(n) time and not exponential time.   

  An interesting extension would be to run the optimisation with a different set of generation 

processes for the stochastic variables along the tree; an alternative formulation for uncertainty, and 

analysing how this impacted the valuation.   
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Chapter 4 

 
 
 

A CRACK SPREAD OPTION REFINERY VALUATION 

 
 

“We are all in the gutter, but some of us are looking at the stars.” 

Oscar Wilde 

 

In this chapter we develop a valuation methodology for an oil refinery that is tractable, solves in reasonable time and 

captures intrinsic and extrinsic value.  We make standard no arbitrage assumptions, and use European call options to 

suggest that a refinery asset is equivalent to a strip of daily options over its time horizon subject to physical and flow 

constraints.  Using linear program techniques and GAMS we incorporate stochastic equations on the main commodity 

prices and apply dynamic programming to obtain a value for today that is unique locally and globally.  We produce a 

static and dynamic optimisation that can be altered to incorporate additions to the stochastic model or applied to other 

real assets that are reliant upon a spread based valuation.  There are two major benefits of our calculations: one, using 

option valuation techniques for the commodity price we have provided a long term valuation that solves in seconds and 

is realistic in comparison to actual option prices, secondly we have developed an optimisation decision volume set, that 

is more beneficial than a ‘go with the flow’ refinery decision set resulting in economically improved decisions for a 

refinery owner. 
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INTRODUCTION  

 

Auditors, Investment bankers, and entrepreneurial investors all need to value oil refineries 

and we have created an extensive numerical approach in the previous chapter.  This calculation is 

however expensive in terms of time, CPU and memory usage.  The motivation for this chapter is 

that a closed form solution for pricing a real asset where optionality exists, with the assumption that 

the underlying prices follow correlated geometric Brownian motions, does not exist, see Eydeland 

and Geman (1998) for a thorough description – additionally, the valuation is required in a timely 

manner.  Many practitioners use closed form approximations as they are fast and accurate enough 

for estimating values for spreads whether within trading institutions or hedging at a refinery itself, 

but in terms of a valuation, we require an accurate calculation that captures as much of the crack 

spread value as possible.  Thus we want to produce a numerical approach that will provide a 

financial valuation of the refinery complex quickly enough for the various relevant professionals.  

We repeat here for clarity that an average refinery owner will have experience of the oil market in 

his or her's region and usually make decisions based on their experience in addition to  information 

generated from a computer model.  Many of these simulations produced by professional refinery 

software companies such as ASPEN TECH or Honeywell, take many hours to solve and do not 

consider the full dynamics of the underlyings over the complete time horizon due to the 

computational and dimensional hurdles.  Instead the LP program managers are concentrating on 

optimising the mass balance flows or a different problem altogether, for example, supply chain 

optimisation.  If the oil market is in a steady and low volatility state, a refiner owner can “go with 

the flow” and use momentum indications of which product to sell more of – this does not consider 

the knock on effects to the other refined products and a full linear program solution allows a more 

statistically and consistently correct decision set to be made.  Over time, a computerised decision 
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set will outperform the owners and one that solves in a timely manner is more likely to be applied in 

practise; see chapter three for a detailed analysis. 

 In this chapter we propose a tractable method based on the crack spread and compare it to 

existing spread valuation methods.  We make standard no arbitrage assumptions, and use European 

call options to suggest that a refinery asset is a strip of daily options over its time horizon subject to 

the same physical and flow constraints described in the previous chapter.    We are assuming here 

that owning the refinery complex is equivalent to the value that can be extracted from the 

volumetric comparison in crack spread option contracts.  We repeat here for clarity that the owner 

has a decision set to execute on each day whether to refine or not and how much of each refined 

product to produce at the end of an assay run.  This chapter attempts to achieve what chapter three 

does in a faster time by not building a simulation with trinomial trees and by not using recursion to 

capture the optionality.  Instead we replace this huge state space with option contracts - a simplified 

approach that will reduce the realism, but also simplify the computation.  The choices of which 

methods to use to price spread option contracts follows logically from the literature where the 

following methods are either practically used more frequently or are regarded in the literature as the 

go to method for spread option pricing.  Bachelier, Kirk and Alexander and Venkatramanan are 

described extensively in most spread option analyses included in the excellent and complete 

literature review of spread option pricing in Carmona and Durrelman.  The method used in this 

chapter is trivial but very effective; the refinery optimisation framework from chapter three remains 

but the simulation and trees are removed and replaced with option contracts. 

 We first use Bachelier’s method assuming an arithmetic Brownian Motion as it allows a 

closed form formulae, on which we can base our numerical method.  It does not include mean 

reversion and has other practical issues, but is still used by traders to this day on the commodity 

trading floor, next to Kirk’s as estimators of options on commodity spreads.  Hence, we include and 

compare it to Kirk's method, the very efficient Alexander and Vankatramanan approximation 

procedure and the famous two factor Schwartz and Smith (2000) commodity based model used to 
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calculate option prices.  We compare our method to these four methods, in addition to actual option 

prices within a linear program to determine the effect on the refinery valuation.  We compare our 

procedure, which we call the CSORV or crack spread oil refinery valuation method, to the four other 

valuations by solving the existing Linear Program and replacing the crack spread option contract in 

the objective function with the relevant methods in the literature, including: Bachelier (1900), BA, 

Kirk (1995), KI, Alexander and Venkatramanan (2011), AV, and Schwartz and Smith (2000), SS.  

The first three methods: BA, KI and AV are considered closed form results, SS and CSORV are 

numerical models.  Kirk’s approximation is ubiquitous on trading floors throughout the commodity 

sector, but it is restricted to low strikes.  Bachalier’s, BA, is a useful approximation for many spread 

options being trivial to calculate and assuming a log normal distribution for the underlying spread – 

this is also a disadvantage.  Both BA and KI suffer from assuming that the underlying prices that 

make up the spread are bivariate lognormal distributions, which is quite unrealistic for most 

commodity price series.  AV's is essentially closed form after the optimisation and calibration of the 

strike convention, whereas SS is used frequently on commodities but requires calibration and then 

simulation.  The CSORV is numerical but still solves in rapid time and is more accurate than the 

above four approaches – this is due to the stochastic equation capturing more of the mean reversion 

over the time period, and using the same strike convention as in AV's paper, enhancing its accuracy.  

A drawback is that stochastic volatility and jumps are not considered.  Correlation frowns rather 

than smiles are a constant feature of the crack spread option market; our method's aim is to value 

real assets, and our focus is not to capture this feature as AV11’s and SS's both do.   

For our purposes of valuation constant correlation is a necessary simplification due to the 

computation and enables a comparison to be made to closed form and numerical spread methods.  

To our knowledge the method in this chapter is the first attempt at valuing an oil refinery using an 

optimisation augmented with a discretised and simplified stochastic price set.  In this chapter we 

have a valuation methodology for an oil refinery that is tractable, solves in reasonable time and 

captures intrinsic and extrinsic value.  Using linear program techniques and GAMS, we incorporate 
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stochastic equations for the main commodity prices and apply dynamic programming to obtain a 

value for today that is unique locally and globally and solves in a timely manner.   

The formulation and modelling of real options that accurately incorporate managerial 

flexibility are unlikely to result in closed form solutions; hence the vast number of complex 

numerical algorithms available in the refinery literature, see Elkamel et al (2011) for an in-depth 

summary.  In the previous chapter we have constructed a numerical method that approximates the 

cash flows generated by the refinery asset under relevant constraints.  The initial choice of selecting 

all seven dimensions to represent the commodity prices captured all state variable value; we now 

choose to reduce this to three state variables.  The most significant reasons for investigating more 

efficient solutions are that practitioners are unlikely to apply a method that is not nearly 

instantaneous – especially on the commodity trade floor.  This would be relevant if for example a 

commodity desk wished to hedge or speculate on oil refinery asset outcomes.  In terms of financial 

valuation; a timely manner is not as high a priority.  However, obtaining a fair valuation is fraught 

with issues; the three main difficulties are:  

 

1 - Which stochastic equations truly represent the commodity price series  realistically?  

2 - How to reduce the dimensionality of the problem to make the calculation  solvable? 

3 - What is the most efficient way to depict the refinery asset problem within a 

 mathematical construct?  

 

The method constructed in this chapter is reducing the number of dimensions, this tremendously 

speeds up the valuation and enables other avenues of interest to be pursued more easily, for 

instance, the associated risk measures can be investigated, see appendix for a publication including 

a risk optimised objective function.  Opportunities to the owner of the refinery can be seen as 

embedded optionality, but capturing and simplifying these decisions enables the valuation to be 

tractable and realistic.  The core underlying value of the refinery is the crack spread.  The crack 
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spread as defined in the previous chapter is the primary difference between the purchase and sale of 

refinery products; the main cost being crude oil and the two most significant selling products are the 

heating oil and the gasoline.  The crack spread is the primary risk for the refiner, and at the time of 

deciding which products to refine, the prices of the outputs are unknown.  The production is not 

taking place instantaneously; the time at which purchasing and selling decisions are made cannot be 

successfully made without being computer aided due to the sheer number of factors involved. 

 Once committed to refining the recently purchased crude, the owner is locked in to 

producing a set volume of hydrocarbon outputs one month from the cracking initiation.  The next 

day represents a new decision timeline, regardless of the fact that the process began for a batch the 

day before.  In trading petroleum related contracts listed on an exchange that manage the 

differential risk between crude and its products, the refiner can lock in the margin to ensure that 

either long term contractual obligations are met, or that the crack risk is hedged effectively along 

the horizon.  Decisions made in a timely manner make or break the refinery asset, if a hedge is not 

pursued before cracking and the spread heads southwards – profits for that assay run will be a 

disaster.  The New York Mercantile Exchange, NYMEX, offer a number of contracts on refinery 

spreads that are purchased frequently by refineries throughout the US; we use these despite this 

being less realistic for a refinery based in India.  In making these complex nested decisions the 

owner must be well versed in the fundamental and technical effects that impact the values of the 

various commodity prices.  Table 4.1 below, describes some of the factors that practitioners 

consider when deciding how to manage a hedge or a speculative trade on the crack spread’s value 

along their decision timeline.  We organise the chapter as follows: firstly we introduce crack spread 

options and discuss their nuances.  In section 2.1 we introduce the various methods implemented to 

value the 3-2-1 gulf coast contract.  In section 2.2 we discuss the data, and in section 2.3 explain the 

static valuation.  In 2.4 we present the various methods chosen to price a crack spread option; we 

discuss the stochastic processes choices in section 2.5, whilst in section 3 we analyse the results.  In 

section 4 we compare all four methods to ours, and in section 5 we conclude. 
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4.1.1 Crack spread effects 

 
There are many different contracts that refinery owners can utilise for hedging and speculation 

purposes – capturing the spread’s value.  This value is often termed the “paper refinery” by 

petroleum specialists: it is of interest when marking to market or when implementing investment 

decisions. 

 

(Table 4.1: Factors affecting the crack spread value, assuming the other refined products 

remain the same value) 

Concern Refinery Effects Crack Spread Reaction 
 

1. External geopolitical issues — politics, 
geography, demography, economics and foreign 
policy 
 

Crude oil supply, Crack Spread decreases initially 

— higher crude oil prices relative to refined 
products 

Crack increases later, as refineries respond to 
tighter crude oil supply and reduce product 
outputs 

2. Slower economic growth GDP measures etc. Decline in refined products demand Crack weakness (value decreases) 
 

3. Strong sustained product demand High refinery utilisation Crack strength (value increases) 
 

4. Environmental regulation on tighter product 
specifications 

Tightening of product supply Crack strength (value increases) 
 

 

5. Expiration of trading month Cash market realities — long or short products Cracks values can vary due to closing of positions 
 

6. Tax increases after certain date Increased sales in front of tax deadlines Crack weakens (decreases) in front of tax deadline 
and strengthens post deadline 
 

7. Summer seasonality Increase in gasoline demand Crack strength (value increases) 
 

8. Winter seasonality Increase in distillate demand Crack strength (value increases) 
 

9. Refinery maintenance Decline in product production Crack strength (value increases) 
 

10. Currency weakness (In $) Crude oil price strength  (price increases) Crack weakness (value decreases) 
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The next stage in assessing the financial worth of the oil refinery was to develop a more tractable 

real option valuation; chapter three’s algorithm cut previous calculation time down to under two 

hours.  In some professional circumstances this would be impractical; interested parties would wish 

to calculate hedging formulas and the valuation itself, in minutes rather than hours.  Valuing assets 

that rely upon commodities is an actively researched and practicable arena for many reasons, for 

example, investment, divestment, hedging and speculation considerations.  An oil refinery is similar 

to a chemical plant - a producer with exposure to a differential spread, subject to a set of physical 

and flow constraints.  The real complexity in an option approach is capturing the value the refinery 

owner has embedded within its complex decision process.  The choice value associated with real 

assets fall into one of the following categories: the option to expand, the option to abandon and the 

option to defer.  The oil refinery owner has the choice to vary intertemporal purchasing and 

production decisions of the crude and refined products, i.e. the option to defer production.  The risk-

neutral valuation approach, ubiquitous within the financial mathematics literature, can be extended 

to elicit a real option valuation of land, plant, equipment and assets.  This approach does not require 

risk adjusted discount rates; yet a set of market price parameters must be calibrated.  Many 

investments are underpinned by the uncertainty connected to future prices.  Throughout the 

programming routines developed in this thesis, the commodity state variables or inputs, were 

defined as sets, see the appendix for an example - these state prices can be extracted explicitly to 

estimate the risk-neutral stochastic processes involved in the refinery calculation, and avoid the 

requirement to obtain a market price of risk parameter for the random variables exemplar set.  

These sets are the standard data structure for computer programs named algebraic modelling 

systems (e.g. GAMS).  The advantages in using GAMS and constructing the problem in this 

manner is that computational data structures do not require development as GAMS has the required 

constructs already available in its library -  dependent on the problem be solved.  We design a 

program in C++ to generate the prices and probabilities on the a trinomial tree for all methods 

requiring discretisation, which is then injected into GAMS as a table data structure (essentially a 
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computational trinomial tree structure).  GAMS can utilise this as input in set notation.  These sets 

enable group/set mathematics to solve calculations instead of procedural calculations - a much 

faster and efficient method than common in the literature; it is standard to do this in a procedural 

way without data structures or applying memoization. 

After the refinery manager’s initial purchase decisions, the knock on effects alter the 

remaining decision set due to the limitations on the particular crude assay being refined; this is 

indicative of the path dependency present in the calculation.  For example, producing more gasoline 

means less heating oil, and yet the CDU must maintain the mass balances at all times, therefore 

certain decisions are not physically possible, e.g. producing all kerosene or no naphtha at all.  If for 

instance, the refiner knew that residual fuel oil would be the highest valued product in one months’ 

time, then as much of this fuel oil as could be physically stored would be processed – this decision 

can be implemented, but only as far as the capacity and flow constraints allow; a difficult number to 

generate without inputting this into the LP.  The refiner has flexibility available - an embedded 

option, which is strictly constrained due to the chemical processes that are viable under the complex 

path dependency present in the refinery.  Capturing this mesh of decisions is the aim of any model 

solution and a numerical approximation should be tractable and remain financially accurate.   

 

4.1.2. Calculating the crack spread value with traded contracts 

 

The dependency of a set of decisions on the next time slot is investigated in this chapter, where we 

use a real data set of commodity future prices and correlations with a simplification where we 

reduce the number of free parameters.  In other words, the 3-2-1 Gulf Coast crack spread contract is 

represented on three trinomial trees consolidated into one; instead of requiring seven.  This is the 

amount of value in a barrel of WTI crude, refined into its two most valuable products: gasoline and 

heating oil.  We firstly calculate a very basic option value, attempting to value the refinery with data 
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from NYMEX51 – the refinery is considered as a strip of 3-2-1 crack spread options over a finite 

horizon; Geman and Eydeland (1999) apply this concept of a daily strip of options on the spread, 

but apply it to a virtual power plant, where the output is electricity and the fuel is natural gas.  At 

first the authors apply a very different production approach in a two parameter family to price 

power options using a power stack function.  Our approach is closer to the daily option spread 

valuation approach used later in their article, where they select a stochastic jump diffusion equation 

to represent electricity by leveraging Merton’s 1976 formula – the authors present the framework, 

but omit the calculation, which is fraught with practical difficulties for a refinery complex over this 

length of duration.  On each day of activity, if the refining cash margin is positive, then we should 

refine, else, we should switch the refinery off.  We will discuss this method’s limitations in the 

following analysis.   

 The calculation that underpins the optimisation described later in the chapter is to take the 

value on an option on gasoline, and the value of an option on heating oil, consolidate them in the 

correct multiples and thus obtain the value of the crack spread option.   

