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Abstract 

Post-translational modification of proteins by phosphorylation plays a key role in regulating all 

aspects of eukaryotic biology. Embryonic Stem Cell (ESC) pluripotency, defined as the ability to 

differentiate into all cell types in the adult body, is no exception. Maintenance and dissolution of 

pluripotency is tightly controlled by phosphorylation. As a result, key signalling pathways that 

regulate pluripotency have been identified and their functions well characterised. Amongst the best 

studied are the FGF-ERK1/2 pathway, PI3K-AKT, the LIF-JAK-STAT3 axis, WNT-GSK3 signalling 

and the TGFβ/BMP family. However, these kinase pathways constitute only a small proportion of 

the protein kinase complement of pluripotent cells, and there is accumulating evidence that diverse 

phosphorylation systems modulate ESC pluripotency. Here, we review recent progress in 

understanding the overarching role of phosphorylation in mediating communication from the 

cellular environment, metabolism and cell cycle to the core pluripotency machinery.  

Highlights: 

• Pluripotency is a unique characteristic of Embryonic Stem Cells (ESCs) and induced

Pluripotent Stem Cells (iPSCs), and is tightly controlled by phosphorylation networks

• High-throughput technologies are being used to elucidate new pluripotency signalling

pathways

• Environmental, metabolic, structural and stress-regulated phosphorylation networks are

emerging as novel regulators of pluripotency.
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Introduction 

Pluripotency is a fundamental of metazoan biology, and is defined as the theoretical capability of a 

single cell to differentiate into any lineage in the developing organism [1]. The potential of 

pluripotent cells to form any tissue or organ in the body has pushed pluripotency research to the 

fore in the field of regenerative medicine. Pluripotent cells were initially isolated from developing 

embryos as Embryonic Stem Cells (ESCs; [2-4]). More recently, induced pluripotent stem cells 

(iPSCs) have been derived by developmentally reprogramming somatic cells, and these closely 

resemble ESCs at the molecular level [5-7].  

Pluripotency comprises at least two molecularly distinct states, which differ according to 

species and developmental context [8]. Naïve pluripotency is a developmental “ground state” 

characteristic of cells from the pre-implantation mouse embryonic epiblast (mouse ESCs[mESCs]). 

Primed pluripotency is characteristic of post-implantation mouse epiblast stem cells (EpiSCs) and 

ESCs isolated from human embryos (hESCs), although human naïve pluripotent cells were 

recently derived from primed hESCs or human embryos [9-16] An intermediate state termed 

formative pluripotency was recently described [17], which represents the initial acquisition of 

developmental characteristics by naïve cells. Molecular distinctions and definitions of pluripotent 

states have been extensively reviewed elsewhere [18]. 

 Pluripotency acquisition and maintenance is intrinsically linked to expression of a 

pluripotency gene regulatory network, particularly the core transcription factor triumvirate of 

OCT4/PO5F1, SOX2 and NANOG [19-21]. OCT4 is a “governor” of pluripotency, and is expressed 

in both naïve and primed pluripotent states via distinct enhancer elements [22]. OCT4 also controls 

lineage allocation following pluripotent exit [23]. SOX2 and NANOG are key regulators of naïve 

and primed pluripotency, although Nanog is expressed at a reduced level in primed cells. Other 

transcriptional regulators of pluripotency are differentially expressed in naïve and primed cells. The 

naïve state is marked by expression of the key NANOG effector Esrrb, Krueppel-like factors 

(Klf2/4), Rex1, Fgf4 and Nr0b1 [24]. As the term suggests, primed pluripotent cells express 

markers of lineage priming, including the de novo DNA methyltransferases Dnmt3a/b [25], the 

embryonic epiblast marker Fgf5 and lineage specific transcription factors such as Brachyury [24]. 
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Pluripotency gene regulatory networks are under strict control of extrinsic and intrinsic 

signalling networks. Dynamic flow of signalling information between and within cells is dependent 

upon networks of reversible post-translational modifications, particularly protein phosphorylation 

[26]. Thus, pluripotent states can be accessed and stabilised by modulating activities of protein 

kinases. Specifically, cytokines and growth factors and selective protein kinases inhibitors can be 

exploited to manipulate pluripotency pathways. Pluripotent mESCs were initially captured [24] 

using a combination of Bone Morphogenetic Protein (BMP) to activate the SMAD1-Inhibitor of 

Differentiation (Id) pathway and Leukemia Inhibitory Factor (LIF) to activate JAK-STAT3 signalling. 

Accessing naïve “ground state” mESC pluripotency, however, requires inhibition of two protein 

kinases; MEK1/2, which phosphorylates and activates ERK1/2 MAP kinase, and GSK3, an 

antagonist of Wnt signalling [27, 28]. Primed pluripotency in human and mouse is supported by 

Fibroblast Growth Factor (FGF) and Activin [29-31], whilst human naïve pluripotency can be 

accessed using distinct combinations of growth factors and kinase inhibitors [9-16]. 

In this review, we train our focus away from these well-understood pluripotency signalling 

pathways to explore the role of emerging signalling networks and their impact upon maintenance 

and dissolution of pluripotent states. Furthermore, we shed light on exciting but poorly appreciated 

roles for cell cycle, environmental, metabolic, structural and stress-regulated phosphorylation 

networks in pluripotency regulation. 

