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Abbreviations  24 

ANC = Acid neutralization capacity 25 

Ba = Soil from Mt Bygalore (Ferrosol, acidic) 26 

CEC = Cation exchange capacity 27 

CL biochar = Chicken litter biochar 28 

EC = Electrical conductivity 29 

Mt = Soil from Mt Shank (Dermosol, alkaline)  30 

PyC = Pyrogenic carbon 31 

TOC = Total organic carbon  32 

WS biochar = Wood shaving biochar 33 

  34 
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Abstract 44 

In this study, an acidic biochar and a neutral biochar were applied at 5 wt% into two 45 

soils for an 11-month incubation experiment. One Ferrosol soil (Ba) was slightly acidic 46 

with low organic matter and the other Dermosol soil (Mt) was slightly alkaline with high 47 

organic matter. The acidic (pH=3.25) wood shaving (WS) biochar had no marked impact on 48 

nutrient levels, cation exchange capacity (CEC), pH and acid neutralisation capacity (ANC) 49 

of either soil. By contrast, the neutral (pH=7.00) chicken litter (CL) biochar significantly 50 

increased major soluble nutrients, pH, ANC of soil Ba. In terms of C storage, 87.9% and 51 

69.5% WS biochar-C can be sequestrated as TOC by soil Ba and Mt, respectively, whereas 52 

only 24.0% of CL biochar-C stored in soil Ba and negligible amount in Mt as TOC. 53 

Biochars did not have significant effects on soil sorption capacity and sorption reversibility 54 

except that CL biochar increased sorption of soil Ba by around 25.4% and decreased 55 

desorption by around 50.0%. Overall, the studied acidic C rich WS biochar held little 56 

agricultural or remedial values but was favourable for C sequestration. The neutral mineral 57 

rich CL biochar may provide short-term agricultural benefit and certain sorption capacities 58 

of lower sorption capacity soils, but may be unlikely to result in heightened C sequestration 59 

in soils. This is the first study comprehensively examining functions of acidic and neutral 60 

biochars for their benefits as a soil amendment and suggests the importance of pre-testing 61 

biochars for target purposes prior to their large scale production. 62 

   63 

   Keyword: Acidic biochar, neutral biochar, soil, C sequestration, sorption  64 

 65 

 66 

 67 
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1. Introduction  69 

Biochars are carbon-rich products produced through thermochemical processing of 70 

biomass under an oxygen-deficient environment (Cao and Harris, 2010; Venegas et al., 71 

2015). It has been a hot topic of research in recent years due to its versatile role in soil 72 

biogeochemical processes. The most important environmental functions of biochar include 73 

acting as a long-term carbon sink for climate change mitigation (Lehmann, 2007b; 74 

McBeath and Smernik, 2009; Bird et al., 2017), a soil conditioner that increases soil 75 

nutrient retention, cation exchange capacity (CEC), soil fertility and crop yield (Liang et al., 76 

2006; Downie et al., 2011; Qu et al., 2016), and an in situ immobilizer for soil heavy metal 77 

contaminants (Cao et al., 2009; Uchimiya et al., 2011a; Qian et al., 2013; Lu et al., 2017). 78 

Biochars perform in these processes by increasing soil organic carbon and reducing 79 

greenhouse gas emission (Lehmann, 2007b), increasing soil pH, acid neutralisation capacity 80 

(ANC) and CEC (Glaser et al., 2002; Cheng et al., 2006; Yuan and Xu, 2011; Venegas et 81 

al., 2015) as well as increasing soil intrinsic binding sites for soil contaminants (Cao and 82 

Harris, 2010; Beesley et al., 2011; Uchimiya et al., 2011c).  83 

Biochars are commonly alkaline (Jiang et al., 2012a) which contribute to their 84 

liming effects and enhanced sorption of soils for cationic contaminants. However, biochar 85 

pH values can range from acidic to alkaline (Chan and Xu, 2009) and lower pH biochars 86 

are normally neglected. Biochar pH increases with increasing pyrolysis temperature as 87 

more acidic functional groups can be removed at higher temperatures (Ippolito et al., 2016). 88 

Biochars produced under low pyrolysis temperatures can be acidic (Novak et al., 2009; 89 

Hagner et al., 2016; Zhang et al., 2017). For example, birch (Betula spp.) biochar produced 90 

at 300 °C and 375 °C were shown to be acidic (pH=5.1 and 5.2, respectively) (Hagner et al., 91 