 Fully integrated oil majors like Exxon Mobil and Chevron have a natural hedge against the 

refining margins as they own commodity focussed assets and financial contracts in large capacities, 

but independents like Valero and Tesoro do not.  The corresponding trading of financial contracts at 

these firms follow alternate strategies.  The payoff profile of a refinery spread call contract on a 

crude oil future, (Fcrude) and one refined product, (Fprod), with exercise price, K, is given by:  

 

max {(0.42.Fprod – Fcrude) – K, 0}         (1) 

 

(The 0.42 is due to there being 42 gallons in one barrel of crude)  

 

 max{(crack-spread value - refining costs), 0}     (2) 

                                                 
51 NYMEX purchased call contracts over ten years from 2000 Dec to Dec 2010 
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This type of contract is often utilised by the vertically integrated oil majors to speculate, whereas 

for the independents, it is a hedging instrument.  Applying basic microeconomic arguments, the 

crack spread that is underlying the above contract should be a mean reverting process, despite the 

numerous studies arguing the opposite, in recent months it is clear that crude has again reverted to 

an average or lower.  The spread itself is usually captured using an American style options contract 

when listed on a financial exchange, see Carmona and Durrelman (2003) for an extended discussion 

and summary of spread options related literature.  In the next section we obtain descriptive statistics 

for the underlying value to support the choice of a mean reverting process, and describe the 

characteristics of the crack spread data to build the argument for simplifying the discretised 

stochastic process in the way chosen in this chapter.  

 

4.1.3. Descriptive statistics for commodity future price returns  

  

Statistics for daily crude oil, heating oil, and gasoline futures return data are shown below, where 

we label CR as crude oil, HO as heating oil, and GA as gasoline; each number in the brackets is the 

maturity month of the contract.  There are a total of 3,914 observations from January 2000 to 

December 2012, and the data is collected whenever a price is available (refineries continue cracking 

during weekends).  
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(Table 4.2: Descriptive statistics for future price returns) 

The Jarque-Bera test of normality. * indicates significance at the 1% level.  

Contract Drift (µ) Volatility (σ) σ (annual) Skewness Kurtosis Jarque-Bera 
CR(1) 0.0015 0.0240 0.2387 -0.16 5.15 782.09* 
CR(2) 0.0015 0.0259 0.2679 -0.27 5.81 1337.08* 
CR(4) 0.0014 0.0276 0.2855 -0.29 6.48 2114.90* 
HO(1) 0.0015 0.0245 0.2466 -0.02 4.97 652.33* 
HO(2) 0.0014 0.0247 0.2804 -0.04 4.71 485.89* 
HO(4) 0.0013 0.0281 0.3037 -0.02 4.51 383.76* 
GA(1) 0.0016 0.0254 0.2599 0.29 8.51 4872.93* 
GA(2) 0.0016 0.0270 0.2860 0.15 7.08 2830.33* 
GA(4) 0.0016 0.0287 0.3028 0.08 6.00 1369.97* 

 

 

We generate a crack-spread price for the ten-year period with the commodity future price data for 

the prompt month contract collected above. 

 The most significant and tricky feature to capture in this modelling process is the correlation 

of the saleable hydrocarbon prices as this tremendously affects the profit differential; missing from 

the above table.  GARCH can represent the volatility clustering present in financial returns, but 

analytical results in continuous time for spread valuation capturing this behaviour, without large 

approximations, remain elusive, see Borovkova (2007).  Another reason for the issues in calculating 

spread option values is that we have a weighted sum of variables.  In Borovkova (2007) the state 

variables are assumed log normal, but the sum of log normal variables is not log normal.  It is well 

known that spread option prices calculated via the Bachelier method
52 applied by Shimko (1994) for 

instance are also inaccurate compared to those from a Monte Carlo simulation, which can capture 

different stochastic underlying processes.  To alleviate this issue, Borovkova et al (2007) apply 

many  log-normal distributions for the underlying spread value.  This is beneficial as it ensures that 

the state prices in the calculation do not become negative yet they exhibit negative skewness.  In 

reality modelling the spread or the difference between the two commodities with a single Brownian 

motion misses a huge chunk of structure that can be represented with alternative multi-factor 

                                                 
52 The distribution of the spread is assumed normal but gives vastly different numbers for real options 
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stochastic equations; we pursue an approach to represent the structure of the underlying prices in 

our method. 

 

4.1.4. Assumptions underlying the crack spread valuation 

 

At any period in time, without purchasing additional financial contracts, the refiner is short crude 

oil, as it needs buying, and is long the refined products, as the owner has the ability to produce 

saleable hydrocarbons.  Therefore, the refiner is long the crack spread; in practice, traders 

associated with the refinery will construct trades on the constituents of the crack spread based upon 

their estimation of the spread being under or overvalued.  For example, if a dispersion trader feels 

the crack spread is overvalued, then it will be sold short and vice versa.  The hedging replication 

argument enables the refinery to be valued as a strip of crack spread options; a comparison can then 

be made using various existing option calculations. 

 We create a model in which the set of underlying commodity price dynamics are realistic; 

the stochastic processes should be mean reverting, and for an in depth modelling approach to be 

valid, the following important conditions should additionally be met, see Geman (2005): 

 

1. The crack spread option must have a starting date and a maturity T.  

2. The underlying prices must be clearly identified: S1, S2, S3 or F1, F2, F3, if using futures. 

3. The crude, S1, and refined products S2 to S3, must be traded in continuous time in liquid 

markets, to allow for dynamic hedging, the cornerstone of valuation by arbitrage.  (This is 

not present in our case of the Vadinar refinery, Gujurat India, but we will assume for the 

modelling case here that it is) 
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4. We should be able to exhibit appropriate stochastic processes for the evolution of S1 – S3, in 

particular, because data series of past values are available.  (This includes in the case of the 

refinery the correlation between the saleable product prices) 

5. The type of option must be recognised: European versus American versus compound; since 

it will obviously impact the price obtained for the physical asset.  In practice, this choice is 

rarely unique, and one can make a compromise between the tractability and accuracy of the 

representation. 

6. The stochastic processes for S1-S3 should lead to market completeness; otherwise there will 

not be uniqueness of the valuation, which is a problem if one is paying hundreds of millions 

of dollars to acquire a physical asset, or marking to market a set of complex derivatives.  

 

In figures 2 and 3 the crack spread calculation over ten years is depicted; mean reverting behaviour 

is conspicuous, as are the dips below the $0 profit level, occurring three times within this period; 

despite becoming less so in the latter parts of the graph; on the right hand side it can be seen that the 

price deviates greatly from its mean; this trend has recently reversed and again the case for 

reversion has strengthened.  
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(Figure 4.2: Daily calculated crack spread prices, Gulf Coast 3-2-1 underlying in 

$/barrel)*Prices for the crack spread are calculated as standard with the 3-2-1 contract; 1 heating oil barrel spot price 

+ 2 gasoline barrels - 3 crude barrels, all divided by 3.(remembering to multiply gallon prices by 42). 

The calculation for the above figure is standard for the Gulf Coast contract as done in the literature; 

negative values for the crack spread are possible - reasons for this are major source of research with 

some academics claiming the spot price of crude has lag effects and when the value for the refined 

products is low this can cause a negative crack spread. 
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(Figure 4.3: Daily log return crack spread prices, Gulf Coast 3-2-1 underlying) 

 

We calculate the log returns on the crack spread price tomorrow divided by today's.  The scale of 

spikes below varies between twice the original price and the negative of this value, but on average it 

is moving by approximately 30%. 

 

4.1.5. Crack spread modelling 

 
 

 Some authors suggest modelling the two separate prices (bivariate models) that constitute 

the spread, others consider the difference, hence a univariate model.  Dempster, Medova and Tang 

(2008) suggest that the one factor Schwartz is unlikely to capture the mean reversion on multi asset 

models as well as single asset modelling of the spread.  They provide Engle-Granger and ADF tests 

to support their claims; despite this, the structure of the commodity series will be less accurate than 

modelling each commodity with a univariate model.  The authors provide an in-depth study of long 

term crack spreads and the possible valuation models.  Arithmetic and geometric Brownian motions 

are popular for these purposes; in terms of testing the spread’s behaviour a Jarque-Bera test quickly 

reveals that the returns of gasoline, heating oil and crude oil are not normally distributed; there is 

also weak skewness to the right, and there is excess kurtosis: more evidence for non normality.  A 

Dickey Fuller test on each of these returns shows a unit root, but after first differences all become 

stationary series.  Duan and Pliska (2004) find a negative vega (where the value of the option 

decreases with an increase in volatility) evident in crack spread options, a peculiarity 

underdeveloped at this time, and this cannot be retrieved by univariate modelling – the authors use a 

Taylor expansion, and determine the vegas and deltas, by considering two commodity prices and 

their corresponding standard deviations.  By considering the co-integration of the commodity prices 

they find a negative vega, where the partial derivatives of the spread option value to each one of 
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these four variables is calculated.  In practise this is a serious drawback for univariate methods as 

many hedging and speculation strategies use negative vega as a signal for executing a trade; as 

mentioned the vega is the sensitivity of the option price with respect to a change in the underlying 

volatility.  Another strong incentive for models with the information from all contributing 

commodities, a multivariate model, is that without them, the Greeks are calculated with a huge loss 

in accuracy; see Carmona and Durrleman (2003) for an example.  Additionally, if volatility is to be 

implemented within the stochastic equation the numerical procedure becomes much less tractable - 

in terms of pricing and hedging implications, the accuracy is however a priority.  Authors often 

capture the volatility structure using a GARCH feature if constant volatility is considered too 

unrealistic.  Mahringer and Prokopczuk (2010) describe the issues with the crack spread options 

being of American type and they capture this behaviour by generating a simulation feeding a 

calculation of the optimal stopping time.  The authors simulate 50,000 paths to calculate crack 

spread option prices in a multivariate setting, and it takes in total 2-3 hours for the calculation to 

complete in the bivariate case.  The pricing model has a particular GARCH structure on the 

volatility, and all option prices are estimated using Longstaff and Schwartz (2001).  These studies 

support the case for a multivariate, numerical and tractable model that  not only calculates crack 

spread contract values, but also outputs the Greeks in reasonable time - we leave the Greeks 

calculation for future research.  Dempster and Hong (2000) developed a Fast Fourier transform 

approach that captures stochastic volatility and the jumps for spread options; a very computationally 

intensive calculation.  More recent studies have captured the time varying volatility and co-

integration behaviours of the spread; see Duan and Pliska (2004).  Maturity effects are emphasised 

in Theriault (2007); the Samuelson effect and the volatility effects are important features that any 

model of crack spreads should exhibit.  If we are to include these effects the simulation of futures 

prices for crude oil, heating oil and gasoline should be considered only, as the other prices will 

introduce intractability.  The pricing framework that we are in is one of multiple state factors, 

definite mean reversion, path dependency, and American option features.  Simulation using a 
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multivariate model is the natural method to pursue.  We start by comparing market option prices to 

Kirk’s approximation as it is the most widely applied analytical solution for spread contracts in the 

energy markets, see C. F. Lo (2013); the authors provide a concise derivation of the Kirk formula.  

Li et al. (2008) provide a number of  approximations for the case of multiple prices where 

underlying commodities are distributed jointly normal.  They provide analytical formulas for the 

case of a Geometric Brownian Motion and a log Ornstein-Uhlenbeck process – these formulas are 

fast to calculate and consequently enable the authors to produce the Greeks.  Lower and upper 

bounds are shown in Carmona and Durrleman (2005); there is an assumption of Geometric 

Brownian Motion, but the lower and upper bounds calculated are useful, and as described by the 

authors, studies including baskets of underlyings are underdeveloped generally.  Trading a spread 

option is said to be equivalent to trading the correlation between the two prices.  Kirk (1995), 

Mbanefo (1997) and Alexander and Scourse (2004), all describe the correlation of the prices in a 

spread option calculation as being highly volatile, hence a constant correlation would seem 

inappropriate; we use a constant correlation despite the issues as the options calculated are for no 

longer than monthly periods.  In the next section we introduce the available contracts for futures 

trading on the crack spread.   

 

4.1.6. Types of crack spread options listed on the NYMEX exchange 

 

In table 4.3 below, common crack spread related contracts on the NYMEX exchange are detailed; 

contracts for spreads on location, calendar and production are common.  There is a tremendous 

selection of products on NYMEX; most are heavily traded with volumes in the 100s and 1000s. 
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(Table 4.3: Crack spread options listed on the NYMEX exchange*There are days when open 

interest and volumes on all of these products is extremely high)(Data accessed on 

05/03/2013) 

Clearing Globex Floor ClearPort Product 
Name 

Product 
Group Subgroup Category Sub-

Category 
Cleared 
As Exchange Volume Open 

Interest 

RM ARE RM RM 
RBOB 
Gasoline 
Crack Spread 
Futures 

Energy 
Refined 
Products 

North 
American 

Crack 
Spreads 

Futures NYMEX 0 2,259 

HK AHL HK HK 
Heating Oil 
Crack Spread 
Futures 

Energy 
Refined 
Products 

North 
American 

Crack 
Spreads 

Futures NYMEX 210 10,226 

CHY CHY CH CH 
Heating Oil 
Crack Spread 
Options 

Energy 
Refined 
Products 

North 
American 

Crack 
Spreads 

Options NYMEX 0 0 

3U A3U 3U 3U 

European 
Gasoil Brent 
Crack Spread 
Average 
Price Option 

Energy 
Refined 
Products 

European 
Crack 
Spreads 

Options NYMEX 0 350 

1ND 1NA 1ND 1ND 

Singapore 
Mogas 92 
Unleaded 
(Platts) 
Dubai 
(Platts) Crack 
Spread 
Futures 

Energy 
Refined 
Products 

Asian 
Crack 
Spreads 

Futures NYMEX 0 0 

SFC SFC SFC SFC Singapore 
Fuel Oil 180  

Energy 
Refined 
Products 

Asian 
Crack 
Spreads 

Futures NYMEX 0 591 

FO FO FO FO 

3.5% Fuel 
Oil Barges 
FOB Rdam 
(Platts) Crack 
Spread 
Futures 

Energy 
Refined 
Products 

European 
Crack 
Spreads 

Futures NYMEX 608 41,960 

3Y A3Y 3Y 3Y 

RBOB 
Gasoline 
Crack Spread 
Average 
Price Options 

Energy 
Refined 
Products 

North 
American 

Spreads Options NYMEX 0 0 

3W A3W 3W 3W 
Heating Oil 
Crack Spread 
Average 
Price Options 

Energy 
Refined 
Products 

North 
American 

Spreads Options NYMEX 0 216 

 

 

The contract choice above will be significant in representing the valuation as a set of underlying 

values, but even more vital to the consolidated refinery value process is the correlation.  Ideally, due 

to the commodity prices affecting the refinery’s profits in a dynamic and complex way, the 

correlation structure should be integrated into the model; we omit a time varying correlation 

component for the sake of computational ease.  The option to adjust production over very short time 
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periods is captured by the real option approach, and the grid of the time horizon should fully reflect 

the corresponding coarseness – here we assume decision variables cover monthly periods, but the 

optionality available to the refinery owner is of daily granularity.  In practise when long term 

contracts have to be met the refiner does not always have this level of flexibility as a certain level of 

production will have already been committed.  In that case, the long term contract can be thought of 

as a hedging instrument,  we leave this further analyses for others.   

 
 

Valuing the refinery 

 

4.2.1. Data  

 
The NYMEX heating oil and gasoline crack spread options are the most liquid exchange traded 

crack spread options on the market.  We collect end of day prices for gasoline and heating oil crack 

spread contracts directly from NYMEX; prices for these options are recorded at the end of the open-

outcry session of each trading day.  Whereas, trading of the underlying futures contracts is generally 

on an electronic platform.  The sample of gasoline and heating oil crack spread call options used in 

our valuation comprises price observations covering the period from December 2000 to December 

2012. 

 We apply one main exclusion criteria to the data where we considered option contracts 

which were exactly one month in maturity length.  We also excluded all options with prices below 

$0.375 to reduce the price discreteness related biases.  In total we ended up with 10,500 gasoline 

crack spread options and 11,600 heating oil crack spread option prices.  The average price of all 

gasoline crack spread options was $2.37 and $2.41 for heating oil crack spread options.   
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(Table 4.4: Sample crack spread option prices) 

This table provides the summary statistics of NYMEX crack spread option prices over the period Dec 2000 to Dec 2012. 
 

 No. of OTM 
price 
observations 

Average 
price of 
end of 
day OTM 
option 
prices 

No. of ATM 
price 
observations 

Average 
price of 
end of 
day 
ATM 
option 
prices 

No. of ITM 
price 
observations 

Average 
price of 
end of 
day ITM 
option 
prices 

HOO(1) 2285 2.16 660 2.39 1460 2.87 
GAO(1) 1975 2.03 672 2.21 1290 2.38 

 

 

To obtain the correct option price representing the refiner’s optionality we use a calculation to 

replicate the 3-2-1 contract by always aggregating two gasoline crack spread options and one 

heating oil crack spread option; this addition represents an approximation of the total crack spread 

option value for the refinery.  In table 4.5 below are the results of the pricing of an RBOB gasoline 

option from NYMEX across all methods: 

 

(Table 4.5: Gasoline Crack Spread Option prices) 

Underlying: Gasoline RBOB Crack Spread Futures, Date: 29/05/2014, NYMEX quoted price = 
$3.946 

 
Strikes K NYMEX KI BA AV HW (N=40) 

S.E. 0.04 

SS (N=40) 

S.E. 0.03 

15.50 3.94 7.89 7.06 5.18 5.12 5.16 

15.75 3.69 7.67 7.99 3.93 3.87 3.81 

16.00 3.44 7.56 7.76 3.79 3.66 3.62 

16.25 3.19 7.43 7.57 3.49 3.53 3.59 

16.50 2.69 6.94 6.33 2.92 2.82 2.87 

16.75 2.44 6.42 6.97 2.79 2.66 2.77 

17.00 2.19 6.19 6.64 2.48 2.36 2.43 

17.25 1.94 5.35 5.87 2.29 2.09 2.14 

17.50 1.69 5.06 5.46 1.96 1.88 1.97 
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We now describe the model to value the refinery with crack spread option price data. 