Novel Pluripotency Signalling Pathways 

The human protein kinome consists of 538 kinases ([32] and 

http://kinase.com/web/current/kinbase) and includes some of the most studied enzymes in biology. 

However, vast swathes of the kinome have not yet been investigated, and understudied kinases 

likely perform key functions in biological processes such as pluripotency maintenance and 

dissolution [33]. Indeed, total and phospho-proteome analysis indicates that at least 300-400 

kinases are expressed in pluripotent mESCs (Jens Hukelman and G.M.F., unpublished data) and 

hESCs [34]. In this section, we discuss technologies which have been employed to uncover new 

pluripotency kinase signalling pathways. 
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Phosphoproteomic profiling is a powerful method to identify novel mechanisms by which 

phosphorylation modulates pluripotency. Initial studies focussed on identifying novel targets of 

well-understood signalling pathways (e.g. FGF2 in hESCs [35, 36]). However, unbiased 

comparison of the phosphoproteomes from pluripotent hESCs and those from differentiating or 

somatic cells has uncovered new phosphorylated targets relevant for pluripotency regulation. In 

this manner, multiple receptor tyrosine kinases with previously unappreciated roles in hESC 

pluripotency were identified [37]. Furthermore, kinase-substrate motif prediction analysis of 

differentially phosphorylated proteins indicates that distinct families of kinases are active in hESCs 

compared to somatic cells [38]. Importantly, this approach suggests novel roles for CDKs, Aurora, 

p38 and JNK kinases in pluripotency regulation [34], and reveals key hESC phosphorylation 

modules centred on CDK1/2 [39] and DNA methyltransferases [40]. Perhaps most excitingly, 

phosphoproteomic studies have the potential to reveal new pluripotency kinases, affirming 

phosphoproteomics as a core tool for systematic identification of novel mechanisms of pluripotency 

regulation.  

Functional screening has also proven invaluable to uncover novel candidate pluripotency kinases. 

Global RNA interference screens have identified kinases which block mESC pluripotency 

maintenance [41] and reprogramming to pluripotency [42]. Interestingly, kinases such as TESK1 

and LIMK2 identified in these studies have no previously described role in pluripotency or 

reprogramming. Future research will explore the molecular functions and regulation of these 

kinases in pluripotent cells. Similarly, cellular screening of kinase inhibitor libraries has elucidated 

new pluripotency pathways. A survey of selective kinase inhibitors uncovered a novel role for the 

ERK5 MAP kinase pathway in modulating mESC naïve-primed pluripotent transition [43]. In 

mESCs, ERK5 promotes expression of a key network of naive pluripotency factors, including Klf2, 

Essrb, and Rex1 [43, 44], which suppresses transition of naïve cells to the primed state. 

Interestingly, both the ERK5 kinase and a C-terminal transcriptional activation domain are required 

for naïve maintenance [43]. ERK5 may therefore function in concert with transcription factors SP1 

and MEF2 [45-47], which are required for Klf2/4 expression in other developmental systems [44, 

46, 48]. As with many emerging pluripotency pathways, identification of novel ERK5 substrates 
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would shed light on the mechanisms by which ERK5 controls pluripotency. In addition, identifying 

factors that specifically activate ERK5 may have utility in capturing naïve pluripotency and/or 

reprogramming somatic cells. In this regard, BMP, LIF and FGF activate ERK5 in mESCs and 

other cell types [44, 49, 50]. 

Identification of novel pluripotency kinase pathways thus represents an exciting niche within 

the ESC arena. Increasingly potent and selective tool compounds, including high-value collections 

from pharmaceutical companies and academic consortia [51, 52] in combination with genome 

editing technologies will provide unique opportunities to specifically disrupt kinase function in 

pluripotent cells [33]. Ultimately, we envision that pathways identified using these cutting-edge 

approaches will influence pluripotent stem cell-based clinical applications. In the meantime, a 

number of more prominent kinase signalling networks have relatively poorly understood roles in 

pluripotency regulation, which we now discuss. 

Cell Cycle & DNA Damage Response Kinases in Pluripotency Regulation 

Cell cycle progression is governed by a complex kinase network centred on the Cyclin Dependent 

Kinases (CDKs). Cell cycle phase is intrinsically linked to pluripotency maintenance and lineage 

commitment, with G1 phase providing a key window for developmental decision-making. A short 

G1 is deterministic for pluripotency maintenance [53], whilst lengthening G1 promotes 

differentiation [54], implying that kinases which govern cell cycle progression couple directly to the 

pluripotency machinery. 

Cell Cycle Kinases and Pluripotency 

Phosphoproteomic analysis pinpoints CDK1/2 as a pluripotency hub in hESCs [39], and several 

themes are now emerging with regard to the mechanisms by which CDKs modulate pluripotency. 

CDKs directly regulate phosphorylation and/or expression of pluripotency factors, or couple 

developmental decision-making to cell cycle phase. CDK activity can also pattern activation of 

signalling pathways which regulate pluripotency and differentiation.  

