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Abstract 

Global efforts to address climate change have recently introduced a new source 

of fatality risk to bats, from wind turbines. Bat fatalities have now been 

confirmed in varying magnitudes at wind energy facilities around the world. 

Research at large turbines and wind farms has started to produce a knowledge 

base regarding impacts upon bats, though many questions remain. Little, 

however, is known about risk levels at small and medium scale wind turbines. 

Equally, research regarding the impacts of turbines in the UK is limited. 

This thesis examines the impacts of small and medium scale wind turbines 

upon bats. Planning records of wind turbines in Wales and south west (SW) 

England were reviewed. Approved planning applications for single and double 

turbine sites were found to greatly outnumber those for larger scale wind farms. 

The large majority of single and double turbine approvals were also for small 

turbines. The potential impacts of turbine presence and density on current bat 

roost populations and population changes were analysed, finding no impact. An 

estimate of bat fatality rates at small and medium turbines was calculated, using 

a trained search dog to locate carcasses. An average fatality rate between 0.81 

and 15.15 turbine-1 year-1 was estimated. The higher rate accounted for 

uncertainty in the monitoring protocol. Only 3 bat carcasses were however 

observed across all monitored turbines, suggesting more stringent monitoring 

would likely confirm a lower maximum annual fatality rate. Bat activity levels 

were also compared between the turbine location and differing habitat types. A 

disturbance effect was consequently identified in proximity to turbines during 

high wind speeds. Finally moderating influences of environmental weather and 

habitat conditions upon bat activity were confirmed. 

Social Network Analysis (SNA) methods were used to analyse bat movement 

networks within a small grid of bat detectors centred on each turbine. 

Associations were identified between bats’ movement routes and habitat 

structures present at sites, highlighting vulnerabilities to disruption. Furthermore 

bats actively used the turbine area, potentially for foraging purposes. Finally by 

assessing bats’ activity levels in response to a turbine noise playback 

experiment, small turbine noise was found to have no impact upon bat activity. 

Planning guidance regarding bats and small and medium turbines is highlighted 

as a priority for policy development.  



4 
 

Contents, Tables and Figures 

Contents 

  Page 

 Abstract 3 

 List of Contents, Tables and Figures 4-12 

 Abbreviations 13 

1 Introduction and Literature Review 19 

1.1 Recognition of the impact of wind turbines upon bats 25 

1.2 Estimates of the magnitudes of bat fatality 26 

1.3 Bat species affected 33 

1.4 Causes of bat fatalities at turbines 39 

1.5 Hypotheses for bats interaction with wind turbines 42 

1.6 
Variability in bat activity, fatalities and behaviour results: 
Moderating factors 

44 

1.7 Bats’ flight heights 55 

1.8 Turbine sound and electromagnetic emissions 56 

1.9 Visibility of turbines to bats, including turbine lighting 58 

1.10 
Detection of turbines by bats and orientation of turbines vs. bat 
flight direction 

59 

1.11 Non-fatal and behavioural impacts 61 

1.12 Population-level impacts 64 

1.13 Mitigation 69 

1.14 Thesis Objectives 73 

1.15 References 75 

1.16 General methods 104 

1.17 References 108 

2 
Wind energy and bat conservation conflicts on a regional 
scale 

109 

2.1 Abstract 109 

2.2 Introduction 110 



5 
 

2.3 Materials & methods 111 

2.4 Results 118 

2.5 Discussion 132 

2.6 Conclusions 138 

2.7 References 140 

2.8 Supplementary materials 147 

3 
Bat fatality and disturbance at small and medium wind 
turbine sites 

164 

3.1 Abstract 164 

3.2 Introduction 165 

3.3 Methods 168 

3.4 Results 179 

3.5 Discussion 190 

3.6 Conclusions 198 

3.7 References 201 

3.8 Supplementary materials 210 

4 Spatial activity patterns of bats at wind turbine sites 217 

4.1 Abstract 217 

4.2 Introduction 218 

4.3 Methods 221 

4.4 Results 228 

4.5 Discussion 241 

4.6 Conclusions 245 

4.7 References 247 

4.8 Supplementary materials 256 

5 Impact of turbine noise on bats 258 

5.1 Abstract 258 

5.2 Introduction 259 

5.3 Methods 262 

5.4 Results 267 



6 
 

5.5 Discussion 271 

5.6 Conclusions 276 

5.7 References 278 

5.8 Supplementary materials 286 

6 General Discussion 288 

6.1 Introductory restatement 288 

6.2 Consolidation of research space 291 

6.3 Practical implications and recommendations 302 

6.4 Future research questions 309 

6.5 Final remarks 313 

6.6 References 314 

 Appendices 323 

 Glossary of definitions 340 

 Acknowledgements 341 

 

  



7 
 

Tables 

Table Number and Caption 
Page 

Number 

Table 1.1: "Summary of numbers of mass mortality events (MMEs) 
reported in bats, by category and region. The order of magnitude for 

maximum unadjusted numbers of observed carcasses (per year) 
documented for the largest MME within each category is given in 
rounded parentheses, following the number of reports for each 
region and category” (Text and table modified from O’Shea et al. 
(2016)). Data in squared parentheses manually added relative to 
original O’Shea et al. (2016) table, illustrating adjusted/extrapolated 
estimates of annual fatality potential (maximum estimate as above, 
to order of magnitude; ‘(C)’ indicates calculation at a country or 
continental-scale), accounting for uncertainty in monitoring protocols 
and extents of hazard sources, relative to the observed carcass 
counts. Reference sources for the adjusted/extrapolated estimates 
are listed in the ‘Extrapolation estimate reference source’ column) 

20 

Table 1.2: “Proposed hypotheses for explaining the proximate and 

ultimate causes of bat fatalities at wind turbines. Here we define proximate 
causes as those that address the mechanistic factors directly responsible 

for the deaths of individual bats. Ultimate causes are those that address 
why bats are in the vicinity of turbines before death. Hypotheses are 
not mutually exclusive and are intended to be applied at the species 
level. Italicized hypotheses of ultimate cause are those we consider 
1st degree, the disproval of which would eliminate associated 2nd-
degree hypotheses (i.e., those not italicized)” (reproduced from 
Cryan and Barclay et al. 2009). Three hypotheses are added from 
Strickland et al. (2011) and one from Baerwald and Barclay (2011) 
as referenced in the table. All text from Cryan and Barclay et al. 
(2009) unless otherwise referenced. 

22 

Table 1.3: Reproduced from Arnett et al. (2008). Estimates of mean 
bat fatalities per turbine, per megawatt (MW) of energy produced per 
turbine, and per 2,000m2 of rotor-swept area for 21 studies at 19 
wind facilities in North America, 1996-2006 

28 

Table 1.4: “The risk of collision fatalities affecting bat populations” 
(table and caption from Natural England, 2014) 

35 



8 
 

Table 1.5: Assessing risk posed by turbines by taking account of 
various factors including habitat preference and flight behaviour 
(Natural England Technical Information Note TIN051 Bats and 
Onshore Windfarms 2014))  

36 

Table 1.6: Detectability coefficients to compare activity indices. 
Annex 4 Rodrigues et al (2015) ((Guidelines for consideration of bats 
in wind farm projects – Revision 2014)) 

37 

Table 2.1 Planning application search keywords used to find wind 
turbine records. 88% of the total records were found using search 
keywords, 12% were identified from existing wind turbine lists 
received direct from a planning authority, or records from other wind 
turbine databases. Search terms that could exist as 1 or 2 words 
(e.g. ‘windfarm’ or ‘wind farm’) were applied using both formats 

113 

Table 2.2: Descriptive summary of the BCT bat roost data used in 
this Chapter’s analyses, categorised by species and genus 

114 

Table 2.3: GLM output from the model assessing the impact of 
turbine presence upon Pipistrellus genus bat roost populations, 
applying sustenance zone radii of 5km, 4km, 3km and 2km, 2010-12 
mean roost population counts and a negative binomial error 
distribution. The values for Deviance, AIC, the Likelihood Ratio Test 
(LRT), degrees of freedom (df) and significance (p) relate to the 
removal of each variable individually from the full model and testing 
the difference between the resulting and full models 

121 

Table 2.4: GLM output from the model assessing the impact of 
turbine density upon Pipistrellus genus bat roost populations, 
applying sustenance zone radii of 5km, 4km, 3km and 2km, 2010-12 
mean roost population counts and a negative binomial error 
distribution. The values for Deviance, AIC, the Likelihood Ratio Test 
(LRT), degrees of freedom (df) and significance (p) relate to the 
removal of each variable individually from the full model and testing 
the difference between the resulting and full models 

122 

Table 2.5: GLM output from the turbine presence vs. roost size 
change over 5 years model, applying sustenance zone radii of 5km 
and 4km, changes in mean roost population counts (of all species) 
over the 2005-07 to 2010-12 period and a Gaussian error 
distribution. The values for Deviance, AIC, the Likelihood Ratio Test 
(LRT), degrees of freedom (df) and significance (p) relate to the 
removal of each variable individually from the full model and testing 
the difference between the resulting and full models 

125 



9 
 

Table 2.6: Distribution of planned turbines across height categories, 
based on a sample of 12 planning authorities (figures in brackets 
represent percentages of totals within a height category). Note 1 
application’s permission status was not known. Planning authorities 
included in the sample were as follows: Teignbridge District Council, 
North Dorset District Council, Stroud District Council, South 
Gloucestershire Council, South Somerset District Council, Wiltshire 
Council, Caerphilly County Borough Council, Monmouthshire County 
Council, Powys County Council, Rhondda Cynon Taf County 
Borough Council, City and County of Swansea and Snowdonia 
National Park Authority. 

131 

Table 2.7: Dominant qualitative spatial patterns of wind turbines 
approved in planning in Wales and SW England  

136 

Table S2.1 A comparison of coverage of external wind turbine 
planning databases 

148 

Table S2.2: GLM output from the model assessing the impact of 
turbine presence upon bat roost populations for ‘all species’, 
applying sustenance zone radii of 5km and 4km, 2010-12 mean 
roost population counts (all species of bat included) and a negative 
binomial error distribution. The values for Deviance, AIC, the 
Likelihood Ratio Test (LRT), degrees of freedom (df) and 
significance (p) relate to the removal of each variable individually 
from the full model and testing the difference between the resulting 
and full models 

149 

Table S2.3 GLM output from the model assessing the impact of 
turbine presence upon bat roost populations for ‘all species’, 
applying sustenance zone radii of 3km and 2km, 2010-12 mean 
roost population counts (all species of bat included) and a negative 
binomial error distribution. The values for Deviance, AIC, the 
Likelihood Ratio Test (LRT), degrees of freedom (df) and 
significance (p) relate to the removal of each variable individually 
from the full model and testing the difference between the resulting 
and full models 

150 

Table S2.4: GLM output from the model assessing the impact of 
turbine presence upon Rhinolophus genus bat roost populations, 
applying sustenance zone radii of 5km and 4km, 2010-12 mean 
roost population counts and a negative binomial error distribution. 
The values for Deviance, AIC, the Likelihood Ratio Test (LRT), 
degrees of freedom (df) and significance (p) relate to the removal of 
each variable individually from the full model and testing the 
difference between the resulting and full models 

151 

Table S2.5: GLM output from the model assessing the impact of 
turbine presence upon Rhinolophus genus bat roost populations, 
applying sustenance zone radii of 3km and 2km, 2010-12 mean 
roost population counts and a negative binomial error distribution. 
The values for Deviance, AIC, the Likelihood Ratio Test (LRT), 
degrees of freedom (df) and significance (p) relate to the removal of 
each variable individually from the full model and testing the 
difference between the resulting and full models 

152 



10 
 

Table S2.6: GLM output from the model assessing the impact of 
turbine density upon bat roost populations for ‘all species’, applying 
sustenance zone radii of 5km and 4km, 2010-12 mean roost 
population counts (all species of bat included) and a negative 
binomial error distribution. The values for Deviance, AIC, the 
Likelihood Ratio Test (LRT), degrees of freedom (df) and 
significance (p) relate to the removal of each variable individually 
from the full model and testing the difference between the resulting 
and full models 

153 

Table S2.7: GLM output from the model assessing the impact of 
turbine density upon bat roost populations for ‘all species’, applying 
sustenance zone radii of 3km and 2km, 2010-12 mean roost 
population counts (all species of bat included) and a negative 
binomial error distribution. The values for Deviance, AIC, the 
Likelihood Ratio Test (LRT), degrees of freedom (df) and 
significance (p) relate to the removal of each variable individually 
from the full model and testing the difference between the resulting 
and full models 

154 

Table S2.8: GLM output from the model assessing the impact of 
turbine density upon Rhinolophus genus bat roost populations, 
applying sustenance zone radii of 5km and 4km, 2010-12 mean 
roost population counts and a negative binomial error distribution. 
The values for Deviance, AIC, the Likelihood Ratio Test (LRT), 
degrees of freedom (df) and significance (p) relate to the removal of 
each variable individually from the full model and testing the 
difference between the resulting and full models 

155 

Table S2.9: GLM output from the model assessing the impact of 
turbine density upon Rhinolophus genus bat roost populations, 
applying sustenance zone radii of 3km and 2km, 2010-12 mean 
roost population counts and a negative binomial error distribution. 
The values for Deviance, AIC, the Likelihood Ratio Test (LRT), 
degrees of freedom (df) and significance (p) relate to the removal of 
each variable individually from the full model and testing the 
difference between the resulting and full models 

156 

Table S2.10: GLM output from the turbine density vs. roost size 
change over 5 years model, applying sustenance zone radii of 5km 
and 4km, changes in mean roost population counts (of all species) 
over the 2005-07 to 2010-12 period and a Gaussian error distribution 
. The values for Deviance, AIC, the Likelihood Ratio Test (LRT), 
degrees of freedom (df) and significance (p) relate to the removal of 
each variable individually from the full model and testing the 
difference between the resulting and full models 

157 



11 
 

Table S2.11: GLM output from the turbine presence outcome / roost 
size predictor (all species) models, including sustenance zone radii 
of 5km and 4km, 2010-12 mean roost population counts and 
applying a binomial error distribution. The values for Deviance, AIC, 
the Likelihood Ratio Test (LRT), degrees of freedom (df) and 
significance (p) relate to the removal of each variable individually 
from the full model and testing the difference between the resulting 
and full models 

158 

Table S2.12: GLM output from the turbine presence outcome / roost 
size predictor (all species) models, including sustenance zone radii 
of 3km and 2km, 2010-12 mean roost population counts and 
applying a binomial error distribution. The values for Deviance, AIC, 
the Likelihood Ratio Test (LRT), degrees of freedom (df) and 
significance (p) relate to the removal of each variable individually 
from the full model and testing the difference between the resulting 
and full models 

159 

Table S2.13 Overview of wind turbine planning outcomes by 
planning authority 

160 

Table 3.1: Details of site monitoring programme. Sites 12 and 13 are 
excluded as the turbine had yet to be constructed at the sites, which 
were monitored to carry out pilot pre-construction monitoring 
observations 

172 

Table 3.2: Parameter estimates and likelihood ratio tests of the 
GLMM analysing the effect of turbine presence and habitat type 
(linear features and wooded habitat vs. open habitat) upon bat 
activity. The model used a negative binomial error distribution.  

183 

Table 3.3: Parameter estimates and likelihood ratio tests of the 
GLMM analysing the effect of turbine presence upon bat activity, 
incorporating the effect of distance to nearest linear habitat feature. 
Detector positions are amalgamated into ‘turbine presence’ and 
‘turbine absence’ categories and their interaction with wind speed is 
tested. The model used a negative binomial error distribution. 

183 

Table 3.4: Parameter estimates and likelihood ratio tests of the 
night-level GLMM analysing the effect of environmental variables 
upon bat activity. The model used a negative binomial error 
distribution. 

186 

Table 3.5: Parameter estimates and likelihood ratio tests of the site-
level GLMM analysing the effect of environmental variables upon bat 
activity. The model used a negative binomial error distribution. 

186 

Table S3.1: Original 19 candidate variables for the ‘Environmental 
Conditions and Bat Activity’ analysis 

210 

Table S3.2: Parameter estimates and likelihood ratio tests of the 
GLMM analysing the effect of turbine presence and habitat type 
(linear features and wooded habitat vs. open habitat) upon bat 
activity, incorporating an interaction between detector position and 
distance to nearest linear habitat feature variables. The model used 
a negative binomial error distribution. 

211 



12 
 

Table S3.3: Parameter estimates and likelihood ratio tests of the 
GLMM analysing the effect of distance to nearest linear habitat 
feature upon bat activity using a subset of the data only including 
detectors in the ‘turbine’ position. The model used a negative 
binomial error distribution. 

211 

Table S3.4: Parameter estimates and likelihood ratio tests of the 
GLMM analysing the effect of turbine presence upon bat activity, 
incorporating the effect of distance to nearest linear habitat feature. 
Detector positions are amalgamated into ‘turbine presence’ and 
‘turbine absence’ categories. The model used a negative binomial 
error distribution. 

212 

Table S3.5: Parameter estimates and likelihood ratio tests of the 
GLMM analysing the effect of turbine presence upon bat activity, 
incorporating the effect of distance to nearest linear habitat feature. 
Detector positions are amalgamated into ‘turbine presence’ and 
‘turbine absence’ categories and their interaction with wind speed is 
tested. The model used a negative binomial error distribution and no 
outliers were excluded. 

212 

Table S3.6: Parameter estimates and likelihood ratio tests of the 
night-level, Pipistrellus genus GLMM analysing the effect of 
environmental variables upon bat activity. The model used a 
negative binomial error distribution 

213 

Table S3.7: Parameter estimates and likelihood ratio tests of the 
night-level, Nyctalus and Eptesicus genera GLMM analysing the 
effect of environmental variables upon bat activity. The model used a 
negative binomial error distribution 

214 

Table S3.8: Parameter estimates and likelihood ratio tests of the 
night-level, Myotis, Barbastella, Plecotus and Rhinolophus genera 
GLMM analysing the effect of environmental variables upon bat 
activity. The model used a negative binomial error distribution 

214 

Table S3.9: SM2 detector bat monitoring results from all sites 
(n=31), sorted by total passes per hour (in descending order). Data 
has been filtered to include only nights that featured suitable weather 
conditions (as defined above), adequate equipment battery levels 
and equipment in working order.  

215 

Table S3.10: Baton detector bat monitoring results from all sites 
(n=26). Data has been filtered to include only nights that featured 
suitable weather conditions (as defined above), adequate equipment 
battery levels and equipment in working order. 

216 

Table 4.1: Details of site monitoring programme. Sites 12 and 13 are 
excluded as the turbine had yet to be constructed at the sites, which 
were monitored to carry out pilot pre-construction monitoring 
observations 

222 

Table 4.2: Species-specific breakdown of the recorded bat activity 228 



13 
 

Table 4.3 a, b and c: Association matrices between detector 
locations – illustrating numbers of bat movements recorded between 
detectors. Results are shown illustrating Soprano pipistrelle 
recordings from 3 individual, successive monitoring nights (nights 12, 
13 and 14) from the same, single site (no. 5) 

231 

Table 4.4: Overview of site-level network statistics describing 
connectivity and complexity, activity density and clustering and 
network strength monitored at each site. All values are mean values 
per night to account for differing monitoring lengths between sites 

232 

Table 4.5: Comparison of 2-night site level networks with regular 
and random theoretical networks 

235 

Table 4.6: Network node-level measures of bat activity and detector 
location connectivity at each monitoring site. The data are displayed 
geographically within each site in relation to the geographic detector 
location they represent, as exemplified by the first set of 9 results in 
the top left of the table (i.e. within each 3x3 grid of results, the 
detector locations are organised as follows: top row left = north west 
(NW), top centre = N, top right = NE; middle row left = W, middle 
centre = Turbine (T), middle right = E; bottom row left = SW, bottom 
centre = S, bottom right = SE) 

238 

Table S4.1: SNA Measures applied within this study. Definitions 
based on Csardi et al. (2015) 

256 

Table 5.1: Parameter estimates and likelihood ratio tests of the 
GLMM analysing the effect of turbine noise and environmental 
variables upon bat activity. The model used a negative binomial error 
distribution. The variable evaluation measures represent the deletion 
of each term from the model with main-effects-only, with the 
exception of the interaction term for which the deletion was 
compared between the main-effects-only model and the model 
including the interaction term.  

269 

Table S5.1: Parameter estimates and likelihood ratio tests of the 
Pipistrellus Genus GLMM analysing the effect of turbine noise and 
environmental variables upon bat activity. The model used a 
negative binomial error distribution. The variable evaluation 
measures represent the deletion of each term from the model with 
main-effects-only, with the exception of the interaction term for which 
the deletion was compared between the main-effects-only model and 
the model including the interaction term. 

286 

Table S5.2: Parameter estimates and likelihood ratio tests of the 
Nyctalus/Eptesicus Genera GLMM analysing the effect of turbine 
noise and environmental variables upon bat activity. The model used 
a negative binomial error distribution. The variable evaluation 
measures represent the deletion of each term from the model with 
main-effects-only, with the exception of the interaction term for which 
the deletion was compared between the main-effects-only model and 
the model including the interaction term. 

287 



14 
 

Table S5.3: Parameter estimates and likelihood ratio tests of the 
“Woodland bats” (Myotis/Rhinolophus/Plecotus/Barbastella genera) 
GLMM analysing the effect of turbine noise and environmental 
variables upon bat activity. The model used a negative binomial error 
distribution. The variable evaluation measures represent the deletion 
of each term from the model with main-effects-only, with the 
exception of the interaction term for which the deletion was 
compared between the main-effects-only model and the model 
including the interaction term. 

287 

Table A.1: Reported bat fatalities in Europe (2003-2014) – State 
17/09/2014. Annex 2 Eurobats 2015 (Guidelines for consideration of 
bats in wind farm projects – Revision 2014)  

323 

Table A.2: Maximum foraging distances of species and height of 
flight. Annex 3 Rodrigues  et al. (2015 )((Guidelines for consideration 
of bats in wind farm projects – Revision 2014)) note ‘references’ 
column removed from re-production, refer to Rodrigues et al. (2015) 
Annex 3 for further information 

327 

Table A.3: Research findings compiled by Strickland et al. 2011 
concerning the disturbance of birds by wind energy installations, with 
overarching categories of disturbance. All text from the first 2 
columns quoted from or based upon Strickland et al. 2011 unless 
otherwise referenced; the final column ‘Potentially transferable 
outcomes for bat research at turbines’ provides interpreted principles 
for disturbance impacts upon bats 

330 

Table A.4: UK long-term bat population trends to 2013 and average 
annual percentage change. Underlined figures are statistically 
significant trends (from Bat Conservation Trust (2014)) 

338 

 

  



15 
 

Figures 

Figure Number and Caption 
Page 

Number 

Figure 1.1:  “Relationship between the corrected bat and bird 
fatalities per megawatt (MW) of installed capacity and the rated MW 
capacity per turbine at wind energy facilities in North America. The 
relationship for bats is significant (F[1,19] = 5.40, P = 0.031; no. of bat 
fatalities /MW = –1.90e2.22MW/turbine, R2 = 0.22). Although the 
relationship for birds is not significant (P = 0.9), the best fit (broken) 
line is presented for ease of interpretation” (reproduced from Barclay 
et al. 2007). Apparent outliers are represented by dashed circles 

31 

Figure 1.2: “Relationship between daily fatalities (no. of fresh bat 
fatalities/no. of turbines searched) and average percentage of the 
night where wind speed at turbines was .6 m/sec at the Mountaineer 
Wind Energy Center in West Virginia, USA (31 Jul–11 Sep 2004) 
and the Meyersdale Wind Energy Center in Pennsylvania, USA (2 
Aug–13 Sep 2004; Kerns et al. 2005). Fatality index is the total 
number of fresh bats found on a given day divided by the number of 
turbines searched that day.” (reproduced from Arnett et al.2008) 

49 

Figure 1.3: “Changes in behaviour of Pipistrellus pipistrellus in direct 
vicinity of rotating blades: a) blades rotate parallel to bat flight path, 
b) blades rotate across the flight path” (from Bach and Rahmel, 
2004) 

63 

Figure1.4: The distribution of the 31 monitored wind turbines sites 
across Wales and SW England 

105 

Figure 1.5: Search dog and handler carrying out a carcass search 106 

Figure 1.6: An idealised diagram of equipment layout at monitored 
wind turbine sites 

107 

Figure 2.1: The distribution of approved individual wind turbines and 
BCT-recorded bat roosts by ITE landclass. Landclasses with no 
turbine or roost records were excluded 

120 

Figure 2.2: Prediction plot from the Pipistrellus genus turbine density 
GLM analysing the effect of wind turbine density (per km2) within a 
2km radius (of roosts) upon bat roost counts. Dashed lines indicate 
95% confidence intervals; circles = mean observed 3-year average 
roost count; relative sizes of circles represent relative contributing 
levels of data (larger = more data) 

123 

Figure 2.3: Prediction plot from the Pipistrellus genus turbine density 
GLM analysing the effect of wind turbine density (per km2) within a 
3km radius (of roosts) upon bat roost counts. Dashed lines indicate 
95% confidence intervals; circles = mean observed 3-year average 
roost count; relative sizes of circles represent relative contributing 
levels of data (larger = more data) 

124 

Figure 2.4: Map of approved turbine totals by planning authority and 
10km National Grid square boundaries 

128 



16 
 

Figure 2.5: Annual trends of wind turbine approval across Wales 
and SW England (excluding Cornwall) 

129 

Figure 2.6: Total sites approved by number of individual turbines 
proposed 

130 

Figure 2.7: Total sites approved by number of individual turbines 
proposed: Sites with 3+ turbines 

130 

Figure 3.1: Examples of horizontal axis (left) and vertical axis (right) 
format wind turbines (image sources: C&F Green Energy (2015) 
(left), VWT Power (2014) (right)) 

169 

Figure 3.2: A comparison of the percentage of wind turbines falling 
within each turbine size category (RenewableUK, 2013) from: field-
monitored wind turbines (n=31) (grey) vs. a sample (n=348) of wind 
turbine site applications received up to 2013 by 12 local planning 
authorities within the study regions (black). For the latter, each site is 
treated as a single turbine size regardless of numbers of turbines 
present. 

170 

Figure 3.3: An idealised diagram of equipment layout at monitored 
wind turbine sites 

173 

Figure 3.4: Estimated effect from the night level model of turbine 
presence on bat activity levels at small and medium wind turbine 
sites (a) during low wind speed conditions (0 m/s) and (b) during 
high wind speed conditions (3.75 m/s). Bars and CI lines = model 
prediction; circles = mean observed rate of bat passes; squares = 
median observed rate of bat passes; relative sizes of squares and 
circles represent relative contributing levels of data (larger = more 
data). 

182 

Figure 3.5: Prediction plots from the night-level GLMM analysing the 
effect of environmental variables upon bat activity. Dashed lines 
indicate 95% confidence intervals; circles = mean observed rate of 
bat passes; squares = median observed rate of bat passes; relative 
sizes of squares and circles represent relative contributing levels of 
data (larger = more data); (Rainfall variable (c): bars and CI lines = 
model prediction) 

187 

Figure 3.6: Temporal distribution of bat activity (all species) across 
the night, for all sites (n=26), as recorded by the Baton detectors 

189 

Figure 4.1 An idealised diagram of equipment layout at monitored 
wind turbine sites 

223 

Figure 4.2: Combined distribution of recorded bat movements and 
individual bat recordings from all 30 monitoring nights at all 10 sites. 
Lines between detector positions represent recorded bat movements 
(boldness increases with number of records); circles at detector 
locations represent individual bat recordings (size of circle increases 
with number of records); looped lines attached to detector locations 
represent successive bat recordings at that location (i.e. 
concentrated bat movement around the detector location) 

229 



17 
 

Figure 4.3: Bat movement networks recorded on individual nights at 
4 different sites. Lines between detector positions represent 
recorded bat movements (boldness increases with number of 
records); circles at detector locations represent individual bat 
recordings (size of circle increases with number of records); looped 
lines attached to detector locations represent successive bat 
recordings at that location (i.e. concentrated bat movement around 
the detector location) 

230 

Figure 4.4: Examples of network visualisations using the 
Fruchterman Reingold and Kamada Kawai algorithms, suggesting 
(1: a and b) unconnected areas of Common pipistrelle (a) and Leisler 
(b) bat flight activity within 2 different monitoring sites; (2) well-
connected networks of flight activity 

234 

Figure 5.1: An example of an SM2 detector installed along a linear 
mature hedgerow during the turbine noise experiment 

265 

Figure 5.2: Prediction plots from the temperature and rainfall 
variables from the GLMM analysing the effect of turbine noise and 
environmental variables upon bat activity. Dashed lines indicate 95% 
confidence intervals; circles = mean observed rate of bat passes; 
relative sizes of circles represent relative contributing levels of data 
(larger = more data) 

270 

Figure 5.3: The frequency response of the SMX-US microphone 
(Wildlife Acoustics, 2011) 

273 

Figure A.1: Changing Common pipistrelle foraging activity and flight 
routes over time, during construction of a wind farm in Germany 
(from Bach and Rahmel, 2004) 

336 

Figure A.2: Changing Serotine bat foraging activity and flight routes 
over time, during construction of a wind farm in Germany (from Bach 
and Rahmel, 2004) 

337 
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1 Introduction and Literature Review 

Bats account for one in every five mammal species and are the only truly flying 

mammals (Altringham, 2011). They have also evolved to feature a sophisticated 

echolocation system used to navigate, locate prey and explore surrounding 

environments (Russ, 2012). As a result bats comprise an important component 

of the planet’s biodiversity. Bats have a slow reproductive rate; most bat 

species have only one litter per year and bear a single pup per litter (Kunz and 

Fenton, 2005). The slow life history of bats combined with loss of habitat, 

disturbance or destruction of roosts and the spread of diseases in recent 

decades have threatened the populations of bat species around the world 

(Hutson et al. 2001). Consequently many bats species have been classified as 

protected at both national and international scales (Collins, 2016; Mickleburgh 

et al. 2002). 

Global efforts to address the negative impacts of climate change have recently 

introduced a new source of fatality risk to bats, from wind turbines. Bat fatalities 

have now been confirmed in varying magnitudes at wind energy facilities 

around the world (Arnett et al. 2008; Rydell et al. 2010a; Barros et al. 2015; 

Kumar et al. 2013; Doty and Martin, 2013). This topic has only truly become a 

focus of research in the last decade and is an important priority for bat 

conservation efforts, as global numbers of wind turbine installations increase 

(World Wind Energy Association (WWEA), 2016). In conjunction with the 

outbreak of White Nose Syndrome amongst bats in North America and ongoing 

habitat loss around the world, wind turbines pose a potential risk to bat 

populations (O’Shea et al. 2016). 

In order to place the high-level estimated risk posed to bats from wind turbines 

in context, Table 1.1 presents an overview of global bat multiple mortality 

events (MME) from the primary risk sources, as recorded by O’Shea et al. 

(2016) (MME = “a case in which ≥ 10 dead bats were counted or estimated in a 

given locality within a maximum timespan of 1 year” (O’Shea et al., 2016)).
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Table 1.1: "Summary of numbers of mass mortality events (MMEs) reported in bats, by category and region. The order of magnitude for maximum unadjusted 
numbers of observed carcasses (per year) documented for the largest MME within each category is given in rounded parentheses, following the number of reports 
for each region and category” (Text and table modified from O’Shea et al. (2016)). Data in squared parentheses manually added relative to original O’Shea et al. 
(2016) table, illustrating adjusted/extrapolated estimates of annual fatality potential (maximum estimate as above, to order of magnitude; ‘(C)’ indicates calculation at 
a country or continental-scale), accounting for uncertainty in monitoring protocols and extents of hazard sources, relative to the observed carcass counts. Reference 
sources for the adjusted/extrapolated estimates are listed in the ‘Extrapolation estimate reference source’ column) 

           
Category Africa Asia Australia Europe Islands 

North 
America 

South 
America 

Events (n) 
Species 

(n) 
Extrapolation estimate 

reference source 

           
           

Intentional killing 11 (10
4
) 20 (10

4
) 13 (10

4
) 21 (10

4
) 50 (10

3
) 58 (10

4
) 

32 (10
5
) 

[10
6 
(C)] 

205 (10
5
) 

[10
6
 (C)] 

69 

O’Shea et al. (2016) (supp. 
mats.): note records from 

1970’s – no records of this 
magnitude since 

Biotic 5 (10
1
) 1 (10

1
) 19 (10

3
) 

16 (10
2
) 

[10
5
 (C)] 

16 (10
2
) 40 (10

3
) 10 (10

1
) 

107 (10
3
) 

[10
5 
(C)] 

75 
O’Shea et al. (2016) 

(supp.materials) 

Abiotic 0 6 (10
3
) 71 (10

3
) 0 13 (10

3
) 24 (10

5
) 0 114 (10

5
) 23  

Contaminants 0 0 1 (10
1
) 27 (10

4
) 1 (10

2
) 

14 (10
3
) 

[10
5
] 

0 
43 (10

4
) 

[10
5
] 

16 

Thies et al. (1996): note 
records from 1970’s – no 
records of this magnitude 

since 

Accidental (including 
collisions with motor 
vehicles on roads) 

1 (10
1
) 0 8 (10

1
) 

34 (10
2
) 

[10
5
 (C)] 

1 (10
1
) 22 (10

4
) 0 

66 (10
4
) 

[10
5
 (C)] 

37 
Altringham and Berthinussen 

(2014) 

Wind turbines 1 (10
2
) 0 2 (10

1
) 

59 (10
2
) 

[10
5
 (C)] 

2 (10
1
) 

213 (10
2
) 

[10
5
 (C)] 

4 (10
1
) 

281 (10
2
) 

[10
5
 (C)] 

41 
Voigt et al. (2015); Arnett and 

Baerwald (2013) 

Viral or bacterial disease 1 (10
2
) 1 (10

1
) 2 (10

3
) 2 (10

3
) 6 (10

3
) 13 (10

3
) 0 25 (10

3
) 14  

White-nose syndrome 0 0 0 0 0 
266 (10

4
) 

[10
6
, (C)] 

0 
266 (10

4
) 

[10
6
, (C)] 

6 Verant et al. (2012) 

Unexplained 0 0 3 (10
2
) 30 (10

3
) 2 (10

3
) 

38 (10
5
) 

[10
6
] 

0 
73 (10

5
) 

[10
6
] 

20 

O’Shea et al. (2016) (supp. 
mats.): note records from 

1960’s – no records of this 
magnitude since 

           

Totals 19 (10
4
) 28 (10

4
) 119 (10

4
) 

189 (10
4
) 

[10
5
 (C)] 

91 (10
3
) 

688 (10
4
) 

[10
6
 (C)] 

46 (10
5
) 

[10
6
 (C)] 

1180 
152 

(unique 
species) 
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The records also identify the maximum order of magnitude of estimated 

fatalities associated with events in each category. 

The results show that wind turbines are one of the dominant global risks to bat 

populations. White Nose Syndrome may pose a greater risk in North America, 

however risk from the syndrome appears biologically focused in North America 

due to apparent immunity across other continents’ bat populations (Zukal et al., 

2016). Whilst ‘intentional killing’ was historically the dominant global risk factor, 

the proportion of events falling into this category has reduced since 

approximately the year 2000 (O’Shea et al., 2016) (similarly large estimated-

magnitude fatality events in the ‘unexplained’ category were primarily historical). 

Greater protection of bats and associated regulation in recent decades and the 

future is likely to reduce mortality from intentional killing. Other risk categories 

such as biotic (e.g. bird and cat-caused deaths), abiotic (e.g. weather and 

climate) and accidental deaths (e.g. motor vehicle collisions on roads) are 

nonetheless significant in their contribution whilst additional indirect impacts 

(e.g. habitat loss and disturbance) will equally further exacerbate risk from many 

of the categories. 

Research at large turbines and commercial wind farms has started to produce a 

reasonable knowledge base regarding impacts upon bats, though many 

questions remain unanswered. Little, however, is known about risk levels at 

small and medium scale wind turbines. Equally, published research regarding 

the impacts of turbines in the UK is extremely limited. 

The primary mechanisms of bat-turbine interactions as theorised in the research 

literature to date are summarised in Table 1.2 below, with subjective scoring of 

their estimated relative likelihood and the approximate level of certainty 

provided by existing research. As is indicated by the scoring, the proximate 

causes of bat fatalities are largely known, however the ultimate behavioural 

causes of turbine impacts upon bats and the patterns of bat activity at turbines 

are less certain. The wider aim of this thesis will therefore be to improve 

knowledge in these latter areas, in addition to providing much-needed 

understanding of the impact of small-to-medium scale turbines upon bats. 
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Table 1.2: “Proposed hypotheses for explaining the proximate and ultimate causes of bat 
fatalities at wind turbines. Here we define proximate causes as those that address the 
mechanistic factors directly responsible for the deaths of individual bats. Ultimate causes are 
those that address why bats are in the vicinity of turbines before death. Hypotheses are not 
mutually exclusive and are intended to be applied at the species level. Italicized hypotheses of 
ultimate cause are those we consider 1st degree, the disproval of which would eliminate 
associated 2nd-degree hypotheses (i.e., those not italicized)” (reproduced from Cryan and 
Barclay et al. 2009). Three hypotheses are added from Strickland et al. (2011) and one from 
Baerwald and Barclay (2011) as referenced in the table. All text from Cryan and Barclay et al. 
(2009) unless otherwise referenced. 

Category Hypotheses Predictions 

Likelihood 
(Support 
= Y, Lack 

of support 
= N) and 
Certainty 
(0 = low, 5 

= high) 

Proximate causes 

 Collision with turbine 
towers 

Numerous fatalities at nonmoving turbines. 
Numerous fatalities at other tall structures. 

N / 4 

 Collision with moving 
blades 

Traumatic external injuries. 
No fatalities at nonmoving turbines. 

Y / 4 

 Barotrauma 
(decompression) near 
moving blades 

Internal injuries. Y / 2 

Ultimate causes 

Random Fatalities proportional 
to bats present 

Fatalities reflect indices of activity or 
abundance. 
Demographics of fatalities reflective of the 
population present. 

N / 2 

Coincidental Susceptible while 
migrating 

Most fatalities involve migrants rather than 
residents. 
Non-migratory species or populations least 
affected. 
Fatalities peak during migration periods. 
Fatalities peak earlier at higher latitudes. 

Y / 3 
(North 

America) 

 Migrants clump in time 
and space 

Distribution of bats more clumped during 
migration. 
More migrating bats occur in windy areas. 
More fatalities with passage of storm fronts. 
Most fatalities during migration periods. 

Y / 2 

 Migrating bats fly 
higher than non-
migrants 

More migrants at higher altitudes. 
More fatalities at taller turbines. 

Y / 3 

 Migrants bats less 
likely to echolocate 

No echolocation detected at nacelle height. 
More bats present than echolocation passes 
detected. 
Atypical echolocation calls (e.g., startle). 

Y / 1 

 Susceptible when not 
migrating 

Most fatalities involve residents rather than 
migrants. 

Y / 3 
(Europe) 

 Greater feeding activity 
results in greater 
mortality 

Coincidental seasonal increases in feeding 
buzzes of affected bats. 

Y / 4 

 Greater mating activity 
results in greater 
mortality 

Coincidental seasonal increases in captures 
of mating bats. 
Adult bias to fatalities. 

N / 4 
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Category Hypotheses Predictions 

Likelihood 
(Support 
= Y, Lack 

of support 
= N) and 
Certainty 
(0 = low, 5 

= high) 

 Lack of flight 
experience results in 
greater mortality 

More young, inexperienced bats among 
fatalities. 

N / 5 

 “Thermal inversions 
force bats to the 
altitude of rotor swept 
areas” (Strickland et  
al., 2011) 

Thermal inversion weather conditions should 
be apparent (e.g. dense fog in cool valleys). 
Insects may also display the same movement. 

? / 0 

 Electromagnetic-Field 
Distortion hypothesis: 
bats have receptors 
sensitive to “complex, 
electromagnetic fields 
in the vicinity of the 
nacelle” (Strickland et 
al. 2011) 

“The flight behavior of bats may be altered by 
these fields” (Strickland et al. 2011). 

? / 0 

 Altered flight behaviour 
before or after the 
onset of storms 
(Baerwald and Barclay, 
2011) 

Larger number of bats (and therefore 
echolocation recordings and or/fatalities) 
before and/or after the passing of storm fronts  

Y / 1 

 Prey distribution 
influences fatality 

Fatality rate correlated with regional or 
altitudinal prey abundance. 

Y / 2 

Attraction General attraction to 
turbines 

Bats more likely to fly toward than past 
turbines. 

Y / 2 

 Attracted to lights More fatalities at turbines with aviation lights. N / 5 

 Attracted to sound of 
moving blades or 
generator 

More activity at moving than at nonmoving 
blades. 
Playback of sound attracts bats. 
Bats respond more to sound on low-wind 
nights. 
Turbines emitting particular noises kill more 
bats. 

N / 1 

 Attracted to blade 
motion 

More activity at moving than at nonmoving 
blades. 
Devices simulating blade movement will 
attract bats. 

Y / 2 

 Attracted to insect 
aggregations 

Feeding buzzes more common around 
turbines. 
Insect abundance greater around turbines. 
Consistent patterns of insect activity around 
turbines. 
Dead bats have full stomachs. 
Consistent prey in bat stomachs. 
Dead bats have insects in mouth. 

Y / 2 

 Attracted to modified 
landscape features 

More fatalities near newly created edge 
habitats, roads, or wetlands. 

N / 1 (due 
to 

avoidance 
of creation 

of near-
turbine 
edge 

habitat) 
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Category Hypotheses Predictions 

Likelihood 
(Support 
= Y, Lack 

of support 
= N) and 
Certainty 
(0 = low, 5 

= high) 

 Attracted to turbines as 
roosts 

Highly visible turbines kill more bats. 
More fatalities on moonlit nights. 
More activity at tallest, treelike structures. 
Low activity of species that do not roost in 
trees. 
Most fatalities occur as nightly activity ends. 
Equal activity at moving and nonmoving 
turbines. 

N / 3 

 Attracted to turbines as 
mating or gathering 
sites 

Most activity at tallest trees or treelike 
structures in landscape. 
Mating activity at moving and nonmoving 
turbines. 
Male territorial behavior at moving and 
nonmoving turbines. 
Group formation at moving and nonmoving 
turbines. 
Sperm in males and females. 
Male bias to fatalities that disappears over 
time. 
Social calls detected at nacelle height. 
More social interaction at turbines in low 
winds. 
Equal activity at moving and nonmoving 
turbines. 

N / 3 

 Attracted to “reflection 
from white turbines 
under moonlit 
conditions” (Strickland 
et al. 2011) 

Less fatalities during night with less moonlight 
/ darker conditions. 
Possibly lower fatalities at turbines painted 
darker colours. 

N / 2 

 

This introductory chapter reviews the knowledge gained from research to date 

concerning the impacts of wind turbines upon bats and the ecological issues 

surrounding the topic. From this wider context, the refined resulting objectives of 

this thesis are presented at the end of this chapter. 

 

Chapter aims 

In order to contextualise the research topic and identify objectives, this chapter 

aims to review the following subjects: 

 Recognition of the impact of wind turbines upon bats 

 Estimates of the magnitudes of bat fatality 
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 Bat species affected 

 Causes of bat fatalities at turbines 

 Hypotheses for bats’ interactions with wind turbines 

 Variability in bat activity, fatalities and behaviour results: Moderating 

factors 

 Bats’ flight heights 

 Turbine sound and electromagnetic emissions 

 Visibility of turbines to bats, including turbine lighting 

 Detection of turbines by bats and orientation of turbines vs. bat flight 

direction 

 Non-fatal and behavioural impacts 

 Population-level impacts 

 Mitigation 

1.1 Recognition of the impact of wind turbines upon bats 

Recognition of wind turbines’ possible impacts upon bats largely originated from 

bird fatality studies at turbine sites during which dead bats were identified 

(Howell and DiDonato, 1991; Orloff and Flannery, 1992; Higgins et al. 1995). 

Dedicated investigations concerning impacts upon bats consequently ensued 

(e.g. Osborn et al. 1996). Research intensified after significant numbers of bat 

fatalities were recorded at key turbine sites in North America (Arnett et al. 

2008). 1398-4031 bats fatalities were estimated at the Mountaineer Wind 

Energy Center in West Virginia, USA (Kerns and Kerlinger, 2004). Bat fatality 

rates have been found to vary between 0.1 and 69.6 fatalities/turbine/year (f/t/y) 

in the USA (Arnett et al. 2008) and 0 to 41.1 f/t/y in Europe (Rydell et al. 2010a).  

Whilst a large volume of research has been undertaken in North America, a 

number of factors may limit our ability to directly apply the findings to European 

contexts. Some of the topographic and habitat settings in which the highest 

fatality rates have been observed are rarely found at UK wind turbine sites (e.g. 

forested mountain ridges (Arnett et al. 2008)), as may be the case in other 

European countries. Furthermore the composition of bat species is markedly 

different between the two continents. A number of North American species also 
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display migratory flight behaviour in topographic settings suited to wind energy 

development, a trait that is less common across Europe (Rydell et al. 2010a). 

1.1.1 Small turbines and/or sites with low numbers of turbines 

No single wind turbine size classification scheme is universally recognised. 

References to wind turbine size categories in this thesis, unless otherwise 

stated, are based upon RenewableUK’s classification of turbine size 

(RenewableUK, 2013). Turbine blade tip heights are classified as follows: micro: 

10-15m; small: 15-30m; medium: 30-55m; large: above 55m; an additional 

category is also added for the purpose of this thesis – sub-micro: less than 10m.  

Little research has been carried out at small wind turbine sites, though two field-

based studies are available from the UK. The first found that operational 

turbines caused a decrease in bat activity within 0-5m from turbines during 

higher wind speeds, relative to lesser impacts at 20-25m from the turbine 

(Minderman et al. 2012). The second suggested that numbers of bat fatalities at 

small turbine sites are very low, estimating rates of between 0.008 and 0.169 

f/t/y (Minderman et al. 2015). 

1.2 Estimates of the magnitudes of bat fatality 

Bat fatalities have been recorded at wind turbines across the globe, particularly 

in large numbers of studies from North America (Arnett et al. 2008; Piorkowski 

and O’Connell, 2010; Baerwald and Barclay, 2011; Jameson and Willis, 2012; 

Bicknell and Gillam, 2013; Smallwood, 2013) and Europe (Rydell et al. 2010a; 

Dubourg-Savage et al. 2011; Georgiakakis et al. 2012; Camina, 2012; Amorim 

et al. 2012; Lehnert et al. 2014; Minderman et al. 2015; Rodrigues et al. 2015). 

Initial studies have also recorded fatalities in Oceania (Hull and Cawthen, 

2013), Africa (Doty and Martin, 2013), Asia (Kumar et al. 2013), South America 

(Escobar et al. 2015; Barros et al. 2015) and Mexico (Patraca, 2009).  

The highest estimated magnitudes of bat fatalities have so far originated from 

sites in the USA. Table 1.3 provides an overview of fatality rates recorded by a 

review of North American sites, where fatality estimates ranged from 0.2-53.3 
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mean fatalities / megawatt (MW)-1 year-1 (Arnett et al. 2008). In Europe, 

however, relatively small numbers of fatalities at turbines sites have been 

reported (Rydell et al. 2010a), including in Sweden, Spain, France, England, 

Croatia, Greece and Slovenia (Dürr and Bach, 2004; Ahlén, 2002; Zagmajster 

et al. 2007; Jones et al. 2009a; Dubourg-Savage et al. 2011; Minderman et al. 

2015). However a shortage of studies has restricted clear understanding of the 

risk of bat fatalities in Europe (Nicholls and Racey, 2007). Table A.1 (see 

Appendices) summarises the main fatality results collected across Europe to 

date. 

There is a trend away from anecdotal reporting towards rigorous, structured 

field methodologies to investigate and report fatality numbers (Kunz et al. 

2007a; Arnett et al. 2008; Dürr and Bach, 2004; Mathews et al. 2013). There is 

also recognition that some types of installations (e.g. small turbines, single 

turbines, old installations) are under-surveyed, and there is also under-

representation of some geographic areas (e.g. Texas, USA (Arnett et al. 2008)). 
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Table 1.3: Reproduced from Arnett et al. (2008). Estimates of mean bat fatalities per turbine, 
per megawatt (MW) of energy produced per turbine, and per 2,000m

2
 of rotor-swept area for 21 

studies at 19 wind facilities in North America, 1996-2006 

Study area location
a
 

Estimated mean 
fatality / turbine 

Estimated mean 
fatality / MW 

Estimated mean 
fatality / 2,000-m

2
 

rotor-swept area 

Canada    
    

CRAB 0.5 0.8 0.6 
    

MLAB 0.5 0.7 0.5 
    

SVAB 18.5 10.6 7.4 
    
Eastern USA    
    

BMTNb 20.8 31.5 24.0 
    

BMTNb 35.2 53.3 40.6 
    

BMTNc 69.6 38.7 27.7 
    

MRNYd 24.5 14.9 9.4 
    

MYPAd 23.0 15.3 11.3 
    

MTWV 48.0 32.0 23.6 
    

MTWV2d 38.0 25.3 18.7 
    
Rocky Mountains, USA    
    

FRWY 1.3 2.0 1.9 
    
Pacific North West, USA    
    

HWCA 3.4 1.9 1.4 
    

KLOR 1.2 0.8 0.6 
    

SLOR 1.1 1.7 1.3 
    

VAOR 0.7 1.1 0.8 
    

NCWA 3.2 2.5 2.1 
    
Midwestern USA    
    

BRMN1e 0.1 0.2 0.2 
    

BRMN2f 2.0 2.7 2.4 
    

BRMN3g 2.1 2.7 2.3 
    

LIWI 4.3 6.5 5.0 
    

TOIA 7.8 8.7 7.4 
    
South-central USA    
    

WOOKh 1.2 0.8 0.7 

    a 
See Appendix A (Arnett et al. (2008) for study area abbreviations 

b 
Estimated bats killed by 3 0.66-MW turbines 

c 
Estimated bats killed by 15 1.8-MW turbines 

d 
Estimated bats killed from daily searches conducted at these facilities  

e 
Estimated bats killed by 73 0.33-MW turbines based on 4 yr of data 

f 
Estimated bats killed by 143 0.75-MW turbines based on 4 yr of data 

g 
Estimated bats killed by 138 0.75-MW turbines based on 4 yr of data 

h 
Estimated mean over 8 surveys in 2 yr  
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1.2.1 Fatality recording approaches and survey techniques 

A relatively standard set of survey techniques have developed from multiple 

studies to estimate raw observed fatality rates and adjusted fatality rates, the 

latter incorporating measures of survey effort, carcass removal and search 

efficiency (Kunz et al. 2007b). Fatality estimates are commonly based upon a 

fatality search either by human surveyors or dog-handler teams (Arnett, 2006, 

Paula et al. 2011) following a set of procedures as detailed in Kerns et al. 

(2005), Arnett (2006), Jones et al. (2009a) and Mathews et al. (2013). 

Carcass removal trials are carried out using bat (or small mammal) carcasses 

prior to fatality searches to test the proportions removed by scavenging and 

time taken to scavenge. Scavenger trials should be repeated at multiple sites or 

locations to form average removal rates, as well as being repeated annually to 

determine annual variability (Kunz et al. 2007b; Kerns et al. (2005); Jones et al. 

(2009)). Availability of bat carcasses, length of survey site access and cost of 

survey effort may, however, restrict the ability to carry out multiple trials. 

Estimator formulas enable adjustment of fatality estimates for scavenger 

removal (Kerns et al. 2005; Jones et al. 2009a; Baerwald and Barclay, 2009; 

Huso 2011; Huso et al. 2015; Korner-Nievergelt et al. 2015).  

Searcher efficiency trials consider the proportion of carcasses likely to be 

located, given inherent variability in searcher ability (Arnett 2006; Kunz et al. 

2007b). The trials should account for vegetation cover and general habitat 

(Kunz et al. 2007b). The set up is similar to fatality searches with the exception 

that trial carcasses are placed at locations within the search area which are 

unknown to the searcher.  

The proportion of the trial bats found is then used to adjust estimates from 

fatality searches. This may be stratified or further adjusted to account for 

conditions such as weather (Kerns et al. 2005), distance bands from the turbine 

and habitat variability (Arnett, 2006). Preparations may need to be made for the 

impact of scavenger removal on carcasses used in searcher efficiency trials 

(Kerns et al. 2005). Estimator formulas are available to adjust the fatality 

estimates for searcher efficiency (as listed for carcass removal above).  
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Fatality estimates may also be adjusted to account for any proportion of a 

survey site that is not accessible for searching, or variability in sizes of search 

plots (Jones et al. 2009a). Any ‘incidental’ carcasses found outside the search 

area should also be recorded (Jones et al. 2009a).  

1.2.2 Small turbines and/or sites with low numbers of turbines 

Arnett et al. (2008) highlight evidence from four field sites in the USA, indicating 

the potential impact of turbine height and rotor-swept area. Using records from 

a study at Buffalo Mountain, Tennessee, 65m tall towers with rotor-swept areas 

of 1,735m2 were found to kill fewer bats per turbine, however more bats per 

MW, than larger 78m towers with almost three times the rotor-swept area 

(Arnett et al. 2008; Barclay et al. 2007; Fiedler et al. 2007). A second site in 

Minnesota however showed higher fatalities per turbine and MW at larger 

turbines, with site-records in Alberta strongly concurring (14 times fewer 

fatalities at smaller turbines) (Arnett et al. 2008; Barclay et al. 2007). Arnett et 

al. (2008) however note annual variation may have introduced bias due to 

different sampling years. 

Variation in rotor-swept area was not found to be a significant causal factor of 

numbers of fatalities by Barclay et al. (2007), instead finding an exponential 

increase in fatalities with turbine height (the highest fatality rates were found at 

turbine towers of at least 65m). Even when results were standardised by power 

capacity (to fatality/MW), outliers were present (see Figure 1.1), indicating the 

effect of turbine size is not always consistent and that other factors may 

moderate fatality rates. No trend was observed between bat fatality rates and 

turbine size at the Altamont Pass Wind Resource Area (California, USA) 

(Smallwood, 2013). Monitoring in Canada has suggested that variations in 

fatality rates may be partly related to turbine height, but that other factors 

(including migratory bat activity) moderate this relationship (Baerwald and 

Barclay, 2009). The need to investigate the varying effects of turbine 

dimensions, spacing and numbers is also further emphasised by both Kunz et 

al. (2007a) and Morrison et al. (2010). 
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Figure 1.1:  “Relationship between the corrected bat and bird fatalities per megawatt (MW) of 
installed capacity and the rated MW capacity per turbine at wind energy facilities in North 
America. The relationship for bats is significant (F[1,19] = 5.40, P = 0.031; no. of bat fatalities /MW 
= –1.90e

2.22MW/turbine
, R

2
 = 0.22). Although the relationship for birds is not significant (P = 0.9), the 

best fit (broken) line is presented for ease of interpretation” (reproduced from Barclay et al. 
2007). Apparent outliers are represented by dashed circles 

 

Rydell et al. (2010a) reviewed published and unpublished reports from north-

western Europe and found a positive correlation between bat fatalities and both 

turbine height and rotor diameter. It was however noted that the ground to 

lower-blade-tip measure did not have any influence, suggesting impacts near 

the top of the turbine may have been a large contributory factor. 