 
 

4.2.2. A strip of European crack spread options 

 

Shown in the below formula is the value of the refinery at time 0: the discounted sum of the crack 

spread options over the lifetime of the oil refinery complex (the discount factors are contained 

within the value C of the option itself).  The Linear Program (LP) valuation of the refinery complex 

at period zero is given by, V0
LP, based on the information we have at date zero (ζ0).  It is equal to 

the maximum profit, revenue minus costs, or saleable products, heating oil volume (q2) and gasoline 

volume (q3) minus crude volume (q1) – all in units of tons, over the time horizon (T) in years.  The 

crack spread option Ci,j represents this profit, where the, i, is the  start date of the option and the, j, 

is the maturity of the option.  Each option is assumed European and has a maturity of one month; 

we collect heating oil and gasoline real option prices from NYMEX to represent this value.  The 

total hydrocarbon liquid within the refinery complex at any time is L, and this acts as the state 

variable in an equivalent final Bellman equation.  As explained in detail in chapter three, we 

represent the refinery as a strip of daily crack spread options, where the decision variables are the 

inputs and outputs of the refinery: q1, q2, q3, and L, and the operational costs are assumed constant 

as found in chapter two at $2.29 per barrel.  The valuation formula is: 

 

  , ,11
(0) (0)

N
N j

i i ji
j i

V C q
=

>

= ∑ ∑          (3) 

 
 
 

The V(0) is the value of the refinery asset at date zero, where, the sum over i=1 to N periods, where 

the qi,j is the notional amount of crude refined per period in tons, i is the starting period, j is the sale 

date of the refined products (assuming instant sales after being refined), and C(0) is the option value 
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at the date of the valuation today.  We include the above equation (3) in the Linear Program to value 

the refinery by replacing the option price, C(0), with different approximations where the goal is to 

compare existing analytical and numerical approaches to our numerical simulation.  If the variable 

costs of refining were zero, and the refined product set considered as one price, we would have an 

option to exchange one commodity for another – for which there is a closed form formula derived 

by Margrabe (1978), unfortunately with a spread option and a non-zero strike or variable costs, no 

such analytical shortcut exists.  The oil refinery i-j crack spread, crude purchased on date i and 

refined outputs sold on date j, has the following payoff for injecting one unit of crude oil at time Ti, 

using the interest rate curve of the local region for δ, extracting refined products at time Tj, and the ζ 

is the information available at date 0: 

 
3

, , 1, , 0
2

(0) [max(0, & ) | ]j i j i

i z i j i i i

z

C E F F O Mδ δ ζ−

=

= − −∑      (4) 

 
 
 

The time, T0, value of such an option is the difference between the sum of refined product futures 

prices, Fi,j and the crude spot price, Si = Fi,i, adjusted for the costs of refining associated with one 

barrel of crude, operational and management costs, O & M, – in this implementation all units are 

converted to tons, with information at date zero, ζ0.   

The model we introduce in this chapter, works with a set of crack spread options,  the model 

assumes the production choice volumes from a ton of crude as defined in section 2.4 – more simply, 

we no longer have seven volume parameters.  Purchasing of crude and sales of refining products are 

associated with maturities 0, 1,…., N-2, and 1,2,…., N-1, respectively.  The aim in this model is to, 

at time t = 0, build a set of refinery spread options, and calculate the decision variables within each 

period; giving an optimal solution to a linear program, and consequently the output value.  The 

decision variables in this linear program are the notional amounts of crude, and the inventory level 

associated with refining over a given period; which indirectly describes the volumes of gasoline and 

heating oil.  The linear program we investigate is subject to the same physical and flow constraints 
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defined in the previous chapter; the value at date 0 of the set of crack spread options is: 0 0( )LPV ζ , 

where as in the previous chapter, L is the total hydrocarbon liquid held at the refinery – the 

inventory level, q is the volume of the product in question here for products 1-3 and, C is the option 

price on each day.  We now define the mathematical requirements. 

 

4.2.3. The Linear program valuation construction 

 

In equation (5) the Linear program (LP) is defined at date 0 with information, ζ, where the refinery 

owner wants to maximise over the decision variable, q, volume of crude oil and the total petroleum 

liquid L, until maturity of the refinery T - as already explained, throughout this chapter we replace 

the option price C in equation (5) below with a value from one of the five methods: BA, KI, AV, 

SS, CSORV or the NYMEX option real prices: 

 

 

,
0 0 0 0 , ,1

,
[0,..., ] [1,..., ],

( ) : max ( )

                 

LP i j

i j
q L

i T j T i j

V C qζ ζ
∈ ∈ <

= ∑ ∑
        (5)   

This objective function is subject to the same physical and mass balance constraints defined in the 

previous chapter.  These are not repeated as they are not the important focus of this chapter.  In 

equation (6) below, we define the non-negativity constraints for crude qi,j,1 and heating oil qi,j,2 and 

gasoline qi,j,3, including the upper volumetric limitation at the refinery, defined as Q, where the 

amount of liquid bought Qbuy or sold Qsell, has an upper limit at the refinery complex: 

 

s.t. 0 ≤ qi,j,1 ≤ Qi
buy,    0 ≤ qi,j,z ≤ Qij

sell,       i ≥ 1,    i < j, 2 ≤ z ≤ 3  (6)  

 

In chapter three seven variables represented the saleable products, here we use three, and they all 

aggregate at any one time to equal the total hydrocarbon liquid present at the refinery as Li, where 

L0 is on date zero and Linit is a parameter entered into our program to allow a minimum level of 
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hydrocarbon liquid on the start date: 

 

L0 =Linit,    Li= Li-1 + qi,j,1 - 
3

, ,
2

i j z

z

q
=
∑ ,    1 ≤ i ≤ T,     2 ≤ z ≤ 3 (7) 

 

In equation (8) below we state the lower and upper bounds on the hydrocarbon liquid at any  time in 

the refinery, this is input into the LP, it is equal to the current total liquid present plus the crude 

bought minus the gasoline and heating oil sold on each day, i, and the end of horizon liquid can also 

be set in the program – analyses of changing this parameter is not central to our problem: 

 

Lmin ≤ Li ≤ Lmax             1,..., ,                          T endi T L L∀ = ≥  ,      (8) 

 

 [All refinery plant constraints defined as in chapter 3 section 3.2.4.]            (9) 

 

The objective function in (5) is the value of the portfolio of spread options over the refinery’s 

lifetime, in contrast to the previous chapter the objective function is altered, although the remaining 

linear program remains unedited.  The profit is not explicitly defined in the objective function as 

seven outputs minus crude as the input – value is instead emulated within the option contract 

approximation; by crude oil, heating oil and RBOB Gasoline, hence the inventory balance has only 

three liquid commodities instead of seven - representative of the Gulf Coast contract.  The 

constraints sets (7) and (8) express inventory balance and boundary conditions, respectively.  

Constraint sets in (6) and (9) enforce capacity and mass balance constraints respectively.  Constraint 

(8) also poses non-negativity conditions on the decision variables, and the end of horizon inventory 

level.  There are no closed form formulae for the spread option values within the objective function 

shown in (5), they can however be computed numerically, or they can be calculated using 

approximate closed form formulae.  We compare five different methods to obtain the solution to 

(5)-(9) above - all approaches approximate the crack spread option values before optimising the LP.  

We assume that these are European call options on the historical crack spread value minus a strike 
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for refining costs – the five methods considered are: (a) Bachelier’s method (BA) (b) Kirk’s 

approximation (1995) (KI) (c) Alexander and Vankatramanan’s (2011) approach (AV), (d) 

Schwartz and Smith (2000) two factor model on the commodity price simulation, and finally (e) our 

reduced trinomial tree method for just three commodity products: WTI crude, RBOB gasoline and 

heating oil, required in formula (1) – we call this the CSORV method.  This tree valuation converges 

to the true solution as is shown in Hull (2003) for option valuation under assumptions of risk 

neutrality and mean reversion; acceptable levels of convergence require at least 100 simulations – 

we apply 10,000.  Real options should be approximated using European options as we can only 

exercise the physical option when we physically hold the underlying commodities53 - despite this, if 

there were American option features present, trinomial trees would provide a framework in which 

to capture them. 

When modelling spreads, the majority of the literature regards the underlying prices as log-

normal in distribution; this is a result of most studies being applied to equity prices.  The positivity 

restriction on equity indices does not apply to the commodity spreads themselves, and as one can 

see in figure 2 of the crack spread calculation, both positive and negative values can and do occur.  

A number of articles propose arithmetic Brownian motions for the dynamics, this permits closed 

form formulae for options on the spread option contract, see Shimko (1991) for the details.  We 

begin with the classical setting - there is a riskless bank account with constant interest rate r, the 

arbitrage-free model contains two commodity prices at time t denoted by, S1(t) and S2(t).  We 

assume that under the risk neutral measure the joint dynamics represent any stochastic differential 

equations (SDE) that are Gaussian in distribution, where their SDEs are driven by volatilities σ1 and 

σ2 respectively, with W1 and W2 as two Brownian motions and constant correlation ρ.  In the case 

of a spread option on two commodity spot prices, the instantaneous convenience yields do not 

appear in the equations.  To reiterate, we know that a European spread option value on two 

underlying prices, with spot prices S1 and S2 and strike price K, has a payoff at maturity of: 

                                                 
53 Raymond Cheng and Walt Tyrrell, “Using options theory for commodity spreads”, EnergyRisk, October, 2006. 
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CT = max[S2T - S1T – K, 0]       (10) 

 

We use the following notation for the formulae required to value crack spreads, where the 

parameters in the model: α, β, γ, δ and κ are defined as follows: 

 

2 2 1 1(0) ,       = ,       =S (0) ,       =

     =Ke

rT rT

rT

S e T e T

and

α β σ γ δ σ

κ

− −

−

=

     (11) 

 

Where, r is a constant interest rate, T is the time to maturity, S1(0) and S2(0) the spot prices of two 

commodities at date 0, σ1 and σ2 their volatilities and, K the strike price, here representing the costs 

of refining a barrel of crude.  We next introduce the basic methodology created by Bachelier in his 

PhD thesis from 1900 and apply it to obtain crack spread option prices; see Wilcox (1990) for a 

thorough description. 

 

4.2.4. Crack spread option pricing methods  

 

Poitras (1998) discusses arithmetic Brownian motions when pricing spread options - simplifying to this level enables 
analytical pricing but numerical approaches are found to be more accurate.  An arithmetic Brownian motion approach 
follows. 

 

4.2.4.1 The Bachelier method applied to the crack spread option 

 
According to Bachelier we can approximate the spread, S, by the following, where the other 

parameters are as above: 

 

2 2
1 2/ 2 / 2S SS e eβ β δ δα γ− −= −         (12) 
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For the underlying to match the first two moments, the mean and variance, we need: 

 

 ( { }, var{ })S N E S S∼          (13) 

 

Standard computations give these moments as: 

 

 { }E S α γ= −          (14)  

 
2 22 2var{ } ( 1) 2 ( 1) ( 1)S e e eβ ρβδ δα αγ γ= − − − + −      (15) 

 

If the value of the crack spread at the terminal date is assumed to have a Gaussian distribution, then 

Bachelier’s European call option price approximation is the following, assuming continuous 

trading, perfect markets, and absence of arbitrage we have, where all symbols are defined above and 

the cumulative and density functions of a normal distribution are utilised: 

 

 ( ) ( ) ( )B B

B B
C

α γ κ α γ κ
α γ κ σ ϕ

σ σ
− − − −

= − − Φ +      (16) 

 

Where the Bachelier volatility is: 

 

 
2 22 2( 1) 2 ( 1) ( 1)B e e eβ ρβδ δσ α αγ γ= − − − + −      (17) 

 

It is well known that the Bachelier method gives poor results for spread options when either 

correlation is close to 1 or -1, or the strike is near 0.   

The correlation for most of the refined products is very high as already discussed, to 

improve upon this, we also carry out the optimisation using the Kirk approximation of the spread, 



244   

see Lo (2013) for an analysis of equation (17) shown below, and an analysis of why it is still very 

relevant within energy trading today. 

 

 

4.2.4.2. Kirk’s Approximation applied to the crack spread option 

 

The Kirk method is the market standard for commodity and energy related spread option contracts; 

under particular circumstances it is accurate and remains efficient; for a European call option price 

we have the following: 

 

( ) ( )
( ) ( ) ( )

2 2

K K
K

K K

In In

C

α α
σ σγ κ γ κα γ κ

σ σ
+ +

= Φ + − + Φ −     (18) 

 

Where the Kirk volatility is: 

 

 

2

2 22K γ γ
σ β ρβδ δ

γ κ γ κ
 

= − +  + + 
      (19) 

 

See Kirk (1995) for the derivation - it has been found in numerous studies that the Kirk call option 

approximation price on a spread is very accurate in respect to pricing, but it suffers when 

calculating the Greeks required for hedging purposes or when the volatility is high enough – in this 

valuation model we are more interested in the pricing capabilities, see Carmona and Durrelman 

(2003) for an alternative method when hedging is required.  It also suffers when the strike is high, 

even when the option is at the money (option underlying price equals the strike price); a much more 

consistent price under these circumstances is given by AV, which works well across all strikes and 

is shows more stability even under various maturity contracts.  The authors sum the prices of two 
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compound exchange options, and then apply Margrabe (1978) producing an analytical solution to 

the exchange of two products.  In terms of considering an accurate representation of the spread over 

many significant considerations, the model of Alexander and Scourse (2004) captures observed 

implied volatility skews, market correlation frowns and is consistent and accurate across all strikes; 

however AV11's model is more tractable to implement. 

 In the figure 4.4 below we compare the calculated crack-spread over the relevant period 

using equation (1), and the option price using the Kirk approximation in equation (17), to show the 

option price relationship with its underlying - the crack spread is the underlying of this option price, 

but this shows the leverage available to a refinery owner who wishes to manage the crack spread 

risk:   

 

 

 

(Figure 4.4: Calculated crack spread prices, versus Kirk approx. of the option value $/barrel, 

strike at $2.44 per barrel) 

 

Although Kirk’s model is applied on most commodity trade floors, in figure 4.4 above it 

emphasises the information contained in the option price - it is highly correlated to the underlying.  

In figure 4.5 the difference between the BA and KI methods in calculating the value of the crack 
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spread option is portrayed.  This difference would be more pronounced if say, the maturity of the 

option were over a longer period of time; we are however, always managing a daily option with one 

month to maturity.  This is an absolute error; it is significant when trading in huge volumes as is 

practised on commodity floors – for a single refinery valuation this error is less evident. 

 

 

 

 

 

 

(Figure 4.5: Calculated option price difference between Bachelier and Kirk $/barrel) 

 

4.2.4.3. Alexander and Venkatramanan’s approximation  

 

The authors discuss the pricing and hedging of European spread options on the spread of two 

underlying log normal prices using a new analytical approximation.  They present the prices and the 

behaviour of the Greeks of the options with formulae that utilise compounded exchange options; a 

unique approach.  They show that market implied volatility frowns are captured more accurately 

than Kirk’s, and option values are consistent across all strikes.  According to the authors, the risk 
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neutral price of a European spread option may be expressed as the sum of risk neutral prices of two 

compounded exchange options: 

 

( )
1 2 1 2e ( {[ [ ]] } {[ [ ]] }t r T t

T T T TC E w U U E w V V− − + += − + −ℚ ℚ    (20) 

 

Where U1T and V1T are pay-offs to European call and put options on commodity price number 1; 

and U2T and V2T are pay-offs to European call and put options on commodity price number 2, 

respectively.  The general framework, where the above call options follow Black Scholes is applied, 

see the author’s derivation on page 9.  We apply these formulas to compare our numerical method; 

we leave the Greek risk numbers analysis for further work. 

 We compare the five approaches chosen by altering the objective function within the LP 

described in (5) – (9); only the value of the crack spread option price is altered within each 

simulation, C(0) - the rest of the LP is identical.  For the CSORV approach, the linear program 

developed above, is solved by representing the option values on a discretised trinomial tree, but 

with a reduced dimensional set.  Instead of calculating each commodity price, we only simulate 

those that are required to calculate the 3-2-1 Gulf Coast crack spread, i.e. gasoline, heating oil and 

crude oil – whilst considering the correlation structure and all remaining constraints.  At each node 

on the tree, there are three random prices; the gasoline, heating oil and crude spot prices at each 

time period i.  We obtain the forward prices ahead, by simply using the corresponding period’s 

vector of prices over the corresponding probabilities.  The values, of the crack spread options in the 

above objective function, are elicited through evaluating equation (1) at each time period on the 

tree, and the intrinsic value of the option on the same node using, the difference in the maximum of 

the spread and the discounted value of the next periods potential spread.  We describe this 

calculation in more detail in the next section.     