In mESCs, CDK1 kinase activity is essential for pluripotency maintenance [55], which is 

underpinned at least in part by modulation of core pluripotency factors. CDK1 and OCT4 appear to 

cooperate in an unknown way to repress differentiation [56]. However, direct phosphorylation of 
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SOX2 by CDKs promotes pluripotency acquisition [57], whilst NANOG is phosphorylated by CDK1 

in vitro [58]. Although the mechanisms and functional significance remain unclear, these studies 

set a precedent for direct modulation of pluripotency factors by CDK-Cyclin activities. 

Comprehensive analysis of CDK-dependent phosphorylation of core pluripotency transcription 

factors will determine the generality of this mechanism. In addition to direct phosphorylation of 

pluripotency factors, transcriptional regulation of pluripotency by CDK-Cyclins has been described. 

In hESCs, Cyclin D forms specific transcriptional complexes to control lineage specific genes [59], 

although this is independent of CDK kinase activity. CDK2 activity also promotes lineage specific 

gene expression in hESCs by phosphorylating and activating the histone methyl transferase MLL2 

[60]. 

Perhaps unsurprisingly, CDK-Cyclin activities also control pluripotency via cell cycle phase, 

and as discussed previously, this may relate to G1 length [61]. Ng and colleagues describe a 

molecular mechanism underpinning G1 as a critical cell cycle phase during which mESC 

pluripotency is maintained or dissolved [62]. Elevated CDK-Cyclin B and ATM/ATR kinase 

activities during S and G2 cell cycle phases of the mESC cycle protect against pluripotent exit. 

However, in G1 these activities are less prominent, providing a window for differentiation [62].  

CDK activity also modulates pluripotency more indirectly by patterning the signalling 

landscape. CDK4/6 phosphorylate SMAD2/3 at a distinct regulatory region to suppress TGFβ-

SMAD2/3-dependent expression of lineage specific genes [63], indicating that CDK-Cyclin 

activities not only directly modulate expression and function of pluripotency genes, they also 

impact on interpretation of developmental signals. This may be an important mechanism by which 

CDKs coordinate pluripotency, ensuring that cells respond to developmental cues only within the 

appropriate cell cycle phase. 

Finally, other cell cycle kinases have been uncovered as key pluripotency regulators. In 

mESCs, a kinome-wide RNAi screen showed that mitotic Aurora kinases regulate phosphorylation 

and degradation of p53 to promote pluripotency [41]. Furthermore, Aurora modulates OCT4 

function in mESCs [64], exemplifying the increasingly important molecular connections between 

cell cycle protein kinases and pluripotency. ESCs have therefore evolved a variety of mechanisms 
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to tightly couple pluripotency and cell cycle phase, and these await further discovery and 

investigation. 

DNA Damage Signalling in Pluripotent Cells  

The unique ESC cell cycle, with its short G1 phase, subjects the genome to significant replication 

stress [65]. This can drive pluripotency exit [66], presumably to prevent potential transmission of 

mutations to future somatic lineages and the germline. As a result, the DNA Damage Response 

(DDR) is “hard-wired” to the pluripotency machinery to ensure that DNA is efficiently repaired in 

pluripotent cells [66]. As in somatic cells, the DDR centres on CHEK1/2 and ATM/ATR kinases. 

Activation of CHEK1 [67] and ATM [68] is required for reprogramming and iPSC genome stability, 

establishing the importance of DDR kinases in acquisition and maintenance of pluripotency. 

Interestingly, mESCs can activate ATM without inducing p53 [65] in order to mount an efficient 

DDR without promoting differentiation. 

Although ESCs use the same conserved core DDR machinery as somatic cells, specific 

factors orchestrate DDR signalling to maintain ESC genome integrity. In mESCs, the pluripotency 

factor SALL4 recruits the Rad50/MRN DDR complex to specific genomic regions, which activates 

ATM to promote DNA repair [69]. Furthermore, mESCs specifically utilise the scaffold 

FILIA/KHDC3 to activate DDR kinases [70]. FILIA is phosphorylated following DNA damage, which 

activates ATM and CHEK2, promoting DNA repair and genome stability [70]. A major unresolved 

question concerns why ESCs utilise unique factors to coordinate the DDR. 

Nutrition and Energy Sensing Kinases in Pluripotency 

As exemplified by the cell cycle and DDR, fundamental cellular processes profoundly influence 

pluripotency acquisition and/or maintenance. Cellular nutrition and energy status continue along 

this theme (See Figure 1). As in other cell types, ESC nutrient responses are controlled by the 

PI3K-related protein kinase mechanistic Target Of Rapamycin (mTOR) [71]. mTOR is the kinase in 

two distinct complexes: mTORC1, defined by mTOR interaction with regulatory-associated protein 

of mTOR (RAPTOR) [72, 73], and mTORC2, defined by mTOR interaction with rapamycin 

insensitive companion of mTOR (RICTOR) [74]. In response to nutrients, mTORC1 phosphorylates 

and activates p70 S6 kinase 1 (which phosphorylates ribosomal S6 protein [75]) and eIF4E binding 
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protein 1 (4E-BP1) [76]. mTORC1 integrates nutritional signals to enhance global and cap-

dependent translation, ribosome biosynthesis, gene expression and autophagy [77, 78].  