A 2006 study in Germany found no correlation between turbine heights and 

fatalities. Fatalities were recorded at all sizes of turbines, with hub heights 

ranging from 69-98m (rotor diameters of 62-70m) (Brinkmann et al. 2006). 

Further unpublished data from Tobias Dürr analysed by Dubourg-Savage et al. 

(2009) shows bat fatality occurring at a wide range of turbine blade tip heights 

(20m to 80m), with peak rates occurring at different size turbines for 5 bat 

species (e.g. 31-50m for Nyctalus noctula ([common] noctule), 31-40m for 
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Nyctalus leisleri (Leisler’s bat) and 20-50m for Pipistrellus nathusii (Nathusius’ 

pipistrelle). The available studies appear to show bat fatality can occur at a wide 

range of turbine heights, with fatalities generally increasing with height; however 

this pattern is inconsistent. 

Little knowledge is available regarding the influence of turbine height on bat 

fatalities in Britain (Jones et al. 2009a). Wind turbines at UK sites currently 

range up to approximately 150m to blade-tip (DECC, 2016). Only one peer-

reviewed study has investigated bat fatalities at (small) turbine sites in the UK 

(Minderman et al. 2015). Zero fatalities were recorded during field data 

collection, whilst 3 anecdotal fatality records were collected from turbine 

owners. Corrected estimated rates of fatality were reported, though given the 

range of estimates provided (161-3363 fatalities year-1 from all UK small wind 

turbines), it is difficult to define the impact of small turbines. Without improved 

knowledge of UK bat populations, it is also difficult to contextualise turbines’ 

population impacts. 

The effect of turbine numbers per site on fatality rates is unclear. Rydell et al. 

(2010a) suggest that sizes of wind farms did not have a significant effect on 

fatalities in their study. It has been proposed that turbine numbers may be 

important in relation to hypotheses of bat attraction to turbines, as bats may be 

attracted to lower numbers of turbines, seeing them as prominent ‘trees’ in the 

landscape (Baerwald and Barclay, 2009). Field evidence from the latter study 

supported this, from monitoring at two sites with the same turbine model, where 

2 and 39 turbines were installed, respectively. Fewer migratory-bat passes and 

a higher corrected fatality rate were recorded at the smaller site. It is possible 

however that differences in habitat and existing bat populations could have 

contributed to this pattern. Dubourg-Savage et al. (2011) recorded further 

examples of sites with low numbers of turbines that displayed relatively high 

adjusted fatality rates. No overall analyses were carried out during the latter 

study to investigate the influence or significance of this factor. 
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1.3 Bat species affected 

1.3.1 Species patterns 

Many studies have suggested particular species, or groups of species are 

especially vulnerable to turbine-related fatalities. Migratory, tree‐roosting 

species are thought to be most vulnerable in the USA from existing records, in 

particular Lasiurus cinereus (hoary bat), Lasiurus borealis (eastern red bat), and 

Lasionycteris noctivagans (silver‐haired bat) (Morrison et al. 2010; Fiedler et al. 

2007). All these species fly at higher altitudes for longer distances than most 

other bats during migration, potentially leaving them vulnerable to turbines at 

height (Cryan and Barclay, 2009). Behavioural theories for bats’ interactions 

with turbines are discussed in Section 1.5. Fatalities of Pipistrelles subflavus 

(eastern pipistrelle) and Tadarida brasiliensis (Brazilian free-tailed bat) are also 

reported in high numbers in regions where they have a high population 

presence (Arnett et al. 2008; Fiedler et al. 2007). Kunz et al. (2007a) list other 

species which are known to have been killed in the US, as follows: Lasiurus 

blossivilli (western red bat), Lasiurus seminolus (Seminole bat), Myotis lucifugus 

(little brown bat), Myotis septentrionalis (northern long-eared myotis), Myotis 

evotis (long-eared myotis) and Eptesicus fuscus (big brown bat). Perimyotis 

subflavus (tri-colored bat) is also listed by Arnett et al.  (2011). 

Dürr and Bach (2004) identify 10 species of bat known to have been killed by 

turbines in Germany, of which the Common noctule was the most affected (118 

recorded fatalities). Eptesicus nilssonii (northern bat) was also noted as a 

common victim in Sweden. Rydell et al. (2010a) and Eurobats (Rodrigues et al 

2015) have provided more recent summaries of European fatalities by species 

(see Appendix Table A.1 for detail). Pipistrellus pipistrellus (common pipistrelle) 

and Nathusius’ pipistrelle feature prominently in fatality records. Fatalities have 

been recorded for Plecotus austriacus (grey long-eared bat) and Barbastella 

barbastellus (barbastelle bat), which are important to note as rare species in the 

UK. The Myotis and Rhinolophus genera only appear to be at minimal risk 

based on their low fatality totals.  

Rydell et al. (2010a), Dürr and Bach (2004) and Dubourg-Savage et al. (2011) 

highlight the Nyctalus, Pipistrellus, Vespertilio and Eptesicus genera (which 
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often forage in the open-air) as vulnerable in Europe. 98% of the bat fatalities 

recorded by Rydell et al. (2010a) were represented by these genera. The only 

bat species known to have been killed at wind turbines in the UK to date is the 

Pipistrellus pygmaeus (soprano pipistrelle) (5 fatalities, with a further 3 

unidentified fatalities, judged likely to be soprano pipistrelles) (Jones et al. 

2009a). However recent unpublished research may add to this range of species 

(University of Exeter, unpublished research). Natural England (2014) has 

published a summary of predicted risks of collisions and population-level threats 

to UK bat species, based on the limited existing evidence (Table 1.4). 

1.3.2 Age and gender 

In North America it has been found that turbines primarily cause more adult and 

male bat fatalities than juvenile and female (Arnett et al. 2008; Morrison et al. 

2010), however this is known to vary by species and has varied by site 

(Morrison et al. 2010; Brinkmann et al. 2006). A study at two wind farms in 

Australia also found many more adult fatalities than juvenile (Hull and Cawthen, 

2013). In contrast the gender and age balance in Europe is unclear based on 

current evidence (Rydell, et al. 2010a). A study at a wind farm in South America 

(Brazil) was also unable to find a significant difference in fatalities between male 

and female bats (Barros et al. 2015). It has been found that carcasses cannot 

always be sexed during surveys, leading to uncertainty in the recorded balance 

of male/female fatalities (e.g. Brinkmann et al. 2006; Bicknell and Gillam, 2013). 

1.3.3 Echolocation frequency 

Published guidance in the UK suggests larger, high flying bats with low 

frequency echolocation may be more at risk from turbines due to flight heights 

within the blade-swept area and potentially less frequent echolocation. See 

Table 1.5 for an overview of risk levels as defined by Natural England (2014). 

Table A.2 furthermore lists known flight heights of European bat species 

(Rodrigues et al. 2015). Other studies (e.g. Kerns et al. (2005) in the USA) have 

found ‘high’ frequency echo-locaters may be more vulnerable after recording 

higher numbers of fatalities of such bats. However in the context of UK species 

this likely equates to mid-frequency echolocation. The latter pattern was 
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hypothesised to be a result of greater attenuation of higher frequencies with 

increasing distance, restricting the detection of blades until bats are in close 

proximity to them. However this contrasting view on frequency may be skewed 

by the US species with moderate/high frequency echolocation naturally flying 

higher than UK species with similar frequencies. In reference to this subject, 

Table 1.6 details the echolocation characteristics of European bats, including 

call intensity and detection distance.  

Table 1.4: “The risk of collision fatalities affecting bat populations” (table and caption from 
Natural England, 2014) 

Bat species 
Relative population 

size and status** 
Risk of collision^ Population Threat 

Common pipistrelle  Common  Medium  Low  

Soprano pipistrelle  Common  Medium  Low  

Brown long eared bat  Common  Low  Low  

Daubenton’s bat  Common  Low  Low  

Natterer’s bat  Fairly common  Low  Low  

Whiskered bat  Locally distributed  Low  Low  

Brandt’s bat  Common N.W, rare or 
absent E,S  

Low  Low  

Serotine  Widespread, restricted 
S  

Medium  Medium*  

Noctule  Uncommon  High  High  

Leisler’s bat  Scarce  High  High  

Nathusius’ pipistrelle  Rare  High  High  

Lesser Horseshoe  Rare, endangered  Low  Low  

Greater Horseshoe  V Rare, endangered  Low  Low  

Barbastelle  Widespread, rare  Medium  Medium  

Bechstein’s bat  V rare  Low  Low  

Grey long eared  V rare  Low  Low  

^ Risk of collision is based on what we currently know about bat behaviour. *Within their 
distribution. 
** Based on Battersby, J ((Ed)) & Tracking Mammals Partnership ((2005)). 
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Table 1.5: Assessing risk posed by turbines by taking account of various factors including 
habitat preference and flight behaviour (Natural England Technical Information Note TIN051 
Bats and Onshore Windfarms 2014))  

 Risk of turbine impact 

Factor  Low Risk  Medium Risk  High Risk 

Habitat preference Bats preferring 
cluttered habitat 

Bats able to exploit 
background cluttered 
space 

Bats preferring to use 
open habitat 

Echolocation 
characteristics 

Short range 

High frequency 

Low intensity 

Detection distance 
~15m 

Intermediate – more 
plastic in their 
echolocation 

Long range 

Low frequency 

High intensity 

Detection distance 
~80m 

Weight Lightest Medium Heaviest 

Wing shape Low wing loading 

Low aspect ratio 

Broadest wings 

Intermediate High wing loading 

High aspect ratio 

Narrow wings 

Flight speed Slow Intermediate Fast 

Flight behaviour 
and use of 
landscape 

Manoeuvre well will 
travel in cluttered 
habitat 

Keeps close to 
vegetation 

Gaps may be avoided 

Some flexibility Less able to 
manoeuvre 

May avoid cluttered 
habitat 

Can get away from 
unsuitable habitat 
quickly 

Commute across open 
landscape 

Hunting techniques Hunt close to 
vegetation 

Exploit richer food 
sources in cluttered 
habitat 

Gleaners 

Hunt in edge and gap 
habitat 

Aerial hawkers 

Less able to exploit 
insect abundance in 
cluttered habitat 

Aerial hawker 

Feed in open 

Migration Local or regional 
movements 

Regional migrant in 
some parts of range 

Long-range migrant in 
some parts of range 

Conclusion Myotis (most species) 

Long eared-bats 

Horseshoe bats 

Common pipistrelle 

Soprano pipistrelle 

Serotine 

Barbastelle 

Noctule 

Leisler’s bat 

Nathusius’ pipistrelle 
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Table 1.6: Detectability coefficients to compare activity indices. Annex 4 Rodrigues et al (2015) 
((Guidelines for consideration of bats in wind farm projects – Revision 2014)) 

Open Space  Clutter (underwood) 

Intensity  
levels  

of calls 
Species 

Distance  
of  

detection 
(m) 

Detect-
ability  

coefficient 

 Intensity  
levels of  

calls 
Species 

Distance  
of  

detection 
(m) 

Detect- 
ability  

coefficient 

Low 

R. hipposideros 5 5.00  

Low 

R. hipposideros 5 5.00 

R. ferr./eur./meh. 10 2.50  Plecotus spp.. 5 5.00 

M. emarginatus 10 2.50  M. emarginatus 8 3.10 

M. alcathoe 10 2.50  M. nattereri 10 3.10 

M. mystacinus 10 2.50 
 R. 

ferr./eur./meh 
10 2.50 

M. brandtii 10 2.50  M. alcathoe 10 2.50 

M. daubentonii 15 1.70  M. mystacinus 10 2.50 

M. nattereri 15 1.70 
 

M. brandtii 
10 2.50 

M. bechsteinii 
15 1.70 

 

M. daubentonii 
10 2.50 

B. barbastellus 
15 1.70 

 

M. bechsteinii 
10 2.50 

 

   

 

B. barbastellus 
15 1.70 

Medium 

M. blythii 
20 1.20 

 

M. blythii 
15 1.70 

M. myotis 
20 1.20 

 

M. myotis 
15 1.70 

P. pygmaeus 
25 1.00 

  
   

P. pipistrellus 
30 0.83 

 

Medium 

P. pygmaeus 
20 1.20 

P. kuhlii 
30 0.83 

 

M. schreibersii 
20 1.20 

P. nathusii 
30 0.83 

 

P. pipistrellus 
25 1.00 

M. schreibersii 
30 0.83 

 

P. kuhlii 
25 1.00 

 

   

 

P. nathusii 
25 1.00 

High 

H. savii 
40 0.71 

  
   

E. serotinus 
40 0.71 

 

High 
H. savii 

30 0.83 

Plecotus spp.* 
40* 0.71 

 

E. serotinus 
30 0.83 

 
   

     

Very high 
E. nilssonii 

50 0.50 
 

Very high 
E. nilssonii 

50 0.50 

V. murinus 
50 0.50 

 

V. murinus 
50 0.50 
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N. leisleri 
80 0.31 

 

N. leisleri 
80 0.31 

N. noctula 
100 0.25 

 

N. noctula 
100 0.25 

T. teniotis 
150 0.17 

 

T. teniotis 
150 0.17 

N. lasiopterus 
150 0.17 

 

N. lasiopterus 
150 0.17 

*Note for Plecotus spp.: some high intensity calls are sometimes emitted during commuting flight in the open space (ref. 
Call DVD 3.93) 

1.3.4 Small turbines and/or sites with low numbers of turbines 

It seems likely that size of turbines will have an effect upon the selection and 

number of individual species killed, due to the different flight height preferences 

of bats during foraging, as well as commuting and migrating (Natural England, 

2014). For example it is known that Common noctule bats are able to fly at 

great heights (up to 1.2km altitude) (Ahlén et al. 2009). Flight heights may be 

varied to account for obstacles, environment or reason for flight (i.e. foraging, 

migrating etc.) (Ahlén et al. 2009). 

Hoary bats’ and silver-haired bats’ activity rates have been found to vary at 

different heights, with the opposite pattern of activity recorded between the 

species at ground level and 30m detection height (hoary bats were more active 

at 30m; silver-haired bats were more active at ground level) (Baerwald and 

Barclay, 2009). 

The proportion of activity from species with low frequency echolocation calls 

has been observed to increase at turbine hub height relative to ground level. In 

contrast, the proportion of activity from species that use medium and high 

frequency calls reduces at hub height, though species using medium 

frequencies continue to comprise the highest proportion of activity (unpublished 

research, University of Exeter). As such, Noctule, Leisler and Serotine bats may 

be at higher proportional risk in the UK, though their population size and 

occurrence rate may produce lower total fatalities than more common species. 
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1.4 Causes of bat fatalities at turbines  

Two primary mechanisms are thought to cause bat fatalities at wind turbine 

sites: collision with moving blades (Horn et al. 2008a) and internal injuries from 

barotrauma (see Definitions) (Cryan and Barclay, 2009; Grodsky et al. 2011). 

Collision with turbine towers has also been hypothesised, however this is 

considered of low likelihood (Horn et al. 2008a; Arnett et al. 2005).  

1.4.1 Collision with moving blades 

Multiple studies have provided evidence of the impact of moving turbine blades 

upon bats, with high bat fatalities frequently recorded at onshore wind farms, 

particularly in North America (Kerns and Kerlinger, 2004; Arnett et al. 2005; 

Arnett et al. 2008; Morrison et al. 2010), and Europe (Dürr and Bach, 2004; 

Bach and Rahmel, 2004; Ahlén, 2002, Rydell et al. 2010a; Dubourg-Savage et 

al. 2011; Camina, 2012). Horn et al. (2008a) recorded thermal infrared (TIR) 

video and still images of bats being struck by moving turbine blades 5 times 

during their study, equating to 0.5% of the bat passes recorded. Across the 

monitored 42-turbine facility, this could lead to a strike rate of 21 bats night-1. 

Recent TIR monitoring in North America provided further observations of bat 

flight in proximity to turbine blades, with a small number of possible blade 

strikes also observed (Cryan et al. 2014). The available evidence suggests that 

collision with moving turbine blades is likely to be the major contributory source 

of fatalities at turbine sites. 

1.4.2 Barotrauma  

Barotrauma, or tissue damage due to excessive air pressure changes, may also 

contribute to fatalities at wind turbines (Baerwald et al. 2008; Grodsky et al. 

2011; Dürr and Bach, 2004). Of the 188 bats found killed the previous night by 

Baerwald et al. (2008) at a wind farm in Canada (this timing was visually judged 

by level of decomposition, rigor mortis and degree of insect scavenging), 87 

were reported to have no fatal external injuries based upon gross internal 

necropsy. Of the 75 ‘fresh’ carcasses found, 90-92% suffered internal 

haemorrhaging consistent with barotrauma.  
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Evidence of barotrauma has also been recorded by industrial fatality reports in 

Europe (Rydell et al. 2010a), whilst Escobar et al. (2015) also recorded internal 

injuries to bats consistent with barotrauma during a study in Chile. However 

Grodsky et al. (2011) later found a third of all bats judged to have no broken 

bones from field-based examinations did indeed have broken bones, following 

radiological imaging. Results found from a second forensic investigation of bat 

carcasses from wind farms support the latter result, identifying concurrent 

traumatic injuries in 69% of those bats with ruptured tympana (a marker of 

barotrauma). Only 6% of the carcasses showed symptoms exclusively 

suggesting the possibility of barotraumas, leading the study to conclude that 

barotrauma is at best a minor etiology in bat fatalities at wind turbines (Rollins et 

al. 2012). The study furthermore suggested that lung tissues should not be used 

to assess the occurrence of barotrauma, due to the physical effects of post-

mortem time, environmental temperature and freezing of carcasses that can 

mimic diagnostic symptoms of barotrauma. 

Brinkmann et al. (2006) also found injuries to bats that could not be confidently 

attributed to either direct collision or barotrauma. Furthermore 82% of the 17 bat 

carcasses examined during a study at a wind farm in Oklahoma, USA featured 

broken bones; the remaining 3 carcasses showed no obvious signs of 

barotrauma (Piorowski and O’Connel, 2010). Given the difficulties of assigning 

cause of death even after extensive veterinary diagnostic procedures (including 

gross necropsy, histopathology, and radiology examinations (Grodsky et 

al.2011)), and the requirement for very fresh carcasses in order to diagnose 

barotraumas, it may be prudent to treat all bat deaths collectively. Houck (2012) 

(op. cit National Renewable Energy Laboratory, 2013) later used computational 

fluid dynamic modelling to consider the pressures that would theoretically exist 

around wind turbine blades, concluding with a hypothesis that the pressure 

changes would be insufficient for fatal barotrauma to occur. 

1.4.3 Delayed impacts 

Impacts and mortality may be delayed after suffering a partial blow from a blade 

or receiving internal injuries from barotrauma that are not immediately fatal. 

Additionally, bats may become weaker and more vulnerable to predation. 
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Barros et al. (2015) found grounded live bats with no external injuries during 

carcass searches at a wind farm in Brazil, though barotrauma was not 

confirmed as the cause of injury. Both Baerwald et al. (2008) and Grodsky et al. 

(2011) suggest haemorrhaging may occur in the middle and/or inner ear as a 

result of barotrauma. This would severely affect bats’ echolocation ability and 

therefore increase the likelihood of a delayed fatal impact from turbines. The 

latter study recorded these injuries in 12 of the 23 dead bats’ whose ears were 

examined and suggested that delayed fatalities may cause underestimation of 

fatality estimates at wind farms. 

1.4.4 Collisions with turbine towers  

Bat fatality rates from collisions with stationary structures are generally 

assumed to be minor, with low numbers of bats killed where incidences have 

been recorded (Crawford and Baker, 1981; Timm, 1989; Cryan and Barclay, 

2009). However recent investigation into free-flying bats’ use of multiple sensory 

systems for navigation has suggested they may rely more upon vision than 

previously understood. This may affect their ability to avoid obstacles, e.g. 

Orbach and Fenton (2010) provided findings of frequent collisions with 

obstacles in an experimental setting (in this case not fatal). Possible seasonal 

changes were also noted during this study, where bat collision rates changed 

during August from being susceptible to collision with non-reflective materials 

and in lighter conditions, to colliding equally with all material types and more so 

in dark conditions. As these patterns apparently coincided with swarming and 

mating cycles occurring during August, this warranted further investigation of 

behavioural changes in navigational methods. From current evidence it seems 

that collision with static wind turbine towers or blades is unlikely to be a major 

contributor to bat fatalities (Arnett et al. 2005; Horn et al. 2008a), however 

systematic categorisation of observed fatalities (e.g. through use of TIR imaging 

(Horn et al. 2008a; Arnett et al. 2005)) would provide more robust clarification. 

1.4.5 Small turbines and/or sites with low numbers of turbines 

Variation in the cause of bat fatalities between different turbine sizes is largely 

unexplored. Taller turbines may present a greater risk of direct collisions at the 
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flight heights of migrating bats, if some species of migratory bats flying at higher 

altitudes do not echolocate as frequently as when foraging at lower height (as 

suggested by Crawford and Baker (1981)). Larger blade-tip vortices and air 

turbulence are also created by the longer blades of large turbines (Morrison et 

al. 2010). Furthermore the associated low pressure pockets of air will be 

created in a wider area and at higher altitudes, therefore the risk of barotrauma 

may also increase. Smaller turbines often have blades closer to ground level 

and may therefore impinge on habitats used by bats for foraging. Smaller 

turbines’ blade rotation speeds are able to increase at a faster rate with rising 

wind speeds than large turbines. The time to complete a blade rotation is also 

much shorter; therefore direct collision may be a more likely cause of fatality at 

small turbines than barotrauma. Research into the effect of turbine numbers 

upon causes of bat fatalities is also unexplored. 

1.5 Hypotheses for bats interaction with wind turbines  

Most studies agree that the behavioural causes of bat fatalities at wind turbines 

are unclear (Cryan and Barclay, 2009; Strickland et al. 2011; Kunz et al. 2007a; 

Rydell et al. 2010b; Fiedler et al. 2007; Schuster et al. 2015), however many 

hypotheses have been presented for investigation (e.g. Kunz et al. 2007a; 

Rydell et al. 2010b; Dürr and Bach, 2004; Cryan and Barclay, 2009). 

The presence of bats at turbines has been variously attributed to investigation 

of turbines (Horn et al. 2008a; Ahlén et al. 2009; Cryan et al. 2014), foraging 

behaviour (Horn et al. 2008a; Ahlén et al. 2009; Gorresen et al. 2015; Rydell et 

al. 2010b), roost searching (Horn et al. 2008a; Ahlén et al. 2009; Cryan et al. 

2014), migration flights (Baerwald and Barclay, 2011) and possibly mating 

behaviours (Cryan, 2008; Cryan et al. 2012). Bats may also alter course 

towards turbines during flight in response to turbine-caused changes in air 

currents and using vision, often approaching on their downwind side (Cryan et 

al. 2014; Gorresen et al. 2015). Rydell et al. (2010a) collated limited evidence 

from a small number of studies using TIR observation, concluding that bats 

actively fly around turbine blades, most likely to feed on insects accumulating 

there. Interestingly, monitoring of offshore turbines in Scandinavia found bats 
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roosting in the turbine nacelles (Ahlén et al. 2009) and emissions of territorial 

and mating calls during bats’ flight around the turbines. Insect presence on the 

surface of turbines has now been confirmed, alongside observations of insect 

matter in the stomachs of bats found dead at wind turbines, lending weight to 

foraging hypotheses (Rydell et al. 2016). 

Activity observed by Horn et al. (2008a) included foraging around turbines and 

movement towards blades, interpreted as chasing or involuntary movement 

caused by blade-tip vortices. Ahlen et al. (2009) similarly recorded bats foraging 

around turbine blades and masts, whilst foraging in the airspace near turbines 

was recorded by Gorresen et al. (2015). After confirming bats were being struck 

by turbine blades, Horn et al. (2008a) emphasise the higher likelihood of bat 

fatalities from foraging behaviour than commuting behaviour, recording a lack of 

straight-line flights near turbines. Attraction of bats to turbine blades could 

furthermore be due to visual cues, sensing of the blades’ location by 

echolocation or air movement (Cryan et al. 2014; Gorresen et al. 2015) or 

hearing sounds from blade movement (such as the blades cutting through the 

air) (some bats are known to be attracted to distant sounds (e.g. Buchler and 

Childs, 1981)). 

Cryan and Barclay (2009) provide a summary of current hypotheses for bat 

fatalities at wind turbines. The summary is shown in Table 1.2 together with four 

additional hypotheses from Strickland et al. (2011) and Baerwald and Barclay 

(2011), with subjective scoring of their estimated relative likelihood and the 

approximate level of certainty provided by existing research. 

 

1.5.1 Small turbines and/or sites with low numbers of turbines 

The height and number of turbines may impact likelihood of particular 

hypotheses being supported. In relation to the ‘attracted to modified landscape 

features’ hypothesis, smaller turbine sites are likely to be sited in smaller 

clearings with more cluttered habitat surroundings, relative to larger turbine 

sites. At smaller sites, bats may therefore be more likely to fly close to turbines 

when foraging around the edge of the sites. With regard to the ‘Attracted to 
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turbines as mating or gathering sites’ hypothesis, the tallest tree-like features in 

a landscape may represent the most desirable mating territory, therefore activity 

levels may vary according to turbine height if this hypothesis is accurate. 

1.6 Variability in bat activity, fatalities and behaviour results: Moderating 

factors 

Due to large variations in bat activity and fatality recordings at similar turbine 

sites, authors have measured and suggested potential influencing factors 

(Baerwald and Barclay, 2009; Szewczak and Arnett, 2006; Arnett et al. 2005; 

Rydell et al. 2010a), which are discussed below.  

1.6.1 Seasonal variation 

Many authors have noted the dominant seasonal patterns of bat fatalities, which 

have largely been related to hibernation, mating, feeding and migration 

behaviours. Peak fatality rates have commonly been recorded during July-

September. Fatalities have also been observed outside that period and 

throughout the active bat season (approximately March to November), but in 

lower numbers (exact timings may vary according to weather, bat species and 

geography) (Arnett et al. 2008; Dürr and Bach, 2004; Fiedler et al. 2007; Rydell 

et al. 2010a; Morrison et al. 2010; Brinkmann et al. 2006; Kunz et al. 2007a; 

Baerwald and Barclay, 2011; Camina, 2012; Arnett et al. 2016). This timing 

relates both to bats leaving their summer colonies and autumn migration (Behr, 

2007 op. cit Schuster et al. 2015). The late summer/autumn seasonal peak was 

also observed during two studies in the Southern Hemisphere, the first in 

Australia finding most fatalities during March and April (Hull and Cawthen, 

2013) and the second in South Africa identifying a peak during December-

March (Doty and Martin, 2013). 

A study by Arnett et al. (2008) provided supporting evidence, recording highly 

correlated temporal patterns of fatalities at two sites in different states which 

were surveyed simultaneously. Some variations in the timing of fatality peaks 

have been observed. Dubourg-Savage et al. (2011) noted southern European 
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fatalities are more equally bimodal in their temporal distribution (peaks centred 

around May and August); whereas northern European fatalities are more likely 

to occur primarily around the August peak (a less significant peak was centred 

upon May). Rydell et al. (2010a) also noted results from France showing a 

smaller peak in fatalities during spring/early summer. Abnormal weather 

conditions have been suggested to modify the timing of or remove peaks in 

fatalities (Rydell et al. 2010a). Fatalities have even been found to extend to 

December in Spain (Camina, 2012). Similarly to some of the European 

observations, the silver-haired bat was found to also have an additional peak 

fatality period in the spring (between April and June) in the USA (Arnett et al. 

2008). 

Despite these overall patterns, peak mortality appears to vary in frequency and 

timing across years (Rydell et al. 2010a; Arnett et al. 2008). 

1.6.2 Distribution of fatalities and activity across the night 

Reported temporal patterns of bat activity through the night at wind energy sites 

have been relatively consistent, however timing of fatalities is not well known 

due to a lack of studies and the difficulty in directly observing fatalities. A North 

American study by Arnett et al. (2005) showed peak fatality rates during the first 

two hours after sunset. The primary peak in bat activity in another North 

American study (Gorresen et al. 2015) was found to be 2-3 hours after sunset, 

followed by a smaller peak at approximately 4 hours before sunrise. Baerwald 

and Barclay (2011) found migratory bat passes in Alberta, Canada were 

distributed throughout the night, with two peaks at 3 and 6 hours after sunset. 

The study also noted that numbers of fatalities varied considerably between 

consecutive nights. 

Results from Europe concerning temporal patterns are focused upon bat 

activity. Peak activity around turbines was again noted during the first 2-3 hours 

after sunset by Brinkmann et al. (2006). Two peaks were also reported by 

Limpens et al. (2013), for the 0.1-0.2 and 0.7-0.8 fractions of the night (whereby 

they treated 0 as the start of the night and 1 as the end, in order to standardise 

for night lengths). 
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1.6.3 Weather-related variability 

1.6.3.1 Wind speed 

Higher bat fatalities are generally recorded during lower wind speeds (Arnett et 

al. 2008; Brinkmann et al. 2006; Kerns et al. 2005; Kunz et al. 2007a; Rydell et 

al. 2010a; Amorim et al. 2012). Figure 1.2 shows the relationship analysed from 

the Mountaineer and Meyersdale sites in the USA (Kerns et al. 2005). 

Exceptions to the pattern have also been recorded (Fiedler et al. 2007; Fiedler, 

2004). Whilst studying wind farms in the Mediterranean, Amorim et al. (2012) 

identified that 81% of fatalities occurred during nights with mean wind speeds of 

<4 m/s, with no fatalities above 5 m/s. 

Brinkmann et al. (2006) recorded bat activity at all wind speeds up to 10.9 ms-1, 

however this reduced above 7.5ms-1. Higher bat activity levels during lower 

wind speeds were also recorded at wind farms by Baerwald and Barclay (2011), 

Bach et al. (2011), Weller and Baldwin (2012), Cryan et al. (2014) and Gorresen 

et al. (2015), as well as in the review article by Rydell et al. (2010a). The same 

pattern has also been recorded in other environments (e.g. Blake et al. 1994; 

Cryan and Brown, 2007). Rydell et al. (2010a) and Bach et al. (2011) also found 

that resistance to higher wind speeds was variable amongst bat species. 

Pipistrellus nathusii was observed as more wind-tolerant than Nyctalus noctula 

during the latter study, whilst Nyctalus noctula was more wind-tolerant than 

smaller Pipistrellus species in the former study. This has implications for the 

mitigation of bat fatalities at different wind speeds. 

1.6.3.2 Rainfall 

Rain levels appear to have a negative relationship with fatality numbers (Kerns 

et al. 2005); however ‘inclement’ weather does not always have a significant 

effect (Baerwald et al. 2009). Bat activity has been found to be negatively 

associated with rainfall occurrence at turbine (Limpens et al. 2013; Gorresen et 

al. 2015) and non-turbine sites (Erickson and West, 2002). However this is not a 

consistent association (e.g. Scanlon and Petit, 2008).  
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1.6.3.3 Barometric pressure 

Limited evidence notes a peak in fatalities when barometric pressure increases 

following the passing of storm fronts (Kerns et al. 2005). However, the opposite 

pattern has also been observed (Baerwald and Barclay, 2011). Increases in bat 

activity during low and increasing pressure periods were also observed by Horn 

et al. (2008b) and Gorresen et al. (2015). It has been suggested that bats’ 

physiological ability to recognise pressure changes may enable ‘anticipation’ of 

poor weather by bats (Baerwald and Barclay, 2011). This may lead to higher 

fatalities when bats fly faster with less echolocation to flee a storm or forage 

rapidly before a storm. Earlier evidence of higher migratory bat activity during 

low pressure periods, from Cryan and Brown (2007), support Baerwald and 

Barclay’s (2011) assertions.  

1.6.3.4 Temperature 

Multiple studies have identified a positive correlation between temperature and 

bat fatality (Arnett et al. 2011; Ahlen et al. 2007; Amorim et al. 2012; 

Georgiakakis et al 2013). Amorim et al. (2012) reported that 88% of fatalities 

occurred during nights with mean temperatures >15oC and no fatalities at 

<13oC. The same association was observed in southern Europe (Georgiakakis 

et al. 2013). A weak positive correlation was also recorded at one of two sites 

studied by Kerns et al (2005). No correlation however was recorded by Fiedler 

et al. (2007). 

A positive association between bat activity and temperature has also been 

recorded at wind energy facilities (Baerwald and Barclay, 2011; Alcalde, 2003; 

Weller and Baldwin, 2012; Gorresen et al. 2015) and in other environments 

(Anthony et al. 1981; Erickson and West, 2002; Scanlon and Petit, 2008). 

Results from North America suggest activity rates may peak at approximately 

20oC (Arnett et al. 2007a), though the likelihood of nightly temperatures 

reaching this threshold in northwestern Europe is low.  

Bats’ responses to temperature may vary between species.  Arnett et al. 

(2007a) found species using high frequency echolocation were more responsive 

to temperature change than low frequency echolocators. This may be explained 
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by the typically lower body mass of high frequency echolocators; heightening 

vulnerability to temperature fluctuations.  

1.6.3.5 Modelling bat activity 

Multivariate regression models can predict large proportions of bat activity 

levels. For example Horn et al. (2008a) suggested wind speed, temperature and 

turbine rotations per minute (RPM) variables can predict/explain 95% of the 

variability in numbers of passes recorded at their monitoring site. Similarly 

generalised linear mixed effect models (GLMM) have been used to identify the 

moderating influence of turbine operation, weather and habitat conditions upon 

bat activity at small turbine sites (Minderman et al. 2012). 
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Figure 1.2: “Relationship between daily fatalities (no. of fresh bat fatalities/no. of turbines 
searched) and average percentage of the night where wind speed at turbines was >6 m/sec at 
the Mountaineer Wind Energy Center in West Virginia, USA (31 Jul–11 Sep 2004) and the 
Meyersdale Wind Energy Center in Pennsylvania, USA (2 Aug–13 Sep 2004; Kerns et al. 
2005). Fatality index is the total number of fresh bats found on a given day divided by the 
number of turbines searched that day.” (reproduced from Arnett et al.2008) 

1.6.4 Geographical and environmental variability 

It is widely recognised that the presence and behaviour of bats is influenced by 

habitat and landscape structures (e.g. Fuentes-Montemayor et al. (2011); 

Klingbeil and Willig (2009); Perry et al. (2008); Sandel et al. (2001); Jenkins et 
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al (1998); Vaughan et al. (1997); Walsh and Harris (1996a)). This may also 

influence the abundance and behaviour of bats in proximity to turbines and may 

partially explain variations in fatality rates between sites with similar turbine 

models. Limited research has also considered the influence of the spatial layout 

of turbines at wind farms which could feasibly influence a bats’ perception of a 

site’s landscape (Kerns et al. 2005; Baerwald and Barclay, 2011). 

Kerns et al. (2005) propose a range of variables that could modify levels of bat 

fatalities, as follows: 

- “configuration of the turbines (e.g., linear, nonlinear, single row, double 
row) 

- orientation of a ridge where turbines might be located (e.g., N-S, E-W, 
NE-SW, etc) 

- dominant ecotype (e.g., open prairie, deciduous forest, cropland) 
- abundance of bats in the area 
- landscape configuration 
- proximity to key features such as maternity roosts or hibernacula 
- model of turbine used 
- proximity of a turbine to habitat features (e.g., open water, forest edge) 
- large scale / regional habitat” 

Bats commonly display a preference for prominent linear vegetation (e.g. 

hedges) and landscape features for navigation (Walsh and Harris, 1996b; 

Entwistle et al. 1996; Limpens et al. 1989; Verboom and Huitema, 1997). Other 

observed functional habitat associations include: the presence of trees for 

roosting (Spada et al. 2008; Lookingbill et al. 2010: supplementary material; 

Russo et al. 2005; Ruczyński and Bogdanowicz, 2005; Perry et al. 2008), 

navigation (Entwistle et al. 1996; Verboom and Huitema, 1997; Verboom and 

Spoelstra 1999; Downs and Racey, 2006) and prey sources (Entwistle et al. 

1996; Verboom and Huitema, 1997; Lumsden and Bennett, 2005). Waterways 

have also been associated with navigation (Serra-Cobo et al. 2000; Greif and 

Siemers, 2010; Downs and Racey, 2006) and foraging behaviours (Brooks, 

2009; Kusch and Idelberger 2005; Siemers et al. 2001), particularly in areas of 

high insect abundance (Vaughan et al. 1997; Warren et al. 2000; Holloway and 

Barclay, 2000). 
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1.6.4.1 European Results 

In a review of studies considering north-western Europe, Rydell et al. (2010a) 

found that fatality rates showed a strong association with features including 

topography and vegetation. The highest fatalities recorded in Rydell et al. 

(2010a) were at sites on the top of forested hills and at a marsh area. In 

particular fatalities were found to be higher within 100m of woodland areas. 

Variable mortality rates were observed in flatter, more open farmland areas, in 

various countries. The topography and habitat structure of field sites was found 

to have an impact upon the species most likely to be killed at different sites, in 

Germany (Rydell et al. 2010a). 

A small amount of evidence from surveys in southern Sweden and north-

western Germany illustrated higher proportions of fatalities found at turbines 

within 500m of/near a coastline (respectively), than those further inland. This 

may suggest coastline features are used for navigation or foraging (due to high 

insect presence) by bats (Rydell et al. 2010a). Bach et al. (2011) also found that 

higher activity rates of bats were retained during higher wind speeds in coastal 

areas, where they were not further inland. Some species of bat may be likely to 

occur near coastlines due to their use of these areas during migration (Rydell et 

al. 2010a). These latter pieces of evidence suggest coastal features should be 

considered in analysing influences upon fatalities at turbine sites, whilst they 

suggest potentially significant impacts upon bats when considering offshore 

turbines. 

A review of European studies by Dubourg-Savage et al. (2011) discovered 

inconsistent relationships between fatalities and surrounding habitat. Fatalities 

at sites in Portugal were found to have little correlation with habitat variables, 

with the exception of a somewhat surprising negative correlation with tree 

cover. No clear pattern was highlighted for sites in either France or Greece. 

77% of fatalities recorded in Germany up to 2004 were found to have occurred 

at turbines less than 50m from the nearest wooded features or hedgerows (Dürr 

and Bach, 2004). When considering particular species or groups of species, the 

pattern also became clearer. Pipistrellus fatalities were largely found close to 

wooded areas/hedgerows, whilst Noctule and Serotine fatalities showed a 
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weaker relationship with these features. It should be noted that low sample 

sizes in this study limit the confidence levels in the results. 

During a later study in Freiburg, southern Germany, 50 carcasses were found, 

all recorded in forested, clear fell and forest border areas, whilst none were 

found in open land areas (bat activity was however recorded in open areas – 

particularly at greater heights) (Brinkmann et al. 2006). This appears to suggest 

a strong influence of habitat upon fatalities.  

1.6.4.2 North American Results 

When considering habitats proximal to wind farms in Canada, Baerwald and 

Barclay (2009) found that Hoary bat and Silver‐haired bat presence was more 

likely close to the foothills of the Rocky Mountains (with trees, ridgelines and 

river networks), than to prairie grasslands. Arnett et al. (2008) reviewed studies 

at turbines sites across North America, finding that three studies considering 

geographical and environmental input showed little or conflicting evidence of the 

influence of these factors.  

Further North American studies have observed fatalities in agricultural 

landscapes and mixed-grass prairie (Kunz et al. 2007a). Piorowski and 

O’Connell ((2010) and Johnson et al. (2004) recorded a lack of association 

between fatalities or activity and most landcover and topography types., 

Nonetheless two habitat variables indicated a relationship: (1) the heads of 

eroded ravines (which related to fatalities in the former study) and (2) distance 

to woodland (activity was observed to reduce with increasing distance in the 

latter study). The overall lack of, or weakness of habitat associations within the 

North American results may be considered somewhat surprising, given the 

evidence for bats’ habitat preferences discussed above. This poses an 

interesting need for further research in the area (as also suggested by Kunz et 

al. (2007a) and Morrison et al. (2010)). 

Migratory bats may utilise landscapes in a different manner to those engaged in 

commuting and foraging. There is a lack of research into these differences with 

regard to activity around turbines. Baerwald and Barclay (2009) however 

investigated the movements of migratory bats, noting varied activity among 

sites and concentration of flight routes along selected trajectories rather than 
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wide dispersal. This may offer a beneficial method to identify ‘risk’ areas for 

turbine placement in relation to migratory bats. Through the use of stable 

carbon and nitrogen isotope ratios, recent research has been able to identify 

associations of Nathusius’ pipistrelle bats with aquatic habitats during autumn 

migration and similarly of noctule bats with terrestrial habitats during this time 

(Voigt et al. 2016). Identification of wind farms near movement corridors 

dominated by these habitat types may aid mitigation of fatality impacts during 

migration periods. 

1.6.5 Bat prey-related factors 

The presence and abundance of insect prey species in proximity to turbines 

may be a significant factor attracting foraging bats and thereby increasing 

fatality risk (Rydell et al. 2010b). The number of bat studies at wind turbine 

installations that have measured insect activity is low, though the issue has 

been recognised in the literature (Kunz et al. 2007; Rydell et al. 2010b; Long et 

al. 2011). Insects have been observed flying in the vicinity of turbines (Horn et 

al. 2008a; Cryan et al. 2014), whilst bats have also been observed hunting 

insects next to the nacelle and blades (Ahlén, 2003). It has been hypothesised 

that the warmer air produced around these areas (as observed using TIR 

imaging) attracts insects which subsequently may attract bats (Ahlén, 2003). 

TIR-based studies of wind turbines have identified positive correlations between 

bat and insect activity (Horn et al. 2008a; Gorresen et al. 2015).  Insect levels 

were found to peak post-sunset, potentially impacting upon timings of bat 

fatalities (Horn et al. 2008a). Valdez and Cryan (2013) carried out analyses of 

the digestive tracts of bats found killed beneath wind turbines. Large amounts of 

insects were found in the bats’ stomachs (also found in 25% of necropsied bats 

from Grodsky et al. (2011) and one of six analysed in Hull and Cawthen (2013)), 

however no insects were found in their mouths or throats. This may otherwise 

have indicated the occurrence of death whilst feeding. The study recommended 

further research including improved characterisation of insect types at turbines 

and recording of bats’ feeding buzzes in order to establish causality (concurring 

with Reimer et al. 2010). Additionally, TIR monitoring could aid determination of 

whether blade strikes of bats occurred alongside periods of feeding buzzes. 



54 
 

Rydell et al. (2016) later confirmed insect presence on the surface of turbines 

and insects in the stomachs of dead bats found at turbines. This study 

additionally theorised that bats are likely to be able to detect insects on the 

surfaces of turbines and target them during foraging. 

1.6.5.1 Influence of habitat structure and weather 

Habitat structure contributes to both bat and insect activity levels (Muller et al. 

2012); therefore habitat and prey influences on bat fatality levels may be 

interlinked. Insect ‘treetopping’ behaviour (Alcock and Dodson, 2008; Shields, 

1967) may also overlap with similar activity hypothesised for some bats (e.g. 

Barbastelle (Russo et al. 2004)). This blurs analysis of the effects of prey 

abundance and bat behaviour on fatalities at turbines. The same complication 

may apply to the effects of prey levels and weather (Kerns et al. 2005; Corten 

and Veldkamp, 2001). 

1.6.5.2 Feasibility of data collection 

Whilst data is required on this subject, insect monitoring at turbines’ blade or 

nacelle height will continue to be restricted by research logistics. Standard 

insect traps are often designed to monitor close to ground level. Furthermore 

techniques such as using balloons to sample with insect monitoring equipment 

at height are labour intensive and have the potential to cause conflict with wind 

turbine operators. Furthermore, recording insects at nacelle height is often not 

possible whilst monitoring with TIR cameras due to the small size of the target 

(Horn et al. 2008a). 

1.6.6 Turbine layout configuration 

Little research is available regarding the effect of turbine layout configuration 

upon levels of impacts to bats or bat activity. A small amount of field evidence 

was produced by Kerns et al. (2005), studying 2 wind farms in North America. 

Fatalities were found to be spread across turbines, though peaks in fatality 

numbers were identified near the extremes or centres of turbine strings. This 

pattern was not repeated however during a Canadian study. Nonetheless 

fatality rates were found to be higher at the northern end of the wind farm than 

the southern end (no difference was found comparing the eastern and western 
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ends) (Baerwald and Barclay, 2011). The observations at this site were 

hypothesised to be the consequence of the flight direction of migratory bats, as 

a result of which they would be likely to reach this side of the wind farm first. 

This seems a potential area for further investigation to understand the impact of 

site design upon fatality rates. 

1.7 Bats’ flight heights 

Limpens et al. (2013) recorded activity at ground height that was on average 

15-20 times higher than at hub height during monitoring at five wind farms in the 

Netherlands. They also observed a correlation between activity rates at ground 

and hub height. During monitoring at a wind farm in Eastern Tennessee, 

significantly higher levels of activity were recorded at ground height than at hub 

height (70m), however no significant difference was found between activity 

levels at ground and 15m heights (Fielder, 2004). This indicates that whilst 

prediction of hub height activity from ground level results may be restricted at 

large turbines, such prediction may be viable for small turbines. 

Patterns of activity between flight heights may vary between species. Baerwald 

and Barclay (2009) found that L. cinereus and L. noctivagans exhibited 

contrasting levels of activity at different heights at operating wind farms. The 

former was more commonly detected at a height of 30m, whilst the latter 

showed a preference for flight near ground level. In a similar study using the 

same heights for recording, Collins and Jones (2009) identified that Pipistrellus 

species were significantly more likely to fly near to ground level, whilst 

Nyctalus/Eptesicus species were recorded more often at 30m height (though 

the latter finding was not statistically significant).  

During a North American study, calls from bats with low echolocation 

frequencies (<35 kHz) (i.e. those of a similar morphology and ecological niche 

to Nyctalus/Eptesicus; physically large, associated with flight in open areas and 

at greater heights) comprised an increasing proportion of recorded calls with 

increases in detector height (49.2%, 83.6% and 98.5% of calls at 2m, 22m and 

52m heights, respectively) (Weller and Baldwin, 2012). Different flight heights 
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were also observed for species with echolocation frequencies greater or lesser 

than 35 kHz at another North American wind farm (Arnett et al. 2007a). The 

evidence shows that recording exclusively at ground level is likely to produce 

misleading results at large turbines, both in relation to volume of calls and 

species composition, as has been previously recognised during ground level 

monitoring (e.g. Jain et al. 2011). The same conclusion was reached during 

monitoring at wind farms in the UK (University of Exeter, unpublished research). 

Baerwald and Barclay (2009) suggest future research in this area should 

encompass larger sample sizes, a variety of habitat types and species 

compositions. Furthermore they recommend that bat activity is monitored at 

consistent heights (>=30 m for large turbines) to enable comparison between 

studies. Where migratory bat species are concerned, differences in flight 

heights between migratory seasons should also be considered, as observed by 

(Furmankiewicz and Kucharska, 2009). 

1.8 Turbine sound and electromagnetic emissions 

The emission of ultrasound and other noise by turbines has given rise to 

suggestions of bats being attracted to these environmental conditions. 

Research on turbine noise emissions regarding bats – and indeed birds – is 

limited. Szewczak and Arnett (2006) measured ultrasonic turbine emissions at 

ground level (34m below rotors) and found that only minor noise was emitted 

above ambient levels, with emissions decreasing as sound frequency 

increased. A different result may nevertheless have been obtained if ultrasound 

was sampled at nacelle height. Furthermore, data from this study was only 

collected at one model of turbine. Our perception of large and small ultrasound 

levels are also taken from a human perspective, which could vary from the 

amplitude discrepancies of importance to bats. 

1.8.1 Ultrasound emissions from anemometers 

During a small-scale experiment measuring the effect of ultrasound emissions 

from anemometers installed on wind turbines (at approximately 38 kHz – within 
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the frequency range utilised by the bat species using the sites), Kerns et al. 

(2005) recorded marginally lower fatalities at turbines with anemometers 

disabled, however this difference was not found to be significant. Some high 

frequency noise can also be created at blade tips (Twidell, 2003) and from 

blade defects (Dooling, 2002), the latter of which may help birds avoid turbine 

blades (Dooling, 2002).  

1.8.2 Ultrasound deterrents 

Mixed results have been observed from the use of acoustic ultrasound bat 

deterrents in a laboratory setting, at turbines and at a pond field test site 

(Spanjer, 2006; Szewczak and Arnett, 2008; Johnson et al. 2012; Arnett et al. 

2013a). Some success was achieved in reducing bat activity over small 

distances suggesting ultrasound may deter rather than attract bats. Attenuation 

of the ultrasound over larger distances and during humid conditions limited the 

effect of the deterrent. The nature of any ultrasound emissions (e.g. higher vs. 

lower frequencies or constant vs. modulated frequencies) could contribute to 

the effect of the noise. 

1.8.3 Ultrasound frequencies 

Bats have been found to adjust echolocation characteristics when the frequency 

band of interfering ultrasound is the same or similar to their own echolocation 

(Gillam and McCracken, 2007; Gillam et al. 2007; Bates et al. 2008). Therefore 

investigations into ultrasound emissions impacts at turbine sites should consider 

frequency variations. Additionally, bats’ ability to successfully navigate blades 

could be impeded by turbine noise emissions, taking into account evidence that 

they struggle to process multiple streams of acoustic input (Barber et al. 2003). 

1.8.4 Electromagnetic fields 

It has been hypothesised that the production of electromagnetic fields around 

turbine nacelles may disrupt bats’ navigational abilities (Kunz et al. 2007a), 

however this has received little research attention. Some indication may be 

given by previous bat activity monitoring around active radar installations and 

from the use of radar technology as a bat deterrent at turbines, where activity 
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was reduced in both situations (Nicholls and Racey, 2007; Nicholls and Racey, 

2009). However the level of similarity between electromagnetic fields created by 

radar technology and turbine nacelles is not known, therefore this is a subject 

requiring further research. 

1.9 Visibility of turbines to bats, including turbine lighting 

1.9.1 Moon illumination  

Higher fraction of moon illumination was identified as a significant variable 

correlating with high fatalities by Baerwald and Barclay (2011), supporting the 

hypothesis of bat attraction to turbines due to increased visibility. Moon 

illumination was also found to be important for predicting bat activity (Weller and 

Baldwin, 2012). Bats were also more frequently observed at turbines during 

moonlit nights by Cryan et al. (2014). However evidence from Cryan and 

Brown’s (2007) study causes uncertainty, finding higher migratory bat activity 

during dark phases of the moon and higher levels of cloud cover. Moonlight has 

also been found to have a negative impact (Ciechanowski et al. 2007) or lack of 

any effect (Scanlon and Petit, 2008) upon bat activity levels in other, non-

turbine environments and minimal effect at a wind farm site (Gorresen et al. 

2015). Cryan and Brown’s (2007) study was however focused upon migratory 

activity and was not undertaken at a wind energy site, therefore if bats are 

attracted to turbines to forage, these different behavioural activities may relate 

to varying environmental conditions.  

Individual bat species are known to display differing responses to lighting, 

including attraction to, avoidance of and indifference to lighting (Rydell, 2006; 

Scanlon and Petit, 2008; Polak et al. 2011; Stone et al. 2012).The effect of 

moon illumination may therefore vary by species. Different nocturnal insect 

groups have furthermore similarly been found to display contrasting positive and 

negative associations with moonlight (Bidlingmayer, 1964, Anthony et al. 1981) 

which could influence bat activity and fatality levels. 
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1.9.2 Aviation safety lighting  

The attraction of bats to aviation safety lighting on turbine nacelles has been 

investigated. Kerns et al. (2005) found no difference in bat fatality levels 

between lit and unlit turbines during monitoring at two wind farms in the USA, 

despite insect levels being higher at lit turbines. Investigations at a range of 

other sites (including Johnson et al. (2003a), Johnson et al. (2004), Kerlinger et 

al. (2006), Fiedler et al. (2007) and Horn et al. (2008a) (all in the USA) and 

Baerwald and Barclay (2011) (in Canada)) have shown the same lack of impact 

from lighting at wind farm sites. Horn et al. (2008a) found a non-significant 

difference in bat foraging flight activity between lit and unlit turbines (slightly 

higher at lit turbines). Complementary research considering the effect of varying 

lighting types (e.g. blinking white beacons and non-blinking red beacons) has 

also indicated little effect on fatality or activity levels (Jain et al. 2011). These 

studies show a general lack of effect from lighting upon bat impacts at wind 

turbines.  

Whilst a later study in Texas found a significant difference in fatality numbers 

between lit and unlit turbines, fatality numbers were lower at the lit turbine; 

supporting the continued use of aviation lighting (Bennett and Hale, 2014). 

Furthermore the difference was statistically driven by a single species (eastern 

red bats - Lasiurus borealis) and no effect was identified for the five other 

species present, suggesting a more generalisable pattern of no effect. 

1.10 Detection of turbines by bats and orientation of turbines vs. bat flight 

direction 

The form of echolocation reflections from turbines and the relative orientation of 

turbine blades vs. bat flight direction may affect bats’ ability to detect blades. 

The process of reflection has been experimentally modelled in a laboratory 

environment by Long et al. (2009), who found that ultrasonic pulses reflected 

from a mini-turbine (blade-diameter 0.91m) featured a high level of scattering. 

Only a small percentage of the input pulse energy was returned over a short 

distance, following reflection. Returned echoes were particularly low when 
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facing the turbine blade edge from a lateral direction (i.e. in line with the blades, 

rather than viewing the face of the blades). Frequency shifts have also been 

identified in reflected pulses at different angles to the blades, which along with 

low simulated numbers of echoes may lead to poor or late blade detection 

(Long et al. 2010). Some echo features were also found to have the potential to 

attract bats. Such results may suggest bats could struggle to locate and avoid 

turbine blades. Long et al. (2009) do however highlight that it is possible that 

bats may naturally receive low proportions of energy from original echolocation 

pulses (and are therefore potentially adapted to such circumstances) and that 

the results may not translate to larger turbines. 

Evidence is available from monitoring at wind energy sites to assess detection 

of turbines and direction of approach. Bats have been witnessed investigating 

both moving and non-moving turbine blades as well as turbine masts, during 

TIR monitoring (Horn et al. 2008a). The behaviour included bats carrying out 

multiple ‘check’ passes on the same part of a turbine, as known to occur during 

a bat’s approach to a roost (linking to the roost-finding hypothesis discussed 

above), suggesting they are able to detect the structures. Active avoidance of 

moving blades during flight in proximity to blades has also been observed 

(Brinkmann et al. 2006; Horn et al. 2008a), supporting this hypothesis. On the 

basis of field acoustic and radar monitoring, Millikin (2009) (op. cit Jones et al. 

2009a) proposes that bats do use echolocation around turbine blades, however 

that they use last minute avoidance behaviour close to blades, suggesting short 

detection distances. 