 Both the SS and CSORV calculate daily crack spread option prices via trinomial trees; the 

underlying future prices are first calibrated and then consolidated to obtain a final daily crack 
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spread daily price.  Finally, for each day a forty step trinomial tree is simulated forwards and then 

dynamic programming is applied to find the crack spread option price, a minimum of 40 steps is 

required to converge on actual NYMEX prices.  We name these daily forty step trees, sub-trees and 

we describe these calibrations in the next section and in the appendix. 

 

 

 

4.2.4.4. Schwartz and Smith(2000) estimation applied to the crack spread 

option 

 

We build and calibrate the Schwartz and Smith two factor model on the crack spread by calibrating 

it to the commodities that constitute the 3-2-1 Gulf Coast contract.  This is calculated using EIA 

future price data over the ten years studied in this thesis; this is similar to the calibration we carry 

out in the next section with the Hull & White two factor model.  We also use the crack spread 

option data to imply the volatility over the time horizon; the results of this are displayed in the 

appendix.  

 Allow St to be the commodity price at time t: 

 

 In(St) = ξt + χt         (21) 

 

Where ξt is the long term equilibrium level and χt is the short term movement from the equilibrium 

price.  The long term variable is modelled as a Brownian motion with a drift of µξ and volatility σξ : 

 

 dξt = µξ dt + σξ dzξ         (22) 
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In the short term the model applies a mean reversion variable, where the mean-reversion coefficient 

is κ and the volatility is σχ : 

 

 dχt = -κ χt dt + σχ dzχ         (23) 

 

where the dzχ and the dzξ are correlated standard Brownian motion movements; where dzξ dzχ= 

ρξχdt.  Due to the valuation of the refinery being a risk-neutral one the dynamics of the commodities 

must also be.  Hence, the equations for the two factor price processes become: 

 

 dχt = (-κ χt - λ χ)dt + σχ dz*χ                   (24) 

 

 dξt = (µξ - λ ξ )dt + σξ dz*ξ        (25) 

 

Where here the λ ξ and λ χ are risk premiums; here the short term process reverts to -λχ/ κ instead of 

zero; it now represents the real commodity process.   

 We discretise the stochastic processes onto a trinomial tree and calculate the crack spread at 

each node by applying a forty step simulation.  Having the final consolidated crack spread on one 

tree means we can calculate the option price using dynamic programming.  This method is mirrored 

in the next section with the Hull & White two factor model once the prices for the crack spread are 

calculated. 

 

4.2.5. Hull and White Two factor model 

 

Extending our one factor model we describe the behaviour of the three underlying spot price 

processes by a new two factor model – with the goal of discretising them onto trinomial trees.  The 

derivation and calibration can be found in the appendix; the two-factor Hull & White model is: 
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  dSt = (θt + Ut – aSt)dt + σ1dW1      (26) 

  dUt = -bUtdt + σ2dW2       (27) 

  ρdt = dW1dW2        (28) 

 

Despite the individual processes being able to go negative in this model, we regard this as irrelevant in our 

calculation as we wish to value the spread which can become negative.  The spot price process of the 

commodity reverts to a long-term rate that includes the stochastic process, Ut.  The volatility of the spot price 

process and the mean reversion component, Ut, are σ1 and σ2, respectively.  There are two mean reversion 

coefficients: a is the short-term mean reversion speed and b is the long-term mean reversion speed.  When a 

is high and b is low, this model produces a forward curve where short term prices are more volatile than 

long-term prices, and vice versa.  Despite the additional computational complexity, the empirical evidence 

does support the need for additional dimensions of the forward curve shifts represented by two factor 

models.  Principal components analysis shows that 90% of the price changes can be explained by parallel 

shifts, yet changes in the slope of forward curve are also significant.  Chantziara et al. (2008) describe the 

difficulties of forecasting in the oil market applying a PCA analysis to crude oil, gasoline and heating oil 

futures.  Their first three component factors capture 93% of the crude oil structure supporting the need for 

not only parallel but slope shifts.  Below we show a sample of prices for each commodity with the two factor 

model.  The final step to obtain the option prices is to consolidate the commodities onto one final trinomial 

tree by calculating the crack spread and dynamic programming is then applied to obtain the option prices. 
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(Figure 4.6: Crude oil trinomial price series $/barrel) 

 

 
 

 

 

 

 

 

(Figure 4.7: Gasoline trinomial price series $/Gallon) 
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(Figure 4.8: Heating oil trinomial price series $/Gallon) 

 
In appendix 3.0 we depict the different forward curves in time showing the one factor model 

from chapter three, and the both of the two factor models calibrated here: SS and H&W.  It is clear 

that the one factor model cannot capture the term structure as accurately as the two factor models 

can, which are both very close to each other.  Practitioners of pricing are unlikely to use a model 

that does not fit the initial forward curve, yet for valuation purposes this is less significant. 

Table 4.6 below depicts all option model price errors against the actual NYMEX option 

prices.  Our CSORV model does very well in competing with the more established spread formulae 

and is very effective across all error measures. 

(Table 4.6: European call crack spread option price errors) 

 
Model  MPE MAPE RRMSE 

 
Heating Oil crack spread options 
 
Kirk -25.75% 59.64% 51.13% 
Bachelier -25.46% 58.06% 50.45% 
Alexander -4.32% 18.84% 19.91% 
Schwartz -4.66% 19.12% 21.34% 
CSORV -4.26% 18.63% 19.91% 
 
Gasoline Oil crack spread options 
 
Kirk -26.74% 52.89% 52.27% 
Bachelier -26.06% 52.05% 52.43% 
Alexander -4.48% 19.30% 21.10% 
Schwartz -5.20% 19.94% 21.38% 
CSORV -4.41% 19.09% 21.08% 
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In section 3., we state the solving time for each methodology and the final static refinery valuation 

at date 0. 

4.3. The refinery valuation results
54

 

 
 
 

Static linear 

program valuation 

approach 

Time to solve on a 

dual core i5 

processor (seconds) 

Oil Refinery 

Valuation 

(million $) 
Kirk’s Approx. (KI) 0.606 634 
Bachelier’s method 

(BA) 
0.651 761 

 Alexander and 
Venkatramanan  

(AV) 

 
0.764 

 
753 

 
Schwartz & Smith 

(SS) 

 
3.39 

 
758 

(2.96) 
 

CSORV. (100,000 
simulations) 

 
3.29 

 
 729 

(1.53) 
Actual NYMEX Call 

option Spread 
Values* 

 
0.469 

 
739 

 

(Table 4.7: Oil refinery valuation methods with 100,000 simulations, values in million $.  Standard error 

in valuation in brackets.* NYMEX call crack spread option prices over ten years) 

 
 

After collecting over ten years worth of data, we assume that the 3-2-1 crack spread option price is 

represented by equation (4); equivalent to approximating the refinery option spread value as: Ci,j.  

Solving the above LP using GAMS, choosing ILOG CPLEX optimiser, we obtain a value of $729 

million for the refinery.  It is slower than the analytical methods, but closer to the real option price 

data, yet it remains fast in comparison to a complete numerical solution as described in chapter 

three.  Shown in table 4.7 is a comparison of the various valuations – Bachelier’s method is higher 

                                                 
54 The details of the GAMS Linear programming including analysis are given in chapter three 
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than Kirk’s as it is essentially a one factor model trying to directly estimate the difference,  F2(T) – 

F1(T), as such it cannot capture the structure of the actual spread’s movement completely.  

Alexander’s is higher than Kirk’s and this is due to the volatility structure being more accurately 

depicted.  Our numerical approximation is higher than Kirk’s, but lower than AV's, SS's and BA's 

as it captures more mean reversion than the other approaches possibly can with the assumptions of 

the underlying’s behaviour – assuming normality or another process that is without mean reversion 

will have drawbacks on accuracy.   

The above numerical approach, is however static: we utilise the information available today, 

0ζ , to construct a solution for the entire lifetime of the oil refinery.  Consequently, leveraging the 

approach described in chapter three, section 5.5., we next re-optimise the LP model, and solve 

daily, with the new information that becomes available – until maturity.   

 

 4.3.1. The Updated linear program valuation results applied to the 

refinery55 

 

As in the updated optimisation procedure described in chapter three, section 5.5., a linear program 

with new information, kζ ,  becoming available at each new date: k, equations (5)-(9) now becomes: 

 

,
, ,1

,
[ ,..., ] [ ,..., ],

( ) : max ( )

                 

LP i j

k k k k i j
q L

i k T j k T i j

V C qζ ζ
∈ ∈ <

= ∑ ∑
       (29) 

s.t. 0 ≤ qi,j,1 ≤ Qi
buy,      0 ≤ qi,j

z ≤ Qij
sell,       i ≥ 1,   i < j,   2 ≤ z ≤ 3  (30)   

       

L0 =Linit,   Li= Li-1 + qi,j,1 - 
7

,

2

j z

i

z

q
=
∑ ,     k ≤ i ≤ T,    2 ≤ z ≤ 3 (31) 

 

Lmin ≤ Li ≤ Lmax             ,..., ,                          T endi k T L L∀ = ≥  ,     (32) 

                                                 
55 The details of the GAMS Linear programming, including analysis, are given in chapter three 
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 [All refinery plant constraints defined in chapter 3 section 3.2.4.]    (33) 

The LP approach in this section can only be valid if the refinery is in a market of liquid crack spread 

contracts, which is certainly not the case for the Vadinar refinery in Gujarat. 

 
 
 

 
 

Updated linear 

program valuation 

approach 

Time to solve on a 

dual core i5 

processor (seconds) 

Oil Refinery 

Valuation 

(million $) 
Kirk’s Approx. (KI) 256 764 
Bachelier’s method 

(BA) 
302 863 

Alexander and 
Venkatramanan (AV) 

461 853 

Schwartz & Smith 
(SS) 

(100,000 simulations) 

1,397 859 
(7.94) 

CSORV 
 (100,000 simulations) 

1,432 787 
(4.67) 

Actual NYMEX Call 
option spread values*   

270 817 

 

(Table 4.8: All methods with an updated oil refinery valuation, values in million $ Standard errors of MC 

in brackets.   *NYMEX call option crack spread prices) 

 

Below in figure 4.9 are the resultant crude volumes in tons over the lifetime of the refinery that 

should be selected to maximise the profit. 

  

 
 
 
 
 

 

 

 



256   

(Figure 4.9: Daily crack spread value ($ per barrel) versus the crude oil purchase decisions 

(tons); (the left y axis is $ per barrel, the right y axis is tons/100).   

 

 
 

 
 
 
The blue line is the left axis, with the crack spread valued in $ per barrel, and the red line is the 

crude volume in tons/100 – the right axis.  The decision process is highly volatile and detailed; 

despite this we can see that when the spread value is high we have a maximum volume decision 

choice, and vice versa, when the spread value is low the volume choice set is low.  It is averaging 

approximately 1000 tons of crude per day, the owner would not in practice follow the optimisation 

program exactly, but would let it inform the general decision process. 

 

 

4.3.2. Analysis  

 
 

In practice, the valuation of the refinery will involve a mixture of positions in each saleable 

commodity using forward/futures contracts to secure future revenues, while allowing for 

maximisation in the next period, and always taking into account the physical and flow constraints.  

$ per barrel tons/100 
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The above formulation in (29)-(33) does not specifically take into account the alternative 

commodity production set prices the refinery owner is exposed to per period, but assumes that the 

simplified Gulf Coast crack spread calculation represents all of the optionality.  The value of trading 

the mean reversion of each commodity price adds to the extrinsic component of the valuation – with 

a more simplified price representation, there is less extrinsic trading value opportunities.  It is 

however very close to the linear program with actual option prices and AV11's analytical 

approximation.  This approach in the full state space defined in chapter three is defined as: 

 

7

1 1
1 1

(0) max [ (0, ( ) ( ) & )]
T

rt

j j i
Q

j i

V e E Q F i Q S i O M−

= =

= − −∑ ∑    (34)   

 

To solve the incipient optimisation problem, several methods were available: 

 

1. The most elementary consists of using the current forward curve to find the optimal 

portfolio of long and short forward contracts attached to the refining period of one 

month for up to 10 years in a legitimate financial valuation.  The corresponding values 

represent the intrinsic value of the refinery facility – this is similar to our static 

approach. 

2. More complex, would be to consider a stochastic optimisation on a tree or through 

Monte Carlo simulations: the quantity of cumulative production denoted by Qt, working 

backwards in time to solve the optimisation problem – enabling the extrinsic value to be 

captured accurately - this is in fact our dynamic approach. 

 

The latter is precisely the method that was developed in chapter 3 to calculate the value of the 

refinery complex; this is an accurate representation of intrinsic and extrinsic value, and the 

uncertainty in the stochastic prices facing the refinery owner.  In table 4.9 we compare all 

methodologies applied to the refinery in this thesis. 
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4.3.3. Comparison of all oil refinery valuation methods  

 

 
Valuation approach Refinery Value 

($ millions) 

DCF Analysis (Static, Chp. 
II) 

570 

Stochastic Dynamic 
Program (Chp. III) 

1001 

Strip of Crack Spread 
Options (Static, Chp. IV) 

(CSORV) 

729 

(Chp. IV) 
Kirk (1995) 

 
764 

(Chp. IV) , Wilcox et al 
(1990) 

Bachelier (1900) 

 
863 

(Chp. IV) 
Alexander and 

Venkatramanan (2011)  

 
853 

(Chp. III) Out of Sample 

Re-optimised Stochastic 

Program (Chp. III) 

1,206 

Re-optimised strip of crack 
spread options 

(CSORV) 
( Chp. IV) 

790 

Re-optimised SDP 
(Chp. III) 

1,131 

 

(Table 4.9:  Alternative valuation approaches to the oil refinery: five methods from chapter 

4, three from chapter 3, one from chapter I and one from chapter II) 

 

 

4.3.4. Refinery valuation research extensions 

  

The issues from this chapter’s valuation arise due to the underlying processes that we have selected; 

in effect to simplify the main difficulty in valuing the refinery, which is the spread option contract 

value itself.  The three commodity prices that are simulated are done so with a two-factor factor 
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model; this could be enhanced by choosing a more complex continuous stochastic equation to 

capture the characteristics that the two-factor model cannot.  For example, it is well known that 

stochastic volatility enables a more accurate price process as does a stochastic interest rate; this is 

due to smiles and skews being more accurately depicted.  Dempster and Hong (2000) use a Fast 

Fourier Transform method to provide very accurate spread option prices, values and computational 

times are given and compared to a Monte Carlo simulation; yet the authors assume that prices are 

GBM, and it is computationally intensive.  The authors also assume that the characteristic function 

of the multiple assets is known, which is feasible in a setting of normal distributions; varied or 

realistic distributions cannot be assessed in this way.  However, a study into the joint characteristic 

function of the three refinery assets in this chapter could be carried out with the goal of finding an 

analytical approximation that is realistic, or consequently where a Fast Fourier Transform or similar 

numerical algorithm could be applied.  Including an extension to capture accurately transaction 

costs would also improve the model for practitioners - where the correlation could be modelled so 

could the transaction costs behaviour whilst the refinery is in operation.  The approximations for the 

crack spread options that represent the refinery optionality are accurate even for a simplified 

valuation as shown by the resulting error calculations versus NYMEX contracts.  We have shown 

that a numerical approximation using a trinomial tree, CSORV, converges, incorporates mean 

reversion, and captures more optionality than Kirk’s and Bachelier’s whilst being within ‘shooting 

distance’ of an explicit method like Alexander’s model, and close to another two factor model 

Schwartz and Smith.  Finally, due to it being closer to actual NYMEX option values it is 

comparable to the more complex model created in chapter three providing a more accurate value for 

the refinery asset than current available approaches.  However, there are a number of avenues that 

have either been left for further research or not considered in this chapter:   

 

1 - Neither financial risk, for instance a constraint on variance, nor robustness measures, for 

example conditional value at risk (CVAR) were included, as the aim was to obtain a tractable and 



260   

efficient value - including the refinery owner’s decision set at each period in time.  This extension 

would not be an extensive undertaking as only the objective function would need to be 

reconstructed with an additional term inserted for risk.  After re-optimising a valuation would be 

viable and include a consideration for a level of risk aversion in the strip of decisions made.  The 

overall analysis shows that this simplification, despite taking longer than the other approaches, is 

more realistic and indicates that there are further directions that can be investigated in terms of 

spread options. 

 

2 - Another extension to this chapter could include a calculation for the Greeks and other risk 

sensitivities associated with the oil refinery; either inserted into the objective function or as a set of 

new constraints - this would interest practitioners as the refining climate has morphed dramatically 

in recent years.  

 

3 - Another angle that could be investigated would be alternative operational research techniques to 

either enhance the computation or enable more dimensions for prices to be captured whilst 

remaining practically viable; interrogating the duals for these optimisations would be an interesting 

avenue, as they provide information about shadow costs and can further the economic 

understanding of the resultant refinery decision set. 