2016). Pecan shell (350 °C) and switchgrass (250 °C) biochar had a pH of 5.9 and 5.4, 92 

respectively (Novak et al., 2009). In limited studies about lower pH biochars, low-93 
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temperature (250 and 350 °C) acidic switchgrass biochars were found to lower pH and 94 

initially increase plant-available nutrients in aridic calcareous soils (Ippolito et al., 2012; 95 

Ippolito et al., 2016). Similarly, neutral biochars may also behave differently from normally 96 

available alkaline biochars in envrionmetal processes after being added into soils. From this 97 

sense, a more comprehensive examination of potential benefits of acidic and neutral biochar 98 

on soil nutrient leaching, C storage and contamination remediation is essential.  99 

Cadmium is one of the most hazardous metals and is readily absorbed from soil to 100 

plant with a relatively high transfer coefficient and subsequently to animals and human 101 

through fodder and food products (Park et al., 2011; Zhao et al., 2015a). In this study, Cd 102 

was selected as a model metal to study contaminant retention cpacity of soils given its wide 103 

presence in agricultural soils due to Cd-rich phosphate fertilizers applications (Naidu et al., 104 

1994; Ali et al., 2013; Muehe et al., 2013). The objectives of this work were to (i) study 105 

effects of acidic and neutral biochars on soil properties especially surface charge properties; 106 

(ii) examine the C sequestration capacity of acidic and neutral biochars by evaluating soil 107 

total organic carbon (TOC) and stable organic carbon (pyrogenic carbon, PyC) content; (iii) 108 

explore sorption behaviours and mechanisms of biochar amended soils for Cd.  109 

 110 

2. Methods 111 

2.1 Incubation of biochar-amended soils  112 

Two typical Australian soils (0-10 cm) were sampled for this study. One Ferrosol 113 

soil from Mt Bygalore (Ba) of New South Wales (S33◦39.88’, E146◦49.07”) of Australia 114 

that is lower in organic matter content and slightly acidic (pH=6.14, TOC=16.3 mg/g). The 115 

other Dermosol soil was sampled from Mt Shank (Mt) of South Australia (S37◦56.78’, 116 

E140◦44.59’) that is slightly alkaline higher in organic matter soil (pH=7.87, TOC=78.9 117 

mg/g). One biochar made from chicken litter (CL, 550 °C) and one from wood shavings 118 
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(WS, 650 °C) were obtained from commercial producers. The biochars were made by 16-119 

minute slow pyrolysis (8 minutes in the drier, 8 minutes in the pyrolysis chamber) in a 120 

Continuous Flow Pyrolyzer. Biochar products were water mist quenched immediately after 121 

pyrolysis, then additional water was hosed onto the bulk product. Before use, both biochars 122 

were air dried and sieved to pass through a 2-mm stainless steel sieve to represent their 123 

typical use as a soil amendment. Biochars were mixed with soils at the ratios 5 wt% on a 124 

dry weight base. Soils with/without biochar amendment were incubated at 25 ± 2 °C for 11 125 

months in 2L glass jars with holes on the lids. The jars were maintained at 60% water 126 

holding capacity (WHC) and weighed for water replenishment every week within the first 3 127 

months and every fortnight thereafter. Incubation of all samples were in duplicates. At the 128 

end of the 11 months, the soil samples were dried and sieved (<2 mm or <150 µm) for 129 

further chemical analysis and the sorption experiment. These soil samples after 11 months 130 

incubation were used for following analysis and sorption experiment. Following the way 131 

“soil name + months of incubation + biochar types”, the samples were recorded as Ba11, 132 

Ba11WS, Ba11CL, Mt11, Mt11WS, Mt11CL, respectively.  133 

 134 

2.2 Soil and biochar characterization before and after treatment 135 

Soil and biochar pH, electrical conductivity (EC) were determined using 1:5 and 1:10 136 

sample to water ratio, respectively. Soil TOC were determined by combusting oven dried and 137 

ground soil samples (<150 µm) at 1100 °C in a CHN Elemental Analyzer (Euro EA 3000 138 

Elemental Analyzer, Eurovector SPA, Milano, Italy) that uses infrared technology to quantify 139 