A study using thermal imaging suggested bats can detect or investigate the 

presence of turbines through recognition of changes in airflow when flying 

downwind of a turbine (Cryan et al. 2014). The proportion of bats approaching 

the monitored turbines on their downwind side increased with wind speed when 

blades were put on brake (i.e. not turning) but decreased when blades were 

turning. This variation in activity was suggested to be a result of avoidance of 

complex turbulent air conditions created downwind of moving blades (Cryan et 

al. 2014). Bach and Rahmel (2004) provide further evidence that bats can 

detect turbine blades, identifying straight flight at consistent heights when flying 

parallel to turbine blade orientations, but flights dipping below the height of the 
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nearest blade edge when flying at right angles to blade orientation (see Figure 

1.3). 

1.10.1 Small turbines and/or sites with low numbers of turbines 

Though research at small turbines is very limited, bat activity has been 

observed to reduce by a greater amount in close proximity to turbines during 

increases in wind speed relative to locations further from turbines (Minderman 

et al. 2012). The reduction is also therefore associated with increases in blade 

rotation speed; bird density has similarly been found to be negatively associated 

with blade rotation speed (Leddy et al. 1999). It is possible that the faster blade 

rotation speed of small turbines may effectively create a perception of a semi-

solid circular surface to bats, which could increase detection rates in contrast to 

the less frequent blade rotation cycles of medium and large turbines. 

1.11 Non-fatal and behavioural impacts 

Bats have been found to investigate wind turbines (Brinkmann et al. 2006; Horn 

et al. 2008a; Ahlén et al. 2009) as well as to use them for foraging sites (Ahlén, 

2002; Ahlén et al. 2009; Behr and Helversen, 2005 (referenced in Brinkmann et 

al. (2006)); Horn et al. (2008a); Rydell et al. 2010a) and roosts (Ahlén et al. 

2009; Hensen, 2004). Such activity shows that the installation of wind turbines 

has the potential to cause deviation from bats’ historical use of the habitat. 

Few studies have directly investigated non-fatal disturbance to bats and habitat 

loss from turbine development. Turbine placement within forested openings and 

the production of cut edges may alter bat habitat and introduce spatial conflict 

(Kerns et al. 2005). Bat abundance in proximity to forested areas can increase 

following the creation of ‘cutblocks’ due to reductions in habitat clutter (Grindal 

and Brigham, 1998), however this must be weighed against risk to bats.  

Woodland-dwelling species such as Myotis myotis (greater mouse-eared bat), 

Myotis bechsteinii (Bechstein’s bat) and Myotis nattereri (Natterer’s bat) could 

potentially be affected by woodland clearance for turbines (Bach and Rahmel, 
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2004). This approach is often used to reduce both wind turbulence in proximity 

to turbines and habitat suitability for bats, to avoid conflict.  

The previously described drop in bat activity in close proximity to turbines during 

increases in wind speed/blade rotation speed (Minderman et al. 2012) suggests 

disturbance may occur at small wind turbine sites.  

The construction of a wind farm in Germany appeared to cause displacement, 

reducing numbers of Eptesicus serotinus (Serotine bat) present over a 5 year 

period (Bach and Rahmel, 2004). In contrast, Pipistrellus pipistrellus (common 

pipistrelle) numbers increased, perhaps attracted by the turbines. However their 

spatial distribution was altered, appearing to become more excluded from the 

wind farm’s interior and concentrating along its edge (Figures A.1 and A.2 - see 

Appendices). Foraging activity of Serotine bats along hedge lines within 50m of 

the turbines dropped over 3 years (whilst increasing at control, non-turbine 

hedges). Meanwhile common pipistrelle activity increased; flight heights of the 

latter along hedges furthermore changed with varying proximity to turbine blade 

tips (Figure 1.3). Avoidance behaviour by Nyctalus noctula (Noctule) and 

Serotine bats was also observed near a different, 9-turbine wind farm (Bach and 

Rahmel, 2004). Jain et al. (2011), meanwhile, found no difference in activity 

between turbine sites and non-turbine control sites, suggesting a lack of 

disturbance.  

Whilst little research concerning non-fatal impacts of turbines upon bats has 

been completed, studies of this nature regarding birds exist. Results from bird-

focused studies may provide transferable disturbance hypotheses and suggest 

likely impacts. Strickland et al. (2011) provide a review of research into wind 

energy impacts upon birds, from which the key material and categories in Table 

A.3 (see Appendices) are quoted, along with other reference material. 

Transferable outcomes for bats are interpreted in the final table column. 
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Figure 1.3: “Changes in behaviour of Pipistrellus pipistrellus in direct vicinity of rotating blades: a) blades rotate parallel to bat flight path, b) blades rotate across the 
flight path” (from Bach and Rahmel, 2004)
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1.12 Population-level impacts 

Threats to bat populations include climate change, disease, habitat 

fragmentation (including from anthropogenic development), intensive agriculture 

and intentional killing for food or pest reasons (Harris et al. 1995; Haysom et al. 

2013; O’Shea et al. 2016). Climate change and habitat loss are highlighted as 

the factors most likely to proportionally increase in contribution to multiple 

mortality event (MME) levels in the near future (O’Shea et al. 2016). However, 

the largest sources of MME’s since the year 2000 were wind energy 

installations and the white nose syndrome (WNS) disease (O’Shea et al. 2016).  

There is a general consensus that impacts upon bats from wind turbines have 

the potential for effects at a population level (Kunz et al. 2007a; Kunz et al. 

2007b; Arnett et al. 2008; Erickson et al. 2002; O’Shea et al. 2016; Arnett et al. 

2016). Bats are vulnerable to disruptions to populations as a result of low 

reproductive rates (Kunz et al. 2007a; Jones et al. 2009b; Barclay and Harder, 

2003; Barclay et al. 2004). Therefore if turbine mortality rates are high, 

populations may be likely to decline and could take a long time to recover from 

losses (Erickson et al. 2002; Humphrey and Cope 1976; Jones et al. 2009b). 

Bats are also sensitive to disturbance in their habitats and roosting sites (Jones 

et al. 2009b) therefore impacts are not just limited to direct mortality. Population 

size patterns do not just rely on existing population sizes; rates of mortality, 

reproduction, immigration and emigration will all contribute to fluctuations in 

population (Strickland et al. 2011). 

Some studies have indicated that rates of survival of adult bats are more 

important for population endurance than rates of juvenile survival (Schorcht et 

al. 2009; O’Shea et al. 2011) therefore any bias in mortality rates between ages 

of bats may have disproportionate levels of population impact. Small 

populations may not have the genetic diversity to survive losses (Strickland et 

al. 2011; Pylant et al. 2016).  
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1.12.1 Species vulnerability 

Risk to populations of individual species is considered to vary due to factors 

such as population size and genetic diversity as well as choice of preferred 

habitat, life history and behavioural characteristics (Kunz et al. 2007b; Natural 

England 2014; Pylant et al. 2016). For example red bat populations in the USA 

are considered more likely to be resilient to impacts from turbines than hoary 

bats (Pylant et al. 2016).There are some fears that individual species may not 

be able to survive projected turbine-related fatalities (Kunz et al. 2007a). Table 

1.4 shows the population risk levels estimated for bat species present in the UK 

(recreated from Natural England (2014)). 

Populations of migratory and tree-roosting bats may be at particular risk (Kunz 

et al. 2007a; Arnett et al. 2008; Strickland et al. 2011; Cryan 2008; Baerwald 

and Barclay, 2009) and individual wind farm or turbine sites in this context have 

the potential to impart population impacts over a wide geographical area if 

placed along key migration routes (Baerwald et al. 2014; Lehnert et al. 2014). It 

has been suggested that animals that migrate often have a higher vulnerability 

to extinction than non-migratory species (Pimm et al. 1988); this concern is 

exacerbated if pregnant migrating bats are killed (Voigt et al. 2015). 

1.12.2 Indirect effects  

Potential risks to populations are not just from direct turbine fatalities, but 

include indirect effects of wind turbine (and other) developments such as habitat 

disruption or removal, alteration of prey levels, roost damage or removal, 

presence of humans and behavioural impacts (Kunz et al. 2007a; Kunz et al. 

2007b). It has been suggested that the consequences of wildlife displacement 

upon breeding success and survival are critical for deciding outcome population 

effects (Drewitt and Langston, 2006).  

1.12.3 Cumulative impacts 

Cumulative impacts upon populations will increasingly become a concern in 

areas featuring rapid expansion of wind energy installations (Strickland et al. 

2011). The assessment of cumulative impact is often over-simplified (Arnett et 
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al. 2013b; Roscioni et al. 2013; Valenca and Bernard, 2015). This topic is 

further complicated by variable definitions of what comprises cumulative impact. 

For example Strickland et al. (2011) noted that US federal law and regulations 

and academic/reference sources provide differing definitions. Equally there is 

no guarantee that similar definitions are used in other countries. Other 

outstanding areas for clarification include the time period and geographical area 

over which cumulative impacts should be measured.  

Cumulative impact may even occur within a single wind farm over time as it 

expands from future extensions or repowering (Strickland et al. 2011). As 

turbine sizes increase over time at wind farm developments, it may also not be 

appropriate to generalise population effects from older installations to newly 

proposed sites (Strickland et al. 2011). The spatial pattern of wind farm sites 

should also be considered – multiple turbine sites placed along bat migration 

routes may have disproportionately large cumulative impacts (Baerwald et al. 

2014).  

A number of estimations of cumulative mortality totals from turbines have been 

calculated. Two different models were applied by Kunz et al. (2007a) to 

estimate annual mortality by the year 2020 for the Mid-Atlantic Highlands region 

of the USA, projecting fatalities will total 33,000-111,000 bats. Projected annual 

fatalities (at 2020) of migratory tree roosting bat species were estimated at 

9,500-32,000 hoary bats, 11,500-38,000 eastern red bats and 1,500-6,000 

silver-haired bats. A later study by Arnett and Baerwald (2013) calculated 

cumulative fatalities in the USA for the 2000-2012 period of between 0.8 and 

1.7 million bats, with considerable variability between regions. Wind turbine 

numbers were found to increase substantially over this period and therefore 

future impacts are likely to increase further.  

Fewer information sources are available in Europe, however a review of data 

from EUROBATS reporting (Rodrigues et al. 2014) estimated 5,626 fatalities 

across 18 countries, a figure considered likely to represent only a small portion 

of actual fatalities across that region (O’Shea et al. 2016). The majority of 

fatality reporting is from Germany, Spain, France and Portugal (Rodrigues et al. 

2014). 
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In Germany, 10-12 bat fatalities turbine-1 year-1 are estimated at turbines with a 

lack of mitigation measures (Brinkmann et al. 2011). When extrapolated to all 

turbines in Germany at the time of publishing (assuming no mitigation), this 

represented 200,000 fatalities a year (or 6-8 bats per MW of production 

capacity) (Voigt et al. 2015). The only study currently available that considers 

cumulative fatalities at small wind turbines produced an estimate of 161-3,363 

bat fatalities per year in the UK (Minderman et al. 2015). The input fatality data 

was however sourced from a small sample and was based on human searches 

for bats (an approach known to feature very low chances of observing 

carcasses (Arnett 2006; Mathews et al. 2013)) and turbine owner 

questionnaires. 

Previous research regarding birds has largely found a lack of population 

impacts, even when taking into account collision mortality and non-fatal 

disturbance and displacement (Hunt, 2002; Drewitt and Langston, 2006; 

American Wind Wildlife Institute, 2015; Schuster et al. 2015). 

1.12.4 Global population impacts 

It is important to consider species’ population distributions without imposing the 

restrictions of human-defined political boundaries (Arnett et al. 2013b). Whilst 

fluctuations of ‘rare’ bat populations within the UK may be of concern from a 

national perspective, such fluctuations may comprise insignificant changes to a 

larger main population at a sub-continental scale (Harris et al 1995). 

Conversely, assessing population impacts just within one country, state or local 

authority area may be hazardous if cumulative impact across a number of these 

areas critically affects a wider population status (Arnett et al. 2013b; Arnett et al. 

2016). Centralised governmental regulation and/or policy may therefore be 

required in order to avoid variable local practice (Arnett et al. 2016). 

1.12.5 Population data 

No conclusive studies have been completed to confirm whether bats are being 

impacted by wind turbines at a population level (Voigt et al. 2015) and our ability 

to identify such impacts is very limited using existing data (Erickson et al. 2002; 

Strickland et al. 2011; Aronson et al. 2013; Arnett et al. 2016); this limitation is 
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true of the UK (Jones et al. 2009a; Natural England, 2014). It is very difficult to 

carry out a risk assessment of effects on a species without a baseline 

population estimate (Kunz et al. 2007a; Kunz et al. 2007b; Strickland et al. 

2011; Arnett et al. 2013b; Baerwald et al. 2014; Arnett et al. 2016) and ideally 

measures of genetic diversity and population structure (Kunz et al. 2007b). 

Furthermore long term monitoring of populations under pressure from external 

factors such as wind turbines is needed to understand species’ ability to recover 

from population perturbations (Kunz et al. 2007b; Strickland et al. 2011). Some 

encouragement can be taken from recent reviews of research regarding wind 

energy impacts on wildlife, finding many bird species’ populations are unlikely to 

decline from current fatality rate estimations (American Wind Wildlife Institute, 

2015; Schuster et al. 2015). 

1.12.6 Observed UK bat population trends 

The UK NBMP has identified a statistically significant increase in populations of 

five bat species between 1997 and 2013, in addition to recording stable 

population trends for a further five species (Bat Conservation Trust, 2014; 

Barlow et al. 2015). The population trend estimates produced by the NBMP as 

at 2013 are shown in Table A.4 (see Appendices). The temporal period over 

which we consider population changes is important, as the positive trends 

highlighted are considered to be in contrast to a previous longer term decline in 

populations (Bat Conservation Trust, 2014). 

1.12.7 Observed European-level bat population trends 

Monitoring at the European level (through collation of national results) to create 

a continental-scale population indicator measure, has shown an overall 

increase in bat numbers of 43% between 1993 and 2011 and relative stability 

since 2003. At a species level, positive population trends have been observed 

for nine species. One species (Plecotus austriacus) has experienced a 

significant decline and no trends were available for 2 species (Haysom et al. 

2013; Van der Meij et al. 2015).  
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1.12.8 External influences on observed population trends 

Wider local or regional impacts on populations, for example from changes in 

agriculture, may explain fluctuations in populations observed at wind energy 

sites. A similar pattern has been observed with regard to birds in Kansas, where 

vegetation burning and heavy cattle stocking accounted for bird population 

changes at a wind energy site and in separate nearby areas (Strickland et al. 

2011). 

1.12.9 Lag times for population impacts 

A lag time may exist in observable population impacts, as has been suggested 

from monitoring studies of the impacts of oil and gas facilities on birds. These 

studies found lag times of 2-10 years before such population impacts became 

apparent (Strickland et al. 2011). Furthermore we currently have no knowledge 

of bats’ ability to habituate or acclimatise to the presence of wind energy sites 

(mixed responses by bird species are discussed by Strickland et al. (2011)). 

Consequentially there is a possibility that fatality rates may peak before falling if 

they are able to acclimatise. 

In order to identify time-lagged impacts or acclimatisation to turbines by wildlife, 

long-term monitoring programmes are required at wind energy sites. This 

produces large expenditure demand which may not be feasible within the 

constraints of a single wind farm development (Strickland et al. 2011; Jones et 

al. 2009a). Modelling of likely cumulative impacts upon populations, followed by 

field validation of predicted model outcomes, may reduce monitoring demand 

and costs (Strickland et al. 2011). 

1.13 Mitigation 

1.13.1 Turbine curtailment 

Mitigation of wind turbines’ impacts upon bats may be possible by curtailing 

operational turbines using increased cut-in speeds and shut downs during high 
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risk periods (Arnett et al. 2013a). A range of studies in North America have 

observed large reductions in bat fatalities during curtailed periods at operational 

wind farms, using both increased cut-in speeds and feathering of turbine blades 

during low wind speed conditions (Baerwald et al. 2009; Arnett et al. 2011; 

Arnett et al. 2013a; Hein et al. 2013; Hein et al. 2014). Increases of cut-in 

speeds by 1.5m/s have been found to reduce fatalities by 50% at a number of 

sites (Arnett et al. 2013a). Mortality has even been observed to reduce by up to 

93% using increased cut-in speeds (Arnett et al. 2011). Operational curtailment 

could also be improved using advanced turbine-control algorithms that only 

apply planned curtailment periods during weather conditions representing a 

high risk of bat presence. 

1.13.2 Fatality trigger thresholds 

Some statutory authorities have proposed the use of bat fatality trigger 

thresholds before turbine curtailment is required (Arnett et al. 2013b). The 

definition of fatality trigger thresholds is however often based upon inadequate 

monitoring data or flawed assumptions regarding bat population sizes 

(Strickland et al. 2011; Arnett et al. 2013b). Additionally the use of trigger 

thresholds does not align well with conservation legislation, which prohibits the 

killing of individual bats (Voigt et al. 2015). With increasing numbers of turbines 

being planned, per-turbine fatality allowances may become unsustainable, 

particularly concerning small populations (Voigt et al. 2015, Arnett et al. 2013b). 

Set trigger thresholds also assume stable bat population sizes. This assumption 

seems questionable in the context of the fluctuating population trend estimates 

that have been recorded for some species (Haysom et al. 2013; Van der Meij et 

al. 2015). The thresholds also do not account for unknown future trends in other 

population threats such as white nose syndrome and wider habitat loss (Arnett 

et al. 2013b). The latter publication emphasizes an example of a location with 

high bat mortalities (Pennsylvania, USA), where trigger thresholds may never 

be reached if bat populations are already declining and therefore rates of 

mortality remain small but continual until populations are expended. 
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1.13.3 Turbine placement 

Improvement of turbine placement is a simple pre-construction mitigation 

measure. A study of the suitability of landscape-scale habitats for bats and 

placement of wind farms within a region of Italy found that the 41% of the 

landscape that was theoretically suitable for bats featured over 50% of recorded 

wind farms (Roscioni et al. 2013). A follow on study identified that the wind farm 

locations were likely to intersect probable movement corridors within the habitat 

areas (Roscioni et al. 2014). These studies provide an indication of the potential 

for cumulative impacts and suggest there may be opportunities for minor re-

location of proposed sites to mitigate this. Guidance concerning bat 

conservation in England and Europe already recommends placement of 

turbines away from habitat of value to bats (Natural England, 2014; Rodrigues 

et al. 2015). 

1.13.4 Bat deterrents 

Acoustic bat deterrents have been applied at a number of wind farms to test 

their effectiveness in reducing bat activity near turbine blades and therefore 

fatality levels. Initial laboratory-based experiments indicated bats’ showed an 

aversion to the emission of ultrasonic noise (Spanjer, 2006). Later field tests of 

acoustic, ultrasound emitting deterrents at wind energy sites in the USA, 

however, illustrated limitations in the spatial noise envelope created. Coverage 

of the turbine blade swept area was not achieved, limiting the deterrent of bats 

(Horn et al. 2008b; Arnett et al. 2013a). The effective range of one such device 

was estimated to be 12-15m; however reductions in activity within this range to 

2.5-10.4% of that observed during control periods indicated the potential of such 

devices (Szewczak and Arnett, 2008). Lower effect levels were however 

recorded in a later test study at pond sites, achieving only a 17.1% reduction in 

activity (Johnson et al. 2012). As ultrasound is known to attenuate quickly 

across air volumes particularly at high frequencies (Griffin, 1971; Lawrence and 

Simmons, 1982), projecting ultrasonic emissions from a device across large 

areas may present a technical challenge, particularly in high wind conditions at 

wind farms’ hub heights. Humidity levels have also been found to moderate 

signal propagation (Arnett et al. 2013a). 
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Radar signals have furthermore been found to reduce bat activity, in particular 

those with electromagnetic field strengths of >2 volts/meter; the process 

causing bats to be repelled may be thermal induction and resulting 

hyperthermia (Nicholls and Racey, 2007; Nicholls and Racey, 2009). The 

narrow directional beams used to produce suitably high field strengths however 

limit the spatial envelope of the deterrent effect (Nicholls and Racey, 2009). 

1.13.5 Habitat management 

A mitigation topic that has received little research attention is habitat 

management. A single field-based study has investigated the use of 

compensation measures at wind farm sites in agricultural landscapes, including 

fallows, hedgerows, bushes and grass strips. Variable, season-dependant 

responses to the compensation measures were observed from different bat 

species groups. The study suggested further research was required to define 

appropriate habitat management approaches (Millon et al. 2015). A range of 

theoretical habitat management strategies has furthermore been proposed to 

mitigate impacts upon bats from wind farms. These include management of 

autochthonous forests, diversification of forest and agriculture monocultures, 

preservation of existing roosts, provision of new roosts and creation of ponds 

(Peste et al. 2015). 

1.13.6 Conservation policy 

Policy-based conservation efforts at a national and continental scale are also 

important. The positive provisional bat population trends recorded in Europe are 

suggested to have been the product of conservation legislation, designations to 

protect species and sites and improved awareness of bats. These factors have 

resulted from conservation agreements such as the EUROBATS programme 

(Haysom et al. 2013). It has been suggested that targets for further 

improvement should include the expansion of monitoring programmes to 

countries where results are scarce (Haysom et al. 2013). European Union (EU) 

member states under current legislation are required to make efforts to restore 

or maintain bat populations at a favourable conservation status (Arnett et al. 

2016). The application of this legislation at the level of a single wind energy site, 
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however, appears to be poorly understood. Additionally, the question of whether 

active regulation should focus upon individual fatalities or wider population 

impacts also remains unanswered (Voigt et al. 2015; Arnett et al. 2016).  

A limited knowledge of bat population sizes and mortality rates from wind 

turbines has restricted UK efforts to assess the risk of turbine impacts on bats 

(Natural England 2014; Arnett et al. 2016). Improved monitoring and reporting 

together with clear planning practice for wind turbines is therefore crucial in 

mitigating impacts upon bats at a local site level (Park et al. 2013). 

1.14 Thesis Objectives 

Following this chapter’s review of the existing research and literature context 

regarding the impacts of wind turbines upon bats, the objectives of this thesis 

have been identified. They are to: 

 

1. Identify the locations of planned wind turbines within Wales and south-

west England, including all wind turbine sizes and historical records. 

Using the collated wind turbine data, identify whether wind turbines have 

any impact (both individually and cumulatively) upon local bat roost 

populations 

 

2. Quantify the rate of bat fatalities at small and medium wind turbines and 

identify whether the wind turbines cause disturbance of bat activity in 

their immediate proximity. Furthermore investigate whether any 

environmental factors moderate bat activity levels at small and medium 

wind turbine sites 

 

3. Investigate bats’ spatial movements in proximity to small and medium 

wind turbines and identify bats’ use of habitat structures at the turbine 

sites 
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4. Evaluate an outstanding hypothesis proposing that bats’ are attracted to 

wind turbines’ noise emissions. Furthermore identify whether wind 

turbine noise has any negative impact upon bat activity levels 

 

At a wider level, this thesis aims to provide research evidence to support the 

production of updated small and medium wind turbine planning guidance in 

relation to bats. 
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1.16 General methods 

The chosen study area was Wales and the south west (SW) region of England 

– areas with relatively large, species-diverse populations of bats (Bat 

Conservation Trust, no date). Potential study sites were identified from wind 

turbine planning applications. Sites with no more than three installed turbines 

were selected, with a total height to blade tip <100m. Each turbine was required 

to be mounted on a standalone mast (not building-mounted) and to have a 

horizontal axis (see Chapter 3, Figure 3.1). Differing numbers of blades were 

acceptable. If multiple turbines were installed at a site, only one was monitored; 

selection was random unless constrained by access. The distribution of the 

sites across the regions’ planning authorities is shown in Figure 1.4. 

RenewableUK’s height to blade tip criteria (RenewableUK, 2013) classifies wind 

turbines into the following size categories: micro: 10-15m; small: 15-30m; 

medium: 30-55m; large: ≥55m. An additional category was added for this thesis 

to account for very small turbines: sub-micro: ≤10m. 

The monitored turbines fell into the following size categories: sub-micro (3); 

micro (7); small (13); medium (5); and large (3). It was felt beneficial to include 

the three large individual wind turbines within the sample as an associated wind 

farms partner project included only sites with at least five turbines. Furthermore 

whilst technically classified as large, none of the three turbines’ blade tips 

exceeded 100m and therefore by modern wind farms’ standards were relatively 

moderate in size. 

The monitored turbines featured a mean blade tip height of 26m (std. dev. = 

18m), a mean height to hub of 19m (std. dev. = 12m), a mean blade diameter of 

14m (std. dev. = 12m) and a mean power rating of 77kw (median = 11kw; std. 

dev. = 154kw). 24 of the turbines had 3 blades, 6 had 2 and one had more than 

3. A mean of 4 years (std. dev. = 3 years) had passed between the turbines 

gaining planning permission and the onset of monitoring (i.e. a relative measure 

of turbine installation length). 
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Figure1.4: The distribution of the 31 monitored wind turbines sites across Wales and SW 
England 

 

The site types within which the turbines were installed were as follows: 

domestic garden (5); domestic agricultural small-holding (7); arable farmland 

(4); pasture farmland (11); mixed use farmland (4). Field monitoring was carried 

out during May-October in 2012 (13 sites) and 2013 (14 sites) and June-July in 

2014 (4 sites), with monitoring taking place concurrently at groups of 2-4 sites at 

a time. Monitoring was planned for 4 weeks at each site with 5 visits per site. 

Bat carcass searches were conducted at approximately equal intervals (5 at 

each site during 2012 and 2014, 3 during 2013) using a professionally-trained 

sniffer search dog (trained specifically for bat carcass searches) and handler 

(Figure 1.5). The handler worked the dog along parallel 100m transects spaced 

approximately 5-10m apart (depending upon habitat density), traversing a 

100x100m square centred upon the turbine. The dog was allowed to deviate 
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from these transects in order to follow scents and then was subsequently 

returned to the last point reached along the transect, before continuing. 

 

 

Figure 1.5: Search dog and handler carrying out a carcass search 

 

A search efficiency trial with methods following Mathews et al. (2013) was 

conducted at most sites (25/31) to assess the dog and handler’s search 

performance. In addition, rates of carcass removal by predators were estimated 

by monitoring, at each visit, whether 3-5 bat carcasses remained where they 

had been placed on the first monitoring day, within a 100x100m area. 

Nine tripod-mounted Batbox Baton frequency division bat detectors linked to 

Zoom H2n audio-recorders and external batteries were planned to be installed 

at each site, in a 3x3 grid centred on the turbine, with each detector being 
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33.3m apart (see Figure 1.6) and installed on a 1.5m tripod. One Wildlife 

Acoustics Song Meter 2 (SM2) full spectrum bat detector (also powered by an 

external battery) was installed with its microphone attached to a 2.5m tripod at 

the base of the turbine. Finally a weather station was installed on a 1.5m tripod, 

located in open space to reduce wind shading or turbulence due to vegetation 

and buildings. Detectors’ external battery levels, use of recording storage 

capacities and any damage to equipment were recorded during each site visit. 
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Figure 1.6: An idealised diagram of equipment layout at monitored wind turbine sites 
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2 Wind energy and bat conservation on a regional 
scale 

2.1 Abstract 

Large scale increases in renewable energy generation are required in the UK 

and Europe to reach climate change and sustainable energy policy targets. The 

technologies used to generate renewable energy however also have the 

potential to cause other environmental impacts. This includes the fatality risk to 

bats from wind turbines. Thousands of fatalities have been documented across 

Europe and North America and initial reports show similar risk to bats across 

the globe. No study has considered the geographical spread of wind turbines 

across the UK and their potential for conflict with bats at a regional scale. 

This study investigated the planning of wind turbines and wind farms in Wales 

and south west (SW) England and the potential resulting conflicts with bats. All 

sizes of turbines were considered, including micro rooftop turbines, farm and 

domestic scale single turbines and wind farms. A comprehensive database was 

developed identifying virtually all proposed wind turbine sites in Wales and SW 

England up to and including 2013. This represented a large improvement on 

current wind turbine databases for these regions. Wind turbine planning trends 

were analysed, producing an overview of turbines’ spatial distributions, planning 

approval/refusal rates and sampled patterns of turbine size categories. The 

potential impacts of turbine presence and density on bat roost populations were 

explored using Generalised Linear Models (GLM), both for current roost 

population sizes and changes in roost populations over time. Consistently high 

numbers of planned turbines were observed in recent years, with a high 

proportion of sites comprising single turbines. No impacts of wind turbines upon 

bat roost populations were found. These initial exploratory analyses provide 

some reassurance that the impact of wind turbines on bat populations at 

regional scales may be limited. Further research is required to confirm this early 

indication. It is recommended that future research focuses upon long-term 

monitoring at roosts in close proximity to turbines, including direct observation 

of activity between the two features. Planning guidance regarding bats and 

small and medium turbines is highlighted as a priority for policy development. 
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2.2 Introduction 

Wind energy production is increasing rapidly across the globe. Whilst 

contributing to reducing carbon emissions, wind turbines have the potential to 

impact upon components of the ecosystem, notably bats (Arnett et al. 2008; 

American Wind Wildlife Institute, 2014; Rydell et al. 2010). Bats are legally 

protected species across Europe, with those in EU states classified under the 

Habitats Directive. Planning guidance concerning bats has therefore been 

produced for onshore turbines in response to this risk in the UK and Europe 

(Natural England, 2014; Natural England et al. 2009; Rodrigues et al. 2015). A 

single UK study has considered planning policy for bats and small wind turbines 

(Park et al. 2013). This highlighted variations in the approaches taken by 

planning authorities whilst assessing turbine applications, partially due to a lack 

of a robust evidence base on their impacts. Information regarding the impact of 

turbines upon bats at a population level is also very limited (Arnett et al. 2016). 

Furthermore existing databases recording wind turbines do not provide 

adequate coverage of small and medium wind turbines. Without this 

information, our understanding of regional-scale impacts of turbines upon bats 

is limited. 

This study aimed to reduce the knowledge gap in this area, by providing an 

investigation of the current state of wind turbine planning in two regions of the 

UK and identifying the impact of wind turbines in these regions upon local bat 

roost populations. 

Attention is currently focused on understanding the scale of fatalities at wind 

turbine sites and identifying factors linked with local variations in risk (Arnett et 

al. 2008; Rydell et al. 2010; Baerwald and Barclay, 2011; Minderman et al. 

2015). Furthermore initial investigations into bat behaviour at turbine sites and 

methods of impact mitigation have been undertaken (Horn et al. 2008; Ahlen et 

al. 2009; Minderman et al. 2012; Gorresen et al. 2015; Szewczak and Arnett, 

2008; Johnson et al. 2012; Arnett et al. 2013). However, there has been no 

regional-scale assessment of the geographical spread of wind turbines and their 

potential conflict with bats. This is important due to the possibility of unmitigated 

cumulative impacts upon bats over large regions (Voigt et al. 2012). As local 

planning authorities are responsible only for development within their respective 
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boundaries, cross-border impacts and wide-scale effects may go unnoticed 

(Arnett et al. 2013). Little information is currently available to planners to judge 

risk from cumulative impacts. 

2.2.1 Study aims 

By compiling wind turbine planning data from local authorities, this study 

provides an understanding of the current state and trends of turbine planning 

within selected regions of the UK featuring large and diverse bat populations. In 

doing so, an accurate estimate of total planned turbines is produced, including 

otherwise under-recorded small and medium turbines. The collected records 

are then used to investigate whether spatial distributions and numbers of 

turbines have any impact upon bat roost populations across wide areas. 

Furthermore the hypothesis that turbines may be preferentially proposed in 

environments which are coincidentally also of importance for bat roosting is 

tested. Variations in planning patterns and outcomes are considered for 

different sizes of turbine and the quality of current wind turbine databases is 

assessed against the compiled data from this investigation.  

This study aimed to increase our ability to understand and plan for the 

distribution of wind turbines across regional scales and their potential for 

cumulative impacts upon bats. 

2.3 Materials & methods 

2.3.1 Study area and wind turbine planning applications 

Wales and south west (SW) England (regions with large, species-diverse bat 

populations) were used as the study area. Wind turbine planning application 

records submitted up to the end of 2013 were collected from each planning 

authority in Wales and SW England, to identify the number of turbines of all 

sizes planned. These ranged from micro rooftop to large wind farm turbines. 

Both horizontal axis and vertical axis wind turbines were included and all 

planning outcomes were recorded i.e. approved, refused, withdrawn and 
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pending. Records came from 64 Local Authorities, i.e. district and unitary 

council authorities (including 5 National Park planning authorities), represented 

by 67 planning search websites. 

13 keywords were used to search planning proposal descriptions on the 

planning authorities’ websites for turbine applications. The use of a further 6 

terms was explored, however these were not applied for all planning authorities 

after trials for subsets yielded negligible improvements in results (only 0.6% of 

records found). Table 2.1 presents the full keyword list and the proportion of 

authorities searched using the supplementary keywords. 

48 of the 67 websites were able to be searched via database downloads, 

programming scripts or manual use of their planning search portals. For the 

remaining websites, turbine planning searches were requested from the 

planning authorities, with requests stipulating the use of the same keywords. 

Whilst some of these authorities did not rigorously apply the exact requested 

method, all provided the output from a turbine search. All records were 

manually checked and filtered to exclude irrelevant records found by keywords, 

e.g. those relating to ‘hydropower turbine’ proposals. The time-span covered by 

the digital archives varied between planning authorities and start years ranged 

from 1948-2010. 55 authorities (86%) had data available for a minimum of 10 

consecutive years up to the end of 2013 and 61 (95%) provided at least 8 years 

of data. Those with the least years of data tended to represent small coastal 

authorities in areas with tourism-focused economies that would not be likely to 

feature many turbines, due to their often negatively-perceived visual impact 

(Tatchley et al. 2016). 

To validate the coverage of the dataset and add any potentially missing records, 

as well as to consider any improvement achieved by the dataset relative to 

existing databases, the data was compared against 6 other turbine databases 

(see Table S2.1 in Supplementary Materials). 

In order to carry out spatial analyses of turbine distributions and their proximity 

to bat roosts, individual-turbine installed or proposed coordinates were gathered 

for those sites with 3 or more turbines. Approximately half of the sites with 2 

turbines were also processed (due to time constraints). Where data was readily 
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available, exact coordinates were entered on an ad-hoc basis for single turbine 

sites. Overall, this provided British National Grid coordinates for 54.2% of all 

individual turbines planned (as opposed to a single coordinate per site for 

example at a wind farm). Postcode centroid coordinates were extracted from 

the remaining turbines’ site addresses. 

 

Table 2.1 Planning application search keywords used to find wind turbine records. 88% of the 
total records were found using search keywords, 12% were identified from existing wind turbine 
lists received direct from a planning authority, or records from other wind turbine databases. 
Search terms that could exist as 1 or 2 words (e.g. ‘windfarm’ or ‘wind farm’) were applied using 
both formats 

   

Planning Applications 
Search Keyword 

Percentage of records 
obtained using this 

keyword 

Percentage of planning 
websites searched using 

keyword 
   

   
turbine 95.2 100 
generator 3.23 100 
wind energy 0.08 100 
wind farm 0.36 100 
wind mast 0 100 
electricity generation 0.04 100 
renewable 0.04 100 
wind power 0.08 100 
energy generation 0 100 
sustainable energy 0 100 
mast 0.08 100 
tower 0.16 100 
rotor 0.12 100 
wind charger 0.16 92.5 
wind park 0.04 88.1 
microgeneration 0.08 88.1 
wind machine 0 85.1 
windmill 0.32 70.1 
windturbine 0.04 70.1 
   

 

To gain an understanding of the sizes of turbines being planned, for a subset of 

12 planning authorities, the database was extended to include data on turbine 

height dimensions (for the most recent versions of proposals). Planning patterns 

were analysed by height category, based upon RenewableUK’s classification of 

blade-tip heights (RenewableUK, 2013) (micro: 10-15m, small: 15-30m, 

medium: 30-55m, large: above 55m; an additional category was also added – 

sub-micro: less than 10m). Selection of the authorities aimed to achieve a 

sample representing a wide spread of geographical locations, authority sizes, 
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inland and coastal positioning, urban and rural areas, prevalence rates of 

turbine planning and types of wind energy sites typically planned (e.g. single 

turbines or wind farms). 

2.3.2 Bat roost records 

The locations of surveyed bat roosts (of all species) up to 2012 that were 

included in the National Bat Monitoring Programme (NBMP) were supplied by 

the UK’s Bat Conservation Trust (BCT). This is the most robust, validated roost 

monitoring dataset available in the UK and provides in depth data regarding 

roost population sizes (with annual totals) and accurate roost locations. 

However it does not represent an exhaustive record of all roost locations, as not 

all roosts are monitored by the NBMP and some roost locations are unknown. 

Most roost locations in the dataset were recorded at spatial resolutions of 10m 

or 100m, with a minor proportion (1.8%) recorded at 1km and 10km resolutions. 

Those with 10km resolutions were excluded from any analyses. A descriptive 

summary of the roost characteristics within this dataset is provided in Table 2.2. 

Table 2.2: Descriptive summary of the BCT bat roost data used in this Chapter’s analyses, 
categorised by species and genus 

       

Species / Genus 
Number of 

roosts 

As a 
percentage 
of all roost 

species 

Mean of 
3-year 
mean 

counts 
(2010-12) 

Min. 3-
year 
mean 
count 

(exc. zero 
counts) 

Max. 3-
year 
mean 
count 

Std. dev. 
of 3-year 

mean 
counts 

       
       
Common pipistrelle 101 15% 56.4 1 352 67.1 

Soprano pipistrelle 86 12.7% 228.6 1 688 204.4 

Pipistrelle sp. 106 15.7% 99.4 1 596 170.5 

Brown long-eared 
bat 

37 5.5% 28 2 76 22.3 

Brandt's bat 1 0.1% 3 3 3 N/A 

Daubenton's bat 1 0.1% 62 62 62 N/A 

Natterer's bat 15 2.2% 63.6 17 180 52.8 

Whiskered / 
Brandt's  
/ Alcathoe bat 

2 0.3% 45 45 45 N/A 

Whiskered bat 2 0.3% 24.5 20 29 6.4 
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Leisler's bat 1 0.1% 92 92 92 N/A 

Noctule 2 0.3% 36.5 20 53 23.3 

Serotine 35 5.2% 24.9 1 141 39.6 

Greater horseshoe 
bat 

24 3.6% 270.6 1 1565 347.7 

Lesser horseshoe 
bat 

260 38.5% 129.2 1 895 125.4 

Unknown bat sp. 2 0.3% 32.5 65 65 46.0 

       

Pipistrellus 293 43.4% 133.5 1 688 171.5 

Plecotus 37 5.5% 28 2 76 22.3 

Myotis 21 3.1% 53 3 180 46.7 

Nyctalus/Eptesicus 38 5.6% 30.6 1 141 39.7 

Rhinolophus 284 42.1% 142.6 1 1565 164.3 

Unknown genus 2 0.3% 32.5 65 65 46.0 

 
      

Grand Total 675 100% 125.3 1 1565 159.5 

        

Mean roost counts were calculated for the 2010-12 period, thereby smoothing 

some of the temporal variability in roost sizes. The number and density of 

individual wind turbines approved in planning up to and including 2007, within a 

range of set distances from BCT-recorded roost locations were calculated using 

ArcMap software (version 10, ESRI) for each roost. This allowed for typical 

turbine procurement, financing, installation and commissioning times following 

approval. A maximum radius of 5km was applied, based on an estimate of the 

maximum likely night foraging flight distance from roosts (see Table A.2 - see 

Appendices) by the primary species listed in the BCT roost dataset. These 

calculations were made for the following radii (‘sustenance zone’ sizes) from 

each roost: 5km, 4km, 3km, 2km, 1km and 500m. 

To enable analyses of changes in roost counts over time, 3-year mean and 5-

year mean roost counts were calculated for periods from 10 to 5 years prior to 

the ‘current’ 2010-2012 mean roost size. The historic roost count survey record 

extended backward by varying numbers of years for different roosts, therefore 
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earlier years’ data were not always available. Total approved turbines as at 3 

years prior to each historical roost count period were calculated within each 

sustenance zone size (to allow for procurement and commissioning time). Final 

analyses were carried out using the 5 year gap period (starting data: mean of 

2005-07 counts, 2002 turbine approvals), within 5km and 4km sustenance 

zones, as this represented the optimum choice for sample size and associated 

turbine records. 

2.3.3 Land class categories 

The Institute of Terrestrial Ecology (ITE) spatial Land Classification dataset was 

used in a GIS format to identify the range and dominant classes of broad 

landscape-types within which both roosts and planned turbines were typically 

found. This aimed to consider the level of likelihood that conflict may occur due 

to use of the same coarse landscapes. The Centre for Ecology and Hydrology’s 

(CEH) Land Cover Map 2007 (LCM) dataset was also applied in models of 

turbine impact to account for the modifying effect of local-scale habitat 

characteristics. 

2.3.4 Statistical analyses 

2.3.4.1 Impact of turbine presence and density within roost sustenance zones 

Generalised Linear Models (GLMs) with a negative binomial error structure 

were built to assess the link between roost counts and the presence or absence 

of a turbine, using the ‘R’ software (R Core Team, 2015). 

Mean 2010-12 roosts counts (rounded to integers) were set as the outcome 

variable, with turbine presence/absence included as a fixed factor. To consider 

the modifying effects from landcover type, percentage coverage of ‘urban areas’ 

(incorporating a suburban class) and ‘broadleaved woodland’ (representing 

deciduous woodland, recent broadleaved tree growth (<10 years), mixed 

woodland and scrub), as recorded by the LCM dataset within roost buffer 

zones, were included as fixed covariates. 

Moran’s I test was also used prior to analysis to confirm that no spatial 

autocorrelation existed in roost sizes. Correlation values between each pair of 
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predictor variables were assessed to confirm no inter-variable correlation. 

Model fit was assessed and model assumptions verified (homogeneity and 

normality of residuals, independence of variables and no overly-influential 

observations) using model residuals plots (residuals vs. fitted, Normal QQ plot, 

histogram of residuals and Cook’s distance plot), the residual deviance vs. 

residual degrees of freedom ratio (for models with a negative binomial error 

structure) and plots of model-predicted outcome variable values vs. observed 

values for each predictor variable. 

These analyses were carried out for the 5km, 4km, 3km and 2km sustenance 

zone sizes (those with adequate sample sizes) and then repeated for those 

genera with a large enough roost sample size (Pipistrellus and Rhinolophus). 

The same analysis was then repeated with turbine density used as a fixed 

covariate in place of the presence/absence measure. 

2.3.4.2 Planning of turbines near roosts 

The hypothesis that turbines may be preferentially planned in areas which are 

coincidentally also of importance for bat roosting (i.e. areas close to large bat 

roosts) was also tested. This hypothesised pattern could occur due to shared 

requirements for landscape structure, or the location of turbines at rural 

properties which are inherently closer to diverse habitats of preference to bats. 

This analysis used the same model variables and approach as above, however 

turbine presence was set as the outcome variable (a binomial error distribution 

was used for the model) and mean 2010-12 roost counts as a fixed covariate. 

2.3.4.3 Impact of turbine presence on roost size changes 

GLMs were used to test the effect size of turbine presence and density on roost 

size changes over a number of years (5km and 4km zone size models – those 

with adequate sample sizes). Models were built for 5 year time periods, using a 

Gaussian error distribution. Percentage landcover of broadleaved woodland and 

urban areas were included in all models. Models were validated in the same 

manner as described above. Sample sizes were not sufficient to analyse 

individual genera.  
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2.4 Results 

2.4.1 Land class categories 

The total number of individual approved turbines and BCT-recorded roosts in 

each broad landclass is shown in Figure 2.1. Turbines and roosts are found 

across a range of landclass types.  

The dominant turbine landclasses in SW England are shallow and complex 

valley systems, floodplains and table lands. Similarly, the dominant roost 

landclasses are shallow and complex valley systems and floodplains and table 

lands, in addition to variable lowlands and shallow slopes.  

The dominant turbine landclasses in Wales are rounded mountains and upper 

valleys, low mountains/hills, complex valley systems and table lands. In 

contrast, shallow slopes, and flat river valleys/lower hill slopes are the dominant 

land classes for roosts in Wales.  

The level of crossover in landscape types in which turbines and roosts are 

found is therefore variable and there are few landclasses in which only turbines 

are found (a situation that would otherwise offer low potential for conflict). 

2.4.2 Presence of turbines within roost sustenance zones 

No significant effects of turbine presence upon roost populations were identified 

from the GLMs for the Pipistrellus genus (the genus with the largest sample 

size; see Table 2.3 for the results), or from those for the Rhinolophus genus and 

‘all roost species’ analyses (see Supplementary Materials Tables S2.2-S2.5), 

for any of the sustenance zone sizes. Only urban landcover was found to have 

a significant (negative) effect within the Pipistrellus model. Broadleaved 

woodland was additionally found to have a significant positive effect within the 

Rhinolophus and ‘all species’ models. 

2.4.3 Density of turbines within roost sustenance zones 

Turbine density was not found to have any significant effect upon roost counts 

for any species group or within the ‘all species model’ (Table 2.4 and Tables 
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S2.6-S2.9). See Figures 2.2 and 2.3 illustrating the lack of effect from turbine 

density within the Pipistrellus genus model, at 2km and 3km roost radii. The 

only significant covariates were again found to be urban and wooded landcover 

(the latter finding restricted to the Rhinolophus and ‘all species’ models). 

2.4.4 Roost size changes and presence of wind turbines 

No significant effect was identified from turbine presence upon roost size 

changes over 5 years (Table 2.5). A positive effect was identified from 

broadleaved woodland cover at both 5km and 4km scales. The same results 

were observed from the turbine density models (Table S2.10). 

2.4.5 Planning of turbines near roosts 

Roost size was not found to be a significant predictor of turbine presence at any 

sustenance zone size (Table S2.11 and Table S2.12). Urban and suburban 

landcover was significantly positively associated with turbine presence at 5km 

and 4km scales only, whilst broadleaved woodland landcover was also a 

significant predictor at the 5km scale.
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Figure 2.1: The distribution of approved individual wind turbines and BCT-recorded bat roosts by ITE landclass. Landclasses with no turbine or roost records were 
excluded   
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Table 2.3: GLM output from the model assessing the impact of turbine presence upon 
Pipistrellus genus bat roost populations, applying sustenance zone radii of 5km, 4km, 3km and 
2km, 2010-12 mean roost population counts and a negative binomial error distribution. The 
values for Deviance, AIC, the Likelihood Ratio Test (LRT), degrees of freedom (df) and 
significance (p) relate to the removal of each variable individually from the full model and testing 
the difference between the resulting and full models 

        Fixed Effects Estimate Standard 
Error 

Deviance AIC Likelihood  
Ratio Test 

df p 

        
        Sustenance zone 
size: 5km (n = 113) 

       

        Intercept 5.23 0.32      
        Turbine presence -0.07 0.28 139.70 1287.2 0.05 1 0.815 
        Broadleaved 
woodland % land 
cover 

-0.01 0.03 139.78 1287.3 0.13 1 0.721 

        Urban and suburban 
% land cover 

-0.03 0.02 143.59 1291.1 3.94 1 0.047 

                Sustenance zone 
size: 4km (n = 115) 

       

        Intercept 5.21 0.29      
        Turbine presence -0.16 0.28 142.44 1304.8 0.33 1 0.565 
        Broadleaved 
woodland % land 
cover 

-0.01 0.03 142.22 1304.6 0.11 1 0.743 

        Urban and suburban 
% land cover 

-0.03 0.01 146.32 1308.7 4.21 1 0.040 

                Sustenance zone 
size: 3km (n = 116) 

       

        Intercept 5.06 0.27      
        Turbine presence -0.05 0.29 143.30 1317.3 0.03 1 0.860 
        Broadleaved 
woodland % land 
cover 

0.002 0.02 143.27 1317.3 0.01 1 0.939 

        Urban and suburban 
% land cover 

-0.03 0.01 148.44 1322.5 5.17 1 0.023 

                Sustenance zone 
size: 2km (n = 117) 

       

        Intercept 5.02 0.25      
        Turbine presence -0.04 0.34 144.35 1326.8 0.01 1 0.903 
        Broadleaved 
woodland % land 
cover 

0.01 0.02 144.44 1326.9 0.10 1 0.749 

        Urban and suburban 
% land cover 

-0.03 0.01 150.85 1333.3 6.51 1 0.011 
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Table 2.4: GLM output from the model assessing the impact of turbine density upon Pipistrellus genus bat 

roost populations, applying sustenance zone radii of 5km, 4km, 3km and 2km, 2010-12 mean roost 
population counts and a negative binomial error distribution. The values for Deviance, AIC, the Likelihood 
Ratio Test (LRT), degrees of freedom (df) and significance (p) relate to the removal of each variable 
individually from the full model and testing the difference between the resulting and full models 

        Fixed Effects Estimate Standard 
Error 

Deviance AIC Likelihood 
Ratio Test 

df p 

        
        Sustenance zone 
size: 5km (n = 
113) 

       

        Intercept 5.25 0.30      
        Turbine density -1.17 2.04 139.79 1287.2 0.15 1 0.699 
        Broadleaved 
woodland % land 
cover 

-0.01 0.03 139.83 1287.2 0.19 1 0.666 

        Urban and 
suburban % land 
cover 

-0.03 0.02 143.81 1291.2 4.17 1 0.421 

                Sustenance zone 
size: 4km (n = 
115) 

       

        Intercept 5.12 0.29      
        Turbine density 1.07 3.79 142.23 1304.8 0.10 1 0.747 
        Broadleaved 
woodland % land 
cover 

-0.01 0.03 142.22 1304.8 0.09 1 0.770 

        Urban and 
suburban % land 
cover 

-0.03 0.01 146.77 1309.4 4.64 1 0.031 

                Sustenance zone 
size: 3km (n = 
116) 

       

        Intercept 5.02 0.27      
        

Turbine density 2.25 3.93 143.79 1317.3 0.57 1 0.449 
        

Broadleaved 
woodland % land 
cover 

-0.0001 0.02 143.22 1316.7 0 1 0.995 

        

Urban and 
suburban % land 
cover 

-0.03 0.01 148.41 1321.9 5.20 1 0.023 

                Sustenance zone 
size: 2km (n = 
117) 

       

        Intercept 5.00 0.25      
        

Turbine density 1.00 3.25 144.44 1326.8 0.11 1 0.738 
        

Broadleaved 
woodland % land 
cover 

0.01 0.02 144.41 1326.8 0.09 1 0.763 

        

Urban and 
suburban % land 
cover 

-0.03 0.01 151.08 1333.5 6.75 1 0.009 
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Figure 2.2: Prediction plot from the Pipistrellus genus turbine density GLM analysing the effect 
of wind turbine density (per km

2
) within a 2km radius (of roosts) upon bat roost counts. Dashed 

lines indicate 95% confidence intervals; circles = mean observed 3-year average roost count; 
relative sizes of circles represent relative contributing levels of data (larger = more data) 
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Figure 2.3: Prediction plot from the Pipistrellus genus turbine density GLM analysing the effect 
of wind turbine density (per km

2
) within a 3km radius (of roosts) upon bat roost counts. Dashed 

lines indicate 95% confidence intervals; circles = mean observed 3-year average roost count; 
relative sizes of circles represent relative contributing levels of data (larger = more data) 
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Table 2.5: GLM output from the turbine presence vs. roost size change over 5 years model, 
applying sustenance zone radii of 5km and 4km, changes in mean roost population counts (of 
all species) over the 2005-07 to 2010-12 period and a Gaussian error distribution. The values 
for Deviance, AIC, the Likelihood Ratio Test (LRT), degrees of freedom (df) and significance (p) 
relate to the removal of each variable individually from the full model and testing the difference 
between the resulting and full models 

       Fixed Effects Estimate Standard 
Error 

AIC Likelihood 
Ratio Test 

df p 

       
       Sustenance zone size: 5km (n = 243) 
       Intercept -16.11 16.62     
       Turbine presence 
(approved 2002) 

4.93 20.64 2965.10 0.06 1 0.811 

       Broadleaved 
woodland % land 
cover 

2.90 1.55 2968.60 3.52 1 0.06 

       Urban and suburban 
% land cover 

-1.33 1.07 2966.60 1.55 1 0.214 

              Sustenance zone size: 4km (n = 250) 
              Intercept -20.39 16.15     
       Turbine presence 
(approved 2002) 

-8.54 24.66 3064.20 0.12 1 0.729 

       Broadleaved 
woodland % land 
cover 

2.85 1.38 3068.40 4.27 1 0.040 

       Urban and suburban 
% land cover 

-0.83 0.97 3064.80 0.73 1 0.393 
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2.4.6 Overview of wind turbine planning trends 

Planning records were refined from 63 of the 64 local authorities in Wales and 

SW England: Cornwall was excluded from this investigation as the number of 

turbine applications greatly exceeded those from any other region of England or 

Wales, and it was therefore considered to be atypical. Across the authorities, 

3874 initial planning records were collated. Following the removal of irrelevant 

records, pre-application enquiries, screening/scoping opinions and duplicate 

applications for the same sites (e.g. amendments, condition discharges and 

repeat applications following refusals or withdrawals), 2353 unique proposed 

wind turbine or wind farm sites were identified. Of these, 1476 sites (2446 

individual turbines) (63%) were granted permission including 84 via appeal; 621 

(26%) were refused, withdrawn or returned as invalid including 100 via appeal; 

251 (11%) were pending a planning decision; and 5 were of unknown decision 

status. 

2.4.6.1 Planning approvals 

Wind turbine planning showed considerable spatial variability (see Figure 2.4; 

for details by planning authority see Supplementary Materials Table S2.13). An 

overview of annual turbine approval trends is given in Figure 2.5, highlighting 

the increased rate of turbine planning since the early 2000s. Whilst numbers of 

turbine approvals in the study area peaked during the last years observed 

(2011-13), approval totals across the UK are known to have decreased by a 

large amount during the 2014-16 period. This was due to large-scale changes in 

UK government renewable energy policy, subsidies and planning guidance 

(DECC, 2016a; DECC, 2015; RenewableUK, 2015a; UK Department for 

Communities and Local Government (DCLG), 2015; UK Parliament, 2016). For 

example the mean annual number of individual turbine approvals of 1MW+ 

capacity in the UK during 2012 and 2013 was 761, which fell to 580 during 

2014-April 2016 (2016 data treated as 0.3 years; DECC (2016a)). These 

changes have largely been focused in England and Wales. 

Peaks in this study’s observations are visible from the construction of large wind 

farms, and a clear dip in 2010 corresponds to the UK economic recession. 

Single turbine sites were by far the most frequent size of development (see 
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Figures 2.6-2.7), followed by 2-turbine sites. Wind clusters of 3-4 turbines were 

the next most common scale, followed by small wind farms with 8-11 turbines.  

2.4.6.2 Turbine size 

The turbine size search covered 495 applications incorporating 1340 turbines. 