 

4 - Further research may consider the modelling of the dynamics of the entire forward curve for 

valuation purposes, further increasing the state space means this is a tremendously difficult 

optimisation.  An alternative would be to include stochastic volatility into the numerical approach to 

capture the smiles and skews apparent in the market structure.  Other methods like stochastic 

optimal control could be implemented with a similar appreciation for the complexity of decisions 

that need to be executed at each refining period. 
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5 - An approximation with stochastic optimal control, where the problem is perceived from the 

Hamilton Jacobi Bellman point of view would be interesting.  Developing the complexity of the 

model would enhance the accuracy, but would contribute to the computational difficulty; this trade-

off is of the utmost importance when concerning practitioners.   

 

6 - Gibson and Schwartz’s two factor model would be of interest in this framework as would other 

stochastic volatility models.  Computational shortcuts would also provide enhancements, where the 

trinomial tree could be reduced or the recursive function made more efficient.  If a further general 

enhancement were to include regulatory considerations; these could be inserted into the linear 

program constraint equations.  As more regulatory actions are imposed on refiners, the developed 

world refineries will need to simulate the possibilities in methods to enhance profits whilst 

remaining within the environmental constraints – the strategies to maximise profit may well behave 

in a more complex way that only a computer program can replicate.   

 

7 - Another extension could apply to the pricing algorithm of the related 1:1:1 soybean crush spread 

which is one part soybean meal minus one part soybeans or the 2:1:1 cattle crush spread which is 

one part feeder cattle plus one part corn minus two parts live cattle – obtaining data for the options 

would be half the battle; the price series continuous stochastic equations would have to be selected 

and calibrated accordingly. 

 

In chapter three we built the entire state space, and found a numerical structure upon which to make 

the solution tractable, whereas, chapter four has simplified that structure, and focussed in on the 

daily spread value by estimating the option contract’s value within the rigidities already defined.  

This allows a comparison to existing methods for valuing spread options, and gives a resultant 

value that is more accurate than standard spread contract prices within the linear program 

developed. 
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4.4. Conclusion 

 

Valuation of oil refineries has been given extra impetus by the recent glut of crude oil not seen in 30 

years.  There has been a glut since OPEC began an oil price war with the US shale industry in 2014.  

It is in both sides benefit to keep oil pumping despite the political conflicts.  Estimates are common 

in the market of oil reaching prices as low as $30 per barrel in January 2016 – with Iran supporting 

production at this price.  US shale production owners have reduced output to cope with falling 

profits and the IMF has halved 2016 estimates of Saudi Arabian GDP.  Measures will be taken by 

some to stem the fall, but a set price is difficult to forecast.  Global demand from the biggest 

consumers: US, China and Japan has stagnated; prices could be skewed by longer term investment 

funds in commodities – yet we will likely see the federal reserve increasing interest rates in the US, 

the Bank of England with an smaller interest rate increase or the European Central Bank 

introducing a quantitative easing program.  Prices for WTI crude oil have moved dramatically in 

recent years, the closing low of $33.87/bbl on December 18th 2015, and the intraday extreme for 

2008 of $32.40/bbl before the price tripled into 2011 with a high of $114.83/bbl.  Refineries are the 

tool by which these countries control the price of the refined products on the markets - 

understanding their value will enable a clearer picture of how to untangle and decipher the 

stranglehold countries and in turn companies have over crude oil.  Obtaining fair value of these vital 

real assets is a hugely under researched area requiring defragmenting and analyses.  

 In this chapter we have constructed a much simplified linear program which replaces 

chapter three's extensive simulation using trinomial trees with option contract prices.  The choices 

of which methods to use for the spread option prices was evident from the literature as they are the 

de facto methods used in practice and within academia.  The trivial optimisation solves in under 

five minutes and represents a realistic indication of the refinery's financial worth.  The limitations of 

the approach are that a huge amount of the state space has been removed and we are again as in 
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chapter three working within incomplete markets with no single no arbitrage price available.  Yet 

we produce a range of values utilising actual market data and leveraging off current spread option 

pricing methods.  The Linear Program is solved by replacing the crack spread value with a 

European Call Option - as we view the refinery as a strip of options.  We next replaced this option 

value with different values from five industry standard calculations to compare the results.  We find 

that BA, KI and AV are all extremely quick and give solid results but that when compared to actual 

NYMEX option values our CSORV, which is very similar to the SS model, is more accurate - 

despite being much slower. 

 In comparing the oil refinery valuations a number of interesting avenues to examine are 

revealed.  Chapter three provides the most accurate value but takes the longest; hence chapter four's 

CSORV being faster but less accurate.  The stochastic dynamic program in chapter three is 

computationally intensive, but allows an accurate representation of the profit available by altering 

the production set at each period in time.  For example, a financial dispute on fair value could be 

investigated using this method – with accurate data the algorithm can be altered to suit the auditor’s 

needs - alternative refinery types could be examined with our method, risks can be easily 

incorporated and different time horizons considered.  In contrast, the static strip of crack spread 

options valuation in chapter four is computed very quickly, and provides some of the intrinsic value, 

enabling it to be more suitable for a financial trade on the crack spread. 

   

Thesis Conclusion 

 

This thesis is an investigation into the financial value of an illiquid real asset - a topping oil 

refinery.  In the first chapter we provide a background and history of the oil industry; including the 

refineries distinct characteristics and their marketable products.  A statistical analysis, including the 

first four moments and a time series analysis of all seven refinery based petroleum products: crude 
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oil, naphtha, gasoline, heating oil, kerosene, cracker feed and fuel oil, is constructed.  The technical 

and fundamental drivers of the oil refinery downstream market are described and the purpose of the 

research justified - a better statistical knowledge of these refined products enables an owner to make 

decisions that are more accurate and have computer aided support.  Although we collect data for the 

Indian Gujurat refinery, we  also examine refineries like those at Fawley owned by ExxonMobil - 

the complexity of the refinery has an impact on the products it can supply and hence how far afield 

it can sell its outputs.  The history we describe implies that not only is the oil industry a majorly 

significant economic creator, but it will remain so for the foreseeable future.   

 

In the second chapter, we create a discounted cash flow valuation for a typical topping oil refinery.  

Growth rates in the calculation are assumed constant, as are interest rates.  Sales and costs project 

forwards at a rate researched by oil refinery consultants KBH, at this time and accountancy 

calculations for revenue, and EBITDA is verified by an ACA qualified accountant.  By analysing 

this standard and trivial calculation we find that the outputs under-value the refinery massively by 

ignoring the 'optionality' the owner has - for example the refinery can be switched off if required, 

expanded or even production deferred until a later date.  The time value of money means that all 

future revenues and costs can be discounted back to today - capturing the behaviour of the 

petroleum products is vitally important in financially valuing an asset that is underpinned by their 

performance.  To ignore the dynamics or complexities of the time series misses a huge chunk of 

information that a refinery owner of experience will price into his decision making from the very 

beginning of the refining assay.  The value obtained in chapter two assuming very standard taxation 

and accountancy rules is £570 million.  We investigate refineries being bought and sold from the 

financial press to find if there is a relevant comparable number.  Due to so few refineries being 

bought and sold, and the time between when there were transactions being so many years; there was 

no value that could be used as an indication, hence the programs developed in later chapters of the 

thesis. 
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In chapter three, a dynamic programming approach to valuation is sought; where the optimisation is 

carried out on a no arbitrage trinomial tree, that encapsulates the crack spread option value over a 

period of ten years.  This is done by choosing a mean reverting, forward curve capturing, and 

Markov stochastic process for each commodity relevant to the refinery.  We choose to represent the 

seven commodities with Hull & White (1990) single factor processes, this includes the very high 

correlation between each time series, hence are able to be discretised onto a tree that matches the 

means, variances and the constant volatility.  The optimisation along the tree, finds at each node the 

optimal volume of product to buy or sell along with the relevant pricing on that node; the valuation 

is then calculated from the option value at the terminal node, discounted and compared to the 

intrinsic value, recursively backward to the current time period.  The speed of calculation is 

extremely fast due to the program GAMS already having trinomial tree structures built into its 

library; a C++ program can then be used to input all the tree pricing data into the linear program 

required for valuation - the nodal formulation applied in GAMS is unique and enables memoization 

to be utilised in a unique way.  In this LP, we define all relevant capacity and flow constraints, and 

all positivity and hydrocarbon liquid state equations; boundary conditions on the liquid flow are 

necessary to obtain a convergence.  Convergence is achieved in approximately two hours,  despite 

calculating over the huge dimensional state space.  An average valuation of roughly £1131 million 

is found. Because the constraints are all being linear, and the objective function is piecewise and 

convex, GAMS can utilises the CONOPT3 IBM solver to obtain a feasible and unique solution.   

 

Both static and dynamic valuations are provided in chapter three. These rely upon: a risk free curve 

for discounting, the NYMEX data for future commodity prices, and the topping oil refinery linear 

program construction introduced at the beginning of the chapter.  The reasons for choosing this 

construction are described along with the benefits of such a simple linear program that can be 

manipulated in code to support our choice of stochastic equations.  The valuation is carried out 
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under the risk neutral measure, is optimal and unique locally and globally, is carried out under all 

relevant physical and flow constraints, and finally, converges in under two hours for a huge state 

space due to the computational shortcuts and the choices made to construct the model using a nodal 

formulation. 

 

In chapter four, a simplified version of chapter three's LP is created that enables the optionality to 

be captured, not by the simulation of calibrated stochastic equations, but instead relevant crack 

spread option contract prices are injected into the objective function and the speed of valuation is 

cut down to five minutes – enabling a tractable and still realistic calculation to be obtained.  Three 

spread option pricing methods common in practise are utilised within the LP to compare the 

methods to our choice of using the Hull & White two factor model. There is also the advantage that 

there is a large amount of code available for Hull & White methods. We justify the use of the two 

factor model as having a representation of the forward curve, enabling a mean reversion to be 

captured and a more complicated volatility term structure than possible with a one factor model.  

One can also prevent negative values of the commodity prices to occur individually by changing the 

branch structure each time the probability of a negative price may occur.  We find that our method, 

the CSORV method, is extremely accurate and very fast, providing a valuation that is very close to 

actual spread options data from NYMEX – giving a final dynamic valuation of £787 million, 

whereas the actual options within the LP give £817 million. 

 

The difference in the valuation of the refinery compared to the DCF value seem large but this is also 

found by Brandao (2002) and Copeland (2001/2004), where real option approaches dramatically 

increase the potential value of an asset in comparison to static calculations. 

 

The overall analysis and calculations provide an estimation of a refinery's value based on the 

probable prices of its constituent petroleum products over time.  A real option valuation is presented 
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in both chapters three and four, which could be useful to investors, entrepreneurs, speculators and 

refinery hedge traders.  It is in fact very difficult to find a methodology that enables the huge state 

space to be managed -  there are 10 years of monthly periods, along with seven refined products, 

which can move in three different directions.  A stochastic equation that fits appropriately into a 

Hamilton Jacobi Bellman equation and solves analytically could have been selected, yet 

unfortunately there are no relevant equations to capture the complexities required for all seven 

refined products in such a formula.  There are many numerical approaches that can be considered 

on which to build the valuation; from Gaussian quadrature, to binomial trees for the price series. A 

central issue in the thesis is the balance between accuracy and tractability.  For instance, increasing 

the number of stochastic factors in the mean reverting equation in the chapter three program, where 

all seven prices were simulated,  would massively increase the computing time. Hence a one factor 

was chosen in this chapter.  Whereas, in chapter four, using just the crack spread, Gulf Coast 

Contract commodity prices two factor stochastic processes can be included in the valuation, while 

obtaining a value very quickly.  A risk neutral, optimal value is found that can be extended in a 

number of directions in an easy way due to the LP's construction.   

 

The analysis in this thesis opens various interesting research question that may be worth 

investigating.  

 

In this thesis the stochastic processes for prices are given by Hull & White. These have the 

advantage that they are Markov and fit the forward curve. These have the disadvantage that prices 

can go negative, though the code prevents that. There many other possible types of stochastic 

equations for the commodity price series – such as those suggested by Gibson and Schwartz (1990).  

These equations would need to allow for stochastic volatility or included jumps, as the forward 

curve must be included and maintain the Markov property. 
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A different numerical construction could be used to simulate the processes; a  high dimensional 

tree, or another method for dealing with the high-dimensional property of the problem. For instance, 

a manipulation of quadrature that could incorporate complex commodity price dynamics or a multi-

dimensional integration incorporating the relevant dynamics.  There are a variety of additional 

methods that can be used if one assumes the process is Gaussian. 

There may be alternative optimisation procedures than those available in GAMS that are more 

accurate and realistic. They would still need to implement the relevant parts of the solution; the 

commodity prices and the physical/mass balance constraints of the refinery.  

 

The valuation procedures developed in chapters 3 and 4 do not generate the Greeks that would be 

used by the refinery owner who wishes to hedge his/her position. It may be possible using Monte 

Carlo methods to extend the procedure to generate the Greeks.  

 

Other possible extensions could include, transactions costs, taxation and regulatory restrictions (e.g. 

limitations on sulphur emissions) within the LP formulation. The analysis in the thesis has assumed 

risk neutrality in the calculation of the objective function - this could be relaxed. The thesis has 

considered the case of a topping refinery, where the LPs were available, but it could be extended to 

a cracking refinery, were the LPs to be available.  
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APPENDIX 

A.1.1. Calibration of gasoline 

 

One Factor Stochastic Model: Gasoline 

Period : 1/2/2002 to 01/06/2013 

Contracts : F1, F3, F5, F7, F9 

NOBS : 136 

a2   : 0.451   (0.095) 

θ2   : 1.003   (0.046) 

σ2   : 0.4048 (0.105) 

RMSE   :   1.13 

 

(Table A1: The calibration results of the stochastic gasoline one factor model over ten years using 

market prices from NYMEX.  

           

 

A.1.2. Calibration of naphtha 

 

One Factor Stochastic Model: Naphtha 

Period : 1/2/2002 to 01/06/2013 

Contracts : F1, F3, F5, F7, F9 

NOBS : 136 

a3   : 0.0722 (0.055) 

θ3   : 0.8617 (0.046) 

σ3   : 0.4069 (0.025) 

RMSE   :   2.06 

 

(Table A2: The calibration results of the stochastic naphtha one factor model over ten years using 

market prices from NYMEX.  



270   

  

A.1.3. Calibration of heating oil 

 

One Factor Stochastic Model: Heating Oil 

Period : 1/2/2002 to 01/06/2013 

Contracts : F1, F3, F5, F7, F9 

NOBS : 136 

a4   : 0.5200 (0.049) 

θ4   : 0.8417 (0.062) 

σ4   : 0.3775 (0.078) 

RMSE   :   1.87 

 

(Table A3: The calibration results of the stochastic heating oil one factor model over ten years using 

market prices from NYMEX.  

 

A.1.4. Calibration of kerosene 

 

One Factor Stochastic Model: Jet Fuel 

Period : 1/2/2002 to 01/06/2013 

Contracts : F1, F3, F5, F7, F9 

NOBS : 136 

a5   : 0.5968 (0.054) 

θ5   : 0.8183 (0.323) 

σ5   : 0.4408 (0.184) 

RMSE  :   1.64 

 

(Table A4: The calibration results of the stochastic kerosene one factor model over ten years using 

market prices from NYMEX.  
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A.1.5. Calibration of cracker feed 

 

One Factor Stochastic Model: Cracker 

Feed 

Period : 1/2/2002 to 01/06/2013 

Contracts : F1, F3, F5, F7, F9 

NOBS : 136 

a6   : 0.301 (0.135) 

θ6   : 3.093 (0.306) 

σ6   : 0.334 (0.095) 

RMSE   :   2.54 

 

(Table A5: The calibration results of the stochastic cracker feed one factor model over ten years 

using market prices from NYMEX.  

A.1.6. Calibration of diesel 

 

One Factor Stochastic Model: Diesel 

Period : 1/2/2002 to 01/06/2013 

Contracts : F1, F3, F5, F7, F9 

NOBS : 136 

a7  : 0.2095 (0.042) 

θ7   : 0.3270 (0.071) 

σ7   :     0.4069 (0.016) 

RMSE  :   3.64 

 

(Table A6: The calibration results of the Diesel stochastic one factor model over ten years using 

market prices from NYMEX.  
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(Figure A.1. Gasoline Model prices versus Market Futures prices, NYMEX) 
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(Figure A.2 Naphtha model prices versus market residential prices, EIA) 

 

 

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

$
/G

a
llo

n
 r

e
b
a
s
e
d
 F

u
tu

re
 P

ri
c
e
s
 H

O

Implied model prices versus Heating Oil Futures Prices (Jan 2002 - June 2013)

 

 

Estimated Price

Observed Price

 

(Figure A.3 Heating oil model prices versus market futures prices, NYMEX) 
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(Figure A.4. Diesel model prices versus futures market prices, NYMEX) 

 

 

A.2.0. Calibration of Alexander and Venkatramanan (2011) 

We construct and calibrate this model exactly as described by the authors but with different dates on 

their data set.  In the below figure we show the resultant m factor used in the model as a function of 

strike of the crack spread options: 
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(Figure: A.5. m as a function of strike K on the 12/02/2014, for option data from NYMEX) 

 

A.2.1. Calibration of Hull and White two factor stochastic process 

 

After the tree has been constructed for the process x, the spot process S can be defined at S(t) = x(t) 

+ α(t), where α is a deterministic function.  It is calculated by applying the Arrow-Debreu node 

prices and the market price of future prices. 