CO2. Soil pyrogenic carbon (PyC), was measured by a chemo-thermal oxidation (CTO-375) 140 

method. Both TOC and PyC analysis were collaborated with a lab in Switzerland where same 141 

analytical procedure as Agarwal and Bucheli, (2011) were applied. Soil and biochar total 142 

metals was extracted by microwave digestion in aqua regia following USEPA 3051 40 143 
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method before detecting metals by inductively coupled plasma mass spectrometry (ICP-MS, 144 

Agilent 7900, USA). Soil texture was determined by the hydrometer method (Gee et al., 145 

1986). Amorphous Al, Mn and Fe (Aloxa, Mnoxa, Feoxa) was extracted by 0.2 M ammonium 146 

oxalate/oxalic acid following Rayment and Higginson (1992). The contents (wt%) of carbon 147 

(C), hydrogen (H), nitrogen (N), sulphur (S) of biochars were measured by a CHNS analyzer 148 

(Vario Micro cube, Elementar, Germany). Ash content (%) was measured by heating samples 149 

under 800 °C for 4 h in muffle furnace. The weight percent of oxygen was determined by 150 

mass difference (Chen et al., 2008; Cheng et al., 2013; Luo et al., 2016). The acid 151 

neutralisation capacity (ANC) of the biochar and soil samples is defined as the quantity of 152 

acid or base (cmol H+/kg) required to shift the initial pH of the material to a pH of 4 153 

(Venegas et al., 2015). In this study, we used a 1:200 solid to liquid ratio in 0.01 M NaNO3 154 

for ANC measurement. Specific surface area of char samples (<2mm) were measured with 155 

nitrogen adsorption isotherms at liquid nitrogen temperature (-196 °C) by a Surface Area 156 

Analyzer (Micromeritics ASAP 2020 M, USA). Biochar samples (=0.2-0.25 g) were 157 

outgassed overnight at 60 °C under vacuum at 2 Torr before N2 adsorption. The molecular 158 

surface area of 16.2 Å2 for N2 and the BET (Brunauer-Emmett-Teller) equation (Brunauer et 159 

al., 1938) were used to calculate the surface area of the char samples. Fourier Transformed 160 

Infrared Spectroscopy (FTIR) (Nicolet IS10, Thermo Fisher, Waltham, MA, USA) spectra 161 

were collected to get information on surface functional groups of char samples. This was 162 

done by applying dehydrated KBr disc technique, where char samples (150 µm) char sample 163 

were mixed with spectroscopic grade KBr at a ratio of 1:50 before scanning to produce 164 

sufficient absorbance. Spectra over the 4000-400 cm-1 range were obtained by the co-addition 165 

of 64 scans with a resolution of 4 cm-1 and a mirror velocity of 0.6329 cm/s. Surface 166 

morphology of the CL biochar in soil Ba matrix were examined under an Environmental 167 
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Scanning Electron Microscope (SEM) (Zeiss Sigma, Germany) equipped with a Bruker 168 

energy dispersive X-ray spectroscopy (EDS) detector   169 

2.3 Surface charge of soils 170 

Effects of biochars on surface charge properties of soil were assessed by CEC and 171 

electrophoretic mobility property of soils. CEC is an indicator of abundance of the negative 172 

charge on the surface of a material, which can be balanced by exchangeable cations 173 

(Mukherjee et al., 2011; Jiang et al., 2012a; Zhao et al., 2015b; Jiang et al., 2016b). In this 174 

study, soil CEC was measured by BaCl2/NH4Cl compulsive exchange method descried by 175 

Gillman and Sumpter (1986). Electrophoretic mobility property of soil samples, often 176 

expressed as zeta potential is another way to evaluate soil surface charge properties. Zeta 177 

potential is the electrical potential of a sliding plane which is the interface between the Stern 178 

and diffuse layers in the double layer model of colloidal particles (Appel et al., 2003; Jiang et 179 

al., 2016b). Its electro-negativity depends on the amount of negative surface charges. Soil and 180 

biochar-amended soil samples were ground to <150µm before being dispensed into 0.01M 181 

NaNO3 suspension (0.02%, w/v) to guarantee the good suspension of samples. The 182 

suspensions were then equilibrated on a rotatory shaker for 24 h. The pH values of 183 

suspension were recorded and zeta potential of these suspensions were measured by Zetasizer 184 

Nano ZS instrument (Malvern, ZEN3600, UK).  185 

 186 

2.4 Cadmium sorption and desorption  187 

The Cd sorption experiment was performed using a batch equilibration technique. Our 188 

preliminary test showed that the two studied biochars did not show noticeable influence to 189 

sorption capacities of both soils under 300 µM Cd. Hence, we increased Cd concentration to 190 