The sampled applications represented 21% of the total database and 29.7% of 

approved individual turbines. Data recording height to blade tip was available 

for 348/495 applications (70.3%). Planning success rates were found to drop 

with increasing turbine size (Table 2.6). 

2.4.6.3 Wind turbine planning databases 

After comparing against 6 other turbine databases (Table S2.1), a mean of 88% 

of the external databases’ records were already found in this study’s collated 

data, 5% were not found (these 62 records were added to this study’s 

database) and the site-specific identity of 7% of the external turbine records 

could not be confirmed (restricting matching against the collated data).The 

created database achieved a very large improvement in coverage relative to 

existing databases. The largest coverage achieved by an external dataset 

(RegenSW database) represented only 15.1% of the collated data. As that 

particular external database only covered SW England, this comparison was 

also only compared on the basis of coverage of SW England and not Wales. 
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Individual Wind Turbines Approved 

(Cornwall Excluded) 

Figure 2.4: Map of approved turbine totals by planning authority and 10km National Grid 
square boundaries 
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Figure 2.5: Annual trends of wind turbine approval across Wales and SW England (excluding Cornwall)
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Figure 2.6: Total sites approved by number of individual turbines proposed 

 

 

Figure 2.7: Total sites approved by number of individual turbines proposed: Sites with 3+ 
turbines 
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Table 2.6: Distribution of planned turbines across height categories, based on a sample of 12 
planning authorities (figures in brackets represent percentages of totals within a height 
category). Note 1 application’s permission status was not known. Planning authorities included 
in the sample were as follows: Teignbridge District Council, North Dorset District Council, Stroud 
District Council, South Gloucestershire Council, South Somerset District Council, Wiltshire 
Council, Caerphilly County Borough Council, Monmouthshire County Council, Powys County 
Council, Rhondda Cynon Taf County Borough Council, City and County of Swansea and 
Snowdonia National Park Authority. 

       
Turbine 
height 
category 
(heights 
to blade 
tip) 

Total unique 
turbine site 
applications 

Total 
individual 
turbines 

Mean 
number of 
turbines 
per 
application 

Applications 
/ turbines 
approved 

Applications 
/ turbines 
refused or 
withdrawn 

Applications 
/ turbines 
pending 
decision 

       

       
Sub-
Micro 
(<10m) 

26 31 1.19 22 (85) / 
24 (77) 

4 (15) / 
7 (23) 

0 (0) / 
0 (0) 

       
Micro (10 
- <15m) 

56 62 1.11 45 (80) / 
49 (79) 

9 (16)/ 
11 (18) 

2 (4) / 
2 (3) 

       
Small (15 
- <30m) 

134 158 1.18 103 (77) / 
114 (72) 

22 (16) / 
30 (19) 

9 (7) / 
14 (9) 

       
Medium 
(30 - 
<55m) 

57 238 4.18 34 (60) / 
212 (89) 

17 (30) / 
19 (8) 

6 (11) / 
7 (3) 

       
Large 
(55m+) 

75 602 8.03 23 (31) / 
216 (36) 

22 (29) / 
107 (18) 

30 (40) / 
279 (46) 

       
Unknown 
height 
category 

147 249 1.69 102 (69) / 
111 (45) 

43 (29) / 
125 (50) 

1 (1) / 
12 (5) 

       

       
TOTAL 495 1340 2.71 329 (66) / 

726 (54) 
117 (24) / 
299 (22) 

48 (10) / 
314 (23) 
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2.5 Discussion 

This study aimed to address the current lack of understanding of the impacts of 

planned wind turbine installations upon bat roost populations at a regional 

scale. No current impacts of turbines upon roosts were identified. However, the 

analysis indicated consistently large volumes of wind turbine applications 

entering the planning system. This suggests that ongoing monitoring of the 

situation should be considered to avoid conflict. Furthermore, the study has 

identified spatial concentrations of planned turbine installations within Wales 

and SW England; potentially introducing conflict within these focused areas.  

2.5.1 Turbines and roosts conflict analyses 

Whilst landclass in itself was not shown to be a clear indicator of potential for 

turbine or roost presence, more detailed classifications of surrounding matrices 

of landcover types and measures of local anthropogenic development (e.g. 

urban areas and agricultural land use) may provide further insight into the 

influence of landscape structure. 

2.5.1.1 Turbine presence and density 

No effects from turbine presence or density upon nearby roosts were found. 

This suggests a general lack of impact from turbines at a regional scale. 

However this does not prohibit further research into cumulative impacts from 

multiple turbine sites in very close proximity to high risk roosts. While the BCT 

dataset is an excellent resource, it is subject to survey sampling bias and is by 

no means an exhaustive record of bat roosts present; therefore roosts may be 

present closer to turbines. A negative effect of urban landcover upon roost sizes 

was frequently observed, as was a positive effect of broadleaved woodland 

landcover. This indicates that wider scale habitat removal or conservation can 

detrimentally affect or support roost populations, respectively. Similar impacts 

from habitat structure and modification upon bat distributions and roosts have 

been indicated by previous research (Jones et al. (2009); Frey-Ehrenbold et al. 

(2013); Roscioni et al. (2014); Peste et al. (2015)). Recent studies have 

furthermore highlighted the multi-scale spatial effects of habitat upon bats 

during habitat suitability modelling (HSM). They have illustrated differing 
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influence across multiple spatial scales for individual, varied species (Bellamy et 

al. 2013; Ducci et al. 2015) and shown potential for conservation efforts 

(Razgour et al. 2011; Wordley et al. 2015) – including from the use of common 

record centre data (Bellamy and Altringham, 2015). These observations of 

multi-scale effects are consistent with the findings presented here, which 

suggest habitat influences are present across varying spatial scales and 

multiple species. 

2.5.1.2 Turbine placement 

The lack of association of roost size in predicting turbine presence is 

encouraging, suggesting placement of turbines is not biased towards landscape 

types likely to support large bat populations. The positive association of turbine 

presence with urban landcover at 4km and 5km scales matches expectation of 

turbine presence close to urban fringes.  

2.5.1.3 Impacts on roost changes over time 

No significant effect of turbine presence or density on change in roost size over 

5 years was found. However, the possible analyses were limited to sustenance 

zones of 4km and 5km scales. Further long-term monitoring of roosts at closer 

distances to turbines may therefore be required to confirm this result. 

Broadleaved woodland landcover was however shown to have a positive 

association with roost size change over 5 years, suggesting conservation of this 

habitat type for bats may support long-term viability of roost populations. 

2.5.1.4 Further discussion 

Any roost population losses identified during monitoring programmes are 

unlikely to be purely from wind turbines. The assumption that a direct causal link 

exists between the two ignores the potential for an association between turbine 

installations and other anthropogenic developments. Where turbines are 

installed, it is probable that roads will be within a close proximity; furthermore 

buildings and urban infrastructure may be constructed and land altered for 

farming. Such developments may introduce further sources of fatality and 

habitat loss for bats (Berthinussen and Altringham (2012); Lesiński et al. (2011); 
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Abbott et al. (2012); Wickramasinghe et al. (2003); Waring et al. (2013)), 

thereby introducing ambiguity in identifying causal factors of roost impacts. 

Turbine sizes were not accounted for during the roost analyses. As rigorous 

research regarding effect of turbine sizes is yet to be undertaken (Minderman et 

al. 2015; American Wind Wildlife Institute, 2014; Rydell et al. 2010) this 

approach was considered acceptable. Future studies may incorporate this 

factor. 

The use of postcode co-ordinates for 45.8% of the planned turbine locations will 

have introduced a small amount of error to the distance-to-roost analyses, as 

would the small number of roosts locations that were defined at a 1km 

resolution (for the latter, their number was however considered negligible). 

Some turbines analysed may no longer be installed, having either reached their 

engineering lifespan or been removed for other reasons. A common turbine 

planning condition observed, limits retention to 25 years (UK planning guidance 

recommends use of decommissioning conditions (UK Government, 2014)). 

Having applied an additional 2 years, representing lag-time between permission 

and installation, only 0.5% of this study’s turbine records exceeded this age. 

Therefore it was chosen to retain all turbines. 

Future similar studies could improve the presentation of null results such as 

those found here by adding a power analysis carried out prior to the study. The 

power of a study determines the probability of being able to detect a given effect 

size – assuming it exists – and reject the null hypothesis, when using a set 

sample size (University of California (Los Angeles) Institute for Digital Research 

and Education (UCLA IDRE), 2017), thereby avoiding Type II errors (not 

identifying an effect where one existed). A power analysis would therefore 

ensure a study design provides a reasonable level of probability of identifying a 

positive result should one exist, through adequate sample size and study design 

structure, increasing confidence in study outcomes including null results. If 

studies are concerned about their sample size, they may still be able to at least 

confirm adequate power to rule out a large effect size. These approaches would 

in turn avoid unproductive research effort and help inform future studies of 

required sample sizes within a particular discipline (including for the detection of 

effects to varying degrees of accuracy (UCLA IDRE, 2017)). 
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Radio or GPS tracking of bats from roosts in proximity to multiple turbines may 

provide an indication of the likelihood that their foraging habitat suffers from 

complex cumulative impacts in a landscape. This is particularly key in the 

context of wind farm sites, where large numbers of (relatively) closely spaced 

turbines may create a ‘barrier’ effect, restricting bat movement through the 

turbine group. This has been observed regarding birds at wind farms (Drewitt 

and Langston, 2006; Plonczkier and Simms, 2012; Villegas-Patraca et al. 2014; 

Everaert, 2014). Barrier impacts upon bats have also been observed from major 

roads (Kerth and Melber (2009); Berthinussen and Altringham (2012)).  

2.5.2 Turbine planning overview analysis 

2.5.2.1 Geographical variation 

Spatial concentrations of planning-approved turbines appear to exist. As would 

be expected, large commercial wind farms contribute heavily to the distribution 

patterns of individual numbers of turbines. Table 2.7 outlines prominent patterns 

of planned turbine distributions. All planning authorities had approved at least 1 

turbine, with 48 (76%) having approved at least 10. 46 authorities (73%) had 

received 10 applications for turbine sites regardless of number of turbines at the 

site or planning outcome. However there are areas notable for their relative lack 

of, or abundance of, approved turbines (Table 2.7). Cornwall has received a 

very large number of wind turbine applications. 

2.5.2.2 Planning approval 

On a turbine site basis, approximately 63% of planning applications have been 

approved, with 26% refused or withdrawn; 11% are pending a decision. These 

permission patterns vary when considering different size categories of turbine. 

Based upon the sample used in this study, the percentage of approved 

applications (excluding pending applications) drops from 82-85% for ‘sub-micro’ 

to ‘small’ sized turbine sites, to 67% for ‘medium’ turbines and then to 51% for 

‘large’ turbines. Numbers of individual turbines approved per year have grown 

dramatically over the last 15 years, at a slowly increasing rate over time; in 

1999 8 turbines were approved, whilst 288 were approved during 2013. 
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Table 2.7: Dominant qualitative spatial patterns of wind turbines approved in planning in Wales and SW England 

   
Planned Turbine 
Category 

Areas with Relatively High Numbers of Approved Turbines Areas with Relatively Low Numbers of Approved Turbines 

   

   
Wind Farms  Northern area of Powys / northern area of Ceredigion 

 Isle of Anglesey / Denbighshire / Conwy 

 Pembrokeshire / western area of Carmarthenshire 

 Northern area of Swansea / Neath Port Talbot / Bridgend 
/ Blaenau Gwent 

 North Devon / Torridge 

 Mid Devon 
 
[Note two 10km cells with high numbers of turbines can be seen 
in south Devon though these are not wind farms, instead 
representing a cumulative clustering of individual turbines in the 
Plymouth area and a long string of micro turbines planned along a 
seafront esplanade in Paignton] 

N/A due to restricted areas available for wind farms 

   
Individual Wind Turbines  North Powys / Ceredigion 

 South-east and south-west Wales 

 The Isle of Anglesey and parts of north-east Wales 

 Devon 

 The northern half of Somerset 

 The West of England area / west Gloucestershire 

 [Cornwall] 

 South Powys 

 Gwynedd (this planning authority however features a 
large area of the mountainous Snowdonia National Park) 

 North and east areas of Gloucestershire 

 Most of Wiltshire (particularly the southern and eastern 
areas) 

 Eastern areas of Dorset / areas of southern Somerset 
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2.5.2.3 Further discussion 

The data collected is a best estimate of total wind turbines planned. With limited 

availability of historic planning data, a complete historical record would be 

extremely difficult to achieve. Other limiting factors include obscure proposal 

descriptions that elude searches,  lack of explicit reference to turbines within 

larger developments, and deviations from search processes where the planning 

authority provided search data. Additionally, sub-micro wind turbines generally 

have permitted development status and thus are not well documented. Small 

wind turbines installed prior to the UK government’s Microgeneration 

Certification Scheme (MCS) may also be less well recorded. 

The 10 year (2004-13) timespan for which planning data was obtained from 

most local authorities represented the majority of the proliferation period of wind 

turbine installations in the UK (Figure 2.5). Prior to this, the main peaks resulted 

from construction of small numbers of large wind farms. It is estimated that 81% 

of the individual turbines approved in planning during 1991-2003 (see Figure 

2.5) were part of wind farm developments (in this case treated as sites with at 

least 3 freestanding turbines). It was therefore ensured that all constructed wind 

farms in the study region were included in the search results (records for large 

wind farms are widely available).  

Relative to the six external databases assessed, far larger numbers of turbine 

installations are recorded by reporting from both RenewableUK (RenewableUK, 

2015b) and the UK Department for Energy and Climate Change (DECC) 

(DECC, 2016b and 2016c). Both however only report total installation numbers, 

not applications or turbine locations (other than regional totals); furthermore the 

DECC dataset features data from 2010-onwards only. 

With high planning approval ratios (at least up to 2013) and national and EU-

level renewable energy/climate change targets, it is reasonable to suggest that 

wind turbines are and will increasingly be important features to consider in the 

landscape. The effects of the recent UK EU referendum, however, are not yet 

known. 94.9% of approved wind turbine sites featured only a single turbine or 

two turbines (Figure 2.6). Based upon the sample of applications with turbine 

heights recorded (Table 2.6), most single and twin turbine applications (69%) 
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can be categorised as ‘sub-micro’, ‘micro’ or ‘small’ turbines. This indicates that 

the current windfarm-focused planning guidance for bats and turbines may be 

completely unsuitable for the large majority of turbine planning applications. 

Consequently further monitoring and research regarding small and individual 

wind turbines is urgently required to form appropriate guidance (as highlighted 

by Minderman et al. (2012, 2015) and Park (2013)). 

Peaks and troughs within larger trends of turbine approvals will be created by a 

number of factors, including large wind farm approvals, turbine development 

costs, subsidy rate changes, renewable energy production targets and national 

economic wellbeing. Recent changes to UK planning and energy policies have 

reduced subsidies and narrowed the potential for wind farm developments to 

progress through the planning system in England and Wales (DECC, 2016a; 

DECC, 2015; RenewableUK, 2015a; UK Department for Communities and 

Local Government (DCLG), 2015; UK Parliament, 2016). This will have a large 

negative impact on the scale of development in the near future. Procedural 

planning practice regarding turbines (including bat-related issues) also varies 

between authorities (Park et al. 2013). These somewhat unpredictable factors 

introduce some uncertainty into inferences regarding future patterns of wind 

turbine planning and subsequent interactions with bats. 

2.6 Conclusions 

No impacts of wind turbine presence or density upon bat roost populations have 

been identified during this study. This result applied to both current roost 

populations and roost population changes over a 5 year period, incorporating a 

range of sustenance zone sizes. 

A thorough review of wind turbine planning was undertaken for Wales and SW 

England. A database was created which radically improves knowledge of 

turbine installations in the regions, relative to existing reference sources. Using 

this database, trends in turbine planning have been identified.  

With regard to spatial distributions of approved turbines, both concentrations 

and areas of relative scarcity exist within Wales and SW England. A high ratio 
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of planning approval and consistently high numbers of approved turbines across 

years were identified. This indicates that wind turbines are and will increasingly 

be important features to consider for bat conservation. This is particularly the 

case for single or double turbine installations and sub-micro to small turbine 

sizes, which were found to represent the large majority of all approved turbine 

sites. The potential lack of compatibility of the current guidance with small 

turbine contexts is an issue which has been raised by local planning authorities 

(Park et al. 2013). Consequently further monitoring and research regarding 

small and individual wind turbines is urgently required to form appropriate 

guidance. 

A number of recommendations are made for future research. Focused long-

term monitoring of selected roosts within closer proximity of turbines (e.g. within 

500m) is suggested. This should include intense field observation of activity at 

the roost and turbine locations. This would improve our ability to confirm a lack 

of impact from turbines upon long-term roost populations. Impacts from wind 

turbines must be delineated from any spatially co-varying impacts from 

anthropogenic landuse (e.g. using geospatial analyses and GLM models). The 

research could also be repeated for other areas of the UK or other countries to 

consider regional or national variation.  

The findings of this study have shown that progress in the development and 

proliferation of renewable energy installations does not necessarily have to be 

to the detriment of wildlife populations. Indeed the wider switch to renewable 

sources of energy production will likely benefit the same wildlife in future 

decades, through reducing our greenhouse gas emissions. These initial 

observations suggest that renewable energy development and bat conservation 

can be mutually achieved. 
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2.8 Chapter 2: Supplementary Materials 

 

Table S2.1 (see next page) 

An overview of 6 existing wind turbine databases and a comparison of this 

study’s collated database against them. This includes the installations database 

from the UK’s Microgeneration Certification Scheme (MCS), which was 

launched in 2008 and covers small wind turbines with an energy rating up to 

50kw. The MCS database covers turbines registered on the scheme from 

August 2009 onwards (MCS registration is not a requirement for turbine 

planning and therefore not all are). This scheme will aid identification of many 

small turbines in the future (though not necessarily micro rooftop turbines). The 

comparison reflects the data present in the databases at the time of the study. 

The UK DECC now publishes a renewable energy planning database (DECC, 

2016a), identifying individual wind turbine site locations. However this database 

was first published in September 2014 and does not include adequately wide 

coverage of sites proposed before this date for comparison purposes. 

Furthermore the database only includes sites of 1MW+ capacity, hence ignoring 

small and medium scale turbines. For these reasons, the database was not 

used for comparison against this study’s database. 
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Table S2.1 A comparison of coverage of external wind turbine planning databases 

      
External dataset % of 

records 
covered by 
this study’s 
dataset 

% of 
records not 
covered by 
this study’s 
dataset 

% of 
records 
unable to 
confirm site 
identify to 
match 
records 

External 
database’s 
% coverage 
of this 
study’s 
entire 
dataset 

External 
database’s % 
coverage of a 
portion of this 
study’s dataset 
– portion 
chosen to 
match focus of 
external 
database 

      

      
UK Department of 
Energy and Climate 
Change (DECC) 
RESTATS: Focuses upon 
turbine applications 
including all planning 
outcomes 

94 6 0 12 12 

Microgeneration 
Certification Scheme 
(MCS): Focuses upon 
installed turbines with an 
energy rating up to 50kw. 
[Coverage only from 
August 2009] 

95 3 2 14.3 Unable to 
confirm due to 
lack of energy 

rating data 
(closest 

comparison 
including all 

sizes of 
turbines: 28%, 
though this will 

be slightly 
higher in reality) 

RenewableUK Wind 
Energy Database (WED): 
Focuses upon approved 
and installed sites 

96 4 0 2.9 5.7 

RegenSW database: 
Focuses upon approved 
and installed turbines. 
Coverage for SW England 
only 

64 4 32 7.2 (15.1% 
for SW 

England 
only) 

29.4 

Country Guardian 
website data: Focuses 
upon turbine applications 
including all planning 
outcomes. [Coverage only 
up to August 2007] 

86 8 6 5.3 6.6 

OFGEM database 2008 
extract: Renewables 
Obligation (RO) and 
Climate Change Levy 
(CCL) exemptions, less 
than 50kw rating [Note 
this is a subset of the total 
OFGEM database]: 
Focuses upon installed 
turbines with an energy 
rating up to 50kw. 
[Coverage only up to April 
2008] 

90 8 2 1.7 Unable to 
confirm due to 
lack of energy 

rating data 
(closest 

comparison 
including all 

sizes of 
turbines: 3.3%, 
though this will 

be slightly 
higher in reality) 
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Table S2.2: GLM output from the model assessing the impact of turbine presence upon bat 
roost populations for ‘all species’, applying sustenance zone radii of 5km and 4km, 2010-12 
mean roost population counts (all species of bat included) and a negative binomial error 
distribution. The values for Deviance, AIC, the Likelihood Ratio Test (LRT), degrees of freedom 
(df) and significance (p) relate to the removal of each variable individually from the full model 
and testing the difference between the resulting and full models 

        Fixed Effects Estimate Standard 
Error 

Deviance AIC Likelihood 
Ratio Test 

df p 

        
                Sustenance zone size: 5km (n = 370) 
                Intercept 4.70 0.16      
        Turbine presence -0.06 0.13 446.51 4255.00 0.18 1 0.668 
        Broadleaved 
woodland % land 
cover 

0.03 0.01 449.75 4258.30 3.42 1 0.064 

        Urban and suburban 
% land cover 

-0.02 0.01 453.94 4262.40 7.62 1 0.006 

                Sustenance zone size: 4km (n = 381) 
                Intercept 4.64 0.15      
        Turbine presence -0.01 0.13 459.95 4366.20 0.01 1 0.931 
        Broadleaved 
woodland % land 
cover 

0.03 0.01 464.61 4370.90 4.67 1 0.031 

        Urban and suburban 
% land cover 

-0.02 0.01 469.25 4375.50 9.31 1 0.002 
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Table S2.3 GLM output from the model assessing the impact of turbine presence upon bat 
roost populations for ‘all species’, applying sustenance zone radii of 3km and 2km, 2010-12 
mean roost population counts (all species of bat included) and a negative binomial error 
distribution. The values for Deviance, AIC, the Likelihood Ratio Test (LRT), degrees of freedom 
(df) and significance (p) relate to the removal of each variable individually from the full model 
and testing the difference between the resulting and full models 

 

  

        Fixed Effects Estimate Standard 
Error 

Deviance AIC Likelihood 
Ratio Test 

df p 

        
                Sustenance zone size: 3km (n = 385) 
                Intercept 4.63 0.14      
        Turbine presence 0.02 0.14 464.33 4413.60 0.02 1 0.895 
        Broadleaved 
woodland % land 
cover 

0.03 0.01 470.00 4419.30 5.68 1 0.017 

        Urban and suburban 
% land cover 

-0.02 0.01 474.36 4423.60 10.04 1 0.002 

                Sustenance zone size: 2km (n = 393) 
                Intercept 4.62 0.13      
        Turbine presence -0.16 0.17 473.91 4507.50 0.81 1 0.370 
        Broadleaved 
woodland % land 
cover 

0.03 0.01 480.73 4514.30 7.62 1 0.006 

        Urban and suburban 
% land cover 

-0.02 0.01 482.63 4516.20 9.52 1 0.002 
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Table S2.4: GLM output from the model assessing the impact of turbine presence upon 
Rhinolophus genus bat roost populations, applying sustenance zone radii of 5km and 4km, 
2010-12 mean roost population counts and a negative binomial error distribution. The values for 
Deviance, AIC, the Likelihood Ratio Test (LRT), degrees of freedom (df) and significance (p) 
relate to the removal of each variable individually from the full model and testing the difference 
between the resulting and full models 

        Fixed Effects Estimate Standard 
Error 

Deviance AIC Likelihood 
Ratio Test 

df p 

        
        Sustenance zone 
size: 5km (n = 205) 

       

        Intercept 4.61 0.17      
        Turbine presence 0.10 0.14 236.43 2423.5 0.49 1 0.482 
        Broadleaved 
woodland % land 
cover 

0.04 0.02 241.14 2428.2 5.20 1 0.023 

        Urban and 
suburban % land 
cover 

-0.02 0.01 240.91 2428.0 4.97 1 0.026 

                Sustenance zone 
size: 4km (n = 212) 

       

        Intercept 4.54 0.17      
        Turbine presence 0.14 0.14 246.37 2500.4 0.97 1 0.324 
        Broadleaved 
woodland % land 
cover 

0.04 0.01 252.96 2507.0 7.56 1 0.006 

        Urban and 
suburban % land 
cover 

-0.02 0.01 250.84 2504.9 5.44 1 0.020 
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Table S2.5: GLM output from the model assessing the impact of turbine presence upon 
Rhinolophus genus bat roost populations, applying sustenance zone radii of 3km and 2km, 
2010-12 mean roost population counts and a negative binomial error distribution. The values for 
Deviance, AIC, the Likelihood Ratio Test (LRT), degrees of freedom (df) and significance (p) 
relate to the removal of each variable individually from the full model and testing the difference 
between the resulting and full models 

        Fixed Effects Estimate Standard 
Error 

Deviance AIC Likelihood 
Ratio Test 

df p 

        
        Sustenance zone 
size: 3km (n = 215) 

       

        
Intercept 4.57 0.16      
        

Turbine presence 0.15 0.16 249.61 2535.8 0.95 1 0.329 
        

Broadleaved 
woodland % land 
cover 

0.03 0.01 256.35 2542.5 7.68 1 0.006 

        

Urban and suburban 
% land cover 

-0.02 0.01 253.76 2539.9 5.10 1 0.024 

                Sustenance zone 
size: 2km (n = 222) 

       

        
Intercept 4.54 0.15      
        

Turbine presence -0.16 0.21 256.54 2614.5 0.55 1 0.460 
        

Broadleaved 
woodland % land 
cover 

0.03 0.01 268.07 2626.1 12.07 1 0.001 

        

Urban and suburban 
% land cover 

-0.02 0.01 260.17 2618.2 4.18 1 0.041 
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Table S2.6: GLM output from the model assessing the impact of turbine density upon bat roost 
populations for ‘all species’, applying sustenance zone radii of 5km and 4km, 2010-12 mean 
roost population counts (all species of bat included) and a negative binomial error distribution. 
The values for Deviance, AIC, the Likelihood Ratio Test (LRT), degrees of freedom (df) and 
significance (p) relate to the removal of each variable individually from the full model and testing 
the difference between the resulting and full models 

        Fixed Effects Estimate Standard 
Error 

Deviance AIC Likelihood 
Ratio Test 

df p 

        
        Sustenance zone size: 5km (n = 370) 
        Intercept 4.66 0.15      
        Turbine density 1.02 1.53 446.57 4255.00 0.25 1 0.618 
        Broadleaved 
woodland % land 
cover 

0.03 0.01 449.69 4258.10 3.37 1 0.066 

        Urban and suburban 
% land cover 

-0.02 0.01 454.64 4263.10 8.32 1 0.004 

                Sustenance zone size: 4km (n = 381) 
                Intercept 4.60 0.14      
        Turbine density 2.68 2.33 461.52 4366.20 1.73 1 0.189 
        Broadleaved 
woodland % land 
cover 

0.03 0.01 464.23 4368.90 4.44 1 0.035 

        Urban and suburban 
% land cover 

-0.02 0.01 469.92 4374.60 10.13 1 0.001 
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Table S2.7: GLM output from the model assessing the impact of turbine density upon bat roost 
populations for ‘all species’, applying sustenance zone radii of 3km and 2km, 2010-12 mean 
roost population counts (all species of bat included) and a negative binomial error distribution. 
The values for Deviance, AIC, the Likelihood Ratio Test (LRT), degrees of freedom (df) and 
significance (p) relate to the removal of each variable individually from the full model and testing 
the difference between the resulting and full models 

        Fixed Effects Estimate Standard 
Error 

Deviance AIC Likelihood 
Ratio Test 

df p 

        
        Sustenance zone size: 3km (n = 385) 
        Intercepts 4.62 0.13      
        Turbine density 1.94 2.01 465.47 4413.60 1.26 1 0.262 
        Broadleaved 
woodland % land 
cover 

0.02 0.01 468.84 4417.00 4.63 1 0.031 

        Urban and suburban 
% land cover 

-0.02 0.01 474.92 4423.10 10.71 1 0.001 

                Sustenance zone size: 2km (n = 393) 
                Intercept 4.60 0.13      
        Turbine density -0.16 1.35 473.18 4507.50 0.01 1 0.907 
        Broadleaved 
woodland % land 
cover 

0.03 0.01 481.18 4515.50 8.01 1 0.005 

        Urban and suburban 
% land cover 

-0.02 0.01 482.93 4517.20 9.76 1 0.002 
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Table S2.8: GLM output from the model assessing the impact of turbine density upon 
Rhinolophus genus bat roost populations, applying sustenance zone radii of 5km and 4km, 
2010-12 mean roost population counts and a negative binomial error distribution. The values for 
Deviance, AIC, the Likelihood Ratio Test (LRT), degrees of freedom (df) and significance (p) 
relate to the removal of each variable individually from the full model and testing the difference 
between the resulting and full models 

        Fixed Effects Estimate Standard 
Error 

Deviance AIC Likelihood 
Ratio Test 

df p 

        
        Sustenance zone 
size: 5km (n = 205) 

       

        Intercept 4.65 0.17      
        

Turbine density 8.46 4.58 239.08 2423.5 3.36 1 0.067 
        

Broadleaved 
woodland % land 
cover 

0.03 0.02 238.72 2423.2 3.01 1 0.083 

        

Urban and 
suburban % land 
cover 

-0.03 0.01 242.38 2426.8 6.67 1 0.010 

                Sustenance zone 
size: 4km (n = 212) 

       

        Intercept 4.57 0.16      
        

Turbine density 5.50 3.58 247.82 2500.4 2.54 1 0.111 
        

Broadleaved 
woodland % land 
cover 

0.04 0.01 250.96 2503.6 5.67 1 0.017 

        

Urban and 
suburban % land 
cover 

-0.02 0.01 251.00 2503.6 5.72 1 0.017 
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Table S2.9: GLM output from the model assessing the impact of turbine density upon 

Rhinolophus genus bat roost populations, applying sustenance zone radii of 3km and 2km, 

2010-12 mean roost population counts and a negative binomial error distribution. The values for 

Deviance, AIC, the Likelihood Ratio Test (LRT), degrees of freedom (df) and significance (p) 

relate to the removal of each variable individually from the full model and testing the difference 

between the resulting and full models 

        Fixed Effects Estimate Standard 
Error 

Deviance AIC Likelihood 
Ratio Test 

df p 

        
        Sustenance zone 
size: 3km (n = 215) 

       

        
Intercept 4.60 0.15      
        

Turbine density 2.96 2.58 249.98 2535.8 1.35 1 0.246 
        

Broadleaved 
woodland % land 
cover 

0.03 0.01 254.41 2540.2 5.77 1 0.016 

        

Urban and suburban 
% land cover 

-0.02 0.01 253.66 2539.5 5.02 1 0.025 

                
Sustenance zone 
size: 2km (n = 222) 

       

        
Intercept 4.52 0.15      
        

Turbine density -0.59 1.52 256.18 2614.5 0.15 1 0.698 
        

Broadleaved 
woodland % land 
cover 

0.04 0.01 268.57 2626.9 12.55 1 <0.001 

        

Urban and suburban 
% land cover 

-0.02 0.01 260.17 2618.5 4.15 1 0.042 
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Table S2.10: GLM output from the turbine density vs. roost size change over 5 years model, 
applying sustenance zone radii of 5km and 4km, changes in mean roost population counts (of 
all species) over the 2005-07 to 2010-12 period and a Gaussian error distribution . The values 
for Deviance, AIC, the Likelihood Ratio Test (LRT), degrees of freedom (df) and significance (p) 
relate to the removal of each variable individually from the full model and testing the difference 
between the resulting and full models 

       Fixed Effects Estimate Standard 
Error 

AIC Likelihood Ratio 
Test 

df p 

       
       Sustenance zone 
size: 5km (n = 243) 

      

       
Intercept -14.94 16.44     
       

Turbine density -33.23 168.78 2965.10 0.04 1 0.844 
       

Broadleaved 
woodland % land 
cover 

2.88 1.55 2968.60 3.45 1 0.064 

       

Urban and suburban 
% land cover 

-1.36 1.07 2966.70 1.62 1 0.204 

              Sustenance zone 
size: 4km (n = 250) 

      

       
Intercept -19.23 16.05     
       

Turbine density -385.81 457.20 3064.20 0.71 1 0.400 
       

Broadleaved 
woodland % land 
cover 

2.82 1.38 3067.70 4.17 1 0.042 

       

Urban and suburban 
% land cover 

-0.88 0.97 3064.30 0.82 1 0.367 
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Table S2.11: GLM output from the turbine presence outcome / roost size predictor (all species) 
models, including sustenance zone radii of 5km and 4km, 2010-12 mean roost population 
counts and applying a binomial error distribution. The values for Deviance, AIC, the Likelihood 
Ratio Test (LRT), degrees of freedom (df) and significance (p) relate to the removal of each 
variable individually from the full model and testing the difference between the resulting and full 
models 

        Fixed Effects Estimate Standard 
Error 

Deviance AIC Likelihood 
Ratio Test 

df p 

        
        Sustenance zone 
size: 5km (n = 370) 

       

        
Intercept -0.43 0.26      
        

Roost size -0.0004 0.0007 500.99 506.99 0.33 1 0.565 
        

Broadleaved 
woodland % land 
cover 

0.05 0.02 504.60 510.60 3.93 1 0.047 

        

Urban and suburban 
% land cover 

0.03 0.02 505.87 511.87 5.20 1 0.023 

                Sustenance zone 
size: 4km (n = 381) 

       

        
Intercept -0.75 0.25      
        

Roost size -0.0002 0.0007 504.96 510.96 0.04 1 0.838 
        

Broadleaved 
woodland % land 
cover 

0.02 0.02 505.56 511.56 0.64 1 0.424 

        

Urban and suburban 
% land cover 

0.04 0.01 512.94 518.94 8.02 1 0.005 
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Table S2.12: GLM output from the turbine presence outcome / roost size predictor (all species) 
models, including sustenance zone radii of 3km and 2km, 2010-12 mean roost population 
counts and applying a binomial error distribution. The values for Deviance, AIC, the Likelihood 
Ratio Test (LRT), degrees of freedom (df) and significance (p) relate to the removal of each 
variable individually from the full model and testing the difference between the resulting and full 
models 

        Fixed Effects Estimate Standard 
Error 

Deviance AIC Likelihood 
Ratio Test 

df p 

        
        Sustenance zone 
size: 3km (n = 385) 

       

        
Intercept -1.06 0.26      
        

Roost size 0.00005 0.0008 450.90 456.90 0.00 1 0.953 
        

Broadleaved 
woodland % land 
cover 

-0.001 0.02 450.90 456.90 0.00 1 0.944 

        

Urban and suburban 
% land cover 

0.02 0.01 453.11 459.11 2.21 1 0.137 

                Sustenance zone 
size: 2km (n = 393) 

       

        
Intercept -1.66 0.31      
        

Roost size -0.001 0.001 333.64 339.64 1.64 1 0.201 
        

Broadleaved 
woodland % land 
cover 

0.0005 0.02 332.00 338.00 0.00 1 0.982 

        

Urban and suburban 
% land cover 

0.02 0.01 333.67 339.67 1.67 1 0.196 
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Table S2.13 Overview of wind turbine planning outcomes by planning authority 

Planning Authority 

Total 
applications 

received 

Total unique 
turbine site 
applications Refusals 

Pending or 
Appeal In 
Progress Permission 

Temporary 
Permission 

Unknown 
Decision 
Status 

Total 
Approved 
Individual 
Turbines 

Bath and North East 
Somerset Council 21 17 8  9   11 
Blaenau Gwent County 
Borough Council 17 14 5 4 5   5 

Borough of Poole 7 7 3  4   4 
Bournemouth Borough 
Council 3 3 2  1   2 
Brecon Beacons National 
Park Authority 25 20 8  12   13 
Bridgend County Borough 
Council 25 22 5 3 13 1  42 

Bristol City Council 29 14 2 1 11   19 
Caerphilly County Borough 
Council 21 18 7 3 8   14 

Cardiff Council 11 11 2  9   10 
Carmarthenshire County 
Council 188 167 31 38 99  1 184 

Ceredigion County Council 120 106 22 17 67   147 

Cheltenham Borough Council 2 2   2   2 

Christchurch Borough Council 3 3 1  2   2 

City and County of Swansea 22 18 9  9   27 
Conwy County Borough 
Council 80 60 18 7 35   57 

Cotswold District Council 28 21 7  14   16 
Dartmoor National Park 
Authority 29 25 7  17  1 18 

Denbighshire County Council 74 48 8 2 38   101 



161 
 

Planning Authority 

Total 
applications 

received 

Total unique 
turbine site 
applications Refusals 

Pending or 
Appeal In 
Progress Permission 

Temporary 
Permission 

Unknown 
Decision 
Status 

Total 
Approved 
Individual 
Turbines 

East Devon District Council 32 26 3 1 22   25 

East Dorset District Council 3 3 1  2   3 

Exeter City Council 5 5 2  3   8 
Exmoor National Park 
Planning Authority 41 33 9  24   25 

Flintshire County Council 44 37 9 3 25   26 
Forest of Dean District 
Council 36 27 4 1 22   25 

Gloucester City Council 9 7    7  11 

Gwynedd County Council 60 53 17 6 30   35 
Isle of Anglesey County 
Council 108 93 29 21 42 1  117 

Isles of Scilly 1 1   1   1 

Mendip District Council 83 61 13 7 40  1 43 
Merthyr Tydfil County 
Borough Council 13 11 7 1 3   3 

Mid Devon District Council 93 79 23 7 49   56 
Monmouthshire County 
Council 31 28 6 3 19   20 
Neath Port Talbot County 
Borough Council 37 26 11 3 12   129 

Newport City Council 37 17 2 3 12   14 

North Devon District Council 144 103 30 13 60   93 

North Dorset District Council 24 19 6 1 12   12 

North Somerset Council 31 25 7 2 16   18 
Pembrokeshire Coast 
National Park Planning 
Authority 67 50 15 3 31 1  39 
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Planning Authority 

Total 
applications 

received 

Total unique 
turbine site 
applications Refusals 

Pending or 
Appeal In 
Progress Permission 

Temporary 
Permission 

Unknown 
Decision 
Status 

Total 
Approved 
Individual 
Turbines 

Pembrokeshire County 
Council 220 180 59 13 108   125 

Plymouth City Council 24 20 5  14 1  24 

Powys County Council 189 169 22 23 124   363 

Purbeck District Council 17 11 2  9   9 
Rhondda Cynon Taf County 
Borough Council 39 33 9 8 16   60 

Sedgemoor District Council 44 34 11 2 20  1 21 
Snowdonia National Park 
Authority 41 36 6 3 27   27 
South Gloucestershire 
Council 43 33 9 3 21   26 

South Hams District Council 88 75 17 11 47   54 
South Somerset District 
Council 52 41 18 1 22   23 

Stroud District Council 35 30 7 1 21 1  22 

Swindon Borough Council 15 13 7  6   7 
Taunton Deane District 
Council 34 27 4 1 22   24 

Teignbridge District Council 28 23 5  18   21 

Tewkesbury Borough Council 5 4 1  3   3 

Torbay Council 5 5 1  4   21 
Torfaen County Borough 
Council 6 6 2  4   6 

Torridge District Council 177 140 32 31 77   94 

Vale of Glamorgan Council 31 27 16  11   11 

West Devon Borough Council 54 44 10 5 29   41 

West Dorset District Council 62 48 19  29   29 
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Planning Authority 

Total 
applications 

received 

Total unique 
turbine site 
applications Refusals 

Pending or 
Appeal In 
Progress Permission 

Temporary 
Permission 

Unknown 
Decision 
Status 

Total 
Approved 
Individual 
Turbines 

West Somerset District 
Council 8 7 1  6   6 
Weymouth and Portland 
Borough Council 12 12 3  9   12 

Wiltshire Council 54 44 12  31  1 34 
Wrexham County Borough 
Council 12 10 4  6   6 
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3 Bat fatality and disturbance at small and medium 
wind turbine sites 

3.1 Abstract 

The majority of published research concerning the impacts of wind turbines 

upon wildlife has focused on large scale wind turbines at commercial wind farm 

locations. Of the species so far acknowledged to suffer impacts at turbine sites, 

bats have perhaps shown the greatest vulnerability. Bat fatalities and to a lesser 

extent, disturbance, have been recorded across numerous continents. Only 

recently has the scope of research into impacts upon bats widened to include 

those observed at small and medium wind turbine sites. This scale of turbine is 

often installed in domestic settings and at farms, businesses and community 

energy schemes. Early studies have confirmed bat fatality and disturbance in 

the immediate vicinity of small wind turbine sites (Minderman et al. 2012; 2015).  

This study aimed to widen the volume of monitoring research at small and 

medium wind turbines and to provide an updated estimate of fatality rates, 

based on the use of a trained search dog to locate bat carcasses. Bat activity 

levels were also compared between the turbine location, linear habitat features 

and open habitat, to identify any disturbance caused by the turbine. Finally the 

moderating influence of weather and habitat conditions upon bat activity levels 

at turbine locations was investigated. Only 3 bat carcasses were observed 

during monitoring at turbine sites, yielding an average unadjusted fatality rate of 

0.81 turbine-1 year-1 at single micro, small or medium size turbines in the UK. 

Due to the low volume of observed fatalities and the inherent uncertainty in 

fatality monitoring, an estimate was produced of the maximum fatality rate that 

could potentially have occurred at each site and not been observed due to the 

search protocol applied. This produced a worst-case-scenario maximum fatality 

rate of 15.15 turbine-1 year-1. This is considered likely to represent an 

unrealistically high rate. Further fatality monitoring using a stringent monitoring 

protocol may be able to reduce the uncertainty levels in this estimate and 
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potentially confirm a more realistic, lower fatality rate. A small disturbance effect 

upon bat activity levels in proximity to turbines during high wind speeds was 

also identified. This impact dissipated within 33-47m. A number of weather and 

habitat conditions were found to exhibit significant moderating influences upon 

bat activity levels at small and medium wind turbine locations. These results 

support existing calls for updated planning guidance concerning bats at 

proposed small and medium wind turbine sites. 

3.2 Introduction 

The current shift towards renewable sources of energy production in the UK and 

globally has led to increasing numbers of wind turbine installations 

(RenewableUK, 2015; World Wind Energy Association (WWEA), 2014). This 

trend is forecast to continue globally into the foreseeable future (WWEA, 2014). 

Growth in the UK wind energy market has recently slowed due to large-scale 

changes in Government energy policy, planning policy and funding 

mechanisms. Wind power is nonetheless the largest energy producer in the UK 

renewable sector (RenewableUK, 2015). Wind turbines are therefore becoming 

an increasingly common feature of UK landscapes. 

3.2.1 Bat fatalities 

Though considered beneficial for the sustainability and security of future energy 

production, wind turbines have some environmental impacts. This includes their 

potential to cause bird and bat fatalities (Strickland et al. 2011; Rodrigues et al. 

2015). Bat fatalities have been recorded in large numbers at some wind farm 

sites in the USA (Arnett et al. 2008). As a result, the volume of research into the 

subject has grown rapidly. This is especially true of monitoring programmes 

across North America, where magnitudes of bat fatalities have been found to 

vary significantly across sites (Arnett et al. 2016). 

Similar research effort is increasing across Europe, identifying bat fatalities in 

numerous countries (Rydell et al. 2010a; Ferri et al. 2011; Camina 2012; 

Georgiakakis et al. 2013). This includes the UK, where initial research, reporting 
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and turbine owner communications have identified fatality occurrences (Rydell 

et al. 2010a; Jones et al. 2009; Minderman et al. 2015; University of Exeter, 

unpublished research). The current study aimed to investigate whether small 

and medium scale wind turbines pose fatality or disturbance risks to UK bat 

species. 

3.2.2 Non-fatal impacts 

Few studies have considered non-fatal impacts of turbines upon bats such as 

disturbance and displacement. A small number have however identified bats’ 

behavioural patterns around turbines including investigation, foraging and 

roosting (Brinkmann et al. 2006; Horn et al. 2008; Ahlén et al. 2009; Rydell et al. 

2010a; Hensen, 2004). A study comparing bat activity at turbines with control 

sites (in Iowa, USA) showed no significant difference in activity levels, indicating 

displacement did not occur (Jain et al. 2011). However, as bat species 

assemblages in Europe are considerably different to North America, it is vital 

that displacement and disturbance are investigated in the European context.  

Disturbance can also occur within sites at a local scale. Reductions in bat 

activity levels at small turbines in the UK have been observed during high wind 

speeds, relative to monitoring 20m away (Minderman et al. 2012). A long term 

study at a wind farm in Germany showed some evidence of displacement of 

bats, where effect levels varied between species. Deviations from flight paths 

were also observed at a micro scale within the site (Bach and Rahmel, 2004). 

Whilst research concerning non-fatal impacts upon bats is limited, studies 

concerning effects upon birds are more extensive. It may be possible, therefore, 

to infer from these studies the potential for non-fatal impacts upon bats from 

turbines. Research upon birds has observed displacement from turbine 

development and associated habitat changes, though effects are often 

moderate or species-specific (Strickland et al. 2011). Displacement often 

comprises flight avoidance of wind farms (Desholm and Kahlert, 2005; 

Plonczkier and Simms, 2012; Villegas-Patraca et al. 2014) or, on a micro scale, 

individual turbine avoidance (Everaert, 2014). Breeding grounds and general 

bird distributions can also be affected by displacement (Pearce-Higgins et al. 

2009; Strickland et al. 2011). Bats are known to be vulnerable to both habitat 
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and roost disturbance (Berthinussen and Altringham, 2012; Arlettaz et al. 2000). 

Consequently it is reasonable to suggest that bats may be susceptible to 

impacts similar to those experienced by birds.  

3.2.3 Environmental conditions 

In addition to research considering fatality and disturbance, efforts are also 

focused upon understanding why such impacts occur and in which weather and 

habitat conditions risk levels are highest. Elevated bat activity and fatality levels 

at wind farms in continental Europe and North America have been found to 

relate to warmer temperatures, lower wind speeds and higher levels of insect 

prey (Arnett et al. 2011; Amorim et al. 2012; Georgiakakis et al 2013; Baerwald 

and Barclay, 2011; Weller and Baldwin, 2012; Gorresen et al. 2015; Arnett et al. 

2008; Brinkmann et al. 2006; Kerns et al. 2005; Rydell et al. 2010a; Horn et al. 

2008). A significant knowledge gap remains in the context of small turbines.  

The effect of habitat and topography is less clear – varying rates of association 

with fatality and activity levels have been observed in both Europe and North 

America. Some studies have indicated that wooded hilltops and locations within 

100m of woodland (in Europe) as well as forested ridges and heads of ravines 

(in North America) may represent higher risk habitats (Rydell et al. 2010a; 

Arnett et al. 2008; Piorkowski and O’Connell, 2010; Dubourg-Savage et al. 

2011; Baerwald and Barclay, 2009; Brinkmann et al. 2006).  

Observations from a limited number of UK-based studies have indicated similar 

moderating influences from weather and habitat (Minderman et al. 2012; 

University of Exeter, unpublished research). Interim guidance concerning bats 

has been produced for wind turbine planning applications in the UK (Natural 

England, 2014; Natural England et al. 2009) and Europe (Rodrigues et al. 2015) 

based upon current research findings. However this guidance focuses primarily 

upon wind farms and large turbines and has yet to be field-validated in the UK. 

Furthermore, inconsistencies exist in the application of guidance in the context 

of small wind turbines (Park et al. 2013). 
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3.2.4 Study aims 

The current study aimed to reduce the knowledge gap in the UK, by 

investigating whether small and medium scale individual wind turbines present 

any fatality or disturbance risks to UK bat species. Environmental variables 

were analysed to improve our understanding of the factors influencing bat 

activity levels at small and medium single turbines. The study aimed to provide 

monitoring evidence to aid planning guidance development for small wind 

turbine installations in the UK.  

3.3 Methods 

3.3.1 Study area 

The chosen study area was Wales and the south west (SW) region of England 

– areas with relatively large, species-diverse populations of bats (Bat 

Conservation Trust, no date). Potential study sites were identified from wind 

turbine planning applications. Sites with no more than three installed turbines 

were selected, with a total height to blade tip <100m. Each turbine was required 

to be mounted on a standalone mast (not building-mounted) and to have a 

horizontal axis (Figure 3.1). Differing numbers of blades were acceptable. If 

multiple turbines were installed at a site, only one was monitored; selection was 

random unless constrained by access.  

Sites were selected to obtain a suitable geographical spread across the study 

area (at least one site in each county across SW England and a spread across 

Wales). Site selection aimed to include at least one turbine within each size 

classification from the UK renewable energy industry’s representative body 

RenewableUK (RenewableUK, 2013). Turbine blade-tip heights are classified 

as follows: micro (10-15m); small (15-30m); medium (30-55m); large (>55m) 

(RenewableUK, 2013). An additional category was also added – sub-micro 

(<10m). 

Following contact with turbine and land owners, permission was granted to 

access and monitor 31 turbine sites. 28 featured a single turbine and 3 featured 



169 
 

two turbines. The turbines monitored fell into the following size categories: sub-

micro (3), micro (7), small (13), medium (5) and large (3). The proportions of 

turbines within each size category and geographical area provided a 

representative sample of approved wind turbine sites within the study area 

(Figure 3.2), with the exception geographically of slight under-sampling in 

Wales and over-sampling in Devon. Large turbines were intentionally under-

sampled due to the focus of this study on small turbines. It was felt beneficial to 

include the 3 large individual wind turbines within the sample as a partnering 

wind farms project (University of Exeter) included only sites with at least 5 

turbines. 

 

Figure 3.1: Examples of horizontal axis (left) and vertical axis (right) format wind turbines 
(image sources: C&F Green Energy (2015) (left), VWT Power (2014) (right)) 
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Figure 3.2: A comparison of the percentage of wind turbines falling within each turbine size 
category (RenewableUK, 2013) from: field-monitored wind turbines (n=31) (grey) vs. a sample 
(n=348) of wind turbine site applications received up to 2013 by 12 local planning authorities 
within the study regions (black). For the latter, each site is treated as a single turbine size 
regardless of numbers of turbines present. 

 

3.3.2 Field monitoring protocol 

Field monitoring was carried out during May-October in 2012 (13 sites) and 

2013 (14 sites) and June-July in 2014 (4 sites), with monitoring taking place 

concurrently at groups of 2-4 sites at a time. Monitoring was planned for four 

weeks at each site with five visits per site, applying the monitoring schedule 

described below; required modifications due to fieldwork logistics are listed in 

Table 3.1. Bat carcass searches were conducted at approximately equal 

intervals (5 at each site during 2012 and 2014, 3 during 2013) using a 

professionally-trained sniffer search dog (trained specifically for bat carcass 

searches) and handler. The handler worked the dog along parallel 100m 

transects spaced approximately 5-10m apart (depending upon habitat density), 

traversing a 100x100m square centred upon the turbine. The dog was allowed 

to deviate from these transects in order to follow scents and was subsequently 

returned to the last point reached, before continuing. 
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A search efficiency trial following Mathews et al. (2013) was conducted at most 

sites (25/31) to assess the dog and handler’s search performance. In addition, 

rates of carcass removal by predators were estimated by monitoring, at each 

visit, whether 3-5 bat carcasses remained where they had been placed on the 

first monitoring day, within a 100x100m area.  

Nine tripod-mounted Batbox Baton frequency division bat detectors linked to 

Zoom H2n audio-recorders and external batteries were planned to be installed 

at each site, in a 3x3 grid centred on the turbine; each detector being 33.3m 

apart (see Figure 3.3). Three detectors were utilised in this study, whilst the full 

grid was the focus of a separate study (Chapter 4). One Wildlife Acoustics Song 

Meter 2 (SM2) full spectrum bat detector (also powered by an external battery) 

was installed with its microphone attached to a 2.5m tripod at the base of the 

turbine. A weather station was installed, located in open space to reduce wind 

shading or turbulence due to vegetation and buildings. Due to varying spatial 

configurations of sites and land ownership limits, installation of the full grid of 9 

Baton detectors was not always possible, in such instances fewer detectors 

were installed (Table 3.1). Installation of a full or partial grid of detectors was 

possible at all but one site (the latter featured just the SM2 detector and 

weather station). Detectors’ external battery levels, use of recording storage 

capacities and any damage to equipment were recorded during each site visit. 
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Table 3.1: Details of site monitoring programme. Sites 12 and 13 are excluded as the turbine 
had yet to be constructed at the sites, which were monitored to carry out pilot pre-construction 
monitoring observations 

  
 

 
  

Site 
Number 

Number of monitoring 
nights (day span of 
carcass searches if 

different) 

Number of 
carcass searches 

Carcass removal 
test 

Search 
efficiency test 

Number of 
Baton detectors 

  
 

 
  

      
1 28 4 Yes Yes 6 

2 28 5 Yes Yes 9 

3 28 5 Yes Yes 0 

4 28 5 Yes Yes 5 

5 28 5 Yes Yes 9 

6 28 5 Yes Yes 9 

7 25 5 Yes Yes 9 

8 27 4 Yes Yes 9 

9 28 5 Yes Yes 5 

10 28 4 Yes Yes 6 

11 28 5 Yes Yes 6 

14 29 5 Yes Yes 9 

15 29 5 Yes Yes 7 

16 Batons: 28, SM2: 21 

(31) 

5 Yes Yes 5 

17 Batons: 26, SM2: 21 

(29) 

5 Yes Yes 8 

18 25 (20) 3 Yes Yes 9 

19 27 (0) 0 Yes NA 9 

20 28 (30) 3 Yes Yes 9 

21 28 (20) 3 Yes Yes 9 

22 28 (14) 3 Yes No 9 

23 27 (15) 3 Yes Yes 9 

24 29 (14) 3 Yes Yes 9 

25 28 (14) 3 Yes No 8 

26 Batons: 20, SM2: 28 

(28) 

3 Yes No 9 

27 28 3 Yes No 9 

28 Batons: 20, SM2: 13 

(14) 

2 Yes No 9 

29 27 (28) 5 Yes Yes 9 

30 21 (28) 5 Yes Yes 9 

31 20 4 Yes Yes 9 

32 30 (28) 3 Yes Yes 9 

33 28 5 Yes Yes 9 

  
 

 
  

  
 

 
  

 

 

 



173 
 

 

Figure 3.3: An idealised diagram of equipment layout at monitored wind turbine sites 

3.3.3 Bat sound analysis 

Recording nights started half an hour before sunset and ended half an hour 

after sunrise (daily sunrise/set times were used). Wildlife Acoustics ‘Songscope’ 

software was used to complete a species auto-identification scan on the Baton 

detector recordings, using reference ‘recogniser’ files built from sampled Baton 

bat recordings where species had been identified. Recordings from the Baton 

detectors exceeding 1 minute were first manually checked for presence of any 

bat passes using the Pettersson Elektronik ‘Batsound’ viewer software. This 

was due to the extensive auto-ID scanning time required for long files. Almost 

all such files were identified as noise recordings (predominantly rain) and 

consequently were excluded from further processing. Any long files with bat 

passes were retained and scanned.  