 We denote by Qi+1, j, k the present value of a commodity that pays 1 if the node (i+1, j , k) is 

reached and zero otherwise.  These are all calculated recursively, knowing αi and Qi, h, 1 for all (h, 

1), by: 

 

  Qi+1, j, k = Σh,l  Qi, h, l qi(h, l, j, k) exp{-( αi + xi, h, l) ∆ti}   (1) 
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Where qi(h, l, j, k) is the probability of moving from (i, h, l) to (i +1, j, k). 

 The αi+1 is found by solving: 

 

  SM (0, ti+2) = Σi,j Qi+1, j,k exp{-( αi+1 + xi+1, j, k) ∆ti+1}    (2) 

i.e. 

  αi+1 = (1/ ∆ti+1)ln[(Σi,j Qi+1, j,k exp{  xi+1, j, k ∆ti+1})/ SM (0, ti+2)] 

   

The initial values for α and Q are: Q0,0,0 = 1 and α0 = -ln(SM(0, t1))/t1. 

 

A.2.2. Trinomial tree construction for Hull and White two factor process 

 

We have already seen how to construct a trinomial tree for a single factor process of the type dx(t) = 

-a x(t)dt + σ(t)dW(t), we now use this technique for the two-factor process that represent the spread. 

 

Firstly, we consider the process x verifying the same equation as S, with θ = 0: 

 

  dx(t) = [U(t) – a x(t)]dt + σ1dW1(t),  x(0) = 0    (3) 

   

  dU(t) = -bU(t)dt + σ2dW2(t),   U(0) = 0    (4) 

 

If we assume that a ≠ b, then the dependence of x on U can be removed by: 

 

  Y = x + (U / b – a )        (5) 

Hence, 

  dY(t) = -aY(t)dt + σ3dW3(t),   Y(0) = 0    (6) 
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  dU(t) = -bU(t)dt + σ2W2(t),  U(0) = 0    (7) 

 

Where 

  σ3
2 = σ1

2 + σ2
2/(b – a)2 + 2ρσ1σ2/(b – a)     (8) 

 

And W3 is a Brownian motion.  The correlation between W2 and W3 is: 

 

   ρuy = [ρσ1+σ2/(b – a)]/ σ3       (9) 

 

The first step is to construct a tree for x with two trinomial trees, for both processes U and Y as 

above.  Next we use the formula: 

 

  x = Y – U / (b – a)        (10) 

 

The tree obtained for x will be a two-dimensional trinomial tree, where every node will have nine 

branches, a combination of branches U and Y.  

 At time ti, we have nodes Y(i, h) and U(i,1), hence the node for x is x(i,h,1).  We define j the 

index of the middle branch in the tree for Y, emanating from y(i,h) with corresponding probabilities 

pu, pm, pd, and define k the index of the middle branch in the tree of U, emanating from U(i, 1), 

with probabilities qu, qm, qd.  Next starting from x(i, h,1), the process moves to nine branches x(i, j 

+ ϵ1, k + ϵ2), where ϵ1 and ϵ2 take values 0, 1 or -1. Finally, the probabilities associated with each 

node of the nine branches is required.  When there is zero correlation between U and Y (i.e. ρuy = 

0), the matrix of probabilities for the nine branches is simply: 
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 U-Move 
 Down Middle Up 

Down pd qd pd qm pd qu 
Middle pm qd pm qm pm qu 

 
Y-Move 

Up pu qd pu qm pu qu 
 

In correlated processes such as ours, the elements above are shifted so that the sum of the shifts in 

each row and column is zero. 

 

A.2.3. Calibration results for Hull and White two factor process 

We estimate the five parameters of the model (a,σ1,b,σ2,ρ) fitting given observed market data 

(NYMEX crack-spread futures volatility and the European Call option implied volatility surface on 

the crack-spread).  Both sets of values are found by aggregating existing contracts; for the spread 

itself we use three futures, and for the option we combine two option contracts on RBOB and 

Heating oil.   

 In this example we use the NYMEX crack-spread futures (calculated using RBOB, Heating 

oil and WTI futures contracts) volatility.  The calibration is performed by minimizing the sum of 

the squares of the percentage differences between model and market future prices.  For this purpose, 

we used an optimization algorithm, within GAMS that combines interior point methods and quasi-

Newton techniques.  We give an example of our results in the below table: 

 

Table A.2.3.1: The results of the calibration to crack-spread futures volatility on 12/02/2014 

Maturity 
(months) 

Implied 
Volatility 

Our Volatility 

1 0.1637 0.1629 
2 0.1614 0.1618 
3 0.1594 0.1613 
4 0.1530 0.1546 
5 0.1465 0.1477 
7 0.1373 0.1354 

10 0.1475 0.1436 
15 0.1528 0.1539 
24 0.1594 0.1582 
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These results are obtained with the following Hull/White parameters: 

 

 a = 0.54937 

 σ1 = 0.004453 

 b = 0.073944 

 σ2 = 0.00499 

 ρ =-0.97311 

 

Table A.2.3.2: At-the-money European crack spread options-volatility quotes on 12/02/2014 

 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M 
1M 0.1834 0.1645 0.1630 0.1510 0.1540 0.1590 0.1499 0.1424 0.1373 0.1470 
2M 0.1813 0.1604 0.1690 0.1594 0.1520 0.1592 0.1465 0.1430 0.1300 0.1485 
3M 0.1664 0.1550 0.1640 0.1540 0.1590 0.1454 0.1433 0.1400 0.1288 0.1360 
4M 0.1637 0.1560 0.1560 0.1494 0.1540 0.1420 0.1495 0.1370 0.1250 0.1335 
5M 0.1485 0.1482 0.1460 0.1440 0.1403 0.1478 0.1455 0.1330 0.1122 0.1201 
7M 0.1373 0.1490 0.1435 0.1450 0.1412 0.1390 0.1378 0.1360 0.1150 0.1230 

10M 0.1475 0.1409 0.1460 0.1430 0.1403 0.1360 0.1361 0.1360 0.1150 0.1241 
 

We report the calibration results in the table below that depicts the fitted crack spread option 

volatilities as implied by Hull/White two factor model crack spread prices backed out of the AV 

crack spread option formula. 

 

Table A.2.3.3: At-the-money Hull & White two factor implied volatilities. 

 

 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M 
1M 0.1937 0.1647 0.1632 0.1514 0.1555 0.1594 0.1509 0.1504 0.1383 0.1491 
2M 0.1914 0.1604 0.1690 0.1594 0.1520 0.1592 0.1465 0.1438 0.1310 0.1487 
3M 0.1794 0.1569 0.1640 0.1540 0.1590 0.1454 0.1433 0.1423 0.1242 0.1312 
4M 0.1730 0.1549 0.1562 0.1494 0.1540 0.1420 0.1495 0.1386 0.1262 0.1394 
5M 0.1565 0.1494 0.1468 0.1440 0.1403 0.1478 0.1455 0.1391 0.1131 0.1234 
7M 0.1373 0.1483 0.1435 0.1459 0.1412 0.1390 0.1378 0.1366 0.1163 0.1234 

10M 0.1475 0.1449 0.1460 0.1433 0.1426 0.1373 0.1359 0.1342 0.1201 0.1202 
 

 a = 0.83372, σ1 = 0.017353,  b = 0.090124,  σ2 = 0.00845, ρ =-0.39876 
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A.2.4. Sub-tree calibration for Schwartz and Smith (2000) two-factor process 

 

The model has seven parameters (κ, σχ, µξ, σξ, ρξχ, λ ξ , λ χ ) that need to be estimated for crude oil, 

heating oil and gasoline futures listed on NYMEX; we follow the approach in Jafarizadeh and 

Bratvold (2012), enabling the program to avoid implementing the Kalman filter.  We can define the 

hidden factors in terms of the model parameters whilst fitting the futures curve and implied 

volatility curves on futures along the required tenors.  This will allow NYMEX market data and 

enable a risk neutral approach.  As described in Schwartz and Smith (2000) if ϕ = In(FT,t) and the 

volatility of In(FT,t) is σϕ(t, T), the value of a European call option on a futures contract maturing at 

time T with exercise price K, and time t until the option expires is: 

 

 c = e-rt { FT,tN(d) - KN[d - σϕ(t, T)]}      (1) 

Where 

 d = {In(F/K)/ σϕ(t, T)} 1/2 σϕ(t, T)      (2) 

 

Here the N(d) is a cumulative probability distribution. 

 We have collected data for options on crude, heating oil and gasoline futures, Ct, for the 

underlying futures price FT,0, time to maturity T, strike price K; the options were reported on 

NYMEX on 12/02/2014.  The options contracts approximately matched the maturity of the futures 

contracts (t = T); it is then easy to use the inverse problem to find the volatility σϕ(t, T) associated 

with each option.  The σϕ(t, T) is described in terms of the parameters of the Schwartz and Smith 

model: 

    

σϕ(t, T) =  e-2 κ (T-t) (1 - e-2 κ (t))( σ2
χ / 2 κ ) + σ2

ξ + 2 e-2κ(T-t)(1 - e- κt)( ρξχσχσξ/ κ) (3) 
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 Assuming that the options expire at the same time as the futures then e-2κ(T-t) = e-κ(T-t) = 1.  As 

T approaches infinity, the implied annualised volatility of the futures contracts will approximately 

be equal to the long term factor volatility: 

 

 σϕ(T, T)/ √(T) ≈ √ (e-2 κ (t) σ2
χ + σ2

ξT + 2e- κT ρξχσχσξ)   (4) 

 

However, for near maturity contracts it can be shown that the volatility becomes: 

 

 σϕ(T, T)/ √(T) ≈ √ (σ2
ξ )       (5) 

The deviation from the equilibrium at time 0 is χ0 and the risk premium for the short term λχ.  The 

log of the current spot calculation of the commodity price is the sum of ξ0 and χ0; hence we can 

write: 

 

 χ0 = In(S0) - ξ0         (6) 

 Note that the risk premiums for the short and long terms cannot be estimated as they are not 

observed.  In this risk neutral approach only the drift factor for the long term need be estimated 

eliminating the need for the market price of risk in this case.  We calibrate all three underlying 

commodities separately and consolidate them to build the final trinomial tree for the crack-spread. 

 

(Table A.2.4.1: Resultant Calibration results for Schwartz and Smith (2000) on WTI crude oil for 

Dec 2000 - Dec 2010) 

Parameter Description Value 

χ0 Short term deviation of the log spot price 0.22 
ξ0 Long term deviation of the log spot price 4.87 
σξ Volatility of the long term 14% 
σχ Volatility of the short term 29% 
µξ Risk Neutral drift rate for the long term -7.27% 
λχ Risk premium for the short term 0 
κ Mean reversion coefficient 0.87 

ρξχ Correlation coefficient 0.276 
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(Table A.2.4.2: Resultant Calibration results for Schwartz and Smith (2000) on No.2 heating oil for 

Dec 2000 - Dec 2010) 

Parameter Description Value 

χ0 Short term deviation of the log spot price 0.6462 
ξ0 Long term deviation of the log spot price 3.476 
σξ Volatility of the long term 30.75% 
σχ Volatility of the short term 84% 
µξ Risk Neutral drift rate for the long term -11.21% 
λχ Risk premium for the short term 0 
κ Mean reversion coefficient 3.334 

ρξχ Correlation coefficient -0.5966 
 

 

(Table A.2.4.3: Resultant Calibration results for Schwartz and Smith (2000) on RBOB NYH 

Gasoline for Dec 2000 - Dec 2010) 

Parameter Description Value 

χ0 Short term deviation of the log spot price 0.16 
ξ0 Long term deviation of the log spot price 3.84 
σξ Volatility of the long term 30.74% 
σχ Volatility of the short term 30.61% 
µξ Risk Neutral drift rate for the long term -15.5% 
λχ Risk premium for the short term 0 
κ Mean reversion coefficient 0.21 

ρξχ Correlation coefficient -0.84 
 

There are four steps for calculating the parameters in the above process: 

 

Step 1 - Estimating σξ 

 Calculate the implied volatilities for a long maturity futures contract on the commodity 

using equation (1); then use equation (3) to calculate σξ. 

 

Step 2 - Estimating µξ and κ  
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 Construct the log of the futures curve from the observed futures price contracts; next we 

calculate the gradient of the log of the futures curve, and finally estimate the µξ by subtracting (1/2 

σ2
ξ) from the gradient. 

 By calculating the half life from the futures curve = In(2) / κ; we can use it estimate κ. 

 

Step 3 - Estimating σχ and ρξχ 

 Using equation (1) we calculate the implied volatilities of two near maturity futures 

contracts on the spread and build a set of equations by inserting different implied volatilities into 

equation (4).  Next we insert the estimated parameters from steps 1 and 2 into the set of equations 

and solve for σχ and ρξχ. 

 

Step 4 - Estimating ξ0, χ0, and λχ 

 We set λχ= 0; using equation (5) and (6) we build a set of equations and solve them to find 

ξ0 and χ0. 

 Consolidating the results for all three commodities and applying the above processes in 

equations (2) and (3), we next construct a trinomial tree of the crack spread stochastic price process.    

We do this by following Hull & White's trinomial tree building process as already described in 

appendix 6.3; we do this for the long and short term processes and sum the results; we now have a 

crack spread price over 72 monthly periods; simulating 40 steps out from each node then enables 

dynamic programming to be applied resulting in the crack spread option prices.  We name this 

approach a sub-tree simulation.  The results of the individual commodity calibrations are shown 

below; alongside a GBM and Ornstein-Uhlenbeck process to emphasise the accuracy of the model. 
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(Figure A.2.4.1  WTI Crude Oil calibration results using Schwartz and Smith (2000)): 
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(Figure A.2.4.2  RBOB Gasoline calibration results using Schwartz and Smith (2000)): 
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(Figure A.2.4.3  No.2 Heating Oil NYMEX calibration results using Schwartz and Smith (2000)):): 
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A 3.0 Comparison of forward curves for the one factor and two factor 

models 
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Figure A.3: Comparison of calibration results of the forward curve on WTI oil using one and two 

factor models. 
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Abstract  

 

The proposal which we wish to make is a two-stage stochastic programming model for a 

competitive oil refinery with stochastic crude and fuel prices.  Most models for refineries are 

deterministic, and those considering the stochastic problem do so by utilising a Gaussian 

assumption on profits - implementing variance as the risk measure.  Our model falls into the 

category of optimisation with coherent risk measures where robustness, rather than ambiguity, is the 

focus.  The objective is to maximise the refiner’s profit under raw material, product inventory 

constraints and a financial risk constraint.  The two-stage model leverages off a unique discrete 

scenario generation technique alongside an admissible and computational tractable drawdown risk 

measure.  The expected value of perfect information calculation of each model gives a value for the 

additional benefit, which the decision maker receives in considering the uncertainty inherent in the 

problem.   

 

Keywords: Stochastic programming; Refinery planning; Optimization under uncertainty; Probability 

fitting; Mean-variance; Conditional Drawdown-At-Risk (CDaR) 

 

1. Introduction 

 

Refiners are exposed to high uncertainties due to the nature of the oil markets.  Recently, they have 

had to contend with much lower refining margins.  This is due to the crude oil market’s lack of 
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spare capacity at the refinery level; hence risk management then becomes a more pressing issue for 

refiner consumers and producers - knowledge of the product prices can help to reduce this risk.  The 

refiner's portfolio includes his own production and a set of sales and costs over one period of time.  

In this paper we develop a stochastic portfolio model with the aim of maximising the refiner’s gross 

refining margin (GRM). 

The goal of such a model is to reduce the economic risk; this is connected to the fact that the oil 

spot price may be highly volatile due to various unpredictable causes.  The basis risk factors include 

the wholesale spot crude and refined products prices.  Optimisation models generally assume that 

market prices are unaffected by the decision of the utility manager, and by the uncertain yields 

within the units of the refinery.  The model we propose differs from those typically discussed in the 

literature, since we want to concentrate on the financial risks; an example is shown in Xidonas, P. et 

al (2010).  We ignore the daily detailed operational refinery flows as analysed for instance by Ribas 

et al (2012). 

 

In the two-stage stochastic programming approach the first stage production variables are selected; 

being unrelated and independent to the uncertain events.  The second term manages the expectation 

of the uncertain events.  The stochastic literature on this subject differs in the way the expectation 

and risk are considered.  In practice, the two stages are usually considered to be over one month, 

with the model being rerun after the uncertain events materialise and the second stage recourse 

decisions have been made.  The objective function can minimise costs or maximise profits, we 

optimise profit. 

 

In section 1, we introduce the current refinery planning and financial risk literature.  In section 2 we 

formulate our two stage stochastic program, creating the foundation for the rest of the paper.  In 

section 3 we implement the measures for financial risk management of the refinery.  In section 4 we 

state and analyse the results for each model implemented.  We conclude in section 5 and propose 

extensions.   