mTOR is a Central Regulator of ESC Pluripotency 

Consistent with its role as a major nutrient sensor, mTOR is critical for ESC growth and 

proliferation [79], early embryonic development [80] and pluripotency [79, 81-85] in both mouse 

and human. In hESCs, mTORC1 activity is required for long-term pluripotency maintenance, and 

promotes expression of pluripotency factors OCT4, SOX2 and NANOG [85]. Furthermore, 

mTORC1 inhibition results in hESC differentiation to mesendoderm [83], suggesting an 

involvement of mTORC1 activity in pluripotency and restraining lineage specification. 

 mTOR complexes display highly specific signalling dynamics in pluripotent and 

differentiating cells. Although active in mouse and human ESCs, mTORC1&2 activity further 

increases during differentiation [81, 84, 86], which may require ERK1/2 activation of p90 RSK [81]. 

Interestingly, an mTOR-specific protein inhibitor, DEPTOR, acts to maintain mTOR kinase activity 

below a threshold level in both human and mouse ESCs [87]. DEPTOR suppression may thereby 

promote the increased mTORC1&2 activity observed upon ESC differentiation.  

As expected from these studies, mTOR also displays complex signalling and expression 

dynamics during somatic cell reprogramming. In the mouse, mTORC1 and mTORC2 activities 

decrease during reprogramming via SOX2–dependent recruitment of the NuRD epigenetic 

remodelling complex, which shuts down the mTOR promoter [88]. Congruently, mTOR kinase 

inhibition enhances somatic cell reprogramming [76], although restoration of mTOR activity is 

critical for final steps of iPSC generation, presumably because mTOR is required for pluripotency 

maintenance [81, 84].  

Most reports therefore suggest that different thresholds of mTOR signalling specify distinct 

developmental identities. Consistent with this notion, exciting recent work shows that partial 

inhibition of mTORC1 activity maintains a state of “paused pluripotency” similar to diapause, a 

developmental arrest induced by nutrient starvation [89]. Why restrained mTOR activity is more 

compatible with pluripotency is not currently understood. However, mTOR drives global translation, 
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and mESCs have lower translation rates than differentiated cells [84, 86], which may buffer against 

spurious expression of lineage specific factors and differentiation.  

Amino acid signalling in ESC pluripotency and self-renewal 

A key function of the mTOR pathway is to mount cellular responses to nutrient availability, primarily 

amino acid levels. In contrast to somatic cells, where mTORC1 is activated in response to 

branched chain amino acids leucine and arginine [90], mESCs are exquisitely dependent upon 

threonine, and show little requirement for leucine/arginine for growth/proliferation [91]. Intriguingly, 

threonine reportedly regulates activity of both mTORC1&2 complexes in mESCs to maintain 

proliferation and Oct4/Pou5f1 expression [92]. How threonine might control mTORC1&2 is not 

known, although evidence suggests this mechanism is distinct from the canonical branched chain 

amino acid sensing by RAG GTPases [93]. Thus, elucidating the molecular basis of this unique 

ESC nutrient sensing system remains an important unresolved question. 

Kinase Signalling and Metabolic Programming in Pluripotency 

As is the case with the nutrient sensing machinery, metabolic status and pluripotency are 

fundamentally intertwined. Distinct pluripotent states differentially utilise glycolytic and oxidative 

energy production systems [94], which plays a key role in pluripotency maintenance. Whilst naïve 

ESCs and somatic cells produce energy via mitochondrial oxidative phosphorylation, primed 

human and mouse ESCs obtain their ATP from glycolysis [95]. Transition between pluripotent 

states, pluripotency acquisition and differentiation therefore involves a metabolic conversion [94, 

96-99], and mTOR plays several distinct roles in metabolic regulation in ESCs. 

Autophagy/Mitophagy in Metabolic Switching and Pluripotency 

mTOR supports glycolytic metabolism and pluripotency in primed hESCs and mouse EpiSCs 

[100], at least in part by promoting expression of pentose phosphate pathway (PPP) genes [101, 

102]. In mESCs, mTOR also controls a unique GALECTIN-1 system for glucose uptake, which is 

essential for proliferation [103]. However, the best understood mTOR function in metabolic 

conversion from oxidative to glycolytic metabolism is via mitochondrial removal by the process of 

mitochondrial autophagy (mitophagy) [104]. Autophagy recycles proteins and organelles via 

formation of intracellular autophagosomes targeted for lysosomal degradation [105]. This is critical 



	 10	

for mESC pluripotency maintenance, as oxidative metabolism drives pluripotent exit [104]. 

Conversely, mESC differentiation increases mitochondrial synthesis to support oxidative 

metabolism [106]. In a similar vein, active mitophagy ensures that hESCs have relatively few 

mitochondria compared to somatic cells [7, 107], which restricts differentiation. 

In addition to mTOR, autophagy/mitophagy is tightly regulated by the activities of several 

key protein kinases. A complex containing UNC51-like kinase-1 (ULK1) controls isolation 

membrane (phagophore) assembly, autophagosome nucleation and expansion [108]. ULK1 

integrates opposing signals from AMP activated protein kinase (AMPK) and mTORC1 to control 

phagopore assembly. AMPK phosphorylates ULK1 to drive autophagy, whilst mTOR 

phosphorylates a distinct site on ULK1 to suppress autophagy [109, 110]. Elevated mTORC1 

activity observed during differentiation thereby reduces autophagy in somatic cells [81].  