Wildlife Acoustics’ ‘Kaleidoscope Pro’ software was used to undertake 

automated species identification for the SM2 recordings. For both detector 

types, all non-Pipistrellus genus classifications were manually checked, as the 

relative accuracy of recognisers for those genera was low. The Kaleidoscope 

Pro Pipistrellus recogniser accuracy is 86% (Wildlife Acoustics, 2014). For the 

Baton recordings, any noise-classified files with a high proportion of sound 

sections indicating a potential bat classification were also manually checked. A 

single bat pass was defined as at least 2 echolocation calls within 1 second of 

one another. 
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Using equipment status information recorded during monitoring, each detector 

recording night was flagged as either suitable or unsuitable. This was based 

upon detector and recorder battery levels, recording file capacity, equipment 

damage observations and recorded weather conditions. Suitable weather 

conditions were defined as nights with mean wind speed <= 8m/s, mean 

temperature >=10oC and mean hourly rainfall <= 2.5mm. Nights with large 

fluctuations in these weather conditions were also removed. Weather conditions 

were not used to filter recording nights for the analysis of environmental 

conditions’ effect upon bat activity. 

3.3.4 Statistical analyses 

3.3.4.1 Estimating levels of bat fatality 

Due to a low volume of observed fatalities, an estimate was produced of the 

total fatalities that could potentially have occurred at each site and not been 

observed due to the search protocol used. Two sites were removed from the 

calculations due to no searches being carried out at one site and an insufficient 

number of searches (2) at the other for carrying out fatality calculations. 29 sites 

were therefore analysed. The ‘Evidence of Absence’ (EoA) software (Dalthorp 

et al. 2014a) was used to calculate fatality estimates. EoA is suitable for use 

with zero or low fatality sites whereas other estimators are not (e.g. the carcass 

package (Korner-Nievergelt et al. (2014, 2015)) within the ‘R’ software (R Core 

Team, 2014)). The software uses Bayes’ formula to estimate credible intervals 

of fatality totals (Dalthorp et al. 2014b; Huso et al. 2015) and accounts for the 

uncertainty in carcass persistence and search efficiency data using repeated 

simulations across distributions. Carcass is still suitable for use in 

understanding the probability of observing carcasses (and as such is applied in 

this manner below), whilst being unsuitable for the latter derivation of estimated 

fatalities in the context of low observed fatalities. EoA requires the following 

input for each site: 

1. Carcass count: The number of observed carcasses 

 

2. Sampling coverage: The searchable proportion of the area in which 

carcasses were likely to fall. All carcasses were assumed to fall within 
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the 100x100m search area. This assumption was supported by datasets 

from previous carcass distribution studies (Arnett et al. 2005; Niermann 

et al. 2011), as supplied within the carcass package. Unsearchable areas 

were digitised from field mapping using ESRI ArcGIS 10 software, 

referenced against aerial imagery and Ordnance Survey Mastermap data 

obtained from the Edina Digimap service. The proportion (from 0 to 1) of 

searchable area was calculated for concentric 10m ring buffers from the 

turbine up to 50m (the final 40-50m ring also included the 50m+ areas at 

the corners of the search square). These proportions were multiplied by 

empirically derived values of the proportion of carcasses that typically fall 

within each 10m ring (using the results from Niermann et al. 2011 in the 

carcass package). Finally the sum of the resulting values represented the 

searchable proportion of the site 

 

3. Searcher Efficiency: The search efficiency trial results were used as input 

in the carcass package to calculate estimates of the probability of the 

searcher finding carcasses, along with upper and lower 95% confidence 

intervals (CI). EoA also requires a factor by which searcher efficiency 

changes with each search – efficiency was assumed to stay constant, 

resulting in a value of 1. For four sites where search efficiency trials were 

not completed, search efficiency results from another site with the closest 

matching habitat structure were applied 

 

4. Sampling Dates: The carcass search dates were entered, resulting in a 

mean search interval and search span in days 

 

5. Carcass Persistence Distribution: The Estimator software (Huso et al. 

2012) was used to calculate an average carcass persistence probability 

curve from the combined persistence data from all monitored sites. This 

is because the data from most individual sites did not provide sufficient 

information for different persistence timeframes to produce a curve. This 

is an approach used in previous studies (e.g. Minderman et al. 2015). 

Estimator fits a number of failure time distribution curves to the data to 

model persistence. In order to identify the best fitting curve, the carcass 

package was used to calculate probabilities of persistence using the 
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observed data, in order to compare fit against the Estimator curves. The 

Weibull failure time distribution best fitted the observed carcass 

persistence data. These were used with 10,000 simulations to calculate a 

mean persistence time (51.34 days, 95% CI = 33.81-99.57) and 

probability of persistence for a search interval of 8 days (0.84, 95% CI = 

0.77-0.9) which were entered in EoA 

 

6. Prior Distribution: A uniform prior distribution of fatalities was used, due 

to a lack of existing knowledge about fatality at small wind turbines (or 

turbines in the UK generally) 

 

7. Arrival Function: A uniform arrival function was assumed, due to a lack of 

knowledge about seasonal or inter-day patterns of fatalities at small 

turbines (or turbines in the UK). Furthermore as the maximum sampling 

period at each site was 4 weeks, little variation may be expected 

 

8. Credibility Level: A value of 0.95 was used (i.e. p = 0.05) 

A posterior probability distribution and maximum estimate of 95% credible total 

fatalities was produced for each site, along with a probability estimate of 

observing carcasses (with 95% CI).  

 

3.3.4.2 Differences in bat activity with varying proximity to a wind turbine 

The effect of turbine presence upon bat activity rates was tested by comparing 

measured activity rates from three Baton detectors at each site. The first was 

located at the base of the wind turbine ( ‘turbine’ position), the second at a 

distance of 33.3-47.1m (mean 40m) from the turbine (see adjacent and corner 

cells in Figure 3.3) and next to a linear habitat feature ( ‘feature’ position) and 

the third also located 33.3-47.1m (mean 40m) from the turbine but in open 

habitat (‘open’ position). 

Nights were excluded where poor weather, detector / battery failure or recorder 

capacity resulted in insufficient monitoring. Sites were excluded where habitat 

structure (e.g. absence of linear features) restricted comparative analysis. 
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Activity measured at the three detectors was required to be recorded during the 

same shared nights between all detectors. A mean of 7 shared monitoring 

nights were obtained from 26 sites (total nights = 179).  

A generalised linear mixed effect model (GLMM) was calculated using the 

glmmadmb package (Skaug et al. 2014) in R to assess the effect of turbine 

presence and habitat type (i.e. detector position: turbine / feature / open) upon 

recorded nightly levels of bat activity. Total nightly bat passes (of all species) 

was set as the dependent variable, with an offset for length of monitoring night 

to account for varying night lengths. Detector position (turbine/ feature / open) 

was used as a fixed factor variable and was separately nested within site as a 

random effect. The model used a negative binomial error distribution, due to 

over-dispersion observed in the data. Mean nightly temperature (oC) and wind 

speed (m/s) were included as fixed covariates and nightly rainfall occurrence 

was included as a fixed factor. 

The contribution of each variable to the model and its significance was 

assessed using ANOVA tests, likelihood ratio tests and Akaike information 

criterion (AIC) values. The contribution of each variable and overall model fit, 

quality and predictive ability were also assessed using residuals plots for the 

overall model and each individual variable, in addition to inter-variable 

correlation plots, measures of over-dispersion, leverage plots to consider 

outliers, pseudo R-squared values and predictions plotted against observed 

values. Outliers mutually confirmed via leverage plots, residuals plots and 

model prediction plots were removed to improve model fit. 

As the analysis was focused upon identifying the effect of the turbine and a 

number of monitored turbines were located close to linear habitat features, a 

second version of the model was created to investigate the potential modifying 

effect of distance to linear features from detectors. The same model 

configuration was used, with the inclusion of an interaction between detector 

position and distance to the nearest linear habitat feature (hedge or tree line). 

In order to identify the remaining effect of turbine presence in the event of any 

influence from distance to linear features, a third model was additionally 

produced. The configuration of the first model was again replicated, with 
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distance to nearest linear habitat feature included as a fixed covariate, whilst 

the detector positions were re-categorised as adjacent to or away from the 

turbine (i.e. turbine presence / absence). Finally a variant on this model was 

also calculated, adding an interaction between the turbine presence factor and 

wind speed in order to test for the wind speed-reliant effect of turbines observed 

during the only existing small turbine field research (Minderman et al. 2012). 

3.3.4.3 Environmental conditions and bat activity 

19 environmental variables were recorded for each turbine site, including 

weather conditions, land cover types, linear habitat feature length, distance to 

nearest linear habitat feature, turbine dimensions, season and existing bat roost 

populations (see Supplementary Materials Table S3.1 for a list of the variables). 

Weather and turbine variables were based on data collected at site, whilst 

habitat variables were calculated from Landcover Map 2007 data (LCM) (Centre 

for Ecology and Hydrology (CEH), 2011), OS Mastermap data and aerial 

imagery using ESRI ArcGIS 10 and Geospatial Modelling Environment 

software. Hedges on opposite sides of roads were treated as a single linear 

feature, except in the case of dual carriageways or motorways. Bat roost 

variables were calculated from data provided by the UK Bat Conservation Trust. 

The relationship of environmental variables with bat activity levels recorded by 

the SM2 detectors was tested. 27 sites were included after removing 4 due to 

weather station or detector failure. Weather data was applied to 1 of the 27 sites 

from a nearby site (approx. 6 km) after weather station failure. 

A number of model iterations were calculated to remove unimportant candidate 

variables, using generalised linear models (GLM) in R, assessing at each 

iteration the significance of effects of included variables, whether the proposed 

effect of variables was logical, the quality of model fit to the measured data 

(using methods as described above) and the relative quality of the model 

assessed against the other models (using AIC values). Upon reaching a subset 

of variables showing potential for relationships with bat activity, these variables 

were investigated using both site- and night-level datasets to further refine 

model configuration (applying GLMs and GLMMs respectively) to reach the 

minimum adequate model required to explain variability of bat activity. 
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A GLMM with a negative binomial error distribution was calculated using the 

glmmadmb package to assess the effect of each environmental variable upon 

nightly levels of bat activity. Total nightly bat passes (of all species) was set as 

the dependent variable, with an offset for length of monitoring night to account 

for varying night lengths. Site was set as a random effect. Mean nightly 

temperature, mean nightly wind speed (log transformed to reduce heterogeneity 

in model residuals in relation to this variable), distance to nearest linear habitat 

feature and proportion of built environment landcover within 5km were included 

as fixed covariates and nightly rainfall occurrence was included as a fixed 

factor. The same model validation and assessment methods as described 

above were also applied. Outliers mutually confirmed via leverage plots, 

residuals plots and model prediction plots were removed to improve model fit. 

The night-level analyses were repeated for three genera groups (1: Pipistrellus; 

2: Nyctalus and Eptesicus; 3: Myotis, Barbastella, Plecotus and Rhinolophus 

(‘Woodland bats’)). 

A second all-species model was created applying the same configuration at site 

level, though using the glm.nb function in R (MASS package (Ripley et al. 

2015)) to calculate a GLM, applying a negative binomial error distribution. Total 

bat passes across the monitoring period at each site were used as the 

dependent variable, alongside total monitoring hours as an offset. All predictor 

variables used mean values for the monitoring period at site rather than nightly 

values and the wind variable was not log transformed due to improved residuals 

at site level. Rainfall was changed to a fixed covariate and represented mean 

hourly rainfall across the monitoring period. A single outlier site was removed 

after inspection of leverage, residual and prediction plots. 

3.4 Results 

3.4.1 Estimating levels of bat fatality 

Across the 30 sites where carcass searches were completed, 3 bat carcasses 

were found in total. Their genera were identified as Pipistrellus, Myotis and 

unknown due to decomposition. The dog/handler team achieved an average 
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efficiency of 90.2% in locating trial carcasses. Carcass removal was found to 

exhibit a bimodal pattern, with half (49.6%) of the trial carcasses persisting for 

the whole monitoring period and approximately a quarter (24%) being removed 

within the 1st week. 11.6% persisted for only 1 week, 10.7% for only 2 and 4.1% 

for only 3. The probability of individual carcass persistence times as modelled 

within the carcass application was as follows: 7 days: 0.76 (0.69-0.84), 14 days: 

0.65 (0.57-0.74), 21 days: 0.56 (0.48-0.66), 28 days: 0.51 (0.43-0.61). The 

average probability of carcasses persisting during the average search interval 

(8 days), accounting for differing arrival times during that period, as modelled 

within EoA was 0.84 (0.77-0.9), (i.e. this does not represent the probability of 

persistence for the maximum of 8 days). The overall estimated probability that a 

carcass would be found following fatality as modelled within EoA ranged across 

sites from 0.38 (0.34-0.41) to 0.86 (0.8-0.91) (mean = 0.74). This accounted for 

search interval, proportion of inaccessible search area, search efficiency and 

carcass persistence. 

The fatality rate at one site was not estimated due to an insufficient number of 

carcass searches. The estimated maximum possible number of fatalities that 

may have occurred across the 29 analysed sites after observing 3 carcasses 

was 99 (p = 0.05) (0.134 fatalities turbine-1 night-1). This incorporates the 

uncertainty produced by the monitoring protocol, which is likely to result in an 

unrealistically high fatality rate. This dropped to a maximum of 56 (p = 0.05) 

across 27 sites (0.082 fatalities turbine-1 night-1) after excluding two sites with 

very low probabilities of observing carcasses (<0.4; the mean probability from 

the remaining sites was 0.76). The low probabilities at these 2 sites resulted in 

large analytical uncertainty and consequentially large potential maximum fatality 

estimates. The low probabilities were caused by a poor search efficiency rating 

at one of the sites and a low proportion of accessible search area at the other.   

Assuming bat mortality at turbines only occurs between May and October (i.e. 

excluding the very minor numbers of fatalities previously observed during April 

and November) (Rydell et al. 2010a; Arnett et al. 2008), the 3 carcasses 

observed across the reliable survey sets from 27 sites suggest an unadjusted 

fatality rate of 0.81 turbine-1 year-1 may occur on average at single micro, small 

or medium size turbines in the UK, discounting the uncertainty incorporated in 

the search protocol. The equivalent worst-case scenario, accounting for 
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uncertainty in the search protocol, implies a maximum fatality rate of 15.15 

turbine-1 year-1. The latter may be unrealistically high and a lower rate (that 

equally accounts for all monitoring uncertainty) may be confirmed by completing 

a dedicated set of fatality surveys with very stringent monitoring protocols (e.g. 

using a very short search interval). 

3.4.2 Differences in bat activity with varying proximity to a wind turbine 

The results from the GLMMs are shown in Tables 3.2-3.3 and S3.2-S3.4. 

Detector location was shown to have a significant effect in the first model (Table 

3.2), identifying higher levels of activity near linear habitat features than turbine 

or open habitat positions. Higher activity levels were also recorded at turbine 

locations than in open habitat. However the second model identified a 

significant interaction of detector position with distance from linear habitat 

features (Table S3.2). The significance of distance to linear feature at turbine 

detectors was also confirmed in a separate verifying model (Table S3.3) where 

the variable was included as a covariate rather than within an interaction, using 

a subset of the data only including turbine detectors (where the detector 

position variable was removed). 

Having accounted for the effect of distance to linear features in the third model 

(Table S3.4), no significant effect was recorded from turbine presence (i.e. now 

representing the remaining effect of detector position). However, after 

investigating the influence of wind speed upon the effect of turbine presence, 

the model was significantly improved (Table 3.3; testing the inclusion of the 

previously excluded outliers furthermore showed no qualitative change in model 

outcomes (Table S3.5)). Whilst bat activity was actually higher at the turbine 

during low wind speeds, the observed pattern reversed during high wind speed 

periods where activity was reduced from 0.53 (0.12-2.29) to 0.18 (0.02-0.79) 

passes per hour as a result of turbine presence (an average reduction of 78%) 

(see Figure 3.4a and 3.4b). 

The negative effect upon bat activity levels of increasing distance from linear 

habitat features is consistent across the models. The inclusion of wind speed, 

temperature and rainfall occurrence significantly improved all four models, with 

the exception of a lower level of significance associated with temperature in the 
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latter two models (Tables 3.3 and S3.4). Bat activity rates were found to 

decrease as a result of rising wind speeds and during nights with rainfall and to 

increase during warmer nights, with relatively consistent effect sizes across the 

models. 
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Figure 3.4: Estimated effect from the night level model of turbine presence on bat activity levels at small 

and medium wind turbine sites (a) during low wind speed conditions (0 m/s) and (b) during high wind 
speed conditions (3.75 m/s). Bars and CI lines = model prediction; circles = mean observed rate of bat 
passes; squares = median observed rate of bat passes; relative sizes of squares and circles represent 
relative contributing levels of data (larger = more data). 
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Table 3.2: Parameter estimates and likelihood ratio tests of the GLMM analysing the effect of turbine presence and habitat type (linear features and wooded habitat 
vs. open habitat) upon bat activity. The model used a negative binomial error distribution.  

        Fixed Effects Estimate Standard 
Error 

Log 
Likelihood 

AIC Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) [Detector Position = Feature] 0.25 0.45      
        Mean Nightly Temperature (

o
C) 0.05 0.03 -1597.8 3211.6 4.12 1 0.042 

        Mean Nightly Wind Speed (m/s) -0.35 0.07 -1609.4 3234.7 27.28 1 <0.0001 
        Rainfall Occurrence During Night -0.43 0.13 -1601.0 3218.1 10.6 1 0.001 
        Detector Position   -1607.7 3229.4 23.98 2 <0.0001 
                Detector Position [Open] -1.55 0.28      
                Detector Position [Turbine] -0.86 0.27      
        

Table 3.3: Parameter estimates and likelihood ratio tests of the GLMM analysing the effect of turbine presence upon bat activity, incorporating the effect of distance 
to nearest linear habitat feature. Detector positions are amalgamated into ‘turbine presence’ and ‘turbine absence’ categories and their interaction with wind speed is 
tested. The model used a negative binomial error distribution. 

        Fixed Effects Estimate Standard 
Error 

Log 
Likelihood 

AIC Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) 0.52 0.48      
        Mean Nightly Temperature (

o
C) 0.05 0.03 -1640.1 3298.3 2.68 1 0.102 

        Rainfall Occurrence During Night -0.37 0.15 -1641.8 3301.7 6.06 1 0.014 
        Distance to Nearest Linear Habitat 
Feature 

-0.03 0.003 -1681.2 3380.4 84.84 1 <0.0001 

        Turbine Presence * Mean Nightly Wind 
Speed (m/s) 

-0.55 0.14 -1646.2 3310.4 14.78 1 0.0001 
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3.4.3 Environmental conditions and bat activity 

The total number of bat passes recorded from all sites (N) was 27,387 across 

642 nights of monitoring (mean per detector-night = 42.7, std. dev. = 94.84).  

82.9% of calls were identified as belonging to the Pipistrellus genus, 9.2% as 

Nyctalus and Eptesicus, 6.2% as Myotis, 0.7% as Plecotus, 0.7% Barbastella, 

0.1% as Rhinolophus and Unclassified recordings comprised only 0.3%. Bat 

activity was recorded during 91.3% of monitoring nights. 

Mean nightly temperature, mean wind speed, rainfall occurrence, proportion of 

built environment landcover and distance to linear habitat features were all 

found to have a significant effect upon nightly bat activity levels (Table 3.4). 

With the exception of temperature’s positive association with bat activity, 

increases in all of these factors were found to have a negative influence on bat 

activity levels (Figure 3.5 a-e). 

As mean nightly wind speeds at ground level (1.5m) increased from 0 to 6 m/s, 

average bat passes per hour were estimated to fall from 7.75 (2.66-22.59) to 

0.61 (0.17-2.12), an average reduction of 92%. At a turbine hub height of 20m, 

due to wind shear with height this wind speed change represents an increase 

from approx. 0 to 10.7 m/s, based on a typical arable grassland landcover 

(applying a log law shear adjustment (Mathew, 2006)). However bat activity 

levels were not recorded at hub height and equivalent changes in bat activity at 

this height cannot be guaranteed. Similarly rainfall occurrence during a night 

was estimated to cause activity to drop from 2.6 (0.84-8.04) to 1.93 (0.61-6.15) 

passes per hour (an average decrease of 26%), whilst an increase in mean 

nightly temperature from 4.9oC to 19.5oC resulted in an increase from 0.82 

(0.31-2.19) to 6.83 (1.81-25.82) passes per hour. 

Differences in habitat structure in the surrounding landscape and at a local level 

within sites were also found to have an effect (Figure 3.5d and 3.5e). With an 

increase in proportion of built environment landcover within the surrounding 

landscape out to a 5km radius from 0.44% to 25%, hourly bat passes were 

estimated to decrease from 3.03 (1-9.2) to 0.64 (0.11-3.62), an average 

decrease of 79%. Similarly with an increase in distance from the nearest linear 
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habitat feature of 2m to 100m, bat passes per hour were estimated to drop from 

3.81 (1.31 to 11.09) to 0.75 (0.14-3.96) (an average decrease of 80%).  

At a species group level, the effects of some environmental conditions were 

observed to vary. The Pipistrellus sp. analysis recorded no significant influence 

from rainfall or built environment landcover (see Table S3.6). Only wind and 

temperature were found to have a significant moderating influence upon 

Nyctalus / Eptesicus activity (see Table S3.7) though the effect size from wind 

was reduced relative to the all-species model. Finally, the ‘woodland bats’ 

model indicated a lack of significant influence of temperature and distance to 

nearest linear habitat feature upon activity (see Table S3.8), however an 

increased negative effect size of rainfall.   

No turbine-related variables were found to have any significant effect during 

development of the models, including height to blade tip, number of blades and 

number of years since planning approval (a measure of relative approximate 

length of installation time). 

At a site level, only wind speed and proportion of surrounding built environment 

land cover remained as significant predictors of bat activity levels (Table 3.5). 
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Table 3.4: Parameter estimates and likelihood ratio tests of the night-level GLMM analysing the effect of environmental variables upon bat activity. The model used 
a negative binomial error distribution. 

        Fixed Effects Estimate Standard 
Error 

Log 
Likelihood 

AIC Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) 0.78 0.41      
        Mean Nightly Temperature (

o
C) 0.14 0.02 -2156.2 4326.4 35.86 1 <0.0001 

        log (Mean Nightly Wind Speed (m/s)) -1.3 0.14 -2179.2 4372.4 81.9 1 <0.0001 
        Rainfall Occurrence During Night -0.3 0.13 -2141 4296 5.44 1 0.02 
        Percentage of Landcover Within 5km 
Classified as ‘Built Environment’ 

-0.06 0.03 -2141.1 4296.1 5.62 1 0.018 

        Distance to Nearest Linear Habitat 
Feature 

-0.02 0.01 -2141.7 4297.4 6.9 1 0.009 

        

Table 3.5: Parameter estimates and likelihood ratio tests of the site-level GLMM analysing the effect of environmental variables upon bat activity. The model used a 
negative binomial error distribution. 

        Fixed Effects Estimate Standard 
Error 

Log 
Likelihood 

AIC Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) 1.94 1.45      
        Mean Nightly Temperature (

o
C) 0.12 0.11 -375.03 385.06 30.15 1 0.275 

        Mean Nightly Wind Speed (m/s) -1.33 0.29 -383.23 394.75 39.84 1 0.002 
        Mean Nightly Rainfall Per Hour (mm) 1.64 0.94 -376.42 386.53 31.62 1 0.108 
        Percentage of Landcover Within 5km 
Classified as ‘Built Environment’ 

-0.08 0.03 -381.93 393.06 38.15 1 0.004 

        Distance to Nearest Linear Habitat 
Feature 

-0.01 0.01 -374.24 384.25 29.34 1 0.527 
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% of Landcover within 5km  
Classified as Built Environment 

Figure 3.5: Prediction plots from the 
night-level GLMM analysing the effect of 
environmental variables upon bat activity. 
Dashed lines indicate 95% confidence 
intervals; circles = mean observed rate of 
bat passes; squares = median observed 
rate of bat passes; relative sizes of 
squares and circles represent relative 
contributing levels of data (larger = more 
data); (Rainfall variable (c): bars and CI 
lines = model prediction) 
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3.4.4 Activity levels at sites and timing of activity 

SM2-recorded activity rates at each site ranged from 0.03 to 26.31 passes per 

hour, with a mean of 12.43 (Table S3.9). However one site’s results were found 

to heavily skew the mean (the median was 1.72 including all sites). Excluding 

this site gave a mean of 3.20. This dataset covered a larger number of nights 

per detector and potentially different nights, relative to the 3 Batons dataset 

(Table S3.10).  

Using recordings from the set of three Baton detectors (number of sites = 26), 

mean passes per hour were found to be highest at the feature position (2.87 

passes per hour (range: 0.05 to 9.43)) and lowest at the open position (0.58 

(0.01-5.23)), with moderate activity at the turbine position (1.86 (0-13.52)). 

Results are shown in Table S3.10. 

The distribution of bat activity across the night for all sites is shown in Figure 

3.6. Activity is seen to peak 10-20% into the night, before falling until the period 

60-90% into the night, at which a smaller peak exists (these patterns are 

consistent with previous results at wind energy sites (Brinkmann et al. 2006; 

Limpens et al. 2013)). The same broad pattern is observed at all detector 

positions, however the second peak occurs slightly earlier in the open position, 

at 50-70% into the night. 
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Figure 3.6: Temporal distribution of bat activity (all species) across the night, for all sites (n=26), as recorded by the Baton detectors 
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3.5 Discussion 

This study provides some of the first results investigating the impacts of small 

and medium wind turbines upon bats. The results are also some of the first from 

wind turbines of any size in the UK. Bat fatality levels at small and medium wind 

turbines were measured, in addition to the disturbance impact of turbine 

presence upon bat activity and the influence of environmental factors in 

determining levels of bat activity. 

Small and medium turbines were found to pose a potential fatality risk to bats. 

The maximum average fatality rate was estimated as between 0.81 to 15.15 

turbine-1 year-1. Bat activity was higher at turbine locations than non-turbine 

locations during low wind speeds, however the pattern reversed during high 

wind speeds, indicating disturbance. Additionally, nightly bat activity levels at 

small and medium turbines were found to be significantly affected by a number 

of weather and habitat conditions. 

3.5.1 Estimating levels of bat fatality 

Only 3 bat carcasses were observed during approx. 4-week long field 

monitoring periods at 27 wind turbine sites, in total spanning 2.5 field seasons. 

On an unadjusted basis, this would yield an average fatality rate of 0.81 turbine-

1 year-1 at single micro, small or medium size turbines in the UK. After 

accounting for uncertainty inherent in the search protocol, the worst-case 

maximum fatality rate was estimated to be 15.15 turbine-1 year-1. It should be 

acknowledged that the potential impact is realistically likely to be lower than the 

latter rate. This could be confirmed by further stringent monitoring to reduce 

uncertainty whilst observing similar carcass numbers. 

The Poisson model can be used to provide a simple comparative estimate to 

consider alongside the above result. The maximum credible mean number of 

fatalities likely to occur across 27 sites (the number analysed above), having 

observed 3 carcasses in total, could be estimated as 7.753 (P = 0.05) using the 

Poisson distribution (P(x) = µxe-µ/x!). Having accounted for average search 
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conditions (i.e. search efficiency, carcass removal, searchable area and search 

interval) this is equivalent to 10.201 fatalities across 27 sites. The latter implies 

that the maximum annual fatality rate at a single micro, small or medium size 

turbine in the UK per year is 2.76. However this approach ignores the 

uncertainty/credible intervals of fatality estimates at a site level (in addition to 

uncertainty in the measures of site-level search efficiency and carcass 

removal), which in reality cumulatively influence the total, ‘combined sites’ 

fatality estimate. The Poisson model could again be used to provide a simple 

comparative estimate. For example, the maximum credible fatality estimate for 

individual sites, having observed 0 fatalities (the closest integer to the mean 

observed carcasses per site, 0.111 (i.e. 3 / 27)) is 2.995 (P = 0.05) using the 

Poisson distribution. Multiplying this result to represent 27 sites equals 80.865 

fatalities, adjusted to 106.401 having accounted for search conditions. This 

implies a per-turbine maximum annual fatality rate of 28.79, somewhat higher 

than the 2.76 found when calculated at a ‘combined sites’ level. Both of these 

Poisson model-based methods are a simplification of the calculation methods 

required to more accurately estimate likely maximum fatality thresholds. These 

limitations notwithstanding, the mean of the two estimated rates (15.78) is 

encouragingly similar to that calculated during this study (15.15). 

The scope of this study does not include the calculation of cumulative fatalities 

across all installed small and medium wind turbines in the UK and subsequent 

population level impacts. The complexity of this subject would require a stand-

alone study incorporating numerous demographic measures of bat population 

structures and regional differences in bat populations and fatality rates. 

Accurate bat population estimates are very difficult to produce (Barlow et al. 

2015; Kunz et al. 2007) and therefore any attempt to infer population impact 

from cumulative fatality estimates will be subject to large potential error. Any 

inferred population impacts should consider all turbine sizes and both wind 

farms and individual turbines.  

The use of a professionally trained search dog to locate bat carcasses ensured 

reliable search efficiency. A high proportion of bat carcasses were also found to 

persist in the field for relatively long periods of time. These results suggest bat 

fatality monitoring at turbines in the UK is a feasible, if specialist, task. A low 

search efficiency result at a single site (excluded from further analyses) 
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substantially increased the estimate of maximum possible fatalities at the site 

due to uncertainty, highlighting the importance of efficiency tests. 

Estimated fatality rates were higher than the only previous study concerning 

small turbines (Minderman et al. 2015). These differences may be the product 

of multiple factors, as discussed below. The previous study used anecdotal 

records of bat fatalities from turbine owners. The search efficiency of turbine 

owners was likely to have been very low due to a lack of search training 

(Minderman et al. 2015). In addition it is likely that the ‘searches’ would have 

comprised a casual walk around a turbine or a chance finding of a carcass. 

Search efficiency rates from trained professionals following a strict search 

protocol were however applied in the study’s estimates (Minderman et al. 2015). 

This is likely to significantly underestimate uncertainty regarding searcher 

efficiency and therefore potential fatality estimate ranges. 

Minderman et al. (2015) also used a monitoring length equal to the installed 

lifetime of turbines and treated any visit to the turbine by owners as a search. In 

reality such visits would not normally consist of a search. As many turbine 

owners reported zero fatalities, this method would report zero observed 

carcasses over a long time period, significantly reducing measures of observed 

carcasses per night. It is unlikely in reality that this could be treated as reliable 

long term monitoring. Furthermore, there is an inherent potential bias in fatality 

reporting from turbine owners due to concern regarding impacts on protected 

species. Consequently this method risks underestimation of fatalities due to 

under-reporting (Minderman et al. 2015). Finally the study applied the carcass 

software to estimate fatalities from sites with very low observed carcasses, a 

purpose for which the software is unsuitable and which may produce erroneous 

fatality rates.  

Having observed fatalities at small wind turbines, it can be confirmed that bats 

will not always avoid small turbines. This raises questions as to the consistency 

of their ability to detect turbines. The hypothesis that bats may not echolocate 

as frequently at height (Cryan and Barclay, 2009) – proposed as a potential 

explanation for fatalities at wind farms – does not explain these fatalities at 

small turbines, at heights where frequent echolocation may be expected. 
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Without further sampling at a large number of sites, it is difficult to judge the 

potential variation in fatality levels between species due to low numbers of 

observed fatalities. Long term monitoring at sites with observed fatality 

occurrence may provide further information regarding species-specific patterns. 

3.5.2 Differences in activity with varying proximity to a wind turbine 

Habitat type had a significant impact upon resulting bat activity measures at 

sites, finding significantly higher activity near linear habitat features than in open 

habitat. This has important implications for approaches to monitoring at small 

and medium wind turbine sites (and potentially at large turbine sites), whereby 

classification of sites’ bat activity could be altered due to detector positioning. 

Furthermore this result is consistent with typical expectations of bats’ habitat 

use (Downs and Racey, 2006; Verboom and Huitema, 1997; Vaughan et al. 

1997), verifying this assumption for turbine sites. 

During low wind speed conditions, bat activity levels were higher at turbine 

locations relative to non-turbine locations. However during increased wind 

speeds, activity levels were lower at turbine locations than non-turbine 

locations. It therefore appears that the presence of a non-moving or slow-

moving turbine is not a deterrent to bat activity and may even provide a feature 

of interest for foraging, navigation or other purposes. In contrast, during 

operation in high wind speeds, small to medium turbines appear to have a 

negative impact upon bat activity levels. This finding is consistent with previous 

small turbine research (Minderman et al. 2012). The observation of lower bat 

activity levels at turbines during high wind speeds is also consistent with 

previous research at large wind farms (Arnett et al. 2008; Brinkmann et al. 

2006; Kerns et al. 2005; Rydell et al. 2010a; Amorim et al. 2012). 

The results suggest turbines have a non-fatal disturbance impact upon bat 

activity during high wind speeds. The significantly different levels of activity 33-

47m away indicate that the impact of turbines dissipates within this distance. 

The impact distance is likely to be even lower than this, on the basis of previous 

observations that effects on activity diminish within 20m (Minderman et al. 

2012). Limited amounts of evidence-based planning guidance regarding bats at 

small turbines are currently available. The main national statutory guidance 
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often used in England by default is therefore guidance regarding wind farms 

(Natural England, 2014). This suggests a minimum separation distance of 50m 

between turbines and habitat features of value to bats. This guideline is often 

impossible or impractical to meet in the context of small to medium turbines 

placed within domestic or small agricultural land holdings. Based on the 

monitoring findings regarding disturbance distances discussed above, it seems 

viable to suggest a reduction of separation distances to 20m in the context of 

small and medium turbines. 

The decreased activity during high wind conditions may suggest bats are either 

able to avoid turbines with fast-spinning blades, or are deterred by the blades’ 

movement or the resulting effect on the auditory and/or airflow environment 

near the turbine. Alternatively this could suggest that bats favour the shelter 

provided by linear features during high-wind conditions. The occurrence of high 

activity levels near turbines during low wind speeds is however potentially a 

matter of concern, due to the higher rates of bat fatalities during low wind 

speeds reported from many large wind farms (Arnett et al. 2008; Brinkmann et 

al. 2006; Kerns et al. 2005; Rydell et al. 2010a; Amorim et al. 2012). 

All bat monitoring for this analysis was carried out just above ground level 

(1.5m). It is unknown if activity at the nacelle level will reflect similar patterns, 

particularly at medium-scale turbines. Future studies may be able to explore this 

issue using paired monitoring. It is nonetheless probable that activity at hub 

height at small (and to a lesser extent, medium) scale turbines will be detected 

by ground mounted detectors due to the limited vertical separation distance. 

Whilst acoustic monitoring has been possible at hub height at large turbines by 

installing detectors within nacelles, small turbines do not typically feature 

adequate room in the nacelle area to mount any equipment, therefore hub 

height monitoring is likely to be difficult. The interim nacelle size, or in some 

cases hub-height maintenance platforms, of medium turbines may or may not 

offer monitoring potential. 

3.5.3 Environmental conditions and bat activity 

The observed effects of weather upon bat activity levels are consistent with 

previous research at wind energy sites and wider assumptions regarding bat 
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activity (Amorim et al. 2012; Georgiakakis et al 2013; Baerwald and Barclay, 

2011; Gorresen et al. 2015; Arnett et al. 2008; Rydell et al. 2010a; Limpens et 

al. 2013). The recorded effects of habitat conditions provide an improved level 

of clarity relative to the inconsistent patterns found in previous research (Rydell 

et al. 2010a; Arnett et al. 2008; Piorkowski and O’Connell, 2010; Dubourg-

Savage et al. 2011; Baerwald and Barclay, 2009; Brinkmann et al. 2006). The 

results appear to show that bats use wind turbine sites in a very similar manner 

to their use of normal landscapes, in close proximity to linear habitat features, 

during warm, low wind speed nights with no rain (Verboom and Huitema, 1997; 

Anthony et al. 1981; Erickson and West, 2002; Scanlon and Petit, 2008).  

The only existing small turbine study considering weather variables in relation to 

bat activity (Minderman et al. 2012) found no relationship with rainfall or 

temperature. The method used could however be considered limited, due to use 

of mean daily weather values rather than conditions at night, thereby 

incorporating skewing effects from diurnal weather variation. Furthermore the 

study used weather data from meteorological stations at a mean distance of 

13km from sites. This does not allow for site-level weather conditions and 

sheltering. Finally bat activity was measured in a binary manner per hour (i.e. 

activity/no activity), therefore detailed variation in activity with weather 

conditions could not be analysed. 

At a site level, only mean wind speed and proportion of built environment 

landcover remained as significant predictors of bat activity. These variables may 

therefore provide an early indication as to the likely relative magnitude of bat 

activity at a proposed wind energy site. However bat activity is known to vary 

considerably between nights, as are fatalities at wind energy sites (Hayes, 

1997; Baerwald and Barclay, 2011; observations from this study), as such, the 

nightly model results may also be considered at proposed sites. 

The variables in the night level model above could be adopted into algorithm-

based curtailment of turbines at sites where risk to bats is high (which can react 

to conditions on a nightly or hourly basis), particularly in the case of large and 

possibly medium turbines. However such flexible curtailment programs are less 

likely to be possible at small wind sites due to the simpler functionality of small 

turbines (i.e. typically not incorporating such advanced control units). Therefore 
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simpler measures such as siting of turbines within appropriate habitat, habitat 

management, or increasing turbine cut-in wind speeds may be the most 

practical solutions in these contexts (Baerwald et al. 2009; Arnett et al. 2011; 

Arnett et al. 2013; Hein et al. 2013; Hein et al. 2014; Peste et al. 2015; Millon et 

al. 2015). However the latter two mitigation approaches have yet to be tested at 

small turbine sites. 

Increased cut-in speeds (and to an extent, siting) may be sensitive to 

consequential energy yield and financial impacts, particularly as small turbines 

are not exposed to the high wind speeds found at larger heights (Mathew, 

2006). Therefore low wind speeds incorporated in proposed curtailment 

strategies are likely to comprise a larger proportion of available wind resource 

for energy generation, relative to large turbines. This energy impact will be 

exacerbated in lower wind speed areas at both a local and national level (e.g. 

England has lower average wind speeds than Scotland).  

An important variable that may help to account for a portion of the variability in 

bat activity at turbine sites in the UK is the volume of available insect prey 

(Rydell et al. 2010b; Rydell et al. 2016; Cryan and Barclay, 2009). Though this 

variable is likely to correlate to an extent with existing variables (e.g. 

temperature, wind speeds, distance to habitat features), completion of insect 

monitoring at turbine sites alongside bat monitoring may help to understand this 

association. 

This approach would bring many benefits. By doing so, we may be able to 

identify the reasons for bats’ activity patterns at wind turbines and potentially the 

underlying cause for their presence at turbines (Horn et al. (2008); Cryan and 

Barclay (2009); Rydell et al. (2010b); Valdez and Cryan (2013); Rydell et al. 

(2016)). Such studies may increase our understanding of bats’ echolocation 

abilities and consistency of echolocation when hunting insects at height (and 

species-specific adaptations that may moderate turbine-risk (Rydell et al. 

2010b)), in an environment with other moving features (i.e. turbine blades). This 

would simultaneously aid in addressing the infrequent-echolocation theory for 

bats’ vulnerability to turbines at height – particularly for bats known to migrate 

(Cryan and Barclay, 2009). Insect monitoring may discover a particular group of 

insect prey for bats that are preferentially available at wind turbine features, 
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perhaps attracted due to height or heat emissions (Rydell et al. 2010a; Rydell et 

al. 2016). In identifying prey niches we may be better placed to design 

mitigation strategies to draw such insects in the vicinity of turbines away from 

direct proximity. Habitat management mitigation schemes for bats may offer 

shared potential in this respect (Peste et al. 2015). If early indications of greater 

foraging around the lower blade tips (Rydell et al. 2010b) are supported by 

further insect monitoring, mitigation strategies (e.g. bat monitoring linked to 

automatic curtailment) may be efficiently designed. 

Associated with the monitoring of insects are however a range of challenges. 

Insect monitoring at hub height is a non-trivial difficulty and no widely accepted 

method has yet been designed. Methods known to have been applied so far at 

turbines include sticky traps (Rydell et al. 2016) and Malaise traps (University of 

Exeter, unpublished research), however the latter are limited to ground-level 

monitoring and both methods require extensive post-sampling periods of insect-

identification by experts with identification knowledge. Thermal imaging has also 

been used for ground level-only insect monitoring during hub-height monitoring 

of bats (Horn et al. 2008), though equipment costs are high. Access to maintain 

insect monitoring equipment at hub height has been found to be restricted at 

operational turbines (Rydell et al. 2016), limiting long-term monitoring 

strategies. Aerial monitoring methods such as helium balloons and drones could 

also be considered, however a multitude of restricting factors are likely to render 

these methods impractical, e.g. manual operation, operator time, expense and 

health and safety/blade collision concerns for turbine operators. Whilst 

investigation of the insect stomach-contents of bats killed at turbines is possible 

(Valdez and Cryan (2013); Rydell et al. (2016)), such efforts are limited by the 

inability to confirm bats’ consumption of the insects at the turbine, as opposed 

to occurring prior to arrival at the turbine (Rydell et al. 2016). Locating the 

carcasses of smaller bats such as those found in Europe is also often a 

specialist task requiring trained search dogs and handlers (Arnett, 2006; 

Mathews et al. 2013). 

Issues in application may remain even after insect monitoring. For example the 

subsequent application of any insect volume variable in active turbine 

curtailment mitigation could be problematic (i.e. automatic detection of insect 

volumes at turbines is likely to be technically challenging, though identifying 



198 
 

insect-weather associations may aid such efforts). The confounding factor of a 

shared preference for tall features between bats and insects (e.g. hill-topping 

(Rydell et al., 2010b)) may additionally complicate efforts to isolate the reason 

for bats’ presence at turbines. On balance, whilst a small number of dedicated 

studies of insects and bats at turbines may aid our understanding of bat 

behaviour, the wider application of insect monitoring at turbines is likely to be 

problematic and to offer minimal returns from high monitoring effort 

requirements. 

The very low levels of observed carcasses restricted any analysis of 

associations between fatalities and environmental conditions. Future long term 

studies at high risk sites may be able to identify significant predictors of fatalities 

after observing larger volumes of fatalities. 

3.6 Conclusions 

 This study observed bat fatalities in low numbers at small wind turbine sites in 

the UK. After observing only 3 bat carcasses during turbine monitoring, an 

unadjusted average fatality rate for single micro, small or medium turbines in 

the UK was estimated as 0.81 turbine-1 year-1. After accounting for uncertainty 

in search protocols, the worst-case-scenario maximum fatality rate was 

estimated as 15.15 turbine-1 year-1. The latter is however unlikely to be 

representative of actual fatality rates and indicates further monitoring dedicated 

solely to observing fatalities is required, to reduce uncertainty levels and likely 

confirm a lower maximum fatality rate. 

Bat activity at small and medium turbine sites was found to be higher near linear 

habitat features than in open habitat. Turbine presence was only found to 

reduce bat activity during high wind speeds; this result is consistent with 

previous small turbine research (Minderman et al. 2012). Whilst bats’ apparent 

avoidance of turbines during these conditions is positive with regard to reducing 

fatality risk, the observed small scale displacement of bats represents a non-

fatal disturbance impact (though this effect dissipates within 33-47m or less). 

Whilst this small displacement seems unlikely to cause wider population-level 
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impacts, this can only ultimately be confirmed by long term studies incorporating 

monitoring before and after turbine construction. 

Wind speed, temperature, rainfall occurrence, distance to linear habitat features 

and proportion of built environment landcover within 5km were all found to have 

a significant influence upon bat activity levels at turbine sites. The use of these 

variables within algorithm-based curtailment of turbines may help to mitigate 

impacts upon bats in the UK. However due to the more limited technology in 

small turbines, such advanced curtailment methods are not likely to be possible. 

As such, simpler mitigation methods such as appropriate siting of turbines and 

habitat management (and only if still required, increasing turbine cut-in speeds) 

are likely to provide a more practical solution in the context of small turbines. 

No statutory national guidance is currently available for assessment of risk to 

bats at small and medium wind turbines in England and available guidance 

elsewhere in the UK and Europe for small and medium turbines is very limited 

and largely not evidence based. Even with the current uncertainty in the UK 

wind energy industry as a result of Government policy, planning and funding 

changes, the number of small and medium wind turbines deployed is likely to 

continue to grow from its current estimated total of over eight thousand turbines. 

As a result, appropriate planning guidance is required to clarify bat assessment 

recommendations at small and medium turbines, rather than inappropriately 

applying onerous requirements based on large wind farm assessment 

guidelines, or applying no assessment due to a lack of guidance (issues 

previously highlighted by Park et al. (2013)). This study’s results, along with the 

previous small turbine studies (Minderman et al. 2012; Minderman et al. 2015) 

can be used as an evidence base from which guidance can be shaped. Future 

studies – particularly long term studies at small and medium turbine sites – are 

required to build upon these results as described above. 

As suggested by Minderman et al. (2012), it is recommended guidance includes 

the use of a separation distance of 20m between small and medium turbines 

and linear habitat features or other important bat habitats. Furthermore it is 

recommended that guidance regarding mitigation strategies for risk to bats at 

small and medium turbines focuses on appropriate siting of turbines. Finally it is 

emphasised that monitoring of bat fatalities in the UK (e.g. in research 
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programmes) should be carried out using professionally trained search dogs 

and should account for levels of carcass persistence and search efficiency, in 

order to produce reliable estimates of total possible fatalities.
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3.8 Chapter 3: Supplementary Materials 

Table S3.1: Original 19 candidate variables for the ‘Environmental Conditions and Bat Activity’ 
analysis 

 Temperature (
o
C) 

 Absolute Pressure (Hpa) 
 Wind Speed (m/s) 
 Mean rainfall per hour (mm/hr) 
 (Mean) number of days since 1st January (parentheses = site level model) 
 Percentage of landcover within 5km classified as ‘Built Environment’ (%) – percentages not 
including marine area 
 Percentage of landcover within 5km classified as ‘Water’ (%) – percentages not including 
marine area 
 Percentage of landcover within 5km classified as ‘Broadleaved woodland’ (%) – percentages 
not including marine area 
 Distance to nearest Bat Conservation Trust (BCT)-recorded roost (records up to and including 
2012) (m) 
 Mean of 3-year mean roost counts from Bat Conservation Trust (BCT)-recorded roosts (records 
up to and including 2012) within 5km 
 Mean of 3-year mean roost counts from Bat Conservation Trust (BCT)-recorded roosts (records 
up to and including 2012) within 2km 
 Density of Bat Conservation Trust (BCT)-recorded roosts (records up to and including 2012) 
within 5km 
 Density of Bat Conservation Trust (BCT)-recorded roosts (records up to and including 2012) 
within 2km 
 Total length of linear habitat features (i.e. hedgerows and tree lines) within 500m (m) 
 Total length of linear habitat features (i.e. hedgerows and tree lines) within 50m (m) 
 Distance to nearest linear habitat feature (i.e. hedgerow or tree line) (m) 
 Wind turbine height to upper blade tip (m) 
 Wind turbine number of blades 
 Number of years since wind turbine planning approval 
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Table S3.2: Parameter estimates and likelihood ratio tests of the GLMM analysing the effect of 
turbine presence and habitat type (linear features and wooded habitat vs. open habitat) upon 
bat activity, incorporating an interaction between detector position and distance to nearest linear 
habitat feature variables. The model used a negative binomial error distribution. 

        Fixed Effects Estimate Standard 
Error 

Log 
Likelihood 

AIC Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) 
[Detector Position 
= Far(Feature)] 

0.86 0.48      

        Mean Nightly 
Temperature (

o
C) 

0.05 0.03 -1589.7 3201.5 4.02 1 0.045 

        Mean Nightly Wind 
Speed (m/s) 

-0.34 0.06 -1601.1 3224.2 26.7 1 <0.0001 

        Rainfall 
Occurrence During 
Night 

-0.42 0.13 -1592.7 3207.4 9.98 1 0.002 

        Detector Position 
[Turbine] * 
Distance to 
Nearest Linear 
Habitat Feature 

0.01 0.01 -1595.7 3202.9 16 3 0.001 

        
 

Table S3.3: Parameter estimates and likelihood ratio tests of the GLMM analysing the effect of 
distance to nearest linear habitat feature upon bat activity using a subset of the data only 
including detectors in the ‘turbine’ position. The model used a negative binomial error 
distribution. 

        Fixed Effects Estimate Standard 
Error 

Log 
Likelihood 

AIC Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) 1.20 0.80      

        Mean Nightly 
Temperature (

o
C) 

0.05 0.05 -531.39 1074.8 0.98 1 0.322 

        Mean Nightly Wind 
Speed (m/s) 

-0.71 0.11 -548.3 1108.6 34.80 1 <0.0001 

        Rainfall 
Occurrence During 
Night 

-0.46 0.23 -532.89 1077.8 3.98 1 0.046 

        Distance to 
Nearest Linear 
Habitat Feature 

-0.03 0.01 -535.48 1083.0 9.16 1 0.002 
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Table S3.4: Parameter estimates and likelihood ratio tests of the GLMM analysing the effect of 
turbine presence upon bat activity, incorporating the effect of distance to nearest linear habitat 
feature. Detector positions are amalgamated into ‘turbine presence’ and ‘turbine absence’ 
categories. The model used a negative binomial error distribution. 

        Fixed Effects Estimate Standard 
Error 

Log 
Likelihood 

AIC Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) 0.79 0.49      

        Mean Nightly 
Temperature (

o
C) 

0.05 0.03 -1647.4 3310.7 2.36 1 0.125 

        Mean Nightly Wind 
Speed (m/s) 

-0.33 0.07 -1655.5 3327.0 18.64 1 <0.0001 

        Rainfall 
Occurrence During 
Night 

-0.36 0.15 -1649.0 3314.0 5.58 1 0.018 

        Turbine Presence -0.15 0.2 -1646.5 3308.9 0.56 1 0.454 
        Distance to 
Nearest Linear 
Habitat Feature 

-0.03 0.003 -1687.2 3390.3 81.94 1 <0.0001 

        
 

Table S3.5: Parameter estimates and likelihood ratio tests of the GLMM analysing the effect of 
turbine presence upon bat activity, incorporating the effect of distance to nearest linear habitat 
feature. Detector positions are amalgamated into ‘turbine presence’ and ‘turbine absence’ 
categories and their interaction with wind speed is tested. The model used a negative binomial 
error distribution and no outliers were excluded. 

        Fixed Effects Estimate Standard 
Error 

Log 
Likelihood 

AIC Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) 1.00 0.49      
        Mean Nightly 
Temperature (

o
C) 

0.03 0.03 -1698.8 3415.6 0.9 1 0.343 

        Rainfall 
Occurrence During 
Night 

-0.36 0.15 -1701.2 3420.4 5.66 1 0.017 

        Distance to 
Nearest Linear 
Habitat Feature 

-0.03 0.003 -1740.9 3499.7 85.02 1 <0.0001 

        Turbine Presence 
* Mean Nightly 
Wind Speed (m/s) 

-0.52 0.14 -1705.4 3428.8 14.1 1 0.0002 
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Table S3.6: Parameter estimates and likelihood ratio tests of the night-level, Pipistrellus genus 
GLMM analysing the effect of environmental variables upon bat activity. The model used a 
negative binomial error distribution 

        Fixed Effects Estimate Standard 
Error 

Log 
Likelihood 

AIC Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) 0.39 0.48      
        Mean Nightly 
Temperature (

o
C) 

0.16 0.03 -1951.73 3917.46 33.84 1 <0.0001 

        log (Mean Nightly 
Wind Speed 
(m/s)) 

-1.51 0.16 -1976.32 3966.64 83.02 1 <0.0001 

        Rainfall 
Occurrence 
During Night 

-0.20 0.14 -1935.83 3885.66 2.04 1 0.153 

        Percentage of 
Landcover Within 
5km Classified as 
‘Built 
Environment’ 

-0.05 0.03 -1936.02 3886.04 2.42 1 0.120 

        Distance to 
Nearest Linear 
Habitat Feature 

-0.02 0.01 -1938.08 3890.16 6.54 1 0.011 
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Table S3.7: Parameter estimates and likelihood ratio tests of the night-level, Nyctalus and 
Eptesicus genera GLMM analysing the effect of environmental variables upon bat activity. The 
model used a negative binomial error distribution 

        Fixed Effects Estimate Standard 
Error 

Log 
Likelihood 

AIC Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) -3.01 0.69      

        Mean Nightly 
Temperature (

o
C) 

0.17 0.04 -1052.64 2119.28 22.30 1 <0.0001 

        log (Mean Nightly 
Wind Speed 
(m/s)) 

-0.72 0.19 -1048.28 2110.56 13.58 1 0.0002 

        Rainfall 
Occurrence 
During Night 

-0.30 0.18 -1042.77 2099.54 2.56 1 0.110 

        Percentage of 
Landcover Within 
5km Classified as 
‘Built 
Environment’ 

-0.00 0.05 -1041.49 2096.98 0.00 1 1 

        Distance to 
Nearest Linear 
Habitat Feature 

-0.01 0.01 -1042.28 2098.56 1.58 1 0.209 

        
 

Table S3.8: Parameter estimates and likelihood ratio tests of the night-level, Myotis, 
Barbastella, Plecotus and Rhinolophus genera GLMM analysing the effect of environmental 
variables upon bat activity. The model used a negative binomial error distribution 

        Fixed Effects Estimate Standard 
Error 

Log 
Likelihood 

AIC Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) -0.20 0.47      

        Mean Nightly 
Temperature (

o
C) 

0.02 0.03 -998.68 2011.37 0.82 1 0.366 

        log (Mean Nightly 
Wind Speed 
(m/s)) 

-1.37 0.17 -1030.01 2074.02 63.47 1 <0.0001 

        Rainfall 
Occurrence 
During Night 

-0.77 0.15 -1010.71 2035.42 24.87 1 <0.0001 

        Percentage of 
Landcover Within 
5km Classified as 
‘Built 
Environment’ 

-0.09 0.03 -1001.84 2017.68 7.13 1 0.008 

        Distance to 
Nearest Linear 
Habitat Feature 

-0.01 0.01 -998.53 2011.06 0.51 1 0.477 
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Table S3.9: SM2 detector bat monitoring results from all sites (n=31), sorted by total passes per hour (in descending order). Data has been filtered to include only 
nights that featured suitable weather conditions (as defined above), adequate equipment battery levels and equipment in working order.  