 

1.1. Refinery Planning 

 

Benyoucef (2010) presents a non-linear stochastic program representing a network of refineries in 

Algeria.  Scenario generation is utilised to depict the demands of the refined products and 

uncertainties are represented by normal distributions.  To ensure feasibility and maintain the 

model’s realism, a penalty term is included in the objective function, where the aim is to minimise 

costs in the presence of necessary constraints.  We focus on a similar objective as the author, but for 
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a single entrepreneurial refinery where we explicitly capture the stochasticity of the oil prices.  The 

author does however introduce a scenario tree attempting to solve the problem over a number of 

time periods, yet suffers the negative implications of using standard deviation as the risk measure.  

We model the prices rather than the demands, and fit distributions to capture more accurately the 

behavioural aspects of the time series’ characteristics.  Uncertainty is usually represented by the 

variation in the prices inherent in the problem.  Leiras, A. et al. (2011) summarise the numerous 

categories of refinery planning tackled in the literature.  They show that fewer authors formulate a 

model with stochastic variables to capture uncertainty. 

 

Most models of petroleum refineries are linear and avoid the corporate planning requirement.  Neiro 

and Pinto (2003) present the problem of managing multiple refinery operations using a mixed 

integer non linear program (MINLP).  Their objective function maximises the net present value 

under raw material and product inventory constraints.  These include mass balance and operating 

constraints for each refinery in their network.  Instead of using the market prices for assets, demand 

scenarios are generated.  The authors consider the refinery supply chain in their optimisation, 

however, financial risk measures are ignored, and scenarios given are drawn from normal 

distributions.  The disaggregation techniques used here are useful; enabling the large scale MINLP 

to be solved.  Overall there are 383 variables and 349 equations with the algorithm DICOPT used to 

solve the planning problem.  Another example of applying a MINLP is constructed in Aldaihani, 

and Al-Deehani (2010); the efficiency of the Kuwait Stock exchange is examined in an optimisation 

run, where the scenarios of an equally weighted basket of stocks are simulated.  The authors coerce 

mathematical programming with financial strategy, aiming to lower the risks for investors whilst 

reaching a particular level of financial return. 

 

Ribas et al (2012) present a risk averse and risk neutral approach to maximising the profit of a 

refinery; uncertainty is introduced in the product prices, the oil supply and the capacity process.  

The authors test their model using data from the Brazilian refinery system, and measure robustness 

as the objective of the model rather than the profit.  The scenarios are generated by requesting an 

expert’s opinion on oil price uncertainty inputs, which gives an expected value of perfect 

information (EVPI) of 2.54%.  An example of scenario generation using sample average 

approximation (SAA) is shown in Elkamel, A. and Al-Qahtani, K. (2011), the model emphasises the 

added value of a petrochemical network over the deterministic approaches previously defined by 

the authors – the model is tested on an industrial case of multiple refineries and a PVC complex.  

Tahar, R.B.M. and Abduljabbar, W.K. (2010) apply a new genetic based scenario simulation 

algorithm to short term scheduling - maximising the profit whilst considering the transportation and 
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operational costs of the oil refinery which we omit.  

   

1.2. Financial Risk 

 

If we wish to measure the risks that the refiner faces, which measure function should we consider?  

In practice models that do not consider risk will not be used; Uryasev and Rockafellar (2002) 

present a number of optimising problems in linear and non linear settings considering different risk 

measures, which still remain relevant today.  They show that by using Conditional Value at Risk, 

(CVaR), global optimums can be found, and tractability will be hugely improved over typical 

measures.  Therefore, CVaR is noted as more conservative, yet more realistic.  There are many 

different methodologies for modelling uncertainty within optimisation, Bertsimas et al (2010) show 

that if the underlyings have a known probability distribution, the ideas of ambiguity and robustness 

can be combined to provide a favourable optimisation.  Our problem is similar in that, the data is 

assumed to have a probability distribution; the difference is that the authors approach the problem 

with a soft robust optimisation – whereas we model with the closely related convex set of risk 

measures.  We then fit the data and generate scenarios using a unique approach focussing on 

uncertainty and not on ambiguity. 

 

Our optimisation model includes, in the final case, the drawdown function as specified in Cheklov 

et al (2003), where distributions can be considered for the underlyings.  The model is 

multidimensional, and the optimisation is carried out with discrete scenario values – which are 

conducive to our scenario generation.  The drawdown function utilised satisfies the axioms of a 

deviation measure: non-negativity, insensitivity to constant shift, positive homogeneity and 

convexity. 

 

 

2. The Two-Stage Stochastic Program 

 

In the current competitive economic climate, global businesses are constantly confronted with 

making decisions in an uncertain environment.  One motivation for refinery stochastic programs is 

to be able to quantify such decisions in terms of profit.  For example, Mulvey’s Towers Perrin-

Tillinghast asset liability model (ALM) saved US West $450 million in opportunity costs in its 

pension plan.  The two-stage stochastic program discussed thus far, aims to aid refineries in this 

process of dealing with uncertainty in a similar way.  During each time period the decision maker in 
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the refinery needs to decide how much crude to purchase, and how much of each refined product to 

release onto the market.  The prices and decisions made today are assumed known, the “here and 

now” problem.  In the next time period the prices will change, and second stage production 

variables will have already been made.  The “wait and see” decisions are made after knowledge of 

the second stage prices has become known.  The “stochasticity” appears in this second term in the 

form of uncertain exogenous variables.  The aim in midterm planning is, to choose the first stage 

decisions in such a way that the second stage variables can be added to the first to give a higher 

expected profit.  Gupta and Maranas (2000) were the first to use the scenario analysis approach; it 

has become a significant method in practice.  For an example applied to real electricity options with 

stochastic simulation, see Culik, M. (2010).  The author considers four different options available to 

the project manager, which are priced into the contracts and ultimately the net present value 

obtained for the project.  One contribution of our work is to provide a unique way in which to 

generate the prices using probability distributions.  Our key assumption here is that the price series 

can indeed be represented by a set of probability distributions.  The representative scenarios are 

required to capture the uncertainty in the random price variables within the stochastic programming 

framework.  These two-stage models are implemented at refineries as they give a detailed view of 

decisions in the short/mid-term.   

 

 

2.1. The producer midterm planning model 

 

The tactical midterm refining planning problem is very complex; hence the decision based systems 

used at refineries to aid owners, e.g. PIMS (AspenTech), which utilises mathematical programming, 

is present at most refineries in the world, see (Mann 2003).  In this paper refining is modelled at the 

level of detail common in the literature - with a granularity of one day at its finest, with start-up and 

shut-down costs considered insignificant, whilst Wang (2013) manages this issue by utilising a 

finite planning horizon model with periodic preventative maintenance, and random failure.  We start 

by introducing the model of the refinery with daily periods, although decisions are considered in 

monthly stages.  The refinery consists of a number of units, the crude distillation unit (CDU), the 

cracker and the vacuum distillation unit (VDU).  We model the refinery complex by considering the 

volumes bought and sold to maximise the decision maker's profit within each period.  Few decide to 

approach this problem stochastically due to its complexity, and even fewer integrate the financial 

planning problem – operational planning is much more common.  

 

The refinery producer must schedule the production of each refined product.  This is expressed as 
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the price of the particular product multiplied by the volume.  As practised in the literature there is 

no restriction on the amount of crude oil that can be purchased except the capacity constraint, and 

no minimum amount that needs to be produced of any refined product.  The decision variables of 

the refinery scheduling problem are stated below: 

 

Xi,t [tonnes/day] : volume of product i bought or sold on this particular day 

7. X1,t: Crude Oil 

8. X2,t: Gasoline  

9. X3,t: Naphtha (after the splitter) 

10. X4,t: Jet Fuel 

11. X5,t: Heating Oil 

12. X6,t: Fuel Oil 

13. X7,t: Naphtha stream exiting the PDU 

14. X8,t: Gas Oil 

15. X9,t: Cracker Feed 

16. X10,t: Residuum 

17. X11,t: Gasoline after splitting of Naphtha exiting the PDU 

18. X12,t: Gas Oil after the splitter 

19. X13,t: Gas Oil stream entering the fuel oil blending facility 

20. X14,t: Cracker Feed after the Splitter 

21. X15,t: Cracker Feed stream entering the fuel oil blending facility 

22. X16,t: Gasoline stream exiting the cracker unit 

23. X17,t: Stream exiting the cracker unit into the splitter 

24. X18,t: Heating oil stream after splitting of cracker output 

25. X19,t: Cracker output stream 

 

Only the decision variables where i=1 to 7, and i=14, are required within the objective function. 

They represent the crude being bought and refined products being sold; the other variables are 

present in the constraints.  The values assigned to the decision variables must satisfy the following 

constraints, which represent the physical restrictions on this particular refinery, (see Appendix A for 

details): 

 

The capacity constraints  

The mass balance constraints for the following units: 
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1. Primary Unit 

2. Cracker 

3. Fixed Blends 

4. Unrestricted Balances 

5. Raw Material Availability  

The following general model is used for the purpose of monthly scheduling; it is the deterministic 

objective function of Ravi and Reddy (1996)): 

 

Maximise 

 

Profit = - 8.0 X1 + 18.5 X2 + 8.0 X3 + 12.5 X4 + 14.5 X5 + 6.0 X6 – 1.5 X14   (1) 

 

In equation (1) the authors replace the stochastic commodity prices with their mean prices from a 

set of normal distributions - in fact, it is well known that commodity price series are very far from 

Gaussian.   

 

2.2. From deterministic to stochastic  

 

Updating the above deterministic objective model to today’s mean prices of crude and refined 

products gives Model 1:  

 

Maximise  

 

Profit = -385X1 + 726X2 + 385 X3 + 471X4 + 520X5 +251X6 -72X14  (2) 

 

The negative terms are the purchasing and operational costs.  The positive values are the saleable 

product prices.  This is a linear optimisation problem; hence the CPLEX algorithm is applied within 

the optimisation program, General Algebraic Modelling System (GAMS).  The solution to equation 

(2), the deterministic objective function, is given below: 

 

Objective Value = $285, 418 per day 

 

This approach does not take into account the stochasticity of the prices; therefore it ignores the 

decision maker's choice to switch to selling alternative amounts of each product.   
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When including random prices in an optimisation model, one of the following three methods is 

implemented: 

  

1. Mean value prices replace the stochastic variables  

2. Continuous distributions are manipulated  

3. Scenario generation (using discrete distributions)  

 

Next, the prices of refined products and the crude oil are made stochastic and the problem solved 

using scenario generation (type 3 above).  The expectation of the product prices in the next stage is 

the uncertain component of the profit.  Evaluating uncertain functions and their expectations is the 

core involvement within stochastic programming.  Clay et al (1998) used the certainty equivalent 

transformation, and Ierapetritou et al (2007) used quadrature in order to solve the expectation 

function.  The expectation function can be made more complicated if the distribution of the profit is 

considered continuous.  In which case, a more complex method is required to deal with the multi-

dimensional integral.  Our aim is to “discretise” the objective function as follows:  

                                      

                                       ∑
=

=
NS

S

ss XgpZ
1

)(   (3) 

 

Where Xs denotes the random parameter vector under scenario S, g(Xs) denotes the objective 

function, and ps, denotes the probability of scenario S.  In a Monte Carlo approach, Z is estimated by 

random sampling.  For our stochastic program (SP) the distribution of the profits are not considered 

directly, but instead historical data is analysed to generate possible scenarios for the uncertain 

parameters in the future.  Prices are examined to determine a distribution of closest fit; rather than 

assuming normality.  There is however no perfect fit, yet to model the expectation, a distribution is 

required to generate the scenarios.  The “bracket-median” approximation was implemented to 

obtain scenario based values, and their corresponding probabilities. 

 

 

2.3. Multivariate Fitting and Scenario Generation 

  

We model the key uncertainties by cumulative distribution functions (CDFs) defined over uncertain 

quantities - these are the prices of the refined products and crude oil.  In practise the CDF is 

obtained in one of two ways: judgemental assessments from an “expert”, or from historical data.  
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This results in several points from each of the CDFs being calculated.  Wettergren, T.A. and 

Baylog, J.G. (2014) confront a discrete search planning problem where the object that is being 

searched for determines the cumulative distribution functions.  They find an optimal solution over a 

finite horizon using a greedy algorithm, with the uncertainty captured by perturbations on the 

known prior probabilities.  In risk analysis, Monte Carlo simulations or triangular function fitting 

for three points are frequently applied.56  In decision analysis for uncertain outcomes, the discrete 

distribution serves as a substitute for the entire continuous distribution.  Without this simplification 

the computational difficulties can increase dramatically and solutions can be impossible to 

calculate.   

 

Scenario generation is accounted for in SPs by using a scenario tree: internal, stratified or even 

random sampling can be used to improve computation.  Scenario generation, by the very fact it has 

far fewer outcomes, means a computational advantage.  The Basel Committee, for example, 

proposes using scenario based risk management for financial companies like Investment Banks.  

The four leading approaches within the literature for scenario generation are: 

 

• Sampling 

• Statistical Approaches 

• Simulation 

• Hybrids 

 

Decision models like SPs are useful because of their ex ante and ex post properties.  With sampling 

approaches, we are extracting numbers from a pdf, so that for a given X value we have the 

associated probability that this is the scenario value and its corresponding branch probability.  

However, as noted in Birge and Louveaux (1997), the scenarios are particularly useful when the 

optimal solution to a stochastic program varies considerably with changes in the value of the 

stochastic variables.  The scenarios must comply with the non-“anticipativity” concept: we do not 

know the future and so decisions for the future can only be based on the past behaviour of the asset 

prices.  These concepts are implemented in our models.  

 

A scenario tree is illustrated in the figure below.  At a point in time the nodes represent the state in 

the world - choices or decisions will be made at each node.  The tree has branches for each value of 

                                                 
56Three-Point Approximations for Continuous Random Variables 
 Author(s): Donald L. Keefer and Samuel E. Bodily, 1983 
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the random vector representing refinery product prices, ξt = {ξ1t, ξ2t, ... ξnt}, in each time stage t = 

1,.....,T. 

 

 

 

 

 

  t = 0 

   

  

  t = 1 

 

(Figure 1: A Scenario Tree example for product one) 

 

It is known within the oil industry that the market structure has shifted during the last ten years.  

Questions about the properties of the price series being mean-reverting are constantly reoccurring 

see H. Geman (2005).  In the past, fundamental supply and demand factors affected the crude oil 

price predictably.  In the last decade any shock to the refining system has had a resonating impact 

on the price of crude than observed historically – this is due to refinery spare capacity reduction.  In 

contrast to the previous decades and particularly in the US, many refineries have closed and there 

are now many financial markets trading paper or derivative contracts with crude oil as the 

underlying.  Sources state that only 20% of the value in crude is through trading the raw physical 

product itself.  Due to these intense refining markets and financial influences there is a strong 

motivation for refinery models with the necessary components.  To capture the relevant crude 

dynamics that are now present; ten years of historical price data is chosen as input for the scenario 

generation. 

 

The scenario’s prices and probabilities are generated, whilst taking into account historical 

correlations, using the method described by Iman and Conover (1982), where the target correlation 

matrix is shown below in Table 2.  We consider a monthly time period, from t=0 to t=1; the CDFs 

are fitted using historical data.  Next, discrete probabilities are derived to calculate the expectation 

term.  Often practitioners use a standard non-parametric bootstrap; however the problem of how to 

generate a correlation structure in the child nodes is not alleviated.  We define five states of the 

world, where state one is the set of prices regarded as in a low economic state, and state five as the 

state where the set of prices are regarded as in a high economic state.   

ξ  

ξ u ξ d 



298   

 

The selected CDF distributions are significant when fitted to the series data, and the correlations 

shown below are calculated from the same sample data.  Copulas are used extensively within 

Finance to generate multivariate random variable scenarios.  One of the problems with copulas is 

that they still require a rank correlation definition.  We choose the Spearman’s rank correlation 

method using a ranking procedure to generate a set of correlated commodity price series. 

 

  

 WTI   Gasoline   Naphtha   Jet Fuel   Heating    

  Oil  

 Fuel Oil   Cracker  

  Feed 

 WTI  1             

 Gasoline  0.9862 1           

 Naphtha  1 0.9862 1         

 Jet Fuel  0.967 0.985 0.967 1       

 Heating Oil  0.9723 0.985 0.9723 0.743 1     

 Fuel Oil  0.937 0.943 0.937 0.984 0.9901 1   

 Cracker Feed 1 0.9862 1 0.967 0.9723 0.937 1 

(Table 2:   Historical Correlations) 

 

 

Asset                     Expected               Standard                          Skewness                   Kurtosis 

                              Value                     Deviation                                

Resultant Fitted 

Distributions 

WTI 249.15 242.68 1.76 6.89 Exponential (249.15)*** 

Gasoline 471.46 199.32 1.12 4.49 Gamma (2.6302, 123.27) 

*** 

Naphtha 520.97 483.91 1.689 6.70 Exponential (513.06) *** 

Jet Fuel 366.25 324.19 3.13 15.95 Pearson 5 (2.84, 677.86) 

*** 

Heating Oil 251.31 270.20 3.74 23.644 Pearson 5 (3.1008, 677.85) 

*** 

Fuel Oil 726.41 198.22 0.622 3.36 Gamma (14.112, 52.301) 

*** 
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Cracker Feed 72.09 34.17 1.25 4.57 Gamma (2.4438, 20.947) 

*** 

(Table 3:  Statistical Properties derived from the fitted CDF distributions in units of tons per day.   