Autophagy has been extensively studied during reprogramming to pluripotency. Canonical 

(ATG3-dependent [88]) and non-canonical autophagy pathways [111, 112] are activated during 

reprogramming to drive oxidative to glycolytic conversion [76]. AMPK induced autophagy is 

required for pluripotency acquisition in both mouse and human [76, 88, 113, 114], and 

pharmacological AMPK activation or mTOR inhibition enhances cell reprogramming by modulating 

autophagy [76]. Furthermore, increased mTOR transcription and mTOR kinase activity during the 

final stages of reprogramming drives autophagy, which aids pluripotency acquisition [88]. 

Specifically manipulating mitophagy and metabolic reprogramming using kinase inhibitors would 

add further valuable insight into the role of these processes in pluripotency. 

Cellular and Environmental Stress Signalling in Pluripotency 

Like nutrient and metabolic status, environmental stress profoundly impacts on pluripotency, 

although ESCs have high stress tolerance compared to differentiated cells [115, 116]. Responses 

to environmental stress are mediated by classical MAP kinase cascades [117] and other kinase 

signalling pathways. These pathways therefore perform key functions in pluripotent cells (See 

Figure 2). 

Oxidative Stress 
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As discussed above, primed pluripotent ESCs rely primarily on glycolysis for ATP generation [99], 

which minimises oxidative stress generated by reactive oxygen species (ROS) and oxidative 

metabolism [118]. In hESCs, inhibition of oxidative phosphorylation enhances pluripotency [119], 

and culture in low oxygen/hypoxia improves pluripotency maintenance and reduces chromosomal 

abnormalities [120, 121]. Although acute oxidative stress does not directly impact on pluripotency 

gene expression [122], it can influence lineage choice during differentiation [41, 123, 124]. ESCs 

therefor appear to be metabolically programmed to avoid differentiation induced by oxidative 

stress. 

Oxidative stress activates the ERK1/2, c-Jun N-terminal kinase (JNK) and p38 MAP kinase 

signalling cascades, the phosphoinositide 3-kinase (PI(3)K)/AKT pathway and the nuclear factor 

(NF)-κB signalling pathways [125]. ERK1/2 and PI(3)K/AKT activation occurs largely by protein 

tyrosine phosphatase inhibition and receptor tyrosine kinase phosphorylation [125], whilst the p38 

and JNK MAP kinase cascades are activated by apoptosis signal-regulating kinase 1 (ASK1). The 

redox regulatory protein thioredoxin (TRX) normally inhibits ASK1, but oxidative stress dissociates 

the TRX–ASK1 complex, facilitating JNK and p38 phosphorylation and activation [126, 127]. NF-κB 

is also activated by several stress pathways, including IκB kinase (IKK)α/β and ERK1/2 [128].  

In mESCs, NF-κB transcription promotes differentiation [129], and NANOG maintains 

pluripotency at least in part by suppressing NF-κB signalling [130]. NF-κB transcription is also 

activated during hESC differentiation [131], although intriguingly, the key NF-κB kinase activator 

IKKα/β promotes OCT4 and NANOG expression in mESCs [132], suggesting that the role of the 

NF-κB signalling pathway in pluripotency is not yet fully understood. ERK1/2, JNK and p38 MAP 

kinase signalling pathways also promote mESC pluripotent exit [133-135], although whether these 

are oxidative stress-specific responses to remains to be determined. Furthermore, as we discuss 

below, the role of MAP kinases in pluripotency may depend on both cellular context and type of 

stress response. Nevertheless, these data indicate that signalling responses to oxidative stress 

have a central function in pluripotency maintenance and gene expression. 

Hyperosmotic Stress 
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Hyperosmotic stress occurs when external osmolarity exceeds the intracellular physiological 

range, and has been linked to pluripotency regulation. The WNK1-4 family kinases have emerged 

as key modulators of the cellular response to hyperosmotic conditions by regulating ion transport 

[136, 137]. However, investigation of WNK kinase functions in pluripotent cells awaits development 

of selective tools. To date, most studies into kinase signalling in hyperosmotic stress responses 

focus on MAP kinase signalling pathways p38 and JNK. 

In contrast to oxidative stress, hyperosmotic activation of p38 actively promotes 

pluripotency [138] and facilitates somatic reprogramming to iPSCs [138, 139]. During 

reprogramming, p38 specifically promotes de-methylation of pluripotency gene promoters [138] via 

an undefined mechanism. In addition, p38 kinase inhibitors specifically suppress OCT4 

transcriptional activity under hyperosmotic conditions [140]. In contrast, JNK activity promotes 

pluripotent exit following acute hyperosmotic stress by suppressing OCT4 expression [141] and 

phosphorylating KLF4 to suppress transcriptional activity [142]. Therefore, a somewhat confusing 

picture of pathway-specific stress responses in pluripotent cells is emerging. Dissecting roles of 

individual kinases under specific stress conditions using selective kinase inhibitors should provide 

clarity to this field. 