    
Site Number Total bat passes (all species) 

Total hours of monitoring (including half an hour before 
sunset and after sunrise each night) 

Total bat passes per hour (all 
species) 

        5 4958 188.42 26.31 
7 1882 163.38 11.52 

10 2657 251.73 10.55 
2 613 63.15 9.71 
1 1360 159.67 8.52 

20 2014 242.05 8.32 
24 2208 301.88 7.31 
31 1117 167.12 6.68 
21 1418 234.60 6.04 
19 781 175.17 4.46 
11 895 242.28 3.69 
15 856 240.63 3.56 
25 978 290.85 3.36 
17 125 43.88 2.85 
30 228 108.72 2.10 
22 349 203.28 1.72 
6 379 224.93 1.68 
3 195 150.95 1.29 

23 262 291.05 0.90 
4 180 204.10 0.88 

33 87 119.78 0.73 
32 133 228.82 0.58 
27 155 296.90 0.52 
29 96 228.75 0.42 
9 102 280.58 0.36 

16 17 52.22 0.33 
26 77 303.98 0.25 
8 55 252.80 0.22 

28 16 161.77 0.10 
18 10 109.73 0.09 
14 6 213.15 0.03 

    All Sites 24209 1947.17 12.43 
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Table S3.10: Baton detector bat monitoring results from all sites (n=26). Data has been filtered to include only nights that featured suitable weather conditions (as 
defined above), adequate equipment battery levels and equipment in working order. 

           

Site Number 

Total bat 
passes (all 
species) – 

Far(Feature) 
detector 
position 

Total bat 
passes (all 
species) – 
Far(Open) 
detector 
position 

Total bat 
passes (all 
species) – 

Turbine 
detector 
position 

Total bat 
passes (all 

species) – All 
3 positions 
combined 

Total hours of 
monitoring 

(including half 
an hour before 

sunset and 
after sunrise 
each night) 

Total bat 
passes per 

hour (all 
species) – 

Far(Feature) 
detector 
position 

Total bat 
passes per 

hour (all 
species) – 
Far(Open) 
detector 
position 

Total bat 
passes per 

hour (all 
species) – 

Turbine 
detector 
position 

Total bat 
passes per 

hour (all 
species) – All 
3 positions 
combined 

Total 
monitoring 

nights at site 

           
           2 204 11 113 328 35.33 5.77 0.31 3.20 9.28 4 

5 362 54 281 697 51.65 7.01 1.05 5.44 13.49 6 

6 3 8 22 33 59.78 0.05 0.13 0.37 0.55 7 

7 406 225 582 1213 43.05 9.43 5.23 13.52 28.18 5 

8 562 45 526 1133 92.97 6.05 0.48 5.66 12.19 10 

9 169 55 51 275 77.55 2.18 0.71 0.66 3.55 8 

10 508 164 677 1349 118.65 4.28 1.38 5.71 11.37 12 

11 115 31 62 208 118.65 0.97 0.26 0.52 1.75 12 

14 52 11 81 144 109.37 0.48 0.10 0.74 1.32 9 

15 607 3 119 729 155.83 3.90 0.02 0.76 4.68 13 

16 6 4 0 10 26.25 0.23 0.15 0 0.38 3 

17 21 11 13 45 17.82 1.18 0.62 0.73 2.53 2 

18 98 114 39 251 118.35 0.83 0.96 0.33 2.12 14 

19 13 2 27 42 24.77 0.52 0.08 1.09 1.70 3 

20 272 41 287 600 59.35 4.58 0.69 4.84 10.11 7 

21 260 73 111 444 68.15 3.82 1.07 1.63 6.52 8 

22 31 28 0 59 79.03 0.39 0.35 0 0.75 8 

23 55 24 4 83 100.47 0.55 0.24 0.04 0.83 10 

24 97 43 20 160 38.87 2.50 1.11 0.51 4.12 4 

25 25 35 75 135 50.13 0.50 0.70 1.50 2.69 3 

26 7 7 6 20 48.13 0.15 0.15 0.12 0.42 4 

27 161 7 6 174 74.82 2.15 0.09 0.08 2.33 6 

29 612 1 13 626 67.85 9.02 0.01 0.19 9.23 8 

30 45 12 16 73 75.32 0.60 0.16 0.21 0.97 9 

32 308 30 161 499 39.32 7.83 0.76 4.09 12.69 3 

33 3 3 0 6 8.53 0.35 0.35 0 0.70 1 
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4 Spatial activity patterns of bats at wind turbine sites 

4.1 Abstract 

The fatality risk posed by wind turbines to bats is a well documented 

phenomenon. The non-fatal impacts of turbines upon bats have however 

received less research attention. Disturbance and displacement effects of wind 

turbines upon birds have been observed, including flight avoidance of whole 

wind farms and micro-avoidance of individual turbines within wind farms. Early 

research has shown that domestic-scale small wind turbines impose a 

disturbance effect upon bat activity in the immediate turbine vicinity during high 

wind speeds (Minderman et al. 2012).  

Presented here are some of the first investigations into spatial bat activity 

patterns within small and medium wind turbine sites in the UK. Social Network 

Analysis (SNA) methods were used to analyse bat movement networks within a 

small grid of bat detectors centred on each turbine. Each detector location was 

treated as a ‘node’ within the detector grid’s ‘network’. The analysis 

incorporated the wind turbine within the network and considered whether its 

presence represented a disturbance source that is avoided, or an additional 

navigable feature and target for investigative behaviour. Individual observations 

of longer flights paths between detectors were also analysed and categorised 

by behaviour type.  

Both network-wide and node-level measures of connectivity were calculated to 

assess the density and fragility of movement networks and the importance of 

individual locations for bat movement. The importance of habitat type at each 

detector location for bat movement was also considered.  

Associations were identified between bats’ movement routes and habitat 

structures present at sites. Furthermore bats were found to actively use the 

turbine area rather than avoid it, indicating disturbance from turbines does not 
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occur in all conditions. Foraging appeared to be the most prevalent behaviour 

type displayed by bats at wind turbine sites, including in the direct vicinity of 

turbines.  

Important movement linkages within sites provided by linear habitat features 

(e.g. hedges and tree lines) appeared to represent vulnerable locations within 

sites with sparse habitats. If these were disrupted, activity at sites could be 

reduced to weakly connected networks. Consequently it is suggested that non-

fatal disturbance impacts should be considered in assessments of proposed 

wind turbine sites where a high level of risk to bats is predicted. 

 

4.2 Introduction 

Recognition of the impacts of climate change and reducing global energy 

security has prompted a large increase in global renewable energy production. 

This has included the installation of increasing numbers of wind turbines. Wind 

turbines are known to present a mortality risk to bats due to blade strikes and 

barotrauma, with fatalities recorded in many studies in North America and 

Europe (Arnett et al. 2008; Baerwald and Barclay, 2011; Bicknell and Gillam, 

2013; Rydell et al. 2010; Dubourg-Savage et al. 2011; Georgiakakis et al. 2012; 

Lehnert et al. 2014; Minderman et al. 2015). Early fatality results have also 

been reported across other continents (Hull and Cawthen, 2013; Doty and 

Martin, 2013; Kumar et al. 2013; Escobar et al. 2015; Barros et al. 2015). 

Reported patterns of spatial bat activity near wind energy sites often concern 

landscape scales and inter-site variations (Arnett et al. 2008; Baerwald and 

Barclay, 2009; Piorkowski and O’Connell, 2010; Rydell et al. 2010; Dubourg-

Savage et al. 2011). This study aims to contribute to our understanding of bats’ 

spatial activity patterns within wind turbine sites, their behaviour in proximity to 

turbines and the occurrence of any non-fatal disturbance or avoidance impacts. 

These topics have received little research attention to date. 
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4.2.1 Spatial activity patterns and non-fatal impacts 

Thermal imaging observation has confirmed bat flight in proximity to turbine 

blades (Horn et al. 2008; Ahlén et al. 2009; Cryan et al. 2014), as well as 

collisions and avoidance behaviour (Horn et al. 2008). Bats’ presence at 

turbines has been attributed to investigation of turbines, foraging, responses to 

turbine-altered air currents and roost searching (Horn et al. 2008; Ahlén et al. 

2009; Cryan et al. 2014; Gorresen et al. 2015). 

Small numbers of studies have provided insights into spatial activity patterns 

within turbine sites. The construction of a wind farm in Germany appeared to 

cause displacement, reducing numbers of Eptesicus serotinus (Serotine bat) 

present over 5 years (Bach and Rahmel, 2004). In contrast, Pipistrellus 

pipistrellus (common pipistrelle) numbers increased, perhaps attracted by the 

turbines. Spatial distributions of foraging activity were altered across the site 

and flight heights along hedgerows changed with varying proximity to turbine 

blade tips. Avoidance behaviour by Nyctalus noctula (Noctule) and Serotine 

bats was also observed at a nearby wind farm (Bach and Rahmel, 2004). 

At some wind farms, concentrations of fatalities have been observed at the 

ends and centres of turbine strings (Arnett et al. 2008). Very little research is 

available regarding small, single wind turbine sites. A study in the UK recorded 

a larger reduction in bat activity in proximity to single wind turbines during 

periods of increased wind speeds, relative to locations 20m away from turbines 

(Minderman et al. 2012). Small numbers of bat fatalities have also been 

observed at small turbines (Minderman et al. 2015). 

Whilst research concerning bats is limited, previous studies focusing upon birds 

indicate the types of non-fatal impacts that bats may experience from turbines. 

Immediate and delayed displacement by and avoidance of turbines has been 

confirmed during bird studies (Strickland et al. 2011; Plonczkier and Simms, 

2012; Leddy et al. 1999; Johnson et al. 2000a; Shaffer and Johnson, 2008; 

Deshold and Kahlert, 2005). Impact levels vary by species and activity can 

increase near turbines (Devereux et al. 2008). Avoidance of whole wind farms 

can occur as well as micro-avoidance of individual turbines within wind farms 
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(Plonczkier and Simms, 2012; Villegas-Patraca et al. 2014; Everaert, 2014). 

Destruction or disruption of important bird habitats during wind farm 

construction may also cause disturbance and reduce bird numbers (Zeiler and 

Grünschachner-Berger, 2009; Beck et al. 2011). 

4.2.2 Social network analysis 

An effective approach for analysing animal movements and interactions is 

Social Network Analysis (SNA). It has been applied to identify social roosting 

networks between individual bats (Fortuna et al. 2009; August et al. 2014; Silvis 

et al. 2014), bat groupings during foraging (Dechmann et al. 2009) and 

networks present between bat roost trees (Rhodes et al. 2006). Little evidence 

is available from SNA regarding bats’ movements between locations on a fine 

temporal scale (i.e. on the scale of seconds). Analogous movement studies 

using SNA have however analysed use of coral reef by fish (Fox and Belwood, 

2014) and shark movements recorded by acoustic arrays; a similar concept to 

monitoring with acoustic bat detectors (Jacoby et al. 2012).  

SNA analyses focus upon networks comprised of units of interest (‘nodes’) and 

relationships between them (‘edges’) (Dube et al. 2011). Network-wide SNA 

measures help to define whether target species’ movement / association 

networks are widespread or focused upon particular locations, individuals or 

habitats. Furthermore they can indicate whether the network is robust and well 

connected or sparse and vulnerable to disruption. Individual node-level 

measures quantify the importance and functionality of each node or its 

characteristics for connectivity within a network (Dube et al. 2011; Dale and 

Fortin, 2010). Table S4.1 (Supplementary Materials) provides reference 

definitions of the SNA measures applied within this study. Previous studies 

have provided overviews of the principles and terminology associated with SNA 

(e.g. Dube et al. 2011). 

4.2.3 Study aims 

Through the application of SNA approaches, this study aimed to investigate the 

use of sites and habitat by bats during their movement between a small network 
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of bat detectors, installed at single small and medium wind turbine sites. The 

analysis incorporated the wind turbine within the network and considered 

whether its presence represented a disturbance source that is avoided, or an 

additional navigable feature and target for investigative behaviour. Individual 

observations of bat movement between detectors were also analysed and 

categorised by behaviour type, providing a complementary analysis to Horn et 

al.’s (2008) observations of movement around the rotor-swept area. 

4.3 Methods 

4.3.1 Data collection 

Field monitoring was carried out at 30 sites across Wales and south-west 

England with a single small or medium wind turbine installed. These 2 regions 

represent areas within the UK with high bat populations and diversity (Bat 

Conservation Trust, no date). 3 of the sites had a 2nd turbine installed, though 

only 1 turbine was monitored. Selection of the monitored turbine was random 

unless constrained by access. All turbines included in the study were >5m and 

<100m to blade tip height (>5m and <70m to hub height) and featured blade 

diameters of >1.5m and <60m. 23 sites featured a turbine with 3 blades, 6 had 

2 blades and 1 had >3 blades. All turbines were of a horizontal axis design and 

mounted on a standalone mast (not on a building). 

Monitoring was carried out during May-October in 2012 (12 sites) and 2013 (14 

sites) and June-July in 2014 (4 sites), with monitoring taking place concurrently 

at groups of 2-4 sites at a time. The ‘ideal’ monitoring set up is described below 

and in Figure 4.1. Due to varying site configurations, access constraints, habitat 

structures and equipment availability, alterations to the ‘ideal’ monitoring set up 

were often required. This included reductions in bat detector numbers which 

could be installed. Table 4.1 summarises the main changes that were made to 

the monitoring schedule at each site. 
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Table 4.1: Details of site monitoring programme. Sites 12 and 13 are excluded as the turbine 
had yet to be constructed at the sites, which were monitored to carry out pilot pre-construction 
monitoring observations 

   Site Number Number of monitoring nights Number of Baton detectors 

      1 28 6 

2 28 9 

3 28 0 

4 28 5 

5 28 9 

6 28 9 

7 25 9 

8 27 9 

9 28 5 

10 28 6 

11 28 6 

14 29 9 

15 29 7 

16 28 5 

17 26 8 

18 25 9 

19 27 9 

20 28 9 

21 28 9 

22 28 9 

23 27 9 

24 29 9 

25 28 8 

26 20 9 

27 28 9 

28 20 9 

29 27 9 

30 21 9 

31 20 9 

32 30 9 

33 28 9 

       

Each site was ideally monitored for 4 weeks and visited 5 times. During each 

visit, all equipment, clock settings and batteries were checked. 9 tripod-mounted 

Batbox Baton frequency division bat detectors linked to Zoom H2n audio-

recorders were installed at each site, arranged in a 3x3 grid centred on the 

turbine, with each detector being 33.3m apart (Figure 4.1). 
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Using equipment metadata recorded in the field, each planned recording night 

at each detector was flagged as either suitable or unsuitable. This was based 

upon the battery level of the detector and recorder (above or below threshold 

operating level), available file capacity of the recording device, any damage 

suffered by the equipment and weather conditions recorded by the weather 

station. Suitable weather conditions were defined as nights with mean wind 

speed <= 8m/s, mean temperature >=10oC and mean hourly rainfall <= 2.5mm. 

Nights with large fluctuations in these weather conditions were also removed. 

Recording nights started half an hour before sunset and ended half an hour 

after sunrise (daily sunrise/set times were used). The clock/recording timestamp 

settings for all Zoom H2n recorders were synchronised to the second against a 

single, consistent reference time source. Recording timestamps were 

proportionally corrected for any small time drift in the recording unit clock 

relative to the reference time source, noted during each visit. 

 

 

 

1
0
0
m

 

33.33m 

33.33

m 

W 

W 

= Wind turbine 

= Batbox Baton detector 

= Weather station 

            Idealised equipment site layout  

N 

Figure 4.1: An idealised diagram of equipment layout at monitored wind turbine sites 
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4.3.2 Bat sound analysis 

Wildlife Acoustics ‘Songscope’ software was used to complete a species auto-

identification scan on the recordings, using reference ‘recogniser’ files built from 

sampled Baton bat recordings where species had been identified. Recordings 

from the Baton detectors exceeding 1 minute were first manually checked for 

presence of any bat passes using the Pettersson Elektronik ‘Batsound’ viewer 

software. This was due to the extensive auto-ID scanning time required for long 

files. Almost all such files were identified as noise recordings (predominantly 

rain) and consequently were excluded from further processing. Any long files 

with bat passes were retained and scanned. 

All non-Pipistrellus genus classifications were manually checked, as the relative 

accuracy of recognisers for those genera was lower. Any noise-classified files 

with a high proportion of sound sections indicating a potential bat classification 

were also manually checked. A single bat pass was defined as at least 2 

echolocation calls within 1 second of one another. 

Individual species’ echolocations were identified using standard bat 

identification procedures (e.g. as detailed in Russ (2012) and Fisher et al. 

(2005)), based on call characteristics including frequency, shape, duration, 

interpulse interval, rhythm, characteristic call patterns (e.g. ‘chip-chop’ patterns), 

amplitude, habitat structure around the detector, geographical location of site 

and time of night. Bat species within the Myotis and Plecotus genera were not 

individually identifiable using acoustic methods alone and therefore were 

identified only at the genus level. Bat species within the Nyctalus and Eptesicus 

genera were only individually identified where call characteristics allowed a high 

degree of confidence, due to clear frequency or call pattern separation relative 

to the other species (with additional validation via consideration of habitat and 

geographical location). The remainder of the candidate Nyctalus and Eptesicus 

recordings were identified only as ‘Nyctalus/Eptesicus’. 
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4.3.3 Statistical methods 

4.3.3.1 Bat movement analysis using SNA 

Only sites with 9 Baton detectors installed were considered for analysis (21 

sites). Due to stringent data quality requirements (using only ‘suitable’ 

monitoring nights, as defined above), the need for all 9 detectors to be working 

suitably concurrently and recorders frequently reaching their storage capacity 

due to high levels of noise from inclement weather, only a small number of sites 

and associated nights provided suitable data. This was not considered a 

limitation, with the study having been designed for detailed activity analysis 

across short time periods. This approach has been employed by previous 

behavioural studies of bat activity near turbines and in network analyses of 

foraging bats (e.g. Horn et al. 2008; Ahlén et al. 2009; Dechmann et al. 2009). 

In total, 30 suitable recording nights were obtained across 10 sites (mean per 

site = 3, std. dev. = 2.3). 

An SNA approach was used to analyse bat movement between the Baton 

detectors within each site. The 9 detectors represented the ‘network’ and each 

detector a ‘node’ within the network. Each movement between the detectors 

represented an ‘edge’. Each monitoring night was divided into a series of 5 

second monitoring periods. Two or more bat recordings were considered linked 

and representative of bat movement between detectors (an ‘edge’), if they were 

recorded during the same or adjacent 5 second periods. Recordings were only 

linked if they featured either the same species, or the associated genus for 

recordings only identified to genus-level. The choice of 5 second periods was 

considered appropriate for the detectors’ spatial configuration (min. detector 

separation: 33.3m, max.: 47.1m (diagonal); see Figure 4.1) and bats’ typical 

flight speeds (see Supplementary Materials for further information). 

Each detector node in the network was labelled with its compass direction 

location, relative to the central wind turbine location (i.e. N, NE, S etc.), which 

was labelled ‘T’. Each detector node was also categorised in relation to the 

dominant habitat in its square cell area (see Figure 4.1). The habitat categories 
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comprised ‘open’ habitat, ‘feature’ habitat (e.g. linear hedgerows and tree lines) 

and ‘turbine’.  

The R software (R Core Team, 2015) and R package ‘igraph’ (Csardi et al. 

2015) were used to carry out SNA of bat activity. Activity data from each site 

and night were structured as adjacency matrices to identify associations 

(‘edges’) between detectors (‘nodes’), representing bat movement between the 

detectors. igraph’s ‘graph.adjacency’ function was applied to calculate an 

undirected network graph from each matrix, allowing multiple edges between 

node pairs, as well as ‘loops’ (self-association at a single detector). A second 

network was calculated to identify movements between and preferential use of 

habitat types. 

4.3.3.2 SNA measures 

Measures of overall connectivity and network structure across each night were 

assessed, identifying the overall size of the graph and the graph density. To 

calculate a graph density measure, igraph’s ‘simplify’ function was used to 

remove duplicate edges (only for this statistic), as this measure is poorly 

defined for duplicate edges (Csardi et al. 2015). Fragmentation within the 

network was also assessed, identifying the number of exclusive node groups, 

the global cluster coefficient and graph adhesion. Furthermore the characteristic 

path length and diameter of the graph were calculated.  

At a detector node-level, the nodes’ ‘degree’ of association, ‘betweenness’, 

‘closeness’ and ‘Eigenvector centrality’ within the network were identified. 

These node level measures quantified the importance of individual locations or 

habitat types for bat movement and connectivity within the wind turbine sites. 

The activity network at each site was plotted using the igraph package, creating 

layouts based on the geographical site configuration as well as the ‘Kamada 

Kawai’ and ‘Fruchterman Reingold‘ layout algorithms used to optimise 

representation of SNA graphs. UCINET network analysis software was used to 

carry out any statistical tests upon the network data, applying repeated 

permutations to account for the non-independent nature of network data. 

Movement bottlenecks were identified using the software’s ‘Bi-Components’ 
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tool. The network data were additionally compared against a theoretical ‘regular’ 

model representing equal bat activity across a network. Subsequently the 

networks were compared against 3 random models of bat activity, assessing 

whether bats’ spatial use of turbine sites can be considered regular, random or 

non-random. 

4.3.3.3 Bat flight behaviours 

Longer flight paths were analysed to consider bat behaviour and use of habitat 

around turbine sites. Where multiple movement edges were recorded for the 

same species/genus (as above) in successive 5 second periods, the overall 

flight path between detectors was recorded. Flight paths with 3 or more 

successive edges were selected for further analysis. The flight path was 

classified to a probable behaviour category (e.g. foraging, commuting, turbine 

investigation) based on its shape, species recorded, movement duration and 

relationship to habitat. Existing studies have frequently applied such manual 

classifications at turbine sites (Horn et al. 2008; Ahlén et al. 2009; Ahlén, 2003; 

Bach and Rahmel, 2004; Cryan et al. 2014; Gorresen et al. 2015). The flight 

path was also classified as either ‘expected’ or ‘unexpected’. For example if a 

Common Pipistrelle was recorded flying along a hedgerow crossing the 

monitoring area this was classified as ‘expected’. Alternatively if it deviated 

away from the hedgerow into open habitat to avoid or investigate a turbine, this 

was classified as ‘unexpected’. Total occurrence rates of behaviour types and 

unexpected flight paths are reported, alongside qualitative analysis of the flight 

behaviours. 
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4.4 Results 

4.4.1 Observed activity levels 

3292 bat recordings were made during the 5 second periods monitored, across 

all 30 monitoring nights (mean = 109.73 bat recordings night-1, or 12.19 

detector-1 night-1). The species composition of the recorded bat activity is 

illustrated in Table 4.2. Bat movements were recorded between all potential 

pairs of detectors in the overall study’s detector grid at least once during the 30 

nights of monitoring across the 10 sites (Figure 4.2). 585 inter-detector 

movements were recorded (mean 19.5 night-1), in addition to 546 intra-detector 

movements (i.e. successive recordings of flight around a single detector) (mean 

18.2 night-1) and 2308 isolated recordings at single detectors (mean = 76.9 

night-1). 

Table 4.2: Species-specific breakdown of the recorded bat activity 

   Species / Genus Number of recordings As a % of all species 

   
   
Common pipistrelle 881 26.8% 

Soprano pipistrelle 1314 39.9% 

Nathusius pipistrelle 3 0.1% 

Pipistrellus sp.(unknown) 642 19.5% 

Myotis 343 10.4% 

Noctule 49 1.5% 

Leisler 24 0.7% 

Serotine 25 0.8% 

Leisler / Serotine 8 0.2% 

Noctule / Leisler / Serotine 3 0.1% 

   
Pipistrellus 2840 86.3% 

Myotis 343 10.4% 

Nyctalus / Eptesicus 109 3.3% 

   
Total 3292 

 

     



229 

 

 

 

Figure 4.2: Combined distribution of recorded bat movements and individual bat recordings 
from all 30 monitoring nights at all 10 sites. Lines between detector positions represent 
recorded bat movements (boldness increases with number of records); circles at detector 
locations represent individual bat recordings (size of circle increases with number of records); 
looped lines attached to detector locations represent successive bat recordings at that location 
(i.e. concentrated bat movement around the detector location) 

Bat movement networks varied between sites and nights, both in volume of 

activity and spatial configuration of connectivity. Figure 4.3 illustrates recorded 

movements during 4 individual monitoring nights at 4 different sites, using the 

geographic layout of the detectors. Table 4.3 (a-c) exemplifies the inter-night 

variations observed. 
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Figure 4.3: Bat movement networks recorded on individual nights at 4 different sites. Lines 
between detector positions represent recorded bat movements (boldness increases with 
number of records); circles at detector locations represent individual bat recordings (size of 
circle increases with number of records); looped lines attached to detector locations represent 
successive bat recordings at that location (i.e. concentrated bat movement around the detector 
location) 

 
Not all detector locations were actively used at each site (mean active nodes 

per night = 7.5, range = 4-9, std. dev. = 1.6), though activity was recorded at the 

turbine location at 8 of the 10 sites. Where movement edges were observed 

(not all nights featured edges), total edges per night at each site ranged from 3 

to 122.  

 

 

a 

 

b 

 

c 

 

d 
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Table 4.3 a, b and c: Association matrices between detector locations – illustrating numbers of 
bat movements recorded between detectors. Results are shown illustrating Soprano Pipistrelle 
recordings from 3 individual, successive monitoring nights (nights 12, 13 and 14) from the 
same, single site (no. 5) 

 

Table 4.3c: Night 14             

 

E N NE NW S SE SW T W             

E 3 
        

            

N 0 0 
       

            

NE 0 0 0 
      

            

NW 0 0 0 0 
     

            

S 0 0 0 0 0 
    

            

SE 0 0 0 0 0 0 
   

            

SW 6 0 2 0 4 3 111 
  

            

T 2 0 0 0 0 0 1 0 
 

            

W 0 0 0 0 0 0 0 0 0             

4.4.2 Site level network analyses 

4.4.2.1 Network measures 

Table 4.4 sets out all site-level statistical network results for all bat species 

combined. A higher mean network density (0.45) was observed at sites with a 

Table 4.3a: Night 12   Table 4.3b: Night 13 

 
E N NE NW S SE SW T W    E N NE NW S SE SW T W 

E 5 
        

  E 0         

N 0 0 
       

  N 0 0        

NE 5 0 0 
      

  NE 2 0 0       

NW 0 0 0 0 
     

  NW 0 0 0 0      

S 2 0 0 0 0 
    

  S 0 0 0 0 1     

SE 1 0 0 0 0 0 
   

  SE 1 0 1 0 0 7    

SW 6 0 7 0 7 6 94 
  

  SW 0 0 1 0 1 3 6   

T 5 0 4 0 0 0 4 12 
 

  T 0 0 2 0 7 2 1 12  

W 0 0 0 0 0 0 0 1 0   W 0 0 0 0 0 0 0 0 0 
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cluttered habitat structure (sites with ≥50% of non-turbine detector habitat types 

categorised as ‘feature’) relative to those with an ‘open’ habitat structure (0.17) 

(<50% ‘feature’ types).  Both site types featured a mean site monitoring length 

of 3 nights. At a species-level Serotine, Nyctalus leisleri (Leisler’s bat) and 

Myotis (sp.) bats featured the lowest mean monitoring night network density and 

Pipistrellus pygmaeus (soprano pipistrelle) and common pipistrelle the highest. 

Table 4.4: Overview of site-level network statistics describing connectivity and complexity, 
activity density and clustering and network strength monitored at each site. All values are mean 
values per night to account for differing monitoring lengths between sites 

         

Site 
number 
(No. of 
nights) 

Mean network measures per night 

Total 
active 
nodes 

Total 
edges 

Graph 
density 

Node 
groups 

Cluster 
coefficient 

Graph 
adhesion 

Diameter Character-
istic Path 

Length 

         
         5 

(5) 
8.8 122.4 0.57 1.4 0.6 1 2.8 1.54 

         
         6 

(2) 
7 25 0.18 3 0.51 0 2.5 1.47 

         
         7 

(1) 
5 8 0.08 3 0 0 2 1.33 

         
         8 

(2) 
8.5 50 0.32 3.5 0.56 0 3 1.55 

         
         14 

(8) 
7.75 29.5 0.25 3.63 0.17 0.88 2.25 1.31 

         
         18 

(5) 
7.2 6.8 0.08 5.6 0 0 1 0.73 

         
         19 

(1) 
4 3 0.08 2 0 0 2 1.33 

         
         20 

(3) 
6.67 23.33 0.25 2.33 0.32 0 2.33 1.44 

         
         22 

(1) 
8 5 0.06 7 0 0 1 1 

         
         26 

(2) 
7 4.5 0.10 4 0 0 2.5 1.45 

         
 

 

Mean nightly global clustering coefficient values at sites ranged from 0 (low 

clustering) to 0.6 (moderate clustering) (Table 4.4), however the overall nightly 

mean of 0.25 represented a lack of overall cohesion within networks. Higher 

clustering coefficients were frequently recorded in concurrence with lower 



233 

 

numbers of node groups. However site 8 displayed a relatively high mean 

nightly coefficient of 0.56 whilst featuring a mean of 3.5 node groups. The latter 

case was the result of individual detectors recording occurrences of isolated bat 

activity that were not connected by movement to the remaining network 

detectors, which themselves showed high levels of interconnected clustering. 

Multiple node groups occurred at both sparse and cluttered habitat site types 

(as defined above) and the large numbers of node groups (Table 4.4) indicate 

fragmentation of habitat use is common at turbine sites. 

A mean of 20.6% of detector nodes at a site-level represented key movement 

‘bottlenecks’ between otherwise unconnected areas of sites. These node 

locations highlighted fragile elements of connecting habitat within sites, which if 

removed may result in greater fragmentation of bat activity. Correspondingly, 

graph adhesion values were found to be very low across most sites (nightly 

mean across all sites = 0.4), indicating that the majority of nightly activity 

networks at the sites were already weakly connected. For the few nights (17%) 

where activity was found to be strongly connected (i.e. a graph adhesion value 

>=1), the low graph adhesion values illustrated that a small number of habitat 

disturbances at the turbine sites would result in weakly connected networks.  

The diameter measure was similar between sites (nightly mean = 2.17, range of 

nightly means = 1-3), however these diameters were created from combined 

species’ use of each site. Mean individual species diameters for those species 

recorded on >5 nights ranged from 0.6 (Leisler’s bat) to 2.78 (common 

pipistrelle). Leisler’s bats may therefore be more likely to use straighter flights 

across turbine sites and to interact less with site features. Acoustic monitoring 

success is also likely to be lower for this species, given the mean diameter is 

less than 1. Common pipistrelles may rely on less direct, longer paths along 

features such as hedgerows. 

4.4.2.2 Movement network visualisations 

The movement network visualisations using the ‘Kamada Kawai’ and 

‘Fruchterman Reingold‘ layout algorithms illustrated ‘clusters’ of detector 

locations featuring good within-group connectivity (a group of nodes connected 



234 

 

by edges) (Figure 4.4). The visualisations highlighted any strength or lack of 

between-group connectivity (the number or lack of linking edges between 

different node groups). Detector node locations within these layouts do not 

represent geographic space, instead connectivity and association. The 

associated numbers of node groups are recorded in Table 4.4, illustrating that a 

cohesive network of site-wide activity was observed to be rare. Instead, most 

sites featured compartmentalised, unconnected groups of activity and in some 

cases, just scattered bat passes at separate locations. 

  

Figure 4.4: Examples of network visualisations using the Fruchterman Reingold and Kamada 
Kawai algorithms, suggesting (1: a and b) unconnected areas of Common Pipistrelle (a) and 
Leisler (b) bat flight activity within 2 different monitoring sites; (2) well-connected networks of 
flight activity 

a b 

2 

1 

d c 
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4.4.2.3 Regular and random network models 

All sites’ network densities were found to be significantly different to a regular 

model of movement (assuming equal use of all site areas), regardless of 

differences in monitoring length (Table 4.5). Individual, supplementary site 

networks were furthermore constructed for each of the 7 sites with at least 2 

monitoring nights, using 2 randomly chosen nights. A comparison of these 

against 3 random models of graph density (constructed from the mean number 

of edges present in the 7 comparison networks) illustrated only a small number 

of significant differences for individual sites (Table 4.5). Whilst a non-uniform 

structure of site use was found, the ability to describe bat activity at turbine sites 

as non-random was limited. 

 

Table 4.5: Comparison of 2-night site level networks with regular and random theoretical 
networks 

         Site 
number 
(No. of 
nights) 

Comparing 
density to a 

regular 
theoretical model 

(20,000 
iterations) 

Comparing 
density to 

random network 
1 (20,000 

iterations) 

Comparing 
density to 

random network 
2 (20,000 

iterations) 

Comparing 
density to 

random network 
3 (20,000 

iterations) 

         
 Z p t p t p t p 

         5 (5) -2.66 0.01 1.29 0.09 1.03 0.15 1.65 0.05 
         
         6 (2) -5.48 <0.0001 -1.13 0.13 -1.22 0.11 -0.64 0.27 
         
         7 (1) -13.69 <0.0001 - - - - - - 
         
         8 (2) -5.05 <0.0001 -0.78 0.21 -1.08 0.13 -0.31 0.38 
         
         14 (8) -1.91 0.03 -0.88 0.18 -0.15 0.12 -0.58 0.28 
         
         18 (5) -7.62 <0.0001 -3.24 0.001 -3.40 0.0004 -2.43 0.0096 
         
         19 (1) -13.68 <0.0001 - - - - - - 
         
         20 (3) -4.21 <0.0001 -1.12 0.13 -1.40 0.08 -0.72 0.23 
         
         22 (1) -18.63 <0.0001 - - - - - - 
         
         26 (2) -11.28 <0.0001 -2.18 0.02 -2.41 0.006 -1.62 0.06 
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4.4.3 Node-level network analyses and habitat type analyses 

Table 4.6 shows the node-level statistical network analysis results for all 

species combined. Movement links were found between all three habitat types 

(open / feature / turbine) at almost all sites. No activity was recorded at the 

turbine location at two sites, though both featured only a single monitoring night. 

A further single site did not record movement between the ‘open’ and ‘turbine’ 

habitat types, though activity was recorded at both. 

When analysing detector habitat types for all species and sites, differences in 

degree centrality (feature = 1136, open = 550, turbine = 532) were not 

significant (F = 1.98, df = 2, p = 0.16, 20,000 iterations). The ‘feature’ habitat 

type was assigned an eigenvector centrality value of 1, relative to 0.41 for 

turbine locations and 0.24 for open habitats. No significant differences in 

associations between habitat types were found (e.g. feature-open vs. feature-

turbine). The composition of habitat-type to habitat-type movements was: 43.6% 

‘feature-feature’; 17.4% ‘open-open’; 12.5% ‘feature-turbine’; and 12% ‘open-

turbine’; 11.7% ‘turbine-turbine’; and 2.8% ‘feature-open.  

The ‘turbine’ location featured the highest eigenvector centrality score of all 

detectors in the site-level network at half of the sites (and 3/10 sites on a mean 

nightly basis). The difference between the turbine and pooled non-turbine 

locations, using individual monitoring night samples, was significant at two of 

the five sites where this pattern was observed (t = -0.752, p = 0.007 (one tailed); 

t = -0.828, p = 0.003 (one tailed)) and approaching significance for a third (t = -

0.244, p = 0.06 (one tailed)). Similarly the turbine location frequently featured 

high ‘betweenness’ and ‘degree’ values in the node-level networks (Table 4.6) – 

i.e. recording many flights through the turbine location and many connecting 

movements to and from the turbine from the other sections of the site. 

Degree centrality was only significantly different between detector nodes at one 

of the seven sites with 2+ monitoring nights (F = 3.12, df = 8, p = 0.011, 20,000 

iterations). Preferential use of and reliance upon single detector portions of sites 

was therefore rarely observed. Significant between-detector differences were 

similarly only observed at a species-level at two sites for soprano pipistrelles (F 
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= 3.40, df = 8, p = 0.004, 20,000 iterations; F = 2.37, df = 8, p = 0.04, 20,000 

iterations) and one site for common pipistrelles (F = 2.17, df = 8, p = 0.05, 

20,000 iterations).
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Table 4.6: Network node-level measures of bat activity and detector location connectivity at each monitoring site. The data are displayed geographically within each 
site in relation to the geographic detector location they represent, as exemplified by the first set of 9 results in the top left of the table (i.e. within each 3x3 grid of 
results, the detector locations are organised as follows: top row left = north west (NW), top centre = N, top right = NE; middle row left = W, middle centre = Turbine 
(T), middle right = E; bottom row left = SW, bottom centre = S, bottom right = SE) 

 Site Number (No. of nights) Degree 
 

Betweenness 
 

Closeness 
 

Eigenvector Centrality 

                                

5 (5) 

1.80 (NW) 2.80 (N) 15.60 (NE) 
 

0.36 0.09 2.36 
 

0.05 0.06 0.08 
 

0.04 0.02 0.21 

1.80 (W) 37.60 (T) 27.60 (E) 
 

0 7.55 1.05 
 

0.06 0.10 0.08 
 

0.04 0.35 0.24 

105.60 (SW) 17.60 (S) 34.40 (SE) 
 

2.08 1.92 1.77 
 

0.08 0.08 0.08 
 

0.54 0.24 0.53 

                

6 (2) 

8.00 5.00 0 
 

2.10 0 0 
 

0.05 0.02 0.01 
 

0.52 0.15 0 

0.50 32.00 0.50 
 

0 2.40 0 
 

0.04 0.02 0.04 
 

0.23 0.50 0.003 

1.00 2.50 0.50 
 

0 1.00 0 
 

0.03 0.05 0.04 
 

0.43 0.52 0.02 

                

7 (1) 

5 2 0 
 

1 0 0 
 

0.083 0.077 0.05 
 

0.697 0.274 0 

0 0 0 
 

0 0 0 
 

0.05 0 0 
 

0 0 0 

0 9 0 
 

0 0 0 
 

0 0.077 0 
 

0 1 0 

                

8 (2) 

0 4.00 0 
 

0 0 0 
 

0.02 0.03 0.01 
 

0 0.02 0 

14.00 33.50 18.50 
 

2.50 3.86 2.65 
 

0.03 0.04 0.04 
 

0.47 1.00 0.48 

2.00 26.50 1.50 
 

0 0.99 0 
 

0.03 0.04 0.02 
 

0.13 0.87 0.02 

                

14 (8) 

2.50 2.75 5.13 
 

0.01 0.13 0.92 
 

0.03 0.04 0.04 
 

0.23 0.34 0.37 

1.88 17.88 8.63 
 

0.12 2.48 2.50 
 

0.02 0.05 0.03 
 

0.14 0.58 0.44 

4.63 4.88 10.75 
 

0.02 1.26 0.57 
 

0.03 0.04 0.05 
 

0.26 0.46 0.72 
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 Site Number (No. of nights) Degree 
 

Betweenness 
 

Closeness 
 

Eigenvector Centrality 

                                

18 (5) 

1.00 0.20 0.40 
 

0 0 0 
 

0.02 0.03 0.02 
 

0.40 0.20 0.40 

1.20 0.60 0.60 
 

0 1.00 0.60 
 

0.03 0.02 0.01 
 

0.24 <0.001 0.20 

1.80 7.60 0.20 
 

0 0 0 
 

0.02 0.01 0.03 
 

0.40 0.50 0.20 

                

19 (1) 

1 0 0 
 

0 0 0 
 

0.143 0 0 
 

0.5 0 0 

0 4 1 
 

0 1 0 
 

0 0.167 0.143 
 

0 1 0.5 

0 0 0 
 

0 0 0 
 

0 0 0.0833 
 

0 0 0 

                

20 (3) 

4.00 1.00 7.67 
 

1.33 0 2.22 
 

0.03 0.02 0.04 
 

0.10 0.01 0.25 

5.00 21.00 1.33 
 

1.05 2.00 0 
 

0.07 0.07 0.06 
 

0.56 1.00 0.36 

3.33 3.67 0 
 

1.67 1.07 0 
 

0.04 0.07 0 
 

0.05 0.06 0 

                

22 (1) 

0 1 0 
 

0 0 0 
 

0.018 0.02 0.018 
 

<0.001 0.236 <0.001 

0 0 9 
 

0 0 0 
 

0.018 0 0.02 
 

<0.001 0 1 

0 0 0 
 

0 0 0 
 

0.018 0.018 0.018 
 

<0.001 <0.001 <0.001 

                

26 (2) 

0.50 0.50 0.50 
 

0 0 0 
 

0.01 0.03 0.03 
 

<0.001 <0.001 0.35 

0 0 1.50 
 

0 0 0.50 
 

0 0.03 0.04 
 

0 <0.001 0.59 

1.00 3.00 2.00 
 

0 1.00 1.00 
 

0.03 0.01 0.04 
 

0.29 0.50 0.67 
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4.4.4 Bat flight behaviours 

147 long flight paths of all species were observed across the sites (≥3 

consecutive recordings). A mean of 4.9 detector recordings were linked for each 

path (range = 3 to 41, std. dev. = 4.94) and at least one flight path was recorded 

at every site. 

Flight paths were recorded for the common pipistrelle, soprano pipistrelle, 

Nathusius’ pipistrelle, Leisler’s bat, serotine, noctule and Myotis (sp.) bat 

species. Interpreted behaviours comprised foraging (n = 104), commuting (12), 

possible investigation (21) and ‘unknown’ (10). During foraging activity, 72.1% 

of flight paths incorporated at least some movement in the vicinity of linear 

hedgerow and woodland features. Only 3.8% displayed mixed use of open and 

feature habitats. A large proportion of foraging flights (41.3%) included the 

turbine area. Of the 27.9% of foraging flight paths in open habitat, 

approximately half (12.5% of the total foraging flights) also incorporated the 

turbine area. 

The frequency of looping and repeating flight patterns was high (71.4% of all 

flights, defined as including ≥2 consecutive recordings at the same location), 

indicating substantial foraging activity. 33.3% of the 105 repeating/looping 

flights were recorded at the turbine location – lending weight to hypotheses of 

foraging around or investigation of the turbine feature. Within the 35 repetitive 

behaviour observations at the turbine, the majority (26) featured extended 

activity (defined as ≥3 consecutive recordings at the same location). One 

occurrence comprised 24 consecutive recordings at the turbine. 

Flights categorised as ‘expected’ behaviour only reached 55.8% of the total. 

One record (0.7%) was unclassified. 23 of the 64 ‘unexpected’ flight behaviours 

represented flights in open space by species not usually associated with this 

habitat. 40 were classified due to flight patterns involving the turbine. Activities 

comprising ‘unexpected’ behaviours included (1) flights passing directly through 

the turbine area; (2) paths to and from the turbine during flight, sometimes in a 

repeated manner; (3) repeated flight at the turbine location; and (4) recordings 

from a flight path finishing at the turbine location. 
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4.5 Discussion 

4.5.1 Social network analysis 

This study investigated bats’ spatial activity patterns within small and medium 

wind turbine sites and analysed whether turbines disturbed bat activity or 

encouraged investigation by bats. The study applied SNA research methods 

and furthermore assessed observations of extended flight paths around turbine 

sites, both based on a small network of bat detectors. The study represented 

the first use of SNA for analysis of bat activity at wind turbine sites, as far as the 

author is aware. Additionally, the study is one of the first to specifically analyse 

bat movement networks using SNA (following initial investigations regarding 

movements between roosts and bats’ social networks (Rhodes et al. 2006; 

Silvis et al. 2014; Fortuna et al. 2009; August et al. 2014)). 

Bat movement networks’ activity levels and spatial configurations varied 

considerably between sites and nights, a finding consistent with existing 

observations (Brinkmann et al. 2006; Horn et al. 2008; Baerwald and Barclay, 

2009; Baerwald and Barclay, 2011; Weller and Baldwin, 2012). Typical species-

specific patterns of abundance and habitat use were observed, finding higher 

network densities for common and soprano pipistrelles and lower densities for 

serotine, Leisler’s and Myotis (sp.) bats (Verboom and Huitema, 1997; Russ et 

al. 2003). This suggests species-specific use of space is not modified by small 

turbine presence. Typical habitat use by bats also appears to occur, as shown 

by higher network densities at sites with cluttered habitat (Downs and Racey, 

2006; Verboom and Huitema, 1997; Vaughan et al. 1997). Furthermore the 

significantly non-uniform patterns of bat movements within sites as observed 

also indicate selective use of site structure by bats. Recommendations for 

preferential selection of turbine development sites with sparse habitats, to 

reduce risk of bat presence (Natural England, 2014), are therefore supported. 

Movements were observed between all habitat types present at almost all sites, 

including the turbine location. This suggests bats do not generally avoid small 

and medium turbines – a result which is consistent with observations of activity 
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and fatality at small turbines during previous studies (Minderman et al. 2012; 

Minderman et al. 2015; unpublished studies, University of Exeter). 

The observed differences in degree centrality (non-significant) and eigenvector 

values between habitat types imply bats may use linear and wooded habitat 

features as core network linkages through turbine sites. This was supported by 

the relatively high proportion of ‘feature-feature’ movements (44%). Additionally, 

bats may be reluctant to deviate from linear/wooded features; only 2.8% 

‘feature-open’ movements were observed. These findings are consistent with 

previously recorded use of linear and hedgerow features by bats (Verboom and 

Huitema, 1997). Whilst such habitat may be preferable, paths across open 

space were still seen to be used (17.4% of movements).  

Turbine locations also recorded higher eigenvector values than open habitat 

locations, indicating bats may perceive turbines as providing preferential 

navigational and foraging value relative to surrounding sparse environments. 

Bats’ movements illustrated connections with the turbine from both ‘feature’ and 

‘open’ habitat types (12.5% and 12% of habitat type associations respectively). 

This is supported by the concerning finding that detectors at the turbine location 

featured the highest eigenvector value of all detectors at half of the sites (at a 

site network level). Furthermore the high ‘betweenness’ and ‘degree’ values 

frequently attributed to the turbine portray extensive movements both 

connecting to and travelling through the turbine vicinity. This presents a risk that 

turbines may be hub structures for bat activity at some sites. Some of the 

turbines were however adjacent to linear habitat features; therefore the 

eigenvector value for the turbine habitat type may be artificially elevated.  

Foraging or investigation may be likely bat activities at turbines, as multiple 

consecutive recordings occurred at the turbine (11.7% of habitat associations). 

These behaviours have been proposed by Kunz et al. (2007a) and Cryan and 

Barclay (2009). Observations of the high likelihood of insect presence on 

turbine surfaces strengthen the foraging hypothesis (Rydell et al. 2016). 

The results indicated a risk to bats from habitat disruption at turbine sites. This 

was particularly the case at sites with low clustering coefficients (indicating 
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division of activity into groups) and at habitat locations representing bottlenecks. 

Similarly habitat linkages may be fragile (as recorded by the graph adhesion 

analyses) – particularly at sites featuring isolated linear features (as this habitat 

types exhibited high eigenvector values). Sites with high clustering coefficients 

may be less vulnerable due to the availability of alternative movement routes. 

Vulnerability to habitat disruption will likely vary by species, as suggested by the 

differing network diameters identified at species-level. The straighter observed 

flight lines for example of the Leisler’s bat, relative to the longer, linear habitat-

associated paths of the common pipistrelle bat (matching the species’ expected 

format of habitat use (Shiel et al. 1999; Russ and Montgomery, 2002; Verboom 

and Huitema, 1997; Downs and Racey, 2006)) suggest lower vulnerability of the 

former species to habitat change. 

4.5.2 Long flight paths 

Long flight path formats considered likely to represent foraging were the most 

frequently observed activity type. The frequent looping activity recorded at 

individual nodes, together with looping and repeating flight paths support this 

assessment. Bats’ disproportionately high reliance upon linear habitat features 

was again highlighted, by use of these features during 72.1% of foraging flight 

paths. This further underlines the importance of turbine placement away from 

these habitat features, to avoid non-fatal impacts upon bats. 

Similarly, the large proportions of foraging flights and repeating/looping flight 

paths including the turbine support hypotheses of foraging at and/or 

investigation of turbines (Cyran and Barclay, 2009; Horn et al. 2008). The large 

proportion of ‘unexpected’ flights through the turbine vicinity indicates not all bat 

flights near turbines are fatal or suffer from disturbance. Other behaviour 

included apparent investigation, represented by paths to and from the turbine 

during flight and repeated activity at the turbine. Bats may also therefore utilize 

micro-avoidance of the turbine at close proximities. Such behaviour is 

consistent with previous investigations of both bats and some bird species at 

turbine sites (Minderman et al. 2012; Everaert, 2014).  
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Flights terminating at the turbine may be interpreted in a number of ways. This 

may represent occurrence of fatality, or a failure of detectors to record flight 

away from the turbine. Alternatively an increase in flight height at the turbine, to 

avoid the structure, may have reduced the ability to record bat flight away from 

the turbine. Finally bats’ echolocation activity may have reduced upon 

encountering the turbine. 

4.5.3 Evaluation 

A small amount of the activity classified as movements will have in reality 

comprised recordings of individual bats at different locations in adjacent 5 

second periods. This is a factor commonly encountered during bat research 

when attempting to define bat populations at a site (e.g. defining whether 10 

recordings represent 10 passes from a single bat, or less than 10 passes each 

from 2 or more bats) and is very difficult to resolve using just acoustic 

monitoring (Kunz et al. 2007b). However the use of very short (5 second) 

activity recording windows and classifications by species/genus imply a high 

likelihood that the majority of adjacent recordings in time represented a single 

bat movement.  

Finally the manual classification of long flight paths was a subjective process 

relying on researcher-interpretation. However as all flights were interpreted by a 

single researcher and a consistent process was used to define the flight types, 

this analysis was not subject to unequal bias during classification. Furthermore 

this manual approach has been used in most previous studies of bat behaviours 

and activity types in proximity to turbines (Horn et al. 2008; Ahlén et al. 2009; 

Ahlén, 2003; Bach and Rahmel, 2004; Cryan et al. 2014; Gorresen et al. 2015). 

4.5.4 Future research 

The use of SNA methods was beneficial for gaining an in-depth understanding 

of activity configurations at wind turbine sites. The approach extracted and 

quantified activity patterns from a collection of acoustic datasets that would 

otherwise prove challenging to handle and analyse in combination. Its use was 

particularly of value in identifying the most important locations within sites for 
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bats’ movement through the site areas, the use of different habitat types by 

bats, the interaction of bats with turbines, the density of movement networks 

and the fragility of habitat linkages. 

Future studies may consider increasing the number of sampling nights, to 

identify seasonal variations in bat activity. Seasonal mating, migratory or 

roosting behaviours may alter bats’ use of turbine sites and interaction with 

turbines. Use of detector models that are able to operate over long time periods 

with minimal maintenance is furthermore recommended – this element was 

limited by financial constraints in the current study. 

Future studies could apply SNA approaches to further test hypotheses of 

habitat disruption, by removing individual habitat nodes and modelling the 

impact upon bat movement networks. Field validation could be completed by 

experimentally applying the same changes at the modelled sites, e.g. the 

experimental removal of a section of hedgerow before repeated monitoring. 

Post-alteration monitoring may need to be repeated over consecutive years to 

allow for lagged behavioural responses by bats to the disruption (as previously 

observed (Bach and Rahmel, 2004)). The same methods offer potential for 

evaluating the effectiveness of habitat management for mitigation of turbine 

impacts upon bats. Management may in this case comprise habitat removal to 

deter bats from turbines, or habitat production to attract bats to non-turbine 

areas or offset disruption from turbine development (Peste et al. 2015; Millon et 

al. 2015).  

4.6 Conclusions 

This study investigated bats’ spatial activity patterns within small and medium 

wind turbine sites using SNA, identifying strong associations between bats’ 

movement routes and habitat structures present at sites. Furthermore bats were 

found to actively use the turbine area rather than avoid it, indicating a lack of 

consistent disturbance from the turbine itself. Foraging appeared to be the most 

prevalent behaviour type displayed by bats at wind turbine sites, including in the 
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direct vicinity of turbines. Important movement linkages within sites provided by 

linear features (e.g. hedges) and wooded habitat appeared to represent 

vulnerable locations within sites with sparse habitats. If these were disrupted 

activity at sites could be reduced to weakly connected networks. 

These outcomes exemplify opportunities to assess and plan turbine placement 

in a more advanced manner, using SNA. Of particular concern are changes to 

habitat features as a result of site development and the installation of wind 

energy infrastructure. Non-fatal impacts upon bats such as habitat loss and the 

breakdown of movement/foraging networks could occur in these situations.  

These results represent some of the first research outcomes investigating non-

fatal impacts of small and medium turbines (and indeed of any size of turbine) 

upon bats. The lack of avoidance of small and medium turbines by bats and 

displays of foraging activity in their vicinity suggest that current assumptions 

within development guidance (e.g. Natural England (2014)) to place turbines 

away from linear habitat features are valid. Increased risk of fatality may 

otherwise occur due to the observed lack of turbine avoidance and focused use 

of such habitats by bats.  

SNA methods may be applicable to gain a greater understanding of activity 

networks and vulnerable locations within sites. However the large survey effort 

and detailed analysis approaches required suggest such methods may be 

better suited to high risk sites, major developments and research environments. 

Future studies may consider repeating such analyses at large turbine sites or 

wind farms to assess whether the same patterns are repeated in these 

environments. 

On the basis of the results presented, future studies and planning guidance 

should incorporate considerations of the non-fatal impacts of small and medium 

turbines upon bats in any development guidelines. Where habitat structure is 

considered to imply a high risk of disruption from turbine development , SNA 

analysis methods may offer an opportunity to understand bats’ use of sites and 

improve turbine placement. 
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4.8 Chapter 4: Supplementary Materials 

Table S4.1: SNA Measures applied within this study. Definitions based on Csardi et al. (2015) 

  SNA Measure Definition 
  
  Characteristic path length Average path length between any two nodes 
  
Diameter of the graph Longest path between any two nodes 
  
Graph adhesion Represents the number of edges which would need to be removed 

to create a weakly connected network 
  Overall size of the graph Total active nodes and edges 
  
Graph density Total unique edges divided by the number of possible unique 

edges 
  
Degree measure Records the number of edges connecting to the concerned node 
  Betweenness Represents the number of shortest travel paths which pass 

through a node 
  
Closeness Calculates how many steps are required between nodes in the 

network in order to reach every other node, from the concerned 
node 

  Eigenvector centrality Defined by igraph package authors as “arising from a reciprocal 
process in which the centrality of each [node] is proportional to the 
sum of the centralities of those [nodes] to [which it] is connected.  
In general, vertices with high eigenvector centralities are those 
which are connected to many other vertices which are, in turn, 
connected to many others (and so on)” (Csardi et al. 2015). 
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Bat flight speeds and classifying bat movements 

The choice of 5 second periods was considered appropriate for the detectors’ 

spatial configuration (min. detector separation: 33.3m, max.: 47.1m (diagonal)) 

and bats’ typical flight speeds. After incorporating an approximate maximum 

detection distance of 5-15m by the Baton detector (allowing for differing call 

amplitudes from different species), bats had to fly a maximum distance of 

approximately 3-37.1m between detection zones during a 5-10 second period (2 

adjacent 5 second periods), in order for the activity to be classified as a 

movement edge between detectors. Using a mean distance of 20.1m and mean 

time of 7.5s, this would indicate a minimum required flight speed of 2.7 m/s in 

order for the flight to be linked between detectors. This equates well to typical 

bat flight speeds recorded by previous studies, e.g. 3.5-5.7 m/s in Aldridge and 

Rautenbach (1987); 2.5-4 m/s in Thomas et al. (1990); 4.5 m/s in Jones and 

Rayner (1989); 3.4-11.6 m/s in Grodzinski et al. (2009); 2.9-8.3 in Middleton 

(2006); 2.1-13.9 m/s in Hayward and Davis (1964); 3.9-8.1 m/s in Jones (1995). 