***Significance at the 99% level. 

 

2.4. Objective function for the refinery including stochastic prices 

 

The profit function can be split into each state, with its corresponding probability, and the 

expectation term can be made discrete by expanding the expectation as follows: 

        

=−= ∑ ∑
products scenarios

is XCostsSalespprofitE )(][
 

 

    0.2 (-271X1 + 616X2 + 271X3 + 309X4 + 407X5 +182X6 - 51X14) 

 

 + 0.2 (-327X1 + 652X2 + 327X3 + 387X4 + 504X5 + 195X6 - 61X14) 

   

 + 0.2 (-385X1 + 726X2 + 385X3 + 471X4 + 520X5 + 251X6 - 72X14) 

 

   + 0.2 (-446X1 + 866X2 + 446X3 + 573X4 + 5279X5 + 310X6 - 84X14)   

 

   + 0.2 (-500X1 + 1036X2 + 500X3 + 939X4 + 586X5 + 328X6 - 94X14)   (5) 

 

Where, Xi is the decision variable representing the volume of products to be bought and sold. 

 

 i = 1, 2, 3, 4, 5, 6, 14 ϵ (Products Index) 

 

 s = 1, 2, 3, 4, 5 ϵ (Scenarios or States of the world) 

             

In the following approaches, different risk measures are considered to find the most effective 

construction.  The literature varies on the choice of risk measure, and how the decision maker’s 

preferences are taken into account.   

  

The prices in each scenario are independent by definition, but within each scenario the product 

prices are conspicuously correlated with each other, and not independent as stated for example in 
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Bernardo et al (1999).  Therefore, the prices are considered constant, and the amounts that go into 

each product as the random variables.  The constraints for the models are defined in the Appendix, 

which describes the mass balances for the refinery units and physical limitations held onsite at the 

refinery complex.  By changing the risk measure considered, RM, and the aversion to risk, α, and 

maximising the profit, Π, a Mean-Risk model is constructed as shown in equations 9-11 below. 

In terms of mean variance, we now write the stochastic model as: 

 

                                      Maximise  )(][ 001 παππ VarE −=  (9) 

                                      Where constraints of the refinery are shown in the Appendix 

 

Due to rules of Programming this can also be reformulated to the following: 

 

                                       Maximise  )( 01 παπ Var−=  (10) 

                                       Such that    E[π0] ≥  A Target Objective function value 

                                       Where constraints of the refinery are shown in the Appendix 

 

In this paper the construction modelled enabled us to define a target profit threshold, and solve for 

the decision variables: 

 

                                       Maximise  )( 01 παπ RM−=  (11) 

                                       Such that    E[π0] ≥  A Target Objective function value 

                                       Where Constraints of the refinery are shown in the Appendix 

 

The result of the construction is shown in five models detailed in section 4.  

 

Equation (11) is clearly a non-linear and piecewise construction.  In fact, if it is non-convex, a 

convex approximation is required, whereas the convex formulation is trivial to optimise. 

 

Gupta and Maranas (2003) explain why any risk measure implemented should not be symmetric.  

If the investor or decision maker is considering minimising risk, it should be the downside only.  

Therefore, various risk measures are investigated.  The following sections detail the alternative risk 

measure refinery models, which are generated on a sample of 1,000 draws from the fitted 

distributions.  Shown in the figure below is the result of Model 2.   
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(Figure  2:  The efficient frontier for the profit function in $ per day for the GRM (Model 2)) 

 

A maximum of $20,000 with a risk of $12,000 per day is achieved.  By applying a utility parameter 

the profit and risk can be adjusted higher, however their underlying relationship does not change.  

 

3. Risk Management

 

Risk management is key for oil refineries – market conditions are tougher than ever and managing 

the volatility of commodity related prices is an intricate job. 

 

3.1. Value-At-Risk (VaR) 

 

''A risk-taking institution that does not compute VaR might escape disaster, but an institution 

that cannot compute VaR will not.'' 57  

 

The value at risk measure was introduced by JP Morgan (RiskMetricsTM 1995) to measure market 

risk, although it can be used for credit and/or operational risk for example.  It was invented as a 

predictive (ex ante) tool to prevent fund managers from exceeding specified portfolio policies.  It 

relies upon three parameters: the time horizon; the confidence interval; and the highest amount of 

value that can be lost in the given time horizon, under normal market conditions.  For the two-stage 
                                                 
57Aaron Brown (June/July 2008). '' Private Profits and Socialized Risk ''. GARP Risk Review.  
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stochastic problem with a finite number of scenarios as in this paper, VaR is calculated by sorting 

the scenarios in ascending profit order, and then taking the profit value of the scenario for which the 

cumulative probability equals the specified confidence level.  The definition follows:    

 

Definition 1 (Value at Risk (VaR)).   

 

For any confidence level α є (0,1], the value at risk, denoted by VaR(α), for a random variable with 

payoff h, is defined as the 'critical value' at which the probability incurring a loss of no less than 

VaR(α) is at least α.  That is, 

 

 ]1,0(},}Pr{:sup{)( 0 ∈∀≥−≤= ααα uhhuVaR  (12) 

 

Where h0 is the initial payoff amount.  The different levels of α can be considered as differing levels 

of investor utility: 

 

 

(Figure 3: The efficient frontier for the profit function, versus the value at risk (Model 3))  

 

As can be seen from the results, optimising with value at risk produces a non-convex shape, which 

exhibits local minima and is of combinatorial character.  Computationally it is considered an 

unreliable risk measure and thus difficult to optimise.  Basak and Shapiro (1999) show theoretically, 
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that optimal decisions based on VaR, result in higher risk exposure than when decisions are based 

on expected losses.   

 

3.2. Conditional Value-At-Risk (CVaR) 

 

If for example, a portfolio is in a state of negative P&L; the magnitude of the losses is not captured 

accurately by VaR.  Additionally, asset prices are rarely distributed normally; therefore, measures 

other than VaR should be applied. Common alternatives to VaR as a risk metric are expected 

shortfall, variance, and mean absolute deviation (MAD).  Variance for example, penalises up 

movements of variance as well as downward movements, MAD does not penalise outliers, and VaR 

ignores large outliers in the distribution.  For discrete distributions, CVaR is defined as the weighted 

average of those losses exceeding VaR.  However, within the last decade, as stated earlier, the crude 

oil price series is no longer regarded as a mean reverting asset, and therefore, CVaR is the 

immediate progression over the models considering VaR within an optimisation.  Furthermore, 

CVaR within the optimisation literature has not been applied to a single entrepreneurial oil refinery.   

 

If returns are discrete and/or non-normal then sub-additivity is not necessarily present, and 

diversification of a portfolio may increase VaR.  CVaR as a risk measure is coherent, as defined 

below, ''measuring risk without sub-additivity is like measuring the distance between two points 

using a rubber band instead of a ruler ''58: 

 

Definition 2 (Coherence).  A Functional p(x), is a coherent risk measure if it has the following 

properties:   

 

• Sub-additivity:   

 Ryxypxpyxp ∈∀+≤+ ,),()()(  (13) 

• Positive Homogeneity:  

 Rxxpxp ∈∀= λλλ ,),()(                                       (14)  

• Monotonicity:  

 Ryxypxpthenyxif ∈∀≤≤ ,),()(…             (15) 

• Translational Invariance: 

                                            Rrxxprxp ∈∀=+ ααα ,,),()(                                        (16) 

 
                                                 
58Szego 2002 
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Definition 3 (Conditional Value-At-Risk) CVaR is the average of the losses greater than the 

VaR, stated with a particular confidence level, here α.   

 

 ]1,0()],(|[)( 00 ∈∀≥−−= ααα VaRhhhhECVaR  (17) 

 

Where h is the random variable, which can for example represent the payoff of a portfolio.  The α, 

is the confidence level, and h0 the initial value for h.   

 

Rockafellar and Uryasev (2002) showed that, CVaR is superior to VaR in all optimisation 

applications.  Computationally, within an optimisation procedure due to the theory of linear 

programming, CVaR can enter into the objective function or into the constraints of the problem, 

producing an equivalent solution.  We implement CVaR within the objective function as shown for 

example in (11).  Furthermore, after implementing CVaR as the risk measure, the increased 

conservativeness emerges: 

 

 

(Figure 4:  The efficient frontier for the profit function versus the conditional value at risk of the refinery’s 

GRM (Model 4))  

 

3.3. Conditional Drawdown-At-Risk (CDaR) 
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CDaR, Uryasev (2010), in an aggregated format, is the number and magnitude of the portfolio 

drawdowns over a period of time.  A drawdown is the drop in portfolio value, compared to the 

maximum achieved in the past.  For a particular threshold α, the α – CDaR, is defined as the mean 

of the worst (1- α)*100% draw-downs experienced over a period of time.  The definition of CDaR 

follows.   

 

Definition 4 (CDaR) Conditional DrawDown at Risk is a measure of risk at a specific level of 

confidence α, it is the average of a set of worst drawdowns at a specific threshold. 

 

 ∫
Ω

→→

−
=∆ dttxf

T
x ),(

)1(

1
)(

αα  (18) 

Where, 

 )},(),(:],0[{ txtxfTt α≥∈=Ω   (19) 

 

Where ∆ α is the CDaR, α is the confidence level, f(x, t) is the drawdown function, which is the  

difference between the maximum of the profit function over history preceding the point t, and the 

value of this function at time t.  The CDaR - optimisation problem is non-linear, convex and 

piecewise in structure, hence it can be reduced to a linear programming problem by using auxiliary 

variables. 
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(Figure 5: The efficient frontier for the profit function versus the conditional drawdown at risk (Model 5))
59  

 

Figures two-five, show that the CDaR model was the best performer from a risk/reward perspective.  

We have chosen α as 90%, 95% and 99% to compare the results across the models.  Another 

important indicator for these types of models is defined below in section.   

 

3.4. Expected Value of Perfect Information (EVPI)  

 

The EVPI is an important measure for stochastic programming, Raiffa and Schlaifer (1961).  Given 

an uncertain situation that is “on the cards”; EVPI provides an example of what value is possible to 

extract practically. 

 

To calculate this figure we need the “here and now” value of the objective function, JHN.  Whereas 

the “wait and see” value is JWS, is an expectation based on the outcome of the uncertain random 

variables.   

 

Definition 5 (Expected Value of perfect information) 

 

For a particular realization ξ = ξ(w), w ϵ I, we consider the objective functional: 

 

J(x, ξ) := CTx + max{qTy | Wy = h – Tx, y ≥ 0 },     (20) 

 

The associated maximisation problem is: 

 

 maxx Eξ J(x, ξ)         (21) 

 

The optimal solution of the above is sometimes referred to as the here-and-now solution. 

 

We can denote the optimal value of our recourse problem by: 

 

 RP := maxx J(x, ξ)         (22) 

 

                                                 
59Drawdowns for a set of chosen weights, are assumed static over the historical period in question 
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Another related maximisation problem is to find the optimal solution for all possible scenarios and 

to consider the expected value of the associated optimal value: 

 

 WS := Eξ  maxx J(x, ξ)        (23) 

 

This is called the wait-and-see solution.  The difference between the optimal values of the here-and-

now solution and the wait-and-see solution is the expected value of perfect information: 

 

 EVPI := RP – WS         (24) 

 

 

 

 

4.  Results 

 

The constrained optimisation results are shown in Table 4, see Appendix A for model constraints. 

 

 

Model 

Name 

GAMS File Name Profit 

($/day) 

Crude Oil 

Purchased 

Risk 

($/day) 

Stochastic 

Robustness 

(EVPI/WS) 

1 DETERM_Today_LP 235,418 5,795 - - 

2 STOCH_VAR/COVAR_LP 329,000 5,781 81,195 15.64% 

3 STOCH_COV_A_VaR_NLP 125,000 2,196 7,187 13.86% 

4 STOCH_COV_A_CVaR_NLP 125,000 2,196 8,197 4.27% 

5 STOCH_COV_A_CDaR_NLP 125,000 2,196 5,532 5.89% 

 

(Table  4:  Summary of all five Models using two-stage stochastic programming.  

 NB:  All models are optimised on prices from the scenario generation averaged from 1,000 

samples.)

 

The results using the different risk measures show that there are large decision discrepancies for the 

refiner based upon which measure is selected.  Models three to five reach a maximum of £125,000 

per day and are solved instantly.  Dependent upon the α, in front of the risk term, the model can also 

be considered at different utility levels – a risk averse investor would select the 10% significance 
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model.  These results show a huge gain in using alternative risk measures over variance.  The lower 

the robustness measure, the more reliable the model; it is clear that the most appropriate model is 

either models four or five as one and two contain an unacceptable level of risk.  If risk is the 

priority, five is the model to implement at the oil refinery, albeit three and four are not impractical.  

These models have a particular structure due to the constraints and optimisation utilised to construct 

them.  Shown in Figure 6 below is a plot of Model 2, where a utility parameter has been used within 

the risk measure; all stochastic models follow this same behaviour.  This illustrates the investor’s 

level of risk aversion, hence the model structure.   

   

 

 

 

 

(Figure 6:  Comparing the efficient frontier for Model 2 and the deterministic profit function using 

a utility parameter from θ=1 to θ=0.00000001)  

 

 

The y-axis represents the objective function of profit with a level aversion to risk; whereas the x-

axis is the profit risk for the refiner.  We can optimise for risk from risk seeking to complete 

aversion.  The red line above represents the deterministic result, and the blue line is the stochastic 

model.  The diagram illustrates that at a particular level of risk there is no more profit to be attained, 

yet with too little risk seeking, a minimal profit level is reachable.  This suggests that there is an 

optimum level of risk to be sought. 
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Analysing the model's robustness we calculate the EVPI as described in section three.  For model 

five, we find the following: 

   

WS = $381,972 per day 

 

RP = $367,114 per day 

 

Therefore, the average EVPI has an additional benefit of $14, 858 per day to the owner of the oil 

refinery – this result shows that models considering uncertainty have additional value to the refinery 

owner.  

 

5.  CONCLUSION 

 

In this paper we have introduced a two stage stochastic model with various risk measures for 

monthly midterm production planning of a typical Topping oil refinery.  The output product prices 

are seen as exogenous to the refiner; meaning that there are enough refineries producing the same 

product that the failure of one has minimal impact on the market, i.e. the refiner is a price taker.  

The crude oil and refined product prices are considered stochastic by using a discrete scenario 

generation for five possible economic states – the last being the lowest set of commodity prices and 

the first the highest.  To generate these five states a probability distribution is “discretised” for each 

series and the corresponding probability obtained.  The risk measures are then assessed, and 

optimisation with a variance-covariance matrix is used.  CVaR and CDaR are then introduced into 

the formulation and provide better computational properties than standard attempts using variance 

or VaR.  We found that the quantile functions: CVaR and CDaR, were very efficient and simple to 

implement using GAMS, and the scenario generation method was efficacious.  The expected value 

of perfect information indicates that there is an additional benefit of $14,858 per day to the refiner, 

if the uncertain events are included in the calculation using CDaR.  It is clear how the uncertainty 

can be managed by the refiner, and the tractability of these models would be appealing in practice.  

This work could be extended by considering the operational flow planning problem at a more 

granular level, or integrating the other issues at a refinery complex, e.g. the transportation costs or 

short term scheduling.  Integrated together with the above stochastic formulation, the refinery unit 

yield uncertainties would also provide deeper insights.  Another extension could be achieved by 

considering, the multi-stage version of this problem, which is yet to be formulated successfully.  

Multiple stages introduces computational difficulties, for example the “curse of dimensionality” - if 

successfully formulated, it would possibly leading to a financial value for the refinery.  There is 
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space for investigating optimisations with quantile functions; currently only the financial examples 

are persistent.  
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6.  APPENDIX 

 

A.1   Mass Balance Constraints  

 

[A Fixed Yields] 

 

Primary Unit:  

  -0.13 X1 + X7  = 0 

  

  -0.15 X1 + X4 = 0 

  

  -0.22X1 + X8 = 0 

  

  -0.20X1 + X9 = 0 

  

  -0.30 X1 + X10 = 0  

 

Cracker:  

  -0.05X14 + X20 = 0 

  

  -0.40X14 + X16 = 0 

  

  -0.55X14 + X17 = 0  

 

[Fixed Blends] 

 

Gasoline blending:  

  0.5X2 - X11 = 0 

  

  0.5X2 - X16 = 0 

  

Heating Oil Blending:  

  0.75X5 - X12 = 0 

  

  0.25X5 - X18 = 0  



314   

[Unrestricted Balances]  

 

Naphtha:    -X7 + X3 + X11 = 0 

  

Gas Oil:     -X8  + X12  + X13 = 0 

  

Cracker Feed:    -X9 + X14 + X15 = 0 

  

Cracked Oil:    -X17 +X18 + X19  = 0 

  

Fuel Oil:         -X10 + X13 + X15 + X19 + X6  = 0 

 

 

A.2 Raw material availability constraints 

 

Crude Oil:       X1 ≤ 15000 

 

Gasoline:   X2 ≤ 2700 

  

Naphtha:   X3 ≤ 1100 

  

Jet Fuel:   X4 ≤ 2300 

  

Heating Oil:   X5 ≤ 1700 

  

 Fuel Oil:                  X6 ≤ 9500 
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