Signalling Responses to other Environmental and Cellular Stresses 

A further stress exerted on pluripotent cells is shear stress (SS), caused by fluid movement over 

the cell surface. First reported in endothelial cells [143], SS occurs in response to load-bearing or 

surface laminar flow [144], and can be lethal in preimplantation embryos [145]. ESCs reportedly 

mount differential responses depending on strength and duration of SS. In pluripotent mESCs, SS 

stabilises expression of Oct4 and the naïve pluripotency marker Rex1 [146]. In contrast, acute SS 

promotes ectodermal fate in differentiating mESCs, whilst prolonged SS results in mesendoderm 

specification [147]. Thus, it may be desirable to exploit culture conditions that generate a certain 

threshold of SS to efficiently propagate naïve pluripotent cells. 

SS signals are primarily transduced by mechanosensors such as integrins, receptor 

tyrosine kinases (particularly VEGFR2), G-protein coupled receptors, ion channels and intercellular 

junction proteins [148-152]. These trigger kinase signalling cascades which modulate transcription 
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of SS response genes. In particular, the ERK5 pathway, which promotes naïve pluripotency in 

mESCs [43], plays a key role in SS responses. ERK5 is thought to mediate SS responses via 

KLF2 induction [153] or NRF2 activation [154], and therefore may be the missing link that connects 

SS signals to the core pluripotency machinery. 

Finally, Endoplasmic Reticulum (ER) homoeostasis and the unfolded protein response 

(UPR) is crucial for cell viability and is regulated by protein kinases IRE1 and PERK [155]. In 

ESCs, ER stress promotes VEGF expression and vascular differentiation [156], and inhibiting ER 

stress reduces VEGF expression and supports mESC pluripotency [157, 158]. However, hESCs 

have a relatively active UPR [159], suggesting that pluripotent cells nevertheless rely on a 

threshold level of UPR for survival and/or to maintain pluripotency. Thus, a key question is 

establishing how ESCs effectively balance the UPR to to prevent spurious differentiation. 

Mechanical and structural signalling in pluripotency 

As we have seen, eliciting appropriate stress responses is critical to maintain pluripotency and 

survival at the level of individual cells. However, metazoan development also requires that cells 

sense the topography of their immediate environment. As a result, intercellular forces and 

mechanical signals from the Extra-Cellular Matrix (ECM) profoundly influence pluripotency (See 

Figure 3). Understanding the molecular pathways involved in ESC mechanotransduction will be 

invaluable to develop effective cell culture strategies to exploit pluripotent cells for tissue 

regeneration [160].  

Cell-Cell Interactions: Signaling Downstream of Cadherins in Pluripotency 

The mammalian genome encodes more than 100 cadherins [161], which are key components of 

adherens junctions. E-cadherin (CDH1) is a master regulator of mESC and hESC biology [162], 

and underpins the compact mESC morphology [163]. A key signalling function of CDH1 in mESCs 

is to support activation of the LIF signalling pathway. Cdh1−/− mESCs respond poorly to LIF 

stimulation [164-166], displaying reduced STAT3 activation and pluripotency gene expression 

[167]. CDH1 forms a ternary complex with LIF receptor and gp130, and this interaction is required 

for efficient LIF signalling [164]. Interestingly, this system is stabilised by a positive feedback loop, 
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whereby the STAT3 target Klf4 activates the Cdh1 promoter [168], promoting cadherin-based cell–

cell adhesion and LIF signalling to maintain pluripotency. 

In primed ESCs, the cadherin picture becomes more complex. CDH1 depletion converts 

naive mESCs into primed EpiSCs, whereupon N-cadherin (CDH2) is upregulated [167] to support 

pluripotency in this context [169]. However, CDH1 retains a critical signalling role in primed cells, 

by potentiating ACTIVIN-SMAD2/3 signalling and Nanog expression in EpiSCs [165], and PI3K-

AKT signalling and NANOG and OCT4 expression in hESCs [170]. Therefore, cadherins have 

clear signalling functions in both naïve and primed ESCs, and these are required for pluripotency 

maintenance. 

Cell-ECM Interactions: Signalling Downstream of Integrins in Pluripotency 

Integrins are heterodimeric transmembrane receptors which couple the extracellular matrix (ECM) 

to intracellular signalling networks via cytoskeletal adaptor proteins [171]. Although integrin 

engagement with ECM substrates supports self-renewal and pluripotency of hESCs [172-176], the 

mechanisms are poorly understood in comparison to the cadherins. Nevertheless, we explore the 

mechanisms by which integrins signal to the core pluripotency gene regulatory network. 

 Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase activated by focal adhesion 

formation and integrin activation. FAK activation generates phosphotyrosine docking sites for 

adaptor/scaffolding proteins and signalling molecules [177], which include Src Family Kinases 

(SFKs), the scaffold p130CAS, the GRB2 adaptor and PI3K. These activate downstream signalling 

pathways including ERK1/2 and AKT [178]. In hESCs, integrin signalling to FAK supports 

pluripotency, and FAK inhibition results in differentiation and anoikis [179]. Integrin activation of 

FAK activates PI3K-AKT and MDM2 to suppress p53 activity [179], which supports cell survival 

and pluripotency [180, 181]. However, FAK is also activated following hESC differentiation and 

inactivated during reprogramming of fibroblasts to iPSCs [182]. Furthermore, mESC pluripotency 

maintenance inversely correlates with integrin activation [183]. Therefore, there is contradictory 

evidence regarding the role of integrin signalling in pluripotency, which will only be resolved by 

developing strategies to disentangle the pleiotropic functions of integrins and FAK in ESCs. 
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SRC family kinases (SFKs) are membrane associated non-receptor tyrosine kinases, which 

transduce signals from integrins and other cell surface receptors to the actin cytoskeleton [184]. 

There are eight mammalian SFKs [185], many of which are expressed in mESCs. Paradoxically, 

inhibition of all SFKs in mESCs promotes pluripotency [186], whilst inhibition of specific isoforms 

can induce differentiation [187]. This conundrum was elegantly tackled using inhibitor resistant 

SFK mutants, which showed that selective c-SRC activation induces primitive endoderm 

differentiation [188]. In contrast, specific YES knockdown suppresses Nanog and Oct4, inducing 

mESC differentiation [189]. Interestingly, the differentiation-promoting activity of c-SRC is 

antagonised by YES in mESCs [189], and hESCs [190], indicating that these kinases may directly 

inhibit or compete with each other.  

To further complicate matters, SFKs isoforms are activated by multiple stimuli. In addition 

to activation by integrins and receptor tyrosine kinases such as FGFRs [35], YES and HCK are 

activated by LIF in mESCs via recruitment to gp130 [186, 191-193], consistent with a role in 

pluripotency signalling. YES kinase activity is suppressed following mESC differentiation [189], 

whilst HCK activation reduces the LIF requirement for mESC self-renewal [191]. Additionally, 

specific SFK functions may be underpinned by distinct developmental expression profiles. OCT4 

positively regulates Yes expression in mESCs [194], ensuring that YES is abundant and activated 

in pluripotent cells. YES specifically phosphorylates YAP, a transcription factor inhibited by the 

Hippo pathway (see section below), which drives YAP-TEAD dependent Oct4 transcription and 

mESC pluripotency [192]. Accumulating evidence therefore suggests that c-SRC drives 

differentiation, whilst YES and HCK function to maintain pluripotency. However, lack of specific 

tools to study SFKs have hindered efforts to identify the molecular mechanisms underpinning their 

functional specificities in ESCs.  

Hippo Signalling Connects Cellular Mechanics to the Pluripotency Machinery 

A final key cellular mechanosensing system centres around the conserved Hippo kinase signalling 

pathway, which coordinates cell growth, proliferation and fate in response to cell–cell contact and 

polarity. The core Hippo pathway consists of the MST1/2 (Hpo in Drosophila) and LATS1/2 (Wts) 

kinases, which form a cascade that phosphorylates YAP (Yki) and TAZ transcriptional cofactors. 
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YAP phosphorylation promotes 14-3-3 binding and prevents YAP/TAZ accumulation in the nucleus 

[195, 196]. Hippo activation therefore restricts YAP/TAZ dependent transcription of genes required 

for cell growth and proliferation, and is emerging as a major regulator of pluripotency [197].  

Hippo signalling is activated by mechanical inputs from adherens junctions, tight junctions, 

apical–basal polarity complexes and the actin cytoskeleton [198]. F-actin stabilization results in 

YAP/TAZ activation, whilst F-actin disruption drives Hippo activation and inactivation of YAP/TAZ 

[199]. G-protein coupled receptors (GPCRs) also respond to mechanical signals to modulate RHO 

family GTPase activation and actin dynamics [200]. In hESCs, the guanine nucleotide exchange 

factor (GEF) AKAP-LBC activates RHOA signalling by modulating actin microfilament organization, 

and this is required to sustain nuclear localisation of YAP/TAZ [201].  

YAP and TEAD cofactors are highly expressed in ESCs [202], and along with TAZ are 

required for maintenance of mouse and human pluripotency [203-205]. Elevated YAP/TAZ activity 

also maintains and expands tissue-specific stem cell compartments [206-213]. Overexpression of 

YAP along with OCT4, SOX2 and KLF4 drives reprogramming of mouse fibroblasts to pluripotency 

[205]. Conversely, activation of Hippo signalling is a barrier to reprogramming [214, 215], although 

LATS2 appears to suppress reprogramming by inhibiting TAZ but not YAP [214]. Nevertheless, 

The YAP/TAZ/TEAD transcriptional module is a crucial determinant of pluripotency, and its 

function is directly opposed by the Hippo signalling pathway.  

Mechanistically, YAP/TAZ/TEAD drive mESC pluripotency by directly inducing Oct4 and 

Nanog expression [192]. However, YAP also patterns and integrates signals from other 

pluripotency signalling pathways. Indeed, YAP may promote naïve pluripotency in part by 

suppressing differentiation-inducing effects of GSK3 inhibition in hESCs [216]. As discussed 

previously, YAP phosphorylation by the SFK YES increases TEAD2 transcriptional activity at the 

Oct4 and Nanog promoters in mESCs [192]. In addition, cross-talk between Hippo and TGFβ/BMP 

signalling also promotes pluripotency. In hESCs, TAZ associates with SMAD2/3 to maintain 

nuclear localisation and potentiate OCT4 and NANOG expression in response to TGFβ [203]. 