If flight speeds were at the higher end of these ranges, they may be recorded at 

2 or more detectors within the same 5 second period, which would still be linked 

using the above method. In the worst-case scenario, using a poor (5m) 

detection distance and the longest resulting maximum flight distance (37.1m), 

with the most restricted flight recording window (5 seconds; occurring if a bat is 

initially recorded at the very end of the 1st 5 second window), this would require 

a flight speed of 7.4m/s. The latter scenario would likely result in some flights 

not being classified (though flights would still be recorded from faster flying 

bats); however the likelihood of such a scenario is also low. 
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5 Impact of turbine noise on bats 

5.1 Abstract 

Numbers of wind turbine installations are increasing across the world in 

response to the growing pressures of climate change. This has had unpredicted 

negative impacts upon some wildlife species, including the occurrence of bat 

fatalities at many wind energy sites. A large collection of hypotheses have been 

proposed to explain bats’ presence at wind turbines (Cryan and Barclay, 2009) 

and a range of research studies have tested a number of these. It has been 

suggested that wind turbines may furthermore impose non-fatal impacts upon 

bats, including disturbance and displacement. The hypothesis that turbine noise 

may either attract (Ahlen, 2003; Cryan and Barclay, 2009) or disturb bats has 

received little research attention.  

An investigation is presented here into the effect of small wind turbine noise 

upon bat activity in rural agricultural settings, typical of the landscape type in 

which small wind turbines are often planned. By assessing bats’ activity levels 

in response to a turbine noise playback experiment, the study isolates the 

impact of turbine noise upon bats without the confounding factors of physical 

and visual turbine presence. A string of 5 bat detectors was installed along 4 

mature, linear hedgerows with an ultrasonic speaker placed at the centre of the 

string. Turbine noise playback in both human-audible and ultrasonic frequencies 

was enabled on half of the monitored nights to test its effect upon bat activity 

levels. 

 No effect of small turbine noise was identified upon bat activity, including when 

accounting for an interaction with detector position. Temperature and rainfall 

were however found to have a moderating influence upon activity. These results 

represent the first scientific investigation to test the turbine noise hypothesis. 

Future research may address whether the same result occurs at large turbine 

sites and in differing habitats. 
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5.2 Introduction 

The occurrence of bat fatalities and their causal factors at wind energy sites 

have received substantial research attention (Johnson et al. 2003; Arnett et al. 

2008; Rydell et al. 2010a; Dubourg-Savage et al. 2011; Baerwald and Barclay, 

2011; Georgiakakis et al. 2013; Minderman et al. 2015; Rydell et al. 2016). 

Whilst non-fatal impacts and disturbance to bats from wind turbines have been 

recorded (Minderman et al. 2012; Jain et al. 2011; Bach and Rahmel, 2004), 

this subject requires further research attention. 

5.2.1 Hypotheses for bats’ interactions with turbines 

Numerous behavioural theories to explain bats’ interactions with turbines have 

been proposed. Proposed theories include attraction to turbines for foraging, 

roosting, mating or investigation purposes, avoidance of moving blades and 

attraction or avoidance due to noise emissions (Cryan and Barclay, 2009; Cryan 

et al. 2012; Ahlén, 2003; Kunz et al. 2007; Gorresen et al. 2015; Szewczak and 

Arnett, 2006; Minderman et al. 2012; Rydell et al. 2016). All of these may cause 

alterations to bats’ flight activity and behaviours. The latter hypothesis regarding 

acoustic attraction of bats due to turbine noise was first proposed by Ahlén 

(2003) and later highlighted by Cryan and Barclay (2009). Both studies 

suggested that playback of turbine noise and concurrent monitoring of bat 

activity could be used to test the hypothesis. The current study therefore 

adopted this approach to investigate the effect of small wind turbine noise upon 

bat activity. 

5.2.2 Bats and noise 

5.2.2.1 Environmental noise 

Playback of noise associated with roads, vegetation movement and broadband 

computer frequencies has been found to disturb and repel bat species that 

forage with gleaning strategies (Schaub et al. 2008). Foraging success was also 

found to decrease with increasing proximity to road noise during a second 

playback experiment, where foraging search time required by bats to locate 
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prey was found to dramatically increase closer to the noise source (Siemers 

and Schaub, 2011). The latter experiment deduced that bats’ echolocation 

detection distance may also reduce in the presence of noise. Not all noise 

sources meanwhile have been found to have a large effect upon bats, for 

example a study of aircraft noise could not identify any notable impact (Le Roux 

and Waas, 2012). 

5.2.2.2 Turbine noise 

Only a single pilot experiment has been completed so far utilising playback of 

turbine noise to understand impacts upon bats. The study found inconclusive 

results from largely unstructured behavioural observation, though it was stated 

that the impression gained by the author was one of a lack of impact (Ahlen, 

2003). Bats may more generally struggle to process more than one stream of 

acoustic information at a time (Barber et al. 2003); therefore if turbine noise 

occurs within their foraging habitat, avoidance of the affected area may be a 

logical response. 

5.2.2.3 Bat echolocation and noise 

Changes in bats’ echolocation behaviour are also known to occur as a result of 

interaction with other sources of noise. Bats will often change their echolocation 

frequencies in order to avoid acoustic jamming i.e. confusion with similar sound 

frequencies to their own echolocation. This has been observed to occur in the 

presence of other bat calls and chorusing insects (Gillam et al. 2007; Chiu et al. 

2009; Gillam and McCracken, 2007). The relative frequency of jamming noise to 

that of bat echolocation appears to be an important factor in defining noise 

impact extents. Noise with frequencies below that of bats’ echolocation has 

been found to have a larger impact than equal or higher frequencies, causing 

upward shifts in echolocation frequency (Takahashi et al. 2014). Indications that 

most turbine noise emissions are also of lower frequencies (Szewczak and 

Arnett, 2006; Long, 2011; Dooling, 2002) therefore suggest noise impacts from 

wind turbines are worthy of investigation. Some high frequency noise can also 

be created by wind turbines, particularly at blade tips (Twidell, 2003) and from 

blade defects (Dooling, 2002).  
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5.2.2.4 Acoustic deterrents 

A final key area of research that has improved our understanding of noise 

impacts upon bats is that of the development and testing of ultrasonic acoustic 

deterrents for bats at wind turbines. An initial lab experiment provided 

indications that ultrasonic noise could have potential use as a deterrent method 

for bats, after they were recorded being repelled by the emitted signal, causing 

reduced activity and foraging in the vicinity (Spanjer, 2006).  

Initial field tests of ultrasonic acoustic deterrents at wind farm sites reported 

limited impacts upon bat activity; however this was attributed to the size of the 

noise envelope created by the device (Horn et al. 2008; Szewczak and Arnett, 

2008). Ultrasound is known to attenuate quickly across air volumes, particularly 

at high frequencies (Griffin, 1971; Lawrence and Simmons, 1982). 

Consequently propagation of ultrasonic noise emissions from turbines may 

similarly be limited, particularly in high wind conditions at hub heights. One of 

the deterrent studies did however record large reductions in bat activity within 

the effective range, with activity reducing to 2.5-10.4% of that recorded during 

control conditions (Szewczak and Arnett, 2008). 

Further evidence of the acoustic impact of ultrasound upon bats was provided 

by testing of deterrents at pond sites in the USA, prior to wind farm 

implementation. A 17% reduction in bat activity was observed (Johnson et al. 

2012). A later study implementing an acoustic deterrent at a wind farm, 

observed small reductions in fatalities. Humidity level was furthermore raised as 

a moderating factor on signal propagation (Arnett et al. 2013). 

5.2.2.5 Summary and study aims 

Existing observations regarding bats’ behavioural and echolocation reactions to 

environmental noise and acoustic devices indicate that turbine noise could 

feasibly impact upon bat activity and behaviour. The height of small turbines 

suggests that most, if not all, of their noise emissions will reach ground level 

and the typical foraging heights of many common bat species in the UK. This 

makes small turbines an excellent case study in the context of noise impacts 

upon bats. 
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This study investigated the effect of small wind turbine noise upon bat activity in 

rural agricultural settings, typical of the landscape type in which small wind 

turbines (up to ~30m blade tip height) are often planned. By assessing bats’ 

activity patterns in response to a turbine noise playback experiment, the study 

isolated the impact of turbine noise upon bats without the confounding factors of 

physical and visual turbine presence.  

 

5.3 Methods 

5.3.1 Study area 

Four sites were sought with a mature, linear and largely uninterrupted hedgerow 

of at least 200m in length. Each site was required to not have a wind turbine 

installed within the site’s land parcel or within 2km. Three sites were obtained 

within Wiltshire (all agricultural fields) and one within Gloucestershire (a 

domestic smallholding). The habitat type at two of the sites was pasture grass, 

the third was a recently harvested arable crop field, whilst the fourth comprised 

a ploughed arable field with a grass margin. Three of the sites featured either 

agricultural or domestic buildings within 200m, though all sites were located in 

rural landscapes. Each site was monitored for at least 8 consecutive nights 

during mid-August to mid-October 2014. 

5.3.2 Turbine noise 

The study method required the acquisition of a recording of emitted wind turbine 

noise representative of that occurring at a small wind turbine site. Therefore a 

Wildlife Acoustics Song Meter 2 (SM2) full spectrum bat detector powered by an 

external battery was installed at the base of an operational small wind turbine, 

with a blade tip height between 10 and 15m and a rotor diameter of between 4 

and 8m. The turbine model that was chosen is one of the most frequently 
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installed models in the UK (University of Exeter, unpublished data) and as such 

was considered an optimum choice for representing a typical small turbine site. 

The SM2’s microphone was installed at the top of a tripod at a height of 2.5m 

and the detector was set to record using the full frequency spectrum available 

(up to 96kHz; sampling frequency 192kHz) in order to record turbine noise in 

both human-audible and ultrasonic frequencies, in field conditions. A recording 

of 4.1 seconds length featuring continuous turbine noise was selected as a 

representative recording of noise conditions and was saved onto an SD card. 

The majority of the turbine noise in the recorded sample was of frequencies 

below 25kHz, with an additional notable noise component reaching 36kHz 

(these frequencies are similar to those recorded by Szewczak and Arnett 

(2006)). 

5.3.3 Monitoring protocol 

At each experimental study site, five SM2 detectors were installed on 1.5m 

tripods with external batteries, along a 200m stretch of the selected hedgerow, 

separated using 50m spacing (Figure 5.1). An ultrasonic speaker (or ‘bat lure’) 

(BatLure, Apodemus Field Equipment) was installed on a 1.5m tripod (powered 

by an external battery) adjacent to the central detector in the string. This was 

able to playback sound between 5kHz and 100kHz in frequency. The speaker 

was set to playback the turbine recording stored on the SD card on a 

continuous loop, with volume set to the maximum level not considered 

damaging to the equipment (31/40, based on the equipment’s parameters). 

Noise playback was disabled using a timer switch (Conrad Electronics) for the 

1st night at each site to enable bats to familiarise themselves with the 

installations. Nightly noise playback over the duration of the 8 nights was set as 

follows: Night 1: Off, 2-3: On, 4-5: Off, 6-7: On, 8: Off. This provided 4 nights of 

ambient noise conditions and 4 nights with turbine noise introduced. For any 

additional monitoring nights obtained at the end of the cycle, the pattern 

restarted. The monitoring night was treated as 30 minutes before sunset to 30 

minutes after sunrise. 
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A weather station with internal batteries was also installed at each site in open 

habitat within the same land parcel and recorded weather variables over 30 

minute periods. Batteries were tested for all equipment immediately before 

installation and following the end of monitoring. No equipment suffered battery 

failure or inadequate battery power levels. 

5.3.4 Bat sound analysis 

At one site, recording capacity was exceeded for multiple detectors by the final 

night, reducing monitoring to 7 nights (one detector’s capacity was exceeded 

after 5 nights of monitoring). At this site, due to the extremely large volumes of 

data recorded (including insect noise), the analysed period each night was 

reduced to the first 2 hours after the start of monitoring, in order to achieve a 

logistically feasible volume of sound analysis. For all other sites, the entire night 

was analysed. Two additional monitoring nights were obtained at one of the 

sites relative to the 8 nights planned and a single additional night obtained at 

another. 34 monitoring nights were completed in total (7, 8, 9 and 10 nights at 

the four sites) providing a mean of 8.5 monitoring nights at each site. 
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Figure 5.1: An example of an SM2 detector installed along a linear mature hedgerow during the 
turbine noise experiment 

 

Detector recordings were analysed using the Wildlife Acoustics Kaleidoscope 

Pro software (version 2.3). Pre-constructed ‘classifier’ files were used to attempt 

to identify the species of each recording, or to categorise the recording as 

noise. Classifiers are composite reference files built from large numbers of 

individually identified bat species recordings, which are used for comparison 

and matching when classifying unknown recordings. In the case of bats of the 

Myotis genus, the resolution of the classifiers restricted identification to genus 

only. The classifier set is an existing standard reference source integrated into 

the software (at the time of use, this was the ‘Bats of United Kingdom 2.1.0’ 

classifier set version). Given the confidence levels attributed to each species 

classifier by Wildlife Acoustics (Wildlife Acoustics, 2014) and communication 

regarding past experience of their use in related projects (unpublished data, 

University of Exeter), it was considered acceptable to assume all classifications 

of Pipistrellus pipistrellus (Common pipistrelle) and Pipistrellus pygmaeus 
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(Soprano pipistrelle) were correct. It is acknowledged that this will introduce a 

small, but acceptable level of error into the method. Levels of classification 

accuracy for all other species were considered inadequate and as such all 

remaining classifications of species were manually verified using the 

Kaleidoscope Pro software’s viewer tool. 

A bat pass was identified as 2 or more echolocation pulses within less than 1 

second of each other. Multiple passes were recorded as groups of echolocation 

pulses split by a gap of 1s or more; however the recording of more than 1 pass 

within a file was found to be extremely infrequent during processing for species 

requiring manual verification. Therefore recordings classified as Common 

pipistrelle and Soprano pipistrelle were assumed to be a single pass. 

5.3.5 Statistical analyses 

The effect of turbine noise on bat activity was assessed using generalised linear 

mixed effect models (GLMMs) in R (R Core Team, 2014) using the 

‘GLMMadmb’ package (Skaug et al. 2014). The number of bat passes per hour 

was used as the outcome variable in order to account for variation in weather 

conditions during the night. A negative binomial error distribution was assumed 

to account for overdispersion in the bat passes count data (identified using the 

residual deviance vs. residual degrees of freedom ratio during the building of 

models). 

Wind speed (m/s), hourly rainfall (mm) and temperature (oC) were treated as 

fixed covariates, whilst noise playback (on/off) and pooled detector positions (1 

= non-speaker detectors; 2 = speaker detector) were set as fixed factors. An 

interaction effect between noise and detector position was also included, to 

account for the expected decrease in the effect of noise with increasing 

distance from the noise source. Nested effects of ‘monitoring night’ within ‘site’ 

were included as random effects to account for lack of independence of records 

from the same site and night. The analyses were repeated for three genera 

groups (1: Pipistrellus; 2: Nyctalus and Eptesicus; 3: Myotis, Barbastella, 

Plecotus and Rhinolophus). 
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The significance and contribution of each variable was measured using ANOVA 

and likelihood ratio tests, evaluating the deletion of each term from the model 

with main-effects only. The interaction term was evaluated by comparing the 

main-effects-only model with the full model including the interaction. Model fit 

and model assumptions (normality of residuals, homogeneity of residuals’ 

variance, independence of variables and no overly-influential observations) 

were verified using model residuals plots (normal QQ plot, histogram of 

residuals, plots of standardised residuals vs. fitted values, variable correlation 

plots, plots of residuals vs. individual variables and leverage plots) and plots of 

model-predicted outcome variable values vs. observed values for each predictor 

variable. Data representing 9 detector hours (of a total 1,706, i.e. <1%) were 

removed from the model as outliers, to improve model quality, after verifying 

their effect using leverage plots, model residuals plots and prediction plots. 

5.4 Results 

5.4.1 Bat activity recorded 

The total number of bat passes recorded from all sites (N) was 13,959 across 

34 nights of monitoring (mean per detector-night = 83.1, std. dev. = 91.5). 73% 

of calls were identified as belonging to the Pipistrellus genus, 15.8% as Myotis, 

4.7% as Nyctalus and Eptesicus, 4.1% as Barbastella, 1.7% as Rhinolophus 

and 0.5% as Plecotus. Unclassified recordings comprised only 0.1%. Bat 

activity was recorded during all 34 monitoring nights. 

5.4.2 Weather conditions 

Good weather conditions were experienced for bat monitoring during the 

observation period. Mean nightly wind speeds were below the 8 m/s threshold 

used for bat monitoring in previous research (University of Exeter, unpublished 

data) during all monitoring nights; the mean wind speed across all nights was 

1.7 m/s (std. dev. = 1.3). All mean nightly rainfall records were also below the 
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2.5 mm / hour threshold previously used (mean hourly rainfall across all nights 

was 0.1 mm, std. dev. = 0.3). Mean nightly temperatures were above the 10oC 

threshold for 85.3% of the nights (mean temperatures across the remaining 5 

nights ranged from 6.8-9.4 oC); the mean temperature across all nights was 

12.8 oC (std. dev. = 3.2). 

5.4.3 Noise Impacts 

Hourly rainfall and temperature were found to have a significant effect upon bat 

activity levels within the model (Table 5.1). The former had a negative effect 

and the latter a positive effect. As hourly rainfall levels increased from 0 to 3.9 

mm, average bat passes per hour were estimated to fall from 6.37 (confidence 

intervals (CI) 1.61-25.12) to 0.48 (CI 0.08-2.72), an average reduction of 92%. 

Activity levels were predicted to increase from 0.69 (CI 0.19-2.47) to 32.18 (CI 

7.12-145.49) passes per hour with an increase in temperature of 14.7oC (from 

4.5 oC to 19.2 oC). 

Turbine noise, wind speed and the detector position (next to or away from the 

noise source) were not estimated to have any significant effect in the ‘all 

species’ model (Table 5.1); in addition no significant effect was found from the 

noise/detector position interaction. Prediction plots of the significant variables’ 

estimated effects upon observed bat activity levels are shown in Figures 5.2 (a 

to c), overlaid upon observed data. 

Similar overall observations were made during genera group analyses (See 

Supplementary Materials Tables S5.1 to S5.3). Nyctalus/Eptesicus activity was 

not however related to rainfall occurrence in contrast to the all-species model. 

The effect of turbine noise (estimate (noise on) = -0.45, SE = 0.26, p = 0.098) 

was close to significance in the Pipistrellus Sp. analysis and detector position 

was found to have a significant influence (estimate (by noise source) = -0.23, 

SE = 0.14, p = 0.039)), however their effect sizes were small. Woodland bat 

activity (Myotis/Rhinolophus/Plecotus/Barbastella) was significantly negatively 

affected by rainfall occurrence, whilst temperature was found to have no 

significant effect. A negative effect of detector positioning next to the speaker 

was significant (estimate: -0.32, SE: 0.14, p = 0.02), however the small effect 
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size and the lack of significant effect from turbine noise or the interaction 

between these variables rendered this result largely inconsequential. 

 

Table 5.1: Parameter estimates and likelihood ratio tests of the GLMM analysing the effect of 
turbine noise and environmental variables upon bat activity. The model used a negative 
binomial error distribution. The variable evaluation measures represent the deletion of each 
term from the model with main-effects-only, with the exception of the interaction term for which 
the deletion was compared between the main-effects-only model and the model including the 
interaction term.  

        

Fixed Effects Estimate 
Standard 

Error 
Log 

Likelihood 
AIC 

Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) -1.17 0.56      
        
Wind Speed 
(m/s) 

-0.003 0.04 -4691.70 9399.40 0.00 1 1 

        Hourly Rainfall 
(mm) 

-0.66 0.15 -4700.60 9417.20 17.80 1 <0.0001 

        Temperature 
(
o
C) 

0.26 0.02 -4751.69 9519.38 119.98 1 <0.0001 

        Noise [On] -0.27 0.20 -4692.49 9400.98 1.58 1 0.209 
        Detector 
Position [By 
speaker] 

-0.21 0.12 -4693.37 9402.74 3.34 1 0.068 

        Noise*Detector 
Position 

0.12 0.16 -4691.70 9401.40 0.56 1 0.454 
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Figure 5.2: Prediction plots from the temperature, rainfall and wind turbine noise variables 
from the GLMM analysing the effect of turbine noise and environmental variables upon bat 
activity. Dashed lines indicate 95% confidence intervals (CI); circles = mean observed rate of 
bat passes; relative sizes of circles represent relative contributing levels of data (larger = more 
data); (Noise variable (c): bars and CI lines = model prediction) 
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5.5 Discussion 

This study investigated the impact of small wind turbine noise upon bat activity 

levels in rural environments typical of those used for small wind turbine 

installations. The results provide an opportunity to evaluate existing noise-

related hypotheses for bats’ presence at and disturbance by turbines. In doing 

so the study reduces the number of unknown factors regarding this 

conservation issue and contributes to our wider understanding of the potential 

conflicts between wind energy development and bat conservation. 

5.5.1 Turbine noise 

No effect of small turbine noise upon bat activity levels was found. This result 

was also not found to be modified by the proximity of detectors to the noise 

source, or to vary by species group. It is therefore suggested that (1) bats are 

not attracted to small wind turbines due to their noise emissions and (2) bats 

are not disturbed or displaced by small wind turbines’ noise emissions. The lack 

of any noise impact is consistent with the only other research observation 

regarding turbine noise and bat activity (Ahlén, 2003). The hypothesis of 

acoustic attraction of bats by turbine noise proposed by Ahlén (2003) and Cryan 

and Barclay (2009) therefore appears to be unsupported on the basis of this 

study’s results. 

5.5.2 Further discussion 

5.5.2.1 Variability in turbine noise emissions 

This study only used playback noise recorded at a single turbine model, though 

one which was considered very common in the UK. Individual wind turbine 

models and different sizes of turbine will feature varying levels of noise 

emissions and as such noise impacts on bats may vary at different turbine sites. 

Turbine manufacturers (particularly of large turbines) also incorporate optional 

noise-reduced operation modes in many turbine models. The use of these 

modes has an associated energy loss. These modes are frequently used on a 
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per-turbine basis to comply with noise limits proposed by planning authorities on 

environmental health grounds (for example in proximity to residential 

properties), often in alignment with adopted industry practice guidelines (The 

Working Group on Noise from Wind Turbines, 1996). Noise emissions may 

therefore also vary between individual turbines of the same model. Future 

research projects may consider repeating this analysis using noise recordings 

of different turbine models (and potentially different noise-reduced modes) to 

verify the lack of impact observed here across a wider range of turbine types. 

The playback of turbine noise through a speaker was unlikely to emit the same 

volume as would be produced by a real wind turbine. However the maximum 

possible safe volume of the ultrasonic speaker was used and without highly 

specialist equipment it is unlikely this issue can be mitigated. As bats have 

highly sensitive hearing, it is considered likely that any such noise source would 

be clearly prominent to bats. 

As Figure 5.3 shows, the frequency response of the SMX-US microphone 

(Wildlife Acoustics) used to record the turbine noise is reasonably level. The 

microphone does not suffer any notable signal degradation bias across the low 

frequencies typical of wind turbine noise generation (in fact the minimal 

attenuation present is focused largely across frequencies above 60 kHz). 

Therefore the recording can reasonably be expected to have sampled the 

turbine noise frequencies appropriately, whilst it is acknowledged that 

recordings of any type will always loose at least a minor proportion of the sound 

characteristics produced at a source. 

Future experiments may choose to further improve verification of recorded 

turbine noise samples and their playback through an ultrasonic speaker, by 

additionally recording the playback using an ultrasonic microphone and 

assessing the quality of reproduction of the original recording’s frequency 

distribution and volume within the playback. 

As noise disturbance to humans is a key issue considered at the planning 

determination stage, industry improvements may lead to reduced noise output 

from turbines (particularly concerning low frequency noise). The fact that noise 
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Figure 5.3: The frequency response of the SMX-US microphone (Wildlife Acoustics, 2011) 
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emissions from turbines can also be a sign of inefficiency and manufacturing 

defects (Dooling, 2002; Twidell, 2003) also implies that turbine design 

developments may reduce noise. However the extent to which turbine noise can 

be reduced is likely to be limited by the simple principle that turbines are large 

obstructing features with moving mechanical parts, in high speed and 

sometimes turbulent wind flows. The complete removal of noise in this situation 

therefore seems unlikely. 

Larger turbines are likely to produce more noise than small turbines due to their 

larger gearboxes, the larger physical size of their moving components, and their 

greater levels of friction with larger and faster-moving volumes of air at height. 

However small wind turbine noise is focused within a relatively small auditory 

environment. This may produce a larger contrast in noise conditions relative to 

nearby habitat, as opposed to dispersed noise propagation from large turbines 

in open air. The resulting noise impact upon bats at large turbines therefore has 

the potential to vary from that observed during this study. Future research may 

consider undertaking sound sampling at different size turbines to improve 

understanding of potential differences in noise emissions. Similarly bat activity 

levels, species composition, echolocation activity, behaviour types and turbine-

caused fatality levels have been observed to vary with height (Barclay et al. 

2007; Collins and Jones, 2009; Ahlén et al. 2009; Baerwald and Barclay, 2009; 

Rydell et al. 2010a; Weller and Baldwin, 2012). Consequently bats’ interaction 

with noise at greater heights could vary. 

5.5.2.2 Other noise sources 

This study’s results contrast with some previous investigations that have 

identified impacts upon bats from other sources of noise, such as roads, 

vegetation movement and amplified music (Schaub et al. 2008; Siemers and 

Schaub, 2011; Shirley et al. 2001) and additionally acoustic deterrents at wind 

turbines (Szewczak and Arnett, 2008; Johnson et al. 2012). This may be due to 

differences in the noise sources’ frequency composition, amplitude, propagation 

distance or habitat setting. Wind turbines’ noise emissions have previously been 

found to primarily comprise low frequency sounds, with minimal production of 

ultrasound (Szewczak and Arnett, 2006; Long, 2011; Dooling, 2002), as also 
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noted during this study. This may explain the lack of impact upon bats’ auditory 

senses and resulting activity levels. Confirming the cause of differing responses 

to other noise sources is challenging without further investigating the range of 

noise types produced by each source (including turbines) and bats’ subsequent 

auditory perception and response to each. Future research may consider these 

factors in order to aid our understanding. 

5.5.2.3 Environmental moderating factors 

Bat activity in this study was only monitored in one main habitat type (along 

mature, linear hedgerow features in rural environments). This is considered to 

represent a primary, important habitat type for bats, therefore suggesting 

activity and disruption in such locations is largely representative of that in the 

surrounding local area. Future studies may nonetheless consider testing noise 

impacts in open/sparse habitat types – particularly focusing on bat species 

adapted to flying in open habitat. 

Bat activity levels were found to feature a positive significant association with 

temperature and a negative significant association with rainfall. Whilst previous 

research findings at wind turbines have observed a negative significant 

association between bat activity and wind speed (Brinkmann et al. 2006; 

Baerwald and Barclay, 2011; Bach et al. 2011; Weller and Baldwin, 2012; Cryan 

et al. 2014; Gorresen et al. 2015), this study observed no significant effect. It is 

suggested however, that the low wind speed conditions experienced during the 

monitoring period (mean 1.7 m/s, max. 7.5 m/s) were not likely to have provided 

the opportunity to observe negative impacts upon activity from high speeds. In 

addition, the placement of detectors along mature hedgerows will have 

recorded activity in an environment with a high relative level of wind shelter, 

potentially reducing the impact of wind speed (Verboom and Spoelstra, 1999). 

The greater susceptibility of the ‘woodland bat’ grouping (Myotis, Barbastella, 

Plecotus and Rhinolophus genera) to rainfall reflects their recognised sensitivity 

with regard to foraging environment requirements.  

With the exception of wind speed as discussed, these results are consistent 

with existing research observations of bat activity and weather at wind energy 
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sites. This supports previous assertions that variations in bat activity at turbines 

could to an extent be predicted and that such methods may be used to improve 

mitigation, via incorporation into turbine curtailment programming (Arnett et al. 

2013; Weller and Baldwin, 2012). The slight variations in association with 

weather variables between species groups – as highlighted above – may 

provide opportunities to further refine the conditions during which curtailment 

could be used, in order to account for species-specific risk from turbines. It 

should however be noted that advanced turbine curtailment using algorithms 

incorporating weather conditions is unlikely to be possible at small turbines, due 

to technological and financial limitations. 

5.5.2.4 Impacts upon bats from small turbines 

The lack of impact from turbine noise upon bat activity at small turbines aligns 

with previous research that has found relatively low levels of conflict between 

small turbines and bats, with regard to both activity and fatality (Minderman et 

al. 2012; Minderman et al. 2015; unpublished studies, University of Exeter). The 

primary impact upon bat activity at small turbine sites appears to be an 

avoidance of the immediate turbine vicinity during high wind speed conditions 

(Minderman et al. 2012; unpublished study, University of Exeter). A recent study 

(unpublished study, University of Exeter) has identified that more stringent 

monitoring programmes are required at small turbines, in order to confirm that 

the seemingly low fatality levels indicated in previous research (Minderman et 

al. 2015; unpublished study, University of Exeter) are indeed representative of 

actual fatality levels at small turbines. 

5.6 Conclusions 

This study investigated the impact of small wind turbine noise upon bat activity 

in the UK and found no impact, concluding that hypotheses of acoustic 

attraction (Ahlén, 2003; Cryan and Barclay, 2009) and/or displacement of bats 

by small turbine noise are unsupported. This study provides the first structured 

analysis on this topic, as far as the author is aware. 
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Following this result, it is suggested that future research should focus upon 

testing the remaining hypotheses for bats’ presence at and disturbance by wind 

turbines. These include attraction due to the presence of insect prey and the 

physical tree-like presence of turbines and disturbance due to loss of habitat 

and turbine avoidance (Rydell et al. 2010b; Cryan and Barclay, 2009). The 

impacts of noise from large turbines may also be considered due to the 

potential contrasts in noise emissions, auditory environments and behavioural 

responses by bats relative to small turbines. It is recommended on the basis of 

this study’s results, that bat-related planning guidance for the development of 

small wind turbines should not consider turbine noise as a relevant factor in 

decision making. 

With the exception of a need to confirm the low fatality levels indicated by 

available studies, existing research to date has shown a relatively low impact of 

small turbines upon bats in the UK. This study continues that observed trend. 

Investigation of cumulative impacts from turbines is nevertheless an important 

outstanding research priority (Arnett et al. 2016; Voigt et al. 2015) and the 

impact from both small and large turbines needs to be considered in tandem. 

Though challenging to undertake, cumulative impact calculations should ideally 

also incorporate impacts from other key sources of risk to bats (e.g. roads, 

habitat loss and white nose syndrome – the latter primarily concerning North 

America). Progress in this area is currently at an early stage with only a handful 

of studies completed, some of which focus upon extrapolation of site-level 

results (Roscioni et al. 2013; Kunz et al. 2007; Arnett and Baerwald, 2013; 

O’Shea et al. 2016). 

As a result of the wider research context discussed, the outlook for balancing 

small-scale renewable wind energy generation with bat conservation priorities 

appears to be positive in the UK. 
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5.8 Chapter 5: Supplementary Materials 

Table S5.1: Parameter estimates and likelihood ratio tests of the Pipistrellus Genus GLMM 
analysing the effect of turbine noise and environmental variables upon bat activity. The model 
used a negative binomial error distribution. The variable evaluation measures represent the 
deletion of each term from the model with main-effects-only, with the exception of the interaction 
term for which the deletion was compared between the main-effects-only model and the model 
including the interaction term. 

        Fixed Effects Estimate Standard 
Error 

Log 
Likelihood 

AIC Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) -2.95 0.72      
        

Wind Speed 
(m/s) 

0.04 0.05 -3823.32 7662.64 0.44 1 0.507 
 

       Hourly Rainfall 
(mm) 

-0.50 0.21 -3825.97 7667.94 5.74 1 0.017 
 

       Temperature 
(
o
C) 

0.36 0.03 -3898.18 7812.36 150.16 1 <0.0001 

        
Noise [On] -0.45 0.26 -3824.47 7664.94 2.74 1 0.098 
        Detector 
Position [By 
speaker] 

-0.23 0.14 -3825.24 7666.48 4.28 1 0.039 

        Noise*Detector 
Position 

0.04 0.20 -3823.10 7664.20 0.04 1 0.841 
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Table S5.2: Parameter estimates and likelihood ratio tests of the Nyctalus/Eptesicus Genera 
GLMM analysing the effect of turbine noise and environmental variables upon bat activity. The 
model used a negative binomial error distribution. The variable evaluation measures represent 
the deletion of each term from the model with main-effects-only, with the exception of the 
interaction term for which the deletion was compared between the main-effects-only model and 
the model including the interaction term. 

        Fixed Effects Estimate Standard 
Error 

Log 
Likelihood 

AIC Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) -6.59 1.06      
  

 
     

Wind Speed 
(m/s) 

-0.14 0.09 -966.70 1949.40 2.37 1 0.124 
 

       Hourly Rainfall 
(mm) 

0.002 0.76 -965.51 1947.03 0.00 1 1 
 

       Temperature 
(
o
C) 

0.41 0.05 -1006.88 2029.76 82.73 1 <0.0001 

        
Noise [On] -0.12 0.28 -965.53 1947.05 0.03 1 0.867 
        Detector 
Position [By 
speaker] 

-0.21 0.27 -965.51 1947.03 0.00 1 1 

        Noise*Detector 
Position 

0.38 0.37 -965.51 1949.03 1.07 1 0.301 

        
 

Table S5.3: Parameter estimates and likelihood ratio tests of the “Woodland bats” 
(Myotis/Rhinolophus/Plecotus/Barbastella genera) GLMM analysing the effect of turbine noise 
and environmental variables upon bat activity. The model used a negative binomial error 
distribution. The variable evaluation measures represent the deletion of each term from the 
model with main-effects-only, with the exception of the interaction term for which the deletion 
was compared between the main-effects-only model and the model including the interaction 
term. 

        Fixed Effects Estimate Standard 
Error 

Log 
Likelihood 

AIC Deviance 
(Likelihood 
Ratio Test) 

df p 

        
        (Intercept) -0.03 0.41      
        

Wind Speed 
(m/s) 

0.002 0.05 -2847.23 5710.46 0.00 1 1 
 

       Hourly Rainfall 
(mm) 

-0.78 0.19 -2857.20 5730.40 19.94 1 <0.0001 
 

       Temperature 
(
o
C) 

0.04 0.03 -2848.20 5712.40 1.94 1 0.16 

        
Noise [On] -0.13 0.23 -2847.33 5710.66 0.20 1 0.65 
        Detector 
Position [By 
speaker] 

-0.32 0.14 -2849.83 5715.66 5.20 1 0.02 

        Noise*Detector 
Position 

0.18 0.19 -2847.23 5712.46 0.92 1 0.338 
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6 General Discussion 

6.1 Introductory restatement 

Bat populations across the world are vulnerable to the pressures of climate 

change, anthropogenic development, habitat loss and direct fatality risk from 

numerous hazards. The latter include traffic on road networks, natural 

predation, White Nose Syndrome (WNS) and wind turbines (O’Shea et al 2016). 

Bat fatalities at wind energy sites are considered to contribute a large proportion 

of global fatality totals (O’Shea et al. 2016). Fatality levels at individual wind 

energy facilities have however been found to vary significantly (Arnett et al. 

2008; Rydell et al. 2010a). Impacts upon both local and national populations are 

therefore a concern. Fatality risk has also been observed to vary by species 

(Arnett et al. 2008; Rydell et al 2010a; Rodrigues et al. 2015); hence impacts 

upon populations of individual species may be of particular concern. 

All bat species in Europe are protected under the Bonn Convention 

(EUROBATS) and the Bern Convention, in addition to the European Union (EU) 

Habitats and Species Directive (EUHSD). As a result, any risk to bat 

populations is an important matter for conservation efforts and is potentially of 

legal concern. This is further emphasised for any species listed within Annex II 

of the EUHSD, for which Special Areas of Conservation (SAC) may be 

designated. In the UK those species are the Greater Horseshoe, Lesser 

Horseshoe, Bechstein’s and Barbastelle bats. The latter two species are 

additionally classified as ‘Near Threatened’ on the International Union for 

Conservation of Nature’s (IUCN) Red List of Threatened Species. All bat 

species and their roosts in the UK are also protected under a range of national 

legislation, including the Conservation of Habitats and Species Regulations 

(2010). 

Bats are also an important group of species from a biological and even 

economic perspective. Significant reductions in bat populations would represent 

a notable biodiversity loss. Bats are the only flying mammals in the world and 
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comprise approximately 20% of the world’s mammals (Altringham, 2011). Their 

consumption of vast amounts of insects during nightly foraging provides a 

valuable ecosystem service of pest control (Kunz et al. 2011; Ghanem and 

Voigt, 2012; Maine and Boyles, 2015). In some cases this can amount to a 

significant economic benefit to agricultural areas (Maine and Boyles, 2015); the 

value of bats’ insect consumption in the USA is estimated at approximately 

$22.9 billion / year (Boyles et al. 2011). Globally, bats are also important 

pollinators, in addition to supporting seed dispersal and providing guano for 

nutrient rich fertiliser (Lundberg and Moberg, 2003; Kunz et al. 2011; Ghanem 

and Voigt, 2012). In the UK, bat populations are furthermore used as a national 

bioindicator – a biological reference measure considered representative of the 

wider biodiversity health in a region or nation (Jones et al. 2009; Barlow et al. 

2015). 

The conflict between wind energy and bat conservation is a complex matter, on 

account of the wider need for renewable energy generation to reduce the 

impacts of climate change. Without wider efforts to reduce our reliance upon 

fossil fuels, the negative effects of climate change upon bats and other wildlife 

may outweigh those caused by wind turbines. The volume of renewable energy 

generation that is required in order to achieve EU and global targets for 

reductions in carbon and greenhouse gas emissions is significant. Current EU 

legislation sets out a target of achieving 20% of total energy generation from 

renewable sources by 2020 (Directive 2009/28/EC of the European Parliament 

and the Council of the European Union (2009)). More recent UK and European 

targets (including the 2016 ‘Paris Agreement’) aim to reach an 80% reduction in 

greenhouse gas emissions relative to 1990 levels by 2050 and net zero 

emissions during the 2nd half of this century (Committee on Climate Change, 

2016). The impact on European-level climate change targets of the recent 2016 

UK referendum and its vote to leave the EU, is not yet known. 

Renewable energy generation will need to rise by significant levels during these 

periods in order to meet these targets. The largest renewable energy sector in 

the UK, as a result of a strong natural resource and a maturing industry, is wind 

power (RenewableUK, 2015a). Onshore wind energy is also currently the most 

economical form of energy generation in the UK (Bloomberg New Energy 

Finance, 2015). The development of new wind energy capacity in the UK is, 
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however, currently limited as a consequence of recent changes in government 

energy and planning policy and funding channels (RenewableUK, 2015a). 

However in the context of the above legally-binding climate change targets and 

the present renewable energy industry structure, it is likely that the installation 

of turbines will further expand in the UK in coming years. 

Bat fatalities at wind turbines have now been recorded across the globe and 

therefore are not a localised phenomenon. Published studies and reports list 

occurrences across all 6 continents where bats are present (Arnett et al. 2008; 

Rydell et al. 2010a; Hull and Cawthen, 2013; Doty and Martin, 2013; Kumar et 

al., 2013; Escobar et al., 2015; Patraca, 2009), with particularly large volumes 

of research output produced in North America and, more recently, in Europe. 

Existing research has focused primarily upon fatalities at turbines, in addition to 

behavioural studies and the development of potential mitigation techniques (see 

this Thesis’ Literature Review). Few studies have considered non-fatal impacts 

of turbines or the spatial activity patterns of bats at wind energy sites. 

Furthermore research effort has almost exclusively considered large turbines at 

wind farms, with only a very small number of studies investigating small turbines 

(e.g. Minderman et al. 2012; Park et al. 2013; Minderman et al. 2015; Long et 

al. 2010). The latter studies also comprise the only published research that has 

considered the context of risk within the UK. 

This thesis aimed to reduce that knowledge deficit, by investigating the impact 

of small and medium scale wind turbines upon bats in the UK. The research 

aimed to: 

1. Identify the locations of planned wind turbines within Wales and south-

west England, including all wind turbine sizes and historical records. 

Using the collated wind turbine data, identify whether wind turbines have 

any impact (both individually and cumulatively) upon local bat roost 

populations 

 

2. Quantify the rate of bat fatalities at small and medium wind turbines and 

identify whether the wind turbines cause disturbance of bat activity in 

their immediate proximity. Furthermore investigate whether any 
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environmental factors moderate bat activity levels at small and medium 

wind turbine sites 

 

3. Investigate bats’ spatial movements in proximity to small and medium 

wind turbines and identify bats’ use of habitat structures at the turbine 

sites 

 

4. Evaluate an outstanding hypothesis proposing that bats’ are attracted to 

wind turbines’ noise emissions. Furthermore identify whether wind 

turbine noise has any negative impact upon bat activity levels 

 

At a wider level, the thesis aimed to provide research evidence to support the 

production of updated small turbine planning guidance in relation to bats. 

Guidelines in this area are currently severely lacking (Park et al. 2013), 

hindering the efficiency of both bat conservation and small turbine development. 

6.2 Consolidation of research space 

6.2.1 Turbine planning 

A number of wind turbine planning and installation databases exist within the 

UK, including the RenewableUK Wind Energy Database (RenewableUK, 2016), 

the Microgeneration Certification Scheme database (Microgeneration 

Certification Scheme, 2016) and the DECC Renewable Energy Planning 

Database (DECC, 2016a) (which superseded the DECC RESTATS database in 

September 2014). Further government and industry reporting channels also 

record total numbers of turbine installations in the UK and its regions (DECC, 

2016b and 2016c; RenewableUK, 2015b), however the latter do not include 

planning, location or installation data for individual turbines/sites. 

Chapter 2 of this thesis included a comprehensive review of planned wind 

turbines in Wales and South West (SW) England up to the end of 2013, which 

in turn produced a database recording each of those turbines.  
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The database was subsequently compared against 6 of the main existing 

reference sources that recorded individual sites. In doing so it was illustrated 

that each of these existing databases severely underestimated the total number 

of planned wind turbines in the region. This has considerable implications for 

any bat conservation projects that require information detailing turbine locations 

and consequently base analyses of impacts on these existing databases. 

Impacts upon bats (or indeed other wildlife) are as a result likely to be 

underestimated. This is of particular concern for studies that focus upon small 

and medium turbines, which generally comprise the largest proportion of 

underestimation of turbine numbers. The importance of this issue is also 

exacerbated by the current stage of bats and wind turbines research, which is 

leading towards understanding of cumulative and population impacts at the 

level of both local landscapes and national populations (Arnett et al. 2016; 

O’Shea et al. 2016; Voigt et al. 2015; see this Thesis’ Literature Review). 

Deficiencies in reference turbine data may therefore introduce inaccuracies into 

analyses. This principle of data quality and uncertainty and the subsequent 

impact upon research outcomes is further highlighted in the analysis of bat 

fatality rates at small and medium turbines in Chapter 3. The analysis showed 

the importance of considering the quality and nature of input data in deriving 

accurate outputs, such as the moderating influences of carcass removal, search 

efficiency and search interval factors upon fatality rate estimates at wind 

turbines. In the same vein, if poor quality turbine planning data are applied to 

estimate cumulative fatality impacts across regions, inaccurate results may be 

produced. This study, in contrast, has provided a comprehensive reference 

database of turbine planning for Wales and SW England that may be used to 

investigate wildlife conservation in these areas. 

Existing bat research to date has primarily focused upon impacts from large 

turbines at commercial wind farms (e.g. Arnett et al. 2008; Brinkmann et al. 

2006; Rydell et al. 2010a; Georgiakakis et al. 2013; Barros et al. 2015). This 

study however found that 95% of approved wind turbine sites in the sampled 

regions featured only a single turbine or a pair of turbines. Based on a sample 

of planning applications that was further explored to consider turbine size, close 

to half of all planned turbines were categorised as sub-micro to medium in size 

(45%), whereas this increased to 87% for sites with only a single turbine or a 
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pair of turbines proposed. As a result, this study has illustrated that knowledge 

regarding impacts upon bats at a large proportion of wind turbine sites in the UK 

is severely limited, due to the very small number of studies considering small to 

medium turbines. This thesis has subsequently provided new research 

considering bat fatality levels and non-fatal impacts upon bats at small and 

medium turbine sites in the UK (Chapters 2, 3, 4 and 5), reducing the 

knowledge gap in this area. 

This study has also expanded upon the only turbine planning-focused research 

already published (Park et al. 2013), in identifying a high overall planning 

approval rate for turbines. Approval rates were also observed to fall with 

increasing turbine size, further emphasising that smaller turbines are more likely 

to proliferate rapidly across the UK and therefore require research focus. 

However government planning, energy and subsidy policies were also 

highlighted as important moderating factors on wind turbine installation rates. 

These factors have led to a current decline in the rate of wind energy expansion 

in the UK (RenewableUK, 2015a). This highlights an opportunity for UK-focused 

bat research to ‘catch-up’ with wind energy developments. Little UK research 

has previously been available to judge potential impacts, during which time 

large numbers of turbines have been planned, as observed by this study. 

6.2.2 Bat fatalities 

Only one scientific study has been published in the UK assessing bat fatality 

rates at turbines of any size (Minderman et al. 2015). That study suggested 

rates of bat fatalities at small turbines were very low (0.008–0.169 turbine-1 year 

-1), after recording only three fatality observations from turbine owners, in 

addition to zero carcasses during fatality searches. However as detailed in 

Chapter 3 of this thesis, the methods used to reach this conclusion left the 

results open to criticism and may not have produced a robust estimate of fatality 

rate.  

The present study in Chapter 3 of this thesis incorporated fatality monitoring 

using a professionally trained search dog at 30 small and medium wind turbine 

sites. It was concluded that, on the basis of the monitoring programme applied, 

fatality rates lower than 15.15 turbine-1 year-1 could not be confirmed without 
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more rigorous monitoring. Without adjusting for the uncertainty in the monitoring 

method, the rate would have equalled 0.81 turbine-1 year-1. Three bat carcasses 

were observed in total during the fatality searches across all of the monitored 

sites. 

This study has therefore shown that fatality rates at small and medium turbines 

are likely to be higher than previously reported in the research literature 

(Minderman et al. 2015). Furthermore it was proposed that a rigorous 

monitoring protocol would be required during future research to reduce the 

uncertainty remaining in the fatality rate estimate and to confirm if the rate is in 

reality, lower. 

The fatality rate presented, inclusive of the described uncertainty, was similar to 

some of the higher rates of fatality observed at turbines in wind farms in 

northern Europe (Rydell et al 2010a). The result of this comparison may of 

course vary if future research is able to confirm lower rates of fatality at small-

medium turbines. Regardless of the exact rate, it is clear small and medium 

turbines should be incorporated in wider considerations of cumulative 

population impacts. This approach was taken during the analysis of turbine 

impacts upon bat roost populations presented in Chapter 2 of this thesis. The 

latter study found no relationship between the presence or density of turbines 

(of all sizes combined) and bat roost population sizes. Additionally, no impact 

was identified from turbine presence or density on roost population changes 

over time. These outcomes represented some of the first research results in the 

field considering local-population-level impacts upon bats using measured bat 

population data. The analyses of turbine density similarly represented one of 

the first investigations of cumulative impacts from turbines. A final analysis 

identified no significant preference for the placement of turbines close to roosts 

with successful (i.e. large) populations. The latter hypothesised pattern could 

otherwise have occurred due to e.g. shared requirements for landscape 

structure or similar likelihoods of placement in rural/urban fringe areas. The use 

of 5 year time periods to analyse roost population changes allowed for the 

population impact lag times that have been observed during previous bird 

research (Strickland et al. 2011). 
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No previous studies have considered the impact of turbines – individually or 

cumulatively – upon bat roost populations. These results therefore represent an 

original contribution to this field. The closest comparative results to this study 

were the observations of overlaps between wind farm locations and portions of 

bats’ modelled core habitat and probable movement corridors in a region of Italy 

(Roscioni et al. 2013; Roscioni et al. 2014). The majority of existing analyses of 

potential population impact comprise simply of the extrapolation of site-level 

fatality rates to regional/national areas (Kunz et al 2007; Arnett and Baerwald, 

2013; Voigt et al. 2015). It has been stated in previous research that no 

conclusive studies have been completed to confirm whether turbines have an 

impact upon bats at a population level (Voigt et al. 2015).  

Power analyses were used to assess the ability of the regional-scale roost 

population impact modelling (Chapter 2) to detect fatality rates of the scale 

identified in Chapter 3 (0.81-15.15 turbine-1 year-1). This confirmed that the 

turbine presence model (Chapter 2, Table 2.3) had a 100% probability (alpha = 

0.05) of detecting population losses at the higher fatality rate (15.15) whilst it 

lacked the power to detect changes at the lower fatality rate (0.81) (probability = 

4.9%, alpha = 0.05). Similarly the turbine density model (Chapter 2, Table 2.4) 

had a relatively high (though lower than 80%) probability of detecting the higher 

fatality rate (68.6%, alpha = 0.05) and lacked the power to detect losses at the 

lower fatality rate (33.9%, alpha = 0.05). Given that the results from Chapter 2 

indicate a lack of significant impact from turbines at a regional population scale, 

it is therefore considered likely that the actual fatality rate at small and medium 

turbine sites may be lower than the maximum estimated (15.15 turbine-1 year-1) 

in Chapter 3. However spatially variable rates of turbine planning were 

highlighted in Chapter 2, therefore a moderately higher relative cumulative risk 

to populations may exist in some areas. Moreover, without further rigorous 

fatality monitoring this hypothesis cannot be confirmed. 

The definition of cumulative impact is not currently clear (Strickland et al. 2011) 

and the separation of impact from turbines upon bat populations from that of 

other sources of conflict (e.g. roads or agricultural intensification (Berthinussen 

and Altringham, 2012; Wickramasinghe et al. 2003)) is a complicated matter. 

For example one bird population decline observed at a wind energy facility was 

later found to have been a probable artefact of wider reductions in the 
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concerned population, as a result of vegetation burning and heavy cattle 

stocking rates (Strickland et al. 2011). Recent reviews of bird monitoring offer 

encouragement concerning wider population impacts from turbines. The rates of 

bird fatalities observed for many species were considered unlikely to represent 

a risk of population decline (American Wind Wildlife Institute, 2015; Schuster et 

al. 2015). 

Some bat genera may furthermore pose a larger challenge with regard to 

defining cumulative impacts from wind turbines upon them. For example whilst 

Chapter 3 of this thesis showed that a high proportion of non-Pipistrellus bat 

activity in the immediate turbine vicinity at sites was from bats of the Nyctalus 

and Eptesicus genera, Chapter 2 illustrated that identification and recording of 

roosts for these genera is lower on a relative basis. The latter pattern is likely 

partially due to the difficulty in locating these genera’s roosts as they typically 

are tree-roosting species, utilising smaller and more temporary roosts. Attempts 

to monitor the roosts of these genera in order to define cumulative population 

impacts from wind turbines may consequently suffer from lower availability of 

roost data. 

The results from both Chapter 2 and 3 concerning bat fatality levels and the 

wider research context indicate some potential that renewable energy 

development and bat conservation could be mutually achieved. This is 

supported by the observation of stability and significant increases in UK bat 

populations between 1997 and 2013 (Bat Conservation Trust, 2014; Barlow et 

al. 2015) – a period during which wind turbine installations have expanded 

widely, as observed in Chapter 2. 

6.2.3 Non-fatal impacts 

Few studies have investigated the non-fatal impacts of wind turbines upon bats. 

Those that have, identified localised disturbance of bat activity during high wind 

speed conditions (Minderman et al 2012), micro-avoidance of turbine blades 

(Horn et al. 2008; Bach and Rahmel, 2004), displacement of bat activity from 

the interior of a wind farm and alteration of spatial activity patterns (Bach and 

Rahmel, 2004). Examples of a lack of impact have also been recorded, for 

example a study in Iowa, USA found no significant difference in activity levels 
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between turbines and nearby control sites (Jain et al. 2011). The investigation 

of bat activity levels in three habitat types (linear hedgerow / woodland, open 

ground and next to the turbine) in Chapter 3 also identified a disturbance of 

activity in proximity to turbines during high wind speeds, concurring with 

previous observations of this effect (Minderman et al. 2012). This analysis 

furthermore identified higher levels of bat activity near linear habitat features 

than in open habitat. The latter pattern was explained by SNA-derived 

observations of bats’ heavy reliance upon linear habitat features for navigation 

across wind turbine sites (Chapter 4). These studies’ findings regarding habitat 

associations contribute new knowledge of bats’ spatial use of small and medium 

wind turbine sites. The proposed associations are also consistent with existing 

expectations regarding bats’ more general use of habitat (Verboom and 

Huitema, 1997; Russ and Montgomery, 2002; Downs and Racey, 2006). Whilst 

some disturbance is apparent at a micro-scale in the turbine proximity (Chapter 

3 and 4), local roosts do not appear to have suffered any population impact 

from this localised disturbance (Chapter 2). 

The wider spatial networks of bat movements and extended flights across sites 

as detailed in Chapter 4 did not show frequent avoidance of the turbine vicinity. 

In fact activity at some sites indicated that turbines may be a feature of interest 

and a navigational hub for bats. It is interesting to consider these findings in 

conjunction with the observed avoidance during high wind speeds (Chapter 3; 

Minderman et al. 2012), reports of micro avoidance of turning blades (Horn et 

al. 2008), approaches by bats to turbines on their leeward/downwind side 

(Cryan et al. 2014) and higher levels of investigation of blades by bats during 

low wind speeds (Cryan et al. 2014). The previously proposed hypothesis and 

evidence that bats are attracted to trees (Lumsden and Bennet, 2005; Verboom 

and Spoelstra, 1999) and thereby potentially also to turbines as tree-like 

features (Cryan and Barclay, 2009) (be that for roosting (Cryan and Barclay, 

2009; Cryan et al. 2014) or for foraging purposes (Lumsden and Bennet, 2005; 

Verboom and Spoelstra, 1999; Cryan et al. 2014)) could be given weight by 

these combined patterns. Bats may try to investigate or fly near to turbines 

under the impression that they are trees, before unexpectedly having to avoid 

moving blades. Bats appear to use trees and linear features for wind shelter 

during foraging (Verboom and Spoelstra, 1999). Observations of bats’ 
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approaches to the leeward/downwind side of turbines, hypothesised to be the 

result of changing air currents caused by turbines as an obstacle to wind (Cryan 

et al. 2014), may indicate a similar use. Bats’ approaches to slow moving 

blades (Cryan et al. 2014) may indicate a similarity to tree branches being 

blown by the wind. Permanent recognition of turbines by bats as unsuitable, 

moving features does not however appear to occur. If this were the case, a 

small number of exposures of the bats to moving turbines would result in near-

complete avoidance of the turbine. 

However none of these patterns rule out the hypothesis that insect prey in the 

vicinity of turbines may explain the presence of bats at turbines (Cryan and 

Barclay, 2009; Rydell et al. 2010b). Recent evidence has shown that insects are 

present at turbines, even on turbine surfaces (Rydell et al. 2016). It was 

suggested that foraging is the main bat behaviour displayed at small and 

medium wind turbine sites in Chapter 4, supporting the hypothesis of attraction 

due to insect prey. The latter evidence contributes the first definition of bat 

behaviour types at small turbine sites. 

Chapter 5 of this thesis provides the first structured research evidence that 

small turbine noise does not disturb or attract UK bat species. This aligns with 

previous anecdotal evidence recorded by Ahlen (2003) and addresses for the 

first time the turbine noise attraction hypothesis (Ahlen, 2003; Cryan and 

Barclay, 2009), suggesting a lack of support for this hypothesis. This result 

further indicates that technological aspects of turbines are not linked to levels of 

risk to bats, following previous research finding no effect of turbine lighting on 

bat fatality totals (Arnett et al. 2008; Bennet and Hale, 2014). 

Nightly bat movement networks at turbine sites were typically found to be 

weakly connected and vulnerable to disruption (Chapter 4), such as that 

represented by the avoidance of a turbine during high wind speeds (Chapter 3). 

Noise from a nearby turbine would however be unlikely to cause such disruption 

(Chapter 5). The vulnerability of movement networks has important implications 

for turbine placement and for associated habitat management within a site. The 

latter is particularly a concern if construction works involve modifying linear 

habitat features, due to their importance for bat movement (Chapter 4). 

Movement bottlenecks were also identified using SNA methods in Chapter 4; 
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the impact of habitat changes will be further exacerbated at these locations. 

Conversely, the suggestion of likely disruption of bat activity as a result of 

removing habitat features does offer some potential for mitigation of fatalities. 

Habitat management may theoretically be able to restrict bat movement towards 

turbines and encourage movement away (using management methods such as 

those proposed by Millon et al. (2015) and Peste et al. (2015)). These findings 

contribute some of the first detailed investigations into bat movement and 

habitat associations within turbine sites. 

Considering all of the above findings as a whole, in addition to previous 

disturbance evidence (Minderman et al. 2012; Bach and Rahmel, 2004), 

suggests that small and medium turbines have a small non-fatal disturbance 

and displacement impact upon bats during high wind speeds, but that this is 

limited to the immediate turbine vicinity. The presence of turbines may also alter 

bats’ movement behaviours, encouraging investigation of and foraging around 

turbines, potentially in preference to open habitats. 

6.2.4 Environmental factors and turbine noise 

Existing research has shown strong associations between weather conditions 

and bat activity levels at wind energy sites. These include positive associations 

with warmer temperatures (Arnett et al. 2011; Amorim et al. 2012; Georgiakakis 

et al 2013; Baerwald and Barclay, 2011; Weller and Baldwin, 2012; Gorresen et 

al. 2015), lower wind speeds (Arnett et al. 2008; Brinkmann et al. 2006; Kerns 

et al. 2005; Rydell et al. 2010a; Amorim et al. 2012) and higher levels of prey 

availability (Horn et al. 2008). This thesis supports these temperature and wind 

speed conclusions, observing the same direction of effects during multiple 

analyses in Chapters 3 and 5. Furthermore rainfall occurrence was found to 

have a negative impact upon activity levels. The results show that bats react to 

the same conditions at small and medium turbines as they do at large turbines 

(at which the majority of the above weather associations were recorded). These 

findings represent some of the first considerations of the effect of weather upon 

bats at small and medium turbines, following the only other study to include 

such analyses (Minderman et al. 2012). 
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Conclusions regarding the moderating effects of habitat type on bat activity 

levels are more variable across existing studies. Higher risk habitats have been 

proposed to include wooded hilltops and locations within 100m of woodland (in 

Europe) as well as forested ridges and heads of ravines (in North America). 

Other studies have found no clear effects of habitat upon bat activity or fatality 

(Dubourg-Savage et al. 2011; Johnson et al. 2004). 

Higher activity levels were found to be associated with proximity to linear 

hedgerow and woodland edge / treeline habitat features at small and medium 

turbine sites (Chapter 3) (furthermore validating the choice of this habitat type 

for the turbine-noise investigation carried out in Chapter 5). The proportion of 

built environment landcover in the surrounding environment (in this case within 

a 5km radii) was also found to feature a negative association with bat activity 

(Chapter 3). These findings again represent some of the first considerations of 

the effect of habitat upon bats at small and medium turbines, following the only 

other study to include such analyses (Minderman et al. 2012). Considered 

together, these habitat associations suggest turbine development in open 

habitat closer to urban environments may reduce overall risk to bats. The use of 

GIS in this context, to derive habitat variables and assess related bat activity, 

highlights the value of this technology in assisting bat conservation research 

and activities. The ability of GIS to spatially relate environmental issues is also 

exemplified in Chapter 2, analysing the interaction of turbines across wide areas 

with roost populations. Recent advances have been made in the use of species 

data (e.g. from local biological records centres) at variable spatial resolutions to 

derive multi-scale habitat use models for bats (Bellamy et al. 2013; Ducci et al. 

2015; Bellamy and Altringham, 2015). This opens a wide range of possibilities 

for future research to consider landscape and local-scale bat movements in 

relation to wind turbines, to improve our understanding of bat interactions with 

wind energy infrastructure. 

No turbine-related variables were found to have any significant association with 

bat activity during the development of models, including height to blade tip, 

number of blades, turbine noise or number of years since turbine planning 

approval (a measure of relative approximate length of installation time) 

(Chapters 3 and 5). 
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6.2.5 Implications for ongoing research 

This thesis has presented results largely showing low levels of impacts from 

small to medium scale turbines upon bats, though with uncertainty still present 

in the levels of risk estimated. The principle of proportionality of effort suggests 

this thesis’ indications of low impact support use of research effort for other, 

larger sources of bat mortality, with justification for further research only in 

focused aspects (e.g. fatality monitoring to narrow fatality rate estimates) at 

small to medium scale turbines. 

The current range of fatality rate possibilities calculated in Chapter 3 and the 

legally-protected status of bats leave small-medium turbine planning open to 

strict regulation, regardless of the small number of carcasses found in reality. 

Planning guidance and policy for bats at small to medium turbines is also still 

urgently required for the efficiency of both bat conservation and turbine planning 

(Park et al. 2013), whilst very few studies or evidence sources are available 

regarding this topic. The level of emphasis placed upon detailed aspects of 

fatality rates within the wind farms research and policy environment suggests 

the same will be relied upon for small to medium turbines. As a result, focused 

monitoring research purely concerning the tighter definition of fatality rates is 

supported. 

Knowledge of national and local bat population sizes also remains limited and 

therefore no clear definitions exist of the situations in which bat fatalities of 

given levels are unacceptable. Without such knowledge, the precautionary 

principle may be adopted by conservation bodies and regulators, particularly 

due to cumulative impact estimates from the thousands of turbines installed 

across the UK (which are further exacerbated by high fatality rate estimates 

when large uncertainty levels are accounted for, as discussed above). This 

supports focused research into bat population sizes, for the benefit and 

efficiency of all bat conservation efforts and topics (including large wind farms, 

roads and agricultural intensification). 

The volume of future research regarding non-fatal impacts of turbines (of all 

sizes) upon bats may depend on the priorities of the wider bat conservation 

research and strategy environment. Further understanding is first required 
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regarding the biological importance of non-fatal impacts upon bats from any 

source. 

This thesis does not appear to justify a further large scale research programme 

into bats and small-medium turbines. Instead it may justify carrying out a small 

number of studies in a more intense manner within the topics shown to have 

potential for impacts upon bats. Those areas recommended for further 

monitoring efforts are: (1) bat fatality monitoring using a short survey interval 

over a long time period (e.g. months) at a small sample of sites, to determine 

accurate actual fatality rates; (2) consideration of species-specific risk using 

monitoring at sites with diverse bat species, perhaps within the same monitoring 

setup as ‘1’ above; (3) improved estimations of bat population sizes so that 

cumulative fatality estimates at turbines can be placed in context and assessed 

for their risk level as appropriate. If a low-cost acoustic bat deterrent can be 

commercially produced for small-medium turbines, research to test and confirm 

its effectiveness for mitigation may be justified. A targeted list of possible future 

research questions is provided in section 6.4. 

6.3 Practical implications and recommendations 

6.3.1 Mitigation 

The current national statutory guidance in England (Natural England, 2014) 

suggests a minimum separation distance of 50m between turbines and habitat 

features of value to bats. For small to medium turbines, within the context of 

small agricultural holdings and domestic settings, it is often impossible or 

impractical to achieve this separation distance due to the size of the land parcel. 

Turbines installed at larger farms, however, may be more able to meet this 

criterion. 

The recommendation of Minderman et al. (2012) that guidance includes the use 

of a separation distance of 20m between small and medium turbines and linear 

habitat features or other important bat habitats is supported. The analysis within 

Chapter 3 of this thesis, finding that non-fatal disturbance impacts upon bats 
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during high wind speeds dissipate within a short distance from the turbine, 

corroborates the evidence recorded by Minderman et al. (2012). 

It is recommended more generally that mitigation strategy guidance focuses on 

siting of turbines as a first priority. In addition to achieving a reduction in 

disturbance of bat activity (Chapter 3) appropriate siting of turbines may avoid 

disruption to vulnerable movement networks (Chapter 4). Additionally, where 

the introduction of a turbine is thought to represent a high risk to bats at a site, 

SNA methods may help determine appropriate mitigating actions. The 

application of SNA would both enable identification of bat movement networks 

and highlight those locations most vulnerable to disruption. Further research is 

required to evaluate the effectiveness of habitat management as a mitigation 

strategy (Millon et al. 2015; Peste et al. 2015), however this thesis has provided 

indications that habitat modifications could offer value for this purpose (Chapter 

4). 

Use of increased turbine cut-in speeds is recommended only as a last resort for 

small turbines. Low wind speeds will comprise a higher proportion of available 

wind resource at the lower heights of small turbines, relative to large turbines 

(Mathew, 2006). The proportional reduction in generation of renewable energy 

would therefore be higher at small turbines, having a negative impact upon 

wider efforts to mitigate climate change. However it is important that protected 

species are given appropriate shelter and sites considered to pose a high-risk to 

bats may present a reasonable case to use increased cut-in speeds. Similarly 

the use of advanced curtailment algorithms incorporating weather variables is 

unlikely to be possible at small turbines due to a lack of relevant control 

technologies at this scale (personal communication with a small turbine 

manufacturing company). 

It should be noted that the use of set turbine cut-in speeds should not assume 

equal impact upon the generation of identical turbine models that are installed 

at different sites. The wind speed distribution will differ at each site and 

therefore wind speeds below the cut-in speed will comprise differing proportions 

of potential energy generation at different sites. The same principle also applies 

at a national level. Wind speeds are generally higher, for example, in Scotland 

than in England and therefore the energy generation impact of identically 
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increased cut-in speeds will tend to be greater in England. Turbine shut-down 

mitigation where timings are defined in relation to sunrise and sunset will 

similarly have a disproportionate effect upon energy generation between sites 

located at different latitudes, due to differing night lengths. Finally a cubic 

relationship exists between wind speed and power, hence small increases in 

cut-in speeds will have increasingly large impacts upon power generation. For 

example, a doubling of wind speed increases the available power from the wind 

by 8 times, up to a set wind speed for each turbine model before energy 

generation will plateau due to mechanical limitations (Mathew, 2006). 

Wider questions also exist regarding approaches to active mitigation (e.g. use 

of cut-in speeds), including whether mitigation should be applied from the point 

of turbine installation, or whether monitoring results should be used to trigger 

the application of mitigation. 

6.3.2 Fatality monitoring 

It is emphasised that monitoring of bat fatalities in the UK (e.g. in research 

programmes) should be carried out using professionally trained search dogs 

and should account for length of carcass persistence and searcher efficiency, in 

order to produce reliable estimates of total possible fatalities (Chapter 3). 

Assessing and monitoring fatality risk at small turbines is a challenging subject, 

as the development of a small turbine at a private property or small farm holding 

is unlikely to include the financial scope for professional fatality monitoring. 

However statutory authorities still have a responsibility to prevent and regulate 

fatalities of protected species, including bats. The scope of this study does not 

include defining methods for regulation of fatalities and this subject is the 

responsibility of statutory authorities. 

Whilst the use of search dogs is recommended for fatality monitoring, this 

method carries inherent logistical and practical demands. Financial costs may 

be high, incorporating welfare, health and everyday care expenses for the dog. 

In addition professional training is required for both the dog and the human 

handler and the costs of the handler’s time and expenses must be considered. 

If the dog search handling is carried out on an internal basis by a research 

institute or developer, rather than via a professional service provider, this places 
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a significant personal demand upon researchers or staff to house and care for 

the dog on a full-time, long-term basis. 

Furthermore access to bat carcasses for carcass removal and search efficiency 

trials may be a limiting factor. Wildlife rehabilitators may be able to supply a 

limited numbers of carcasses; however the use of small mammal carcasses 

(e.g. mice) may need to be considered as an appropriate alternative. 

6.3.3 Acoustic monitoring methods 

Acoustic bat monitoring rapidly generates a very large volume of sound 

recording data, particularly when using multiple detectors. Subsequent sound 

analysis and bat identification processes place a large time demand upon the 

monitoring organisation and will require many hours of staff/researcher time. 

Associated with this issue is a requirement for significant levels of data storage. 

These challenges may lessen over time with improvements in automated 

species identification technology and reductions in the cost and availability of 

large-format storage devices. 

Powering of equipment in the field can be logistically challenging. High-capacity 

batteries that are able to provide power over a scale of weeks tend to feature a 

trade-off between cost and both performance and weight. Cheaper batteries 

such as the lead-acid format often feature poorer performance and length of 

powering-time. Furthermore the weight of these batteries can make transport 

and installation very difficult. The cost of higher-performance batteries such as 

the lithium-ion format can be prohibitive, though the improvement in length of 

powering-time, their lighter weight and generally higher reliability may justify this 

cost. Batteries also suffer performance issues during cold weather periods. 

Solar-panel battery charging systems may be installed for extended monitoring 

lengths, though again at increased cost. 

6.3.4 Wind monitoring 

Researchers should take into account the moderating effect of measurement 

height on wind speed analyses. Wind speeds generally increase with height as 

a result of the wind shear principle (Mathew, 2006). Consequently, when 
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reporting the influence of wind speed on bat (or other wildlife) activity, it is useful 

to also report the wind measurement height. In this way, reported relationships 

of bat activity with wind speeds e.g. at ground height, are clearly understood to 

be related to ground and not hub height wind conditions. 

6.3.5 Access to turbine sites 

Research at wind turbine sites relies upon the granting of access permission by 

turbine and land owners. This can present a challenge to researchers, 

particularly those investigating impacts upon protected wildlife species. Turbine 

owners can be reluctant to accept a perceived risk of exposure regarding their 

turbine’s impact upon wildlife. The use of guarantees regarding anonymity of 

published data and protection from Freedom of Information (FoI) requests may 

mitigate such fears. It is recommended that research in this area allows an 

extended period of time to agree access to sites. 

Access to monitor at turbine hub heights may be particularly problematic, 

largely due to practical access and space limitations at small and medium 

turbines and more widely health and safety and technical concerns at all sizes 

of turbine. Not all small or medium turbine models will feature space to safely 

install bat detectors within / on a nacelle, whilst the nacelle of some small 

turbines can only be accessed by the winching of the whole turbine structure 

down to the ground by professional maintenance staff. This is unlikely to be 

feasible for many small turbine owners. 

Access to the nacelle of taller turbines that can be climbed using 

internal/external ladders is likely to be restricted to turbine engineers, on health 

and safety grounds. Turbine owners may also have technical concerns 

regarding the installation of detector and battery equipment alongside the 

nacelle’s internal machinery. Furthermore some turbine models will require the 

drilling of a small hole in the turbine’s nacelle, through which the detector’s 

microphone may be deployed. This may understandably cause concern from 

turbine operators and restrict installation. If installation is achieved, it is possible 

that access to maintain detectors and batteries will rely upon the turbine 

operators’ timetabling and as such loss of monitoring time may occur. Detector 

setups that have powering options providing long-term/permanent power and 
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storage options for long-term data storage or remote data access are therefore 

preferable. 

Identifying the presence and locations of small and medium wind turbine sites 

can be difficult, as observed in Chapter 2 of this thesis. The publication of a 

version of the Microgeneration Certification Scheme database that includes 

location data, but removes personal information and energy generation data, 

would eliminate this barrier whilst protecting the personal information of turbine 

owners. 

6.3.6 Strategic conservation efforts 

Statutory authorities at all geographic and political levels have a responsibility 

for the conservation of bats and other wildlife. Furthermore wildlife movements 

do not respect administrative or political boundaries between planning 

authorities or countries. As a result, joined-up conservation strategies and 

monitoring guidelines are required across these areas and levels of government 

(Van der Meij et al. 2015; Rodrigues et al. 2015). A unified classification of 

turbine sizes would also aid application of appropriate planning guidance and 

research to individual sites, as no consistent definition is currently available 

(Rodrigues et al. 2015). Such a classification scheme would need to be flexible 

with regard to future turbine developments as their proposed sizes increase. 

The impact of the recent 2016 UK referendum vote to leave the EU, upon the 

link between European-level (Rodrigues et al. 2015) and UK-level guidelines 

(Natural England, 2014), is not yet known. 

As uneven spatial distributions of wind turbines have been observed within 

regions of the UK (Chapter 2), conservation efforts and local-population-level 

impact assessments could be focused within areas of high turbine density. 

Further clarification may also be required regarding the legal standing of 

individual turbine owners and wind farm developers in the context of recorded 

bat fatalities and the legal protection of bats as a protected species. 
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6.3.7 Vertical axis turbines 

Vertical axis turbines were not included in the scope of this research project and 

no dedicated studies of the impact of this turbine-format upon bats have been 

completed to date, as far as the author is aware. Whilst numbers of vertical axis 

turbines in the UK appear to be far lower than those of the horizontal-axis 

format, future studies may wish to investigate whether they present any risk to 

bats. 

6.3.8 Medium scale wind turbines and small numbers of turbines 

Medium scale wind turbines are typically planned in similar environments to 

small turbines and are a format frequently used for farm-scale energy 

generation, with most sites usually comprising a single turbine. This size of 

turbine presents a challenge for defining the required level of acoustic 

monitoring during bat impact assessments. The nacelle heights of medium 

scale turbines often reach approximately 20-35m. Bat activity at this height is 

therefore close to the upper limit of detection distance by most bat detectors 

and out of the detection range of other models. Consequently, monitoring 

equipment may need to be installed in or next to the nacelle (depending on the 

format of the turbine model – some feature access platforms adjacent to the 

nacelle). Not all turbine models will however feature space to safely install bat 

detectors within / on a nacelle. 

The majority of research regarding bats or other wildlife may be most likely to 

focus upon either large or small-scale turbines, leaving some areas of 

knowledge deficit at medium turbines. Planning guidelines designed for large 

turbines, or indeed small turbines, may as a result be wrongly applied to 

medium turbines. Further research to confirm any differences in bat activity 

levels at the hub height of medium turbines, relative to monitoring at ground 

level and at large turbines’ hub heights, may reduce uncertainty in this area. 

Similar issues may exist around sites with small numbers of installed/proposed 

turbines e.g. 2-4. The majority of existing research focuses upon either large 

wind farms or single turbines. 
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6.3.9 Small and medium wind turbines 

A large deficit remains in research effort regarding small and medium wind 

turbines, as discussed throughout this thesis and as highlighted by previous 

research (Minderman et al. 2012; Park et al. 2013; Minderman et al. 2015; 

Rodrigues et al. 2015). These sizes of wind turbine represent a large proportion 

of the planned turbines in the UK (Chapter 2). Consequently this issue requires 

attention if we are to appropriately address concerns regarding bat conservation 

at wind energy sites. Whilst initial investigations have begun to clarify fatality 

rates (Minderman et al. 2015; Chapter 3; Chapter 2), bat activity levels 

(Minderman et al. 2012; Chapter 3) and disturbance (Minderman et al. 2012; 

Chapters 3, 4 and 5), wider monitoring is required to further strengthen our 

understanding. Furthermore little information is available regarding bats 

behavioural patterns at small and medium wind turbines, the reason(s) for their 

presence at these turbines, cumulative impacts at a population level or the 

potential for mitigation of impacts. 

6.4 Future research questions 

This thesis has discussed a number of existing and newly-highlighted research 

gaps concerning the assessment of impacts upon bats at wind energy sites. 

Topics with particularly limited volumes of research include the population-level 

impact of wind turbines upon bats (Arnett et al. 2013), non-fatal impacts upon 

bats and assessment of impacts from small and medium turbines (Rodrigues et 

al. 2015). Bats’ interaction with turbines during wider movement around 

sites/landscapes and the assessment and testing of habitat management 

methods for mitigation of impacts upon bats are also areas requiring further 

investigation (Peste et al. 2015). 

A range of research questions and directions for future investigation are 

provided below, in order to address some of these deficiencies in knowledge, to 

improve our understanding of this topic and to increase our ability to reduce the 

impact of wind turbines upon bats. The questions are categorised into ‘Urgent 

priorities’, ‘Medium term priorities’, ‘Long term research needs’ and 
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‘Supplementary areas of interest’, in order to provide a prioritised strategy for 

future research. 

Urgent priorities 

1. Reduce the level of uncertainty in current estimates of fatality rates at 

small to medium turbines, by applying a rigorous monitoring protocol 

using trained search dogs at a sample of small and medium turbine sites. 

Carcass removal and search efficiency trials must be applied. 

 

2. Carry out long-term monitoring at a small number of high-risk small and 

medium wind turbine sites, in areas supporting a diverse range of bat 

species, in order to quantify the species composition of fatalities at small 

and medium turbines. 

 

3. Improve and update estimates of the size of the UK bat population, or 

regional / local population sizes, in order to increase the feasibility of 

estimating population-level impacts from wind turbines. 

 

4. Further define the habitat associations of bats at wind turbine sites to 

enable improved prediction of fatality risk at a pre-construction stage. 

 

5. To identify variation in fatality rates between habitat/landscape types at 

small to medium turbines, in the UK. 

 

Medium term priorities 

6. Provide clearer definitions of cumulative impact, addressing choice of 

geographical and temporal scales, assessments at a total population or 

species population level and threshold levels of concern. 

 

7. Investigate spatial patterns of bat activity where roosts are found to be in 

very close proximity (e.g. less than 500m) to wind turbines. The 

restriction of development in proximity to roosts during planning stages 

may however reduce numbers of available turbines for monitoring. 

 

8. Further explore and clarify the behavioural cause(s) of bat’s presence at 

wind turbines. 

 

9. Investigate bat movements across wider landscapes incorporating 

multiple wind turbines, to investigate any cumulative impacts upon bats 
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or use of turbines by bats within wider movements. If GPS technology is 

not restricted by size and weight, consider using GPS tagging to monitor 

bat movements. 

 

10. Investigate the use of modelling approaches to estimate population 

impacts upon bats, with associated field validation. 

 

 

Long term research needs 

 

11. Identify any geographic variation in fatality rates by region within the UK, 

to allow improved estimation of population level impacts from small and 

medium wind turbines. 

 

12. Further explore non-fatal impacts upon bats at wind energy sites. This 

may include consideration of barrier effects, time-lagged disturbance 

effects or alteration of flight patterns within the wider landscape. 

 

13. Explore and experimentally test in the field the use of habitat 

management (e.g. hedgerow repositioning) for mitigation of impacts upon 

bats and small and medium wind turbine sites. Social Network Analysis 

methods may aid the interpretation of resulting activity patterns 

 

14. Investigate the effect of increasing numbers of turbines within wind 

energy sites i.e. comparing single turbine sites to double turbine sites or 

small wind clusters. Additionally consider the impact of spatial layout 

configurations for multiple turbines. 

 

15. Assess the differences in bat activity from monitoring at both ground level 

and the hub height of medium scale wind turbines. Furthermore confirm 

whether bat activity at medium turbines’ hub heights can be predicted 

from ground-level monitoring. 

 

 

Supplementary areas of interest 

 

16. Expand the testing of acoustic deterrents to small and medium wind 

turbine sites and test the efficiency of such devices in these 

environments, relative to large turbines. 

 

17. Automating the identification of bat movements within thermal infrared 

imaging (TIR) and producing software to enable repeatability of such 

analyses. 
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18. Investigate methods to quantify and automatically record volumes of 

insects present at wind turbine sites, in order to better understand 

associations with bat presence. 

 

19. Investigate any variation in the effect of turbine noise across differing 

habitat types e.g. in open habitat away from linear habitat features 

 

20. Identify whether vertical axis wind turbines pose any fatality or 

disturbance risk to bats  
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6.5 Final remarks 

Climate change poses one of the greatest global risks to the environment that 

humanity has ever experienced. The impacts of climate change are of equal 

concern for this planet’s biodiversity and compound the existing pressures of 

anthropogenic development, habitat loss and pollution. We are faced with a 

significant challenge to reduce global emissions of greenhouse gases, in order 

to avoid increased levels of global warming. To do so we must explore and 

develop clean, renewable sources of energy generation, including from the 

wind, sun and sea. However no single source of energy generation offers a 

perfect solution.  

This thesis has explored a well-publicised negative aspect of wind energy 

generation: the fatality and disturbance of bats resulting from the operation of 

wind turbines. Research around the world has now confirmed fatalities and 

other negative impacts upon bats caused by wind turbines. Consequently there 

is no longer any doubt that this is a global conservation concern. Whilst fatality 

reporting has increased rapidly across numerous continents in the last decade, 

we still have much to learn about this issue. Knowledge is still limited 

concerning the non-fatal impacts of wind turbines upon bats, their risk to bat 

populations and methods to mitigate any such impacts. In particular we are yet 

to fully understand the level of risk posed by small and medium scale wind 

turbines. 

This thesis has explored the interaction between bats and small to medium size 

wind turbines. In doing so it has contributed new knowledge to this area of 

research and may equally provide a catalyst for further research investigation. 

Impacts upon bats were identified during this study and yet these are by no 

means an unassailable barrier to both bat conservation and renewable wind 

energy generation. Nonetheless it is important to retain a wide perspective of 

cumulative impacts from small to medium wind turbines, alongside large scale 

wind farms and other key sources of risk to bats. Parties from both sides of this 

debate should work together to minimise impacts upon these equally important 

aspects of global concern. This planet’s wildlife and climate are intrinsically 

linked and neither should be considered in isolation or taken for granted.  
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Appendices 

Table A.1: Reported bat fatalities in Europe (2003-2014) – State 17/09/2014. Annex 2 Eurobats 2015 (Guidelines for consideration of bats in wind farm projects – 
Revision 2014)  

Species AT BE CH CR CZ DE ES EE FI FR GR IT LV NL NO PT PL RO SE UK Total 

Nyctalus noctula 24 
   

3 716 1 
  

12 10 
    

1 5 5 1 
 

778 

Nyctalus lasiopterus 
      

21 
  

6 1 
    

8 
    

36 

Nyctalus leisleri 
  

1 
 

1 108 15 
  

39 58 2 
   

206 
    

430 

Nyctalus spec. 
      

2 
        

16 
    

18 

Eptesicus serotinus     
7 43 2 

  
14 1 

  
1 

 
0 3 

   
71 

Eptesicus isabellinus       
117 

        
1 

    
118 

Eptesicus serotinus / 
isabellinus 

      
11 

        
16 

    
27 

Eptesicus nilssonii      
3 

 
2 6 

   
13 

 
1 

 
1 

 
8 

 
34 
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Species AT BE CH CR CZ DE ES EE FI FR GR IT LV NL NO PT PL RO SE UK Total 

Vespertilio murinus    
7 2 89 

   
6 1 

 
1 

   
3 7 1 

 
117 

Myotis myotis      
2 2 

  
2 

          
6 

Myotis blythii       
4 

             
4 

Myotis dasycneme      
3 

              
3 

Myotis daubentonii      
5 

         
2 

    
7 

Myotis bechsteinii          
1 

          
1 

Myotis emarginatus       
1 

  
1 

          
2 

Myotis brandtii      
1 

              
1 

Myotis mystacinus      
2 

    
2 

         
4 

Myotis spec.      
1 3 

             
4 

Pipistrellus pipistrellus  
10 

 
2 3 431 73 

  
277 

 
1 

 
14 

 
243 1 3 1 

 
1059 
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Species AT BE CH CR CZ DE ES EE FI FR GR IT LV NL NO PT PL RO SE UK Total 

Pipistrellus nathusii 
2 3 

 
3 2 565 

   
87 34 2 23 7 

  
12 12 5 

 
757 

Pipistrellus pygmaeus 
     

46 
   

121 
  

1 
  

31 1 2 1 1 204 

Pipistrellus pipistrellus / 
pygmaeus   

1 
   

483 
  

44 54 
    

35 1 2 
  

620 

Pipistrellus kuhlii 
   

62 
  

44 
  

81 
     

37 
 

4 
  

228 

Pipistrellus pipistrellus / 
kuhlii                

19 
    

19 

Pipistrellus spec.    
37 2 36 20 

  
85 2 

 
2 

  
85 

 
4 

 
3 276 

Hypsugo savii    
53 

 
1 44 

  
30 28 10 

   
43 

    
209 

Barbastella barbastellus      
1 1 

  
2 

          
4 

Plecotus austriacus 
1 

    
6 

              
7 

Plecotus auritus      
5 

              
5 

Tadarida teniotis    
2 

  
23 

  
1 

     
22 

    
48 
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Species AT BE CH CR CZ DE ES EE FI FR GR IT LV NL NO PT PL RO SE UK Total 

Miniopterus schreibersii       
2 

  
4 

     
3 

    
9 

Rhinolophus 
ferrumequinum       

1 
             

1 

Rhinolophus mehelyi 
      

1 
             

1 

Chiroptera spec 
 

1 
 

14 
 

46 320 1 
 

175 8 1 
   

102 2 
 

30 7 707 

Total 27 14 2 180 20 2110 1191 3 6 988 199 16 40 22 1 870 29 39 47 11 5815 

AT = Austria, BE = Belgium, CH = Switzerland, CR = Croatia, CZ = Czech Rep, DE = Germany, ES = Spain, EE = Estonia, FI = Finland, FR = France, GR = 
Greece, IT = Italy, LV = Latvia, NL = Netherlands, NO = Norway, PT = Portugal, PL = Poland, RO = Romania, SE = Sweden, UK = United Kingdom 
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Table A.2: Maximum foraging distances of species and height of flight. Annex 3 Rodrigues  et al. (2015 )((Guidelines for consideration of bats in wind farm projects 
– Revision 2014)) note ‘references’ column removed from re-production, refer to Rodrigues et al. (2015) Annex 3 for further information 

Species 
Max foraging distance 

(km) 
Height of flight (m) Radio-tracking studies 

Nyctalus noctula 26 10 to a few hundred Yes, no 

Nyctalus leisleri 17 above canopy, >25, >40-50 (foraging & direct flight) Yes, no 

Nyctalus lasiopterus 90 1300 (telescope & radar) Yes 

Pipistrellus nathusii 12 
1-20 (foraging); 30-50 (migration), >25, foraging above canopy & >40-50 in 
direct flight 

Yes, no 

Pipistrellus pygmaeus 1,7 (mean radius) up to the rotor, occasionally >25, >40-50 in direct flight Yes, no 

Pipistrellus 
pipistrellus 

5,1 up to the rotor, >25, >40-50 in direct flight 
No; chemiluminescent  
tags, no 

Pipistrellus kuhlii no information 1-10; up to a few hundred, >25 Yes, no 

Hypsugo savii ? >100 No, no 

Eptesicus serotinus 5-7, 12 50 (up to the rotor), >25, forages above canopy, >40-50 in direct flight Yes, no 

Eptesicus isabellinus ? ? ? 

Eptesicus nilssonii 
4-5 (breeding period); >30 
afterwards 

>50 (foraging & direct flight) Yes 

Vespertilio murinus 6,2 (female) 20,5 (male) 20-40, above canopy (foraging) & >40-50 (direct flight) Yes, no 
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Species 
Max foraging distance 

(km) 
Height of flight (m) Radio-tracking studies 

Myotis myotis 25 1-15 (direct flight in open sky in transit); >25; up to 40 (50) in direct flight Yes, no 

Myotis blythii 26 1-15 Yes 

Myotis punicus mean 6, up to 16,5 <2 (foraging). Probably 100 commuting from ridge to ridge Yes 

Myotis emarginatus 12,5; 3 no information ? Yes 

Myotis bechsteinii 2,5 1-5 and in the canopy, sometimes above canopy (direct flight) Yes, no 

Myotis dasycneme 
34; 15 from nursery, >25 
(spring and autumn) 

2-5 (up to the rotor) Yes 

Myotis daubentonii 10 (female) >15 (male) 1-5, forages up to the canopy & sometimes above in direct flight Yes, no 

Myotis brandtii 10 Up to the canopy (foraging) & sometimes above in direct flight ?, no 

Myotis mystacinus 2,8 
Up to 15 in the canopy, up to canopy (foraging) & sometimes above in direct 
flight 

Yes, no 

Plecotus auritus 2,2-3,3 Up to the canopy and above (foraging and direct flight) Yes, no 

Plecotus austriacus 
regularly up to 7, usually 
1,5 

Exceptionally >25, up to the canopy and above (foraging and direct flight) Yes, no 

Barbastella 
barbastellus 

25 Above canopy, >25, canopy and above (foraging and direct flight) Yes, no 

Miniopterus 
schreibersii 

30 to 40 2-5 (foraging) and open sky (transit), >25 Yes, no 
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Species 
Max foraging distance 

(km) 
Height of flight (m) Radio-tracking studies 

Tadarida teniotis 
>30 (Portugal), 100 
(Switzerland) 

10-300 Yes 
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Table A.3: Research findings compiled by Strickland et al. 2011 concerning the 

disturbance of birds by wind energy installations, with overarching categories of 

disturbance. All text from the first 2 columns quoted from or based upon 

Strickland et al. 2011 unless otherwise referenced; the final column ‘Potentially 

transferable outcomes for bat research at turbines’ provides interpreted 

principles for disturbance impacts upon bats 

Original research 
reference 

Key findings and outcomes 

Potentially 
transferable outcomes 
for bat research at 
turbines 

Category of disturbance: Displacement by turbines 

Leddy et al. 1999 Fields with turbines installed were found to 
have lower breeding bird densities than those 
without in an area of Minnesota (USA), with 
partial displacement measured to occur in 
areas within 80m of turbines 

Suggests that the 
impact of displacement 
may vary depending on 
the sensitivity of taxa to 
habitat alterations. If 
bats are able to 
withstand small shifts in 
foraging routes, impacts 
may not be particularly 
harmful. 
 
Impacts may vary 
between bat species. 
 
Displacement can be 
measured by monitoring 
species presence both 
in proximity to turbines 
and in adjacent, turbine-
free areas. 

Johnson et al. 
2000a; Erickson et 
al. 2004 

Estimated displacement distances of grassland 
birds of 100m from turbines, however found no 
general density reduction in the overall wind 
farm area. Erickson et al.’s research indicated 
that grassland bird impacts were lower at 
another monitored wind energy installation, 
with the primary displacement observed 
occurring as a result of habitat removal during 
turbine infrastructure construction. 
Displacement impacts were also found to vary 
between bird species 

Shaffer and 
Johnson, 2008; 
Winkelman, 1990; 
Pedersen and 
Poulsen, 1991; 
Spaans et al. 1998; 
Fernley et al. 2006 

Displacement of songbirds, waterfowl and 
shorebirds. Studies took place in Europe 

Devereux et al. 
2008 

Whilst studying wintering farmland birds in 
England, the common (ring-necked) pheasant 
was found to be displaced by turbines. The 
remaining species studied however did not 
show displacement by the wind turbines. 
Eurasian skylarks and corvids even increased 
their occurrence near turbines, interpreted as a 
possible response to raised food resources in 
the disturbed construction areas 

Bat species adapted to 
disturbed, open and 
cutblock areas may 
increase their activity 
near turbines rather 
than being displaced. 
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Original research 
reference 

Key findings and outcomes 

Potentially 
transferable outcomes 
for bat research at 
turbines 

Johnson et al. 
2010; Beck et al. 
2011 

The only study to have examined response of 
greater sage-grouse to wind energy 
development was conducted at a wind energy 
facility in Carbon County, Wyoming (Johnson et 
al. 2010, Beck et al. 2011). Results of the 
telemetry study indicate that female sage-
grouse used areas near wind turbines as late 
as two years after construction. 
Notwithstanding, Johnson et al. (2010) and 
Beck et al. (2011) indicated that data from this 
study are preliminary and are not meant to form 
the basis for any conclusions regarding impacts 
of wind energy development on sage-grouse. 

Increased activity may 
be best investigated 
before and after 
construction of new 
turbines. 

Naugle et al. 2009 Although the data collected on response of 
prairie grouse to wind-energy development 
indicate that prairie grouse may continue to use 
habitats near wind energy facilities, Naugle et 
al. (2009) found population declines in greater 
sage-grouse populations attributed to oil and 
gas production occurred four years post-
construction 

Long-term monitoring 
research schedules 
(e.g. up to 5 or 10 
years) may be required 
for key research on 
disruptive effects upon 
bats, particularly for 
investigations 
considering population-
level effects 

Desholm and 
Kahlert, 2005 

Identified a large decrease (by a factor of 4.5) 
in use of an offshore wind farm area by 
common eider (Somateria mollissima) and 
geese between pre-construction and early 
operation. The birds actively flew around the 
wind farm to avoid it and the few that flew 
through it avoided individual turbines (Desholm 
and Kahlert, 2005) 

Monitoring around the 
edges of wind farms 
may be required to 
understand if bats are 
avoiding them. Also 
consideration of pre- 
and post-construction 
activity and individual 
turbine avoidance is 
important 

Plonczkier and 
Simms, 2012 

Showed avoidance of two offshore wind farms 
by comparing pre- construction flight paths of 
pink-footed geese (Anser brachyrhynchus). 
Avoidance was very consistent, estimated as 
occurring for 94% of flights. The tendency to 
avoid the wind farms was observed to increase 
slightly over time (Plonczkier and Simms, 2012) 

Monitoring around the 
edges of wind farms 
may be required to 
understand if bats are 
avoiding them. Also 
consideration of pre- 
and post-construction 
activity is important. 
Bats may show 
adjustment of their 
activity to turbines/wind 
farms over time 

Villegas-Patraca et 
al. 2014 

Identified avoidance of an operational onshore 
wind farm by soaring migratory birds (Turkey 
Vultures (Cathartes aura) and 
Swainson’s Hawks (Buteo swainsoni)). A 
nearby ridgeline was thought to influence the 
birds flight lines in avoiding the wind farm 
(Villegas-Patraca et al. 2014) 

Monitoring around the 
edges of wind farms 
may be required to 
understand if bats are 
avoiding them. Local 
topography should be 
considered in estimating 
levels of risk regarding 
bats’ flight paths 
towards turbines 
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Original research 
reference 

Key findings and outcomes 

Potentially 
transferable outcomes 
for bat research at 
turbines 

Everaert, 2014 Found gulls displayed micro-avoidance of 
turbines to avoid their rotor swept area when 
flying through a wind farm, during up to 96% of 
flights (Everaert, 2014) 

Bats may be able to 
commonly avoid 
turbines when flying 
through wind farms 

Category of disturbance: Displacement by non-turbine wind energy infrastructure 

Braun et al. 2002; 
Holloran, 2005; 
Pitman et al. 2005; 
Pruett et al. 2009; 
Robel et al. 2004 

Several studies have demonstrated that prairie 
grouse strongly avoid certain anthropogenic 
features such as roads, buildings, powerlines, 
and oil and gas wells, resulting in sizable areas 
of habitat rendered less suitable (Braun et al. 
2002, Holloran, 2005, Pitman et al. 2005, 
Pruett et al. 2009, Robel et al. 2004). Much of 
the infrastructure associated with wind energy 
facilities, such as power lines and roads, are 
common to most forms of energy development 
and it is reasonable to assume that impacts 
would be similar. Nevertheless, there are 
substantial differences between wind energy 
facilities and most other forms of energy 
development, particularly related to human 
activity. While results of studies of other 
anthropogenic features suggest the potential 
exists for wind turbines to displace prairie 
grouse from occupied habitat, well-designed 
studies examining impacts of wind turbines 
themselves on prairie grouse are currently 
lacking. 

Bat research should 
consider associated 
infrastructure features 
(e.g. access tracks, 
substation buildings) as 
well as turbines 

McNew et al. 2009; 
Johnson et al. 
2009a 

Ongoing telemetry research being conducted 
by Kansas State University to examine 
response of greater prairie-chickens to wind 
energy development in Kansas (McNew et al. 
2009) and a similar study being conducted on 
greater sage-grouse response to wind energy 
development in Wyoming (Johnson et al. 
2009a) will help to address the lack of 
knowledge of turbine impacts on prairie grouse 

 

Category of disturbance: Disruption / destruction of specific habitat (species-specific 
and behaviour-specific) 

Giesen, 1998; 
Fuhlendorf et al. 
2002; Arnett et al. 
2007b 

Prairie grouse and big game are likely 
candidates for displacement effects. Prairie 
grouse, which exhibit high site fidelity and 
require extensive grasslands, sagebrush, and 
open horizons (Giesen, 1998, Fuhlendorf et al. 
2002), may be especially vulnerable to wind 
energy development (Arnett et al. 2007b) 

Specific turbine site 
habitats and habitat 
alterations should be 
considered in order to 
identify focus-species in 
terms of impact, if 
habitat alterations are 
likely to have a 
preferential disruptive 
impact upon species 
linked to that habitat 
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Original research 
reference 

Key findings and outcomes 

Potentially 
transferable outcomes 
for bat research at 
turbines 

Flock, 2002 Leks, the traditional courtship display grounds 
of greater sage-grouse (Centrocercus 
urophasianus), Gunnison’s sage-grouse (C. 
minimus), sharp-tailed grouse (Tympanuchus 
phasianellus), lesser prairie-chicken (T. 
pallidicinctus), and greater prairie-chicken (T. 
cupido), are consistently located on elevated or 
flat grassland sites with few vertical 
obstructions, terrain very often attractive to 
wind energy developers 

Turbine sites with 
habitats related to 
specific bat behaviours 
(e.g. swarming, mating) 
should be identified to 
consider disruption to 
these behaviours 

Vodenhal, 2009; 
Toepfer and 
Vodehnal, 2009 

Studies of lesser prairie chicken and sharp-
tailed grouse response to wind turbines in 
Nebraska (Vodenhal, 2009) and studies of 
greater prairie chicken response to wind 
turbines in Minnesota (Toepfer and Vodehnal, 
2009) have found that some prairie grouse on 
leks as well as nesting hens do not appear to 
avoid turbines on the sites studied 

It is possible that 
turbines have no 
behavioural impacts 
upon bats 

Johnson et al. 
2009a; Johnson et 
al. 2009b; Kansas 
Department of 
Wildlife and Parks, 
unpublished data 
(in Strickland et al. 
2011); Robbins et 
al. 2002 

Greater prairie chicken lek surveys were 
conducted three years before and five years 
after construction of a wind energy facility at a 
site in the southern Flint Hills of Kansas 
(Johnson et al. 2009b). During the year 
immediately preceding construction of the 
project (2005), 10 leks were present on the 
project area, with 103 birds on all leks 
combined. By 2009, four years after 
construction, only one of these 10 leks 
remained active, with three birds on the lek. 
The 10 leks were located between 88m to 
1,470m from the nearest turbine, with a mean 
distance of 587m; eight of the ten leks were 
located within 0.8 km (0.5 mi) of the nearest 
turbine. Although this decline may be 
attributable to development of the wind energy 
facility, greater prairie chicken populations have 
declined significantly in the Flint Hills due to the 
practice of annual spring burning. During the 
same time frame that leks were monitored at 
the Elk River facility, the estimated average 
number of greater prairie chickens in the 
southern Flint Hills declined by 65 percent from 
2003 to 2009. In Butler County, the estimated 
number of birds declined by 67 percent from 
2003 to 2009 (Kansas Department of Wildlife 
and Parks, unpublished data). This regional 
decline is attributed primarily to the practice of 
annual spring burning and heavy cattle 
stocking rates, which remove nesting and 
brood-rearing cover for prairie chickens 
(Robbins et al. 2002). While not a true 
reference for this study area, this suggests that 
it is unlikely that the decline of prairie chickens 
on the Elk River site was due entirely to the 
presence of wind turbines (Johnson et al. 
2009a). 

Specific bat behaviours 
may be disrupted at 
turbine sites, even if bat 
presence is not. 
However general local, 
regional and national 
bat population change 
estimates should be 
used to make objective 
assessments of levels of 
bat activity and 
behaviour observations 



334 
 

Original research 
reference 

Key findings and outcomes 

Potentially 
transferable outcomes 
for bat research at 
turbines 

Johnson et al. 
2010; Beck et al. 
2011 

The only study to have examined response of 
greater sage-grouse to wind energy 
development is being conducted at a wind 
energy facility in Carbon County, Wyoming 
(Johnson et al. 2010, Beck et al. 2011). Based 
on surveys at three leks, the mean number of 
males decreased from 43 in 2008, the year 
prior to construction, to 23 in 2010, two years 
post construction. Similar declines occurred on 
leks within a nearby reference area, where 
mean lek size decreased from 37 to 23 over 
this same time period, but the rate of decline 
appears to be slightly greater on the three leks 
in close proximity to wind turbines. 
Notwithstanding, Johnson et al. (2010) and 
Beck et al. (2011) indicated that data from this 
study are preliminary and are not meant to form 
the basis for any conclusions regarding impacts 
of wind energy development on sage-grouse. 

 

Zeiler and 
Grünschachner-
Berger, 2009 

Outside of North America, the black grouse 
(Lyrurus tetrix), another grouse with a lek 
mating system, was found to be negatively 
affected by wind power development in Austria. 
The number of displaying males in the wind 
power development area increased from 23 to 
41 during the 3-year period immediately prior to 
construction, but then declined to nine males 
four years after construction. While no 
reference data were reported, in addition to the 
decline in displaying males the remaining birds 
shifted their distribution away from the turbines. 
One lek located within 200m of the nearest 
turbine declined from 12 birds one year prior to 
construction to no birds four years after 
construction 

 

Harju et al. 2010 This study of oil and gas development 
suggested that there is a delay of 2–10 years 
before measurable effects on leks manifest 
themselves (Harju et al. 2010). Therefore, data 
spanning several grouse generations may be 
required to adequately assess impacts of wind 
energy development on prairie grouse 

Long-term monitoring 
research schedules 
(e.g. up to 5 or 10 
years) may be required 
for key research on 
disruptive effects upon 
bat behaviour, 
particularly for 
investigations 
considering population-
level effects 

Howell and 
Noone 1992; 
Johnson et al. 
2000b, 2003b 

Most studies suggest that wind facilities have 
little impact on the nesting of birds 

It is possible that bat 
roosting may not be 
affected by local turbine 
installations 
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Original research 
reference 

Key findings and outcomes 

Potentially 
transferable outcomes 
for bat research at 
turbines 

Usgaard et al. 1997 The only report of avoidance of wind facilities 
by raptors occurred at Buffalo Ridge wind 
facility, Minnesota, where raptor nest density 
on 261 km

2
 of land surrounding the facility was 

5.94/100 km
2
, yet no nests were present in the 

32 km
2
 facility, even though habitat was similar 

Roost impacts may 
have to be considered 
across wide areas with 
multiple turbine sites 
and/or multiple roost 
sites considered, not 
just those that are in 
close proximity 

Johnson et al. 
2010; Beck et al. 
2011 

The only study to have examined response of 
greater sage-grouse to wind energy 
development is being conducted at a wind 
energy facility in Carbon County, Wyoming 
(Johnson et al. 2010, Beck et al. 2011). Whilst 
monitoring at turbines and a nearby reference 
area, no statistically significant differences 
were found in nest success for 2009 and 2010 
between the two sites. Notwithstanding, 
Johnson et al. (2010) and Beck et al. (2011) 
indicated that data from this study are 
preliminary and are not meant to form the basis 
for any conclusions regarding impacts of wind 
energy development on sage-grouse. 

 

Pearce-Higgins et 
al. 2009 

After monitoring at 12 UK wind farms, 
suggested breeding bird densities may be 
reduced by 15-53% within 500m of turbines. 
Particular species were highlighted as most 
affected (buzzard (Buteo buteo), hen harrier 
(Circus cyaneus), golden plover (Pluvialis 
apricaria), snipe (Gallinago gallinago), curlew 
(Numenius arquata) and wheatear (Oenanthe 
oenanthe)) (Pearce-Higgins et al. 2009). 

Roost densities of bats 
may be affected if in 
moderate proximity to 
turbines. Vulnerability 
may vary by species 

Johnson et al. 
2010; Beck et al. 
2011 

The only study to have examined response of 
greater sage-grouse to wind energy 
development is being conducted at a wind 
energy facility in Carbon County, Wyoming 
(Johnson et al. 2010, Beck et al. 2011). Whilst 
monitoring at turbines and a nearby reference 
area, no statistically significant differences 
were found in brood-rearing success for 2009 
and 2010 between the two sites. 
Notwithstanding, Johnson et al. (2010) and 
Beck et al. (2011) indicated that data from this 
study are preliminary and are not meant to form 
the basis for any conclusions regarding impacts 
of wind energy development on sage-grouse. 

It is possible that bats’ 
breeding success may 
not be affected by local 
turbine installations 
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Figure A.1: Changing Common pipistrelle foraging activity and flight routes over time, during construction of a wind farm in Germany (from Bach and Rahmel, 2004) 
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Figure A.2: Changing Serotine bat foraging activity and flight routes over time, during construction of a wind farm in Germany (from Bach and Rahmel, 2004) 
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Table A.4: UK long-term bat population trends to 2013 and average annual percentage change. 
Underlined figures are statistically significant trends (from Bat Conservation Trust (2014)) 

Species Status Survey 
Trend 
time 

period 

Sample 
size 
2013 

Long-
term 

trend % 

Average 
annual 
change 

% 

       

Greater horseshoe 
bat 

Very rare, 
largely 

confined to 
southwest 
England 

and south 
Wales 

Hibernation 
1997-
2013 

148 79.6 4.3 

Roost 
1997-
2013 

29 108.9 5.4 

       

Lesser horseshoe 
bat 

Rare, 
largely 

confined to 
southwest 
England 

and Wales 

Hibernation 
1997-
2013 

227 109.4 5.4 

Roost 
1997-
2013 

256 60.7 3.5 

       

Whiskered/Brandt’s 
bat 

Both 
species are 

relatively 
uncommon 

but 
widespread 
in England 
and Wales 

Hibernation 
1997-
2013 

189 31.4 2.0 

       

Natterer’s bat Common 
Hibernation 

1997-
2013 

415 93.6 4.8 

Roost 
2000-
2013 

76 -14.3 -1.4 

       

Daubenton’s bat Common 
Hibernation 

1997-
2013 

325 22.7 1.5 

Waterway 
1997-
2013 

821 4.5 0.3 

       

Serotine 

Uncommon, 
largely 

restricted to 
south 

Field 
1998-
2013 

417 35.2 2.2 

Roost 
1997-
2013 

91 -29.1 -2.4 

       

Noctule 

Uncommon, 
absent from 

Northern 
Ireland 

Field 
1998-
2013 

559 11.7 0.8 

       

Common pipistrelle Common 
Field 

1998-
2013 

561 66.0 3.7 

Roost 
1997-
2013 

459 -54.0 -5.4 

       

Soprano pipistrelle Common 
Field 

1998-
2013 

563 19.2 1.3 

Roost 
1997-
2013 

357 -49.4 -4.7 
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Species Status Survey 
Trend 
time 

period 

Sample 
size 
2013 

Long-
term 

trend % 

Average 
annual 
change 

% 

Brown long-eared 
bat 

Common 
Hibernation 

1997-
2013 

365 9.9 0.7 

Roost 
2001-
2013 

143 12.4 1.0 

       

Bechstein’s bat Very rare 
No trend data available; Bechstein’s bat Survey provides 
baseline distribution data 

       

Leisler’s bat 

Uncommon 
in GB 

although 
may be 
under 

recorded, 
common in 

Ireland 

Recorded by iBats but more data needed to detect trends 

       

Nathusius’ 
pipistrelle 

Uncommon 
but 

widespread, 
may be 
under 

recorded 

Recorded by iBats but more data needed to detect trends; 
Nathusius’ pipistrelle 
survey provides baseline distribution data 

       
Barbastelle Rare Woodland Survey monitors presence at designated sites 

       
Grey long-eared 
bat 

Very rare No trend data available 

       

Alcathoe bat 
Status 

unconfirmed 
Presence in UK confirmed in 2010, distribution unknown 

       
(Greater mouse-
eared bat) 

Status 
unconfirmed 

Only one individual known in the UK at present 
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Glossary of definitions 

Term Definition 

  Acoustic jamming  Bats’ confusion with similar sound frequencies to their own 
echolocation 

  Barotrauma  Rapid decompression of air in the lungs and pulmonary system 
  Bayes’ formula A mathematical method to calculate conditional and posterior 

probabilities 
  Blade-tip vortices Turbulent low pressure areas near turbine blades where air curls to 

form a vortex 
  Cluttered habitat Area a with dense vegetation structure  due to hedges, foliage, trees 

etc. 
  Edges Connections or associations between nodes in a network 
  Nodes A member of a network, to which ‘edges’ connect 
  Loops Self-association of a node within a network 
  Etiology Concerning the cause of a disease 
  Fatality estimator algorithms Methods to calculate adjusted fatality rates that account for 

imperfect fatality search protocols 
  Fixed covariate A continuous predictor variable 
  Fixed factor A categorical predictor variable 
  Genera Taxonomic rank grouping together species (below a ‘family’ in 

taxonomy) 
  Histopathology The study of diseased tissue 
  Nacelle The ‘hub’ of a wind turbine holding the gearbox and other turbine 

mechanisms 
  Necropsy Surgical examination of a carcass 
  Lek A gathering of male birds for competitive display to attract a mate 
  Tympana The cavity of the middle ear 

  Horizontal axis wind turbine A turbine with the main rotor shaft pointing into the wind (often 
perceived as the ‘traditional’ wind turbine format) 

  Vertical axis wind turbine A turbine with the main rotor shaft aligned vertically 

  Sub-micro turbine Wind turbine with an upper blade tip height of <10m 
  Micro turbine Wind turbine with an upper blade tip height of 10-15m 
  Small turbine Wind turbine with an upper blade tip height of 15-30m 
  Medium turbine Wind turbine with an upper blade tip height of 30-55m 
  Large turbine Wind turbine with an upper blade tip height of >55m 
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