Furthermore, Beyer et al. identified a regulatory complex composed of TAZ/YAP with TEADs with 

SMAD2/3 and OCT4 (termed TSO). TSO acts to suppress expression of differentiation markers 
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whilst supporting expression of core pluripotency genes, thereby maintaining pluripotency [217]. 

Additionally, in mESCs, YAP has been shown to function in the BMP pathway via SMAD1-

dependent recruitment to BMP responsive enhancers to block neural differentiation [204]. 

Therefore, the Hippo signalling pathway and its YAP/TAZ/TEAD transcriptional module integrate 

diverse signals to couple the physical environment to transcriptional regulation of pluripotency. 

Perspectives 

Biological function has been ascribed to a relatively small fraction of the kinome, and evidence 

suggests that understudied kinases and signalling pathways play critical roles in key biological 

processes. In this review, we explore newly uncovered pluripotency kinases and more established 

kinase signalling pathways with emerging roles in pluripotency regulation. A general theme is that 

environmental and cellular conditions modulate diverse kinase networks, which profoundly impact 

upon expression and function of pluripotency factors. These molecular connections ensure that 

pluripotency is either maintained or dissolved depending on the cellular environment. Although 

much progress has been made, a more complete understanding of how cell cycle, DNA damage 

signalling, metabolism, stress and mechanical factors modulate pluripotency is required to exploit 

these processes in pluripotent cell technologies. Furthermore, recent advances in our 

understanding of distinct pluripotent states requires that we investigate kinase functions in 

pluripotent cells within the framework of the naïve-formative-primed pluripotency paradigm. 

A significant future challenge will be to elucidate key mechanisms and substrates by which 

protein kinases control pluripotency. In this regard, phosphoproteomic studies and “functional 

kinomics” enable novel phosphorylation networks to be comprehensively mapped and 

interrogated. We propose that kinase signalling pathways identified using these unbiased 

approaches will elaborate the most exciting new molecular targets to be exploited in pluripotent 

stem cell applications. 
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Figure legends 

Figure 1: Metabolism and energetic signaling in pluripotency maintenance, acquisition and 

exit. (Left) Primed mESC, hESC and iPSC primarily utilise glycolytic metabolism. Under these 

metabolic conditions, AMPK signaling phosphorylates and activates ULK1 to stimulate mitophagy. 

Pluripotency factors such as OCT4, SOX2 and NANOG are highly expressed, and SOX2 recruits 

NuRD repressor complex to restrict mTOR expression. However, mTOR signaling supports 

pluripotency and protein translation. (Right) Differentiation induces a metabolic switch to 

mitochondrial oxidative respiration based metabolism. mTOR expression and activation increase to 

elevate global translation. High mTOR activity promotes ULK1 inhibitory phosphorylation, which 

suppresses mitophagy allowing mitochondrial accumulation. 
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Figure 2: Multiple stress signalling pathways modulate pluripotency and differentiation. 

Oxidative Stress signalling promotes expression of lineage specific factors by activating multiple 

signalling pathways. Reactive Oxygen Species (ROS) produced by oxidative metabolism promotes 

activation of ERK1/2 via inhibition of protein tyrosine phosphatases (PTPs). ROS also results in 

dissociation of TRX and ASK1 to enable JNK1 and p38 activation. These pathways are thought to 

promote pluripotent exit and differentiation in response to ROS. Hypoxic conditions also increase 

ROS production and Endoplasmic Reticulum (ER) stress, which induces Unfolded Protein 

Response (UPR) genes, VEGF induction and differentiation. Hyperosmotic activation of p38 

promotes Oct4 expression, whilst JNK inhibits KLF4 and OCT4. In contrast, shear stress (SS) 

promotes expression of pluripotency factors including OCT4 and REX1. The ERK5 signalling 

pathway may be a key mechanism to integrate SS signals with the core pluripotency gene 

regulatory network.  
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Figure 3: Mechanical and structural signaling in pluripotency. 

(1) E-cadherin (CDH1) is a key component of adherens junctions and forms a ternary complex with 

the LIF receptor and gp130 in mESCs. This complex is required for efficient JAK-STAT3 signalling 

and pluripotency factor expression. The STAT3 target KLF4 activates Cdh1 expression generating 

a positive feedback loop to stabilise naïve pluripotency. (2) Integrins couple the extracellular matrix 

(ECM) to intracellular signaling. Integrins activate Focal Adhesion Kinase (FAK) to support 

pluripotency via activation of PI3K-AKT and MDM2. Downstream, the Src family kinase (SFK) YES 

phosphorylates the transcription factor YAP to promote pluripotency. (3) The Hippo pathway 

provides a further link between cellular mechanics and pluripotency. The Ser/Thr kinases MST1/2 

and LATS1/2 form a kinase cascade that phosphorylates YAP (at a site distinct from that 

phosphorylated by YES), which promotes 14-3-3 binding and cytoplasmic retention. Nuclear 

YAP/TAZ/TEAD promotes transcription of pluripotency genes including Oct4. 
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