1500 µM to evaluate the effects of biochars on maximum sorption capacity of the studied 191 

soils. Specifically, the sorption was performed by agitating 1g soils in 30 mL of 0.01 M 192 
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NaNO3 solution containing 0, 30, 150, 300, 600, 900, 1200 and 1500 µM Cd(NO3)2 on a 193 

reciprocating shaker at 200 rpm for 24 h. Solution pH at 0 and 300 µM Cd(NO3)2 was 194 

recorded after equilibrium, and the mixtures were centrifuged, filtered through 0.22µm 195 

cellulose acetate syringe filter and acidified prior to major element (Cd, K, Ca, Na, Mg, Al, 196 

Fe, Mn) analysis by ICP-MS (Agilent 7900, USA). Metrohm Ion chromatography was used 197 

for PO4
3−, Cl−, NO3

−, SO4
2− analysis (790 Personal IC, Switzerland). Dissolved organic 198 

carbon (DOC) and dissolved inorganic carbon (DIC) were measured with TOC analyzer 199 

(Multi N/C 3100, Analytik Jena, Germany). The amount of Cd sorbed was calculated by 200 

subtracting the remaining Cd concentration after sorption from the initial Cd concentration. 201 

Subsequently, Cd speciation was conducted by PHREEQC Interactive v3.3.7 software and 202 

sorption isotherms were fitted in to Langmuir models to evaluate the sorption properties of 203 

soil samples. After removing all solutions from sorption experiment, desorption studies were 204 

carried out at a low (150 µM) and high (1500 µM) Cd loading to assess the reversibility of 205 

sorption. Specifically, 30 mL 0.01M NaNO3 was added to the decanted centrifuged tubes 206 

following sorption experiment and mixed end over end at 200 rpm for another 24 h. 207 

Detection of Cd was performed by ICP-MS (Agilent 7900, USA).  208 

 209 

2.5 Statistical analyses  210 

All analysis was conducted in duplicate and expressed as means of the replicates. 211 

One-way analysis of variance (ANOVA) were carried out using SPSS version 19.0 to 212 

determine the significance of the differences between treatments. The post-hoc least 213 

significant difference (LSD) test was employed. When a significant F-value (p<0.05) were 214 

obtained, means of treatments were regarded as significantly different. 215 

 216 
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3. Results and discussions  217 

3.1 Basic soil properties 218 

Pertinent properties of soils, biochars and 11-month incubated soils used in this study 219 

are listed in Tables 1, 2 and 3, respectively. The WS biochar contained a higher amount of C 220 

(75.6%) and minimal amount of ash (1.65%) while CL biochar contained relatively less 221 

carbon (33.7%) but considerable amount of ash (46.2%). High ash contents of biochars can 222 

indicate the higher content of inorganic minerals, which could raise pH, EC and CEC of 223 

amended soils (Ahmad et al., 2016).  224 

WS biochar was strongly acidic (pH=3.27) and CL biochar was neutral (pH=7.00). 225 

Both increase and decrease (Mierzwa-Hersztek et al., 2016) as well as no change (Shafiq, 226 

2016) of soil pH can occur upon biochar amendment depending on biochar type and dose. In 227 

our study, only CL biochar increased the pH of soil Ba markedly (p<0.05) by 0.3 units. WS 228 

did not noticeably change pH of both soils while CL biochar failed to change pH of soil Mt 229 

significantly. Soil Mt held significantly higher intrinsic ANC than soil Ba due may be to its 230 

higher CaCO3 equivalence (23.2%) (Venegas et al., 2015; Jiang et al., 2016b). WS biochar 231 

did not change the ANC of both soils whereas CL biochar increased ANC of both soils 232 

significantly (p<0.05). This suggests the mineral rich CL biochar contained high amounts of 233 

pH buffering components like CaCO3. 234 

 The EC values of both soils was significantly (p<0.05) increased by CL but (p<0.05) 235 

markedly reduced by WS biochar (Table 3). For CL biochar, this was because it contained 236 

relatively high amounts of soluble cations and anions (Supporting information Table A1). In 237 

biochar application, it was suggested that the EC values of the biochars should be 238 

characterized to avoid creating unwanted salt effects (Cantrell et al., 2012). In this study, EC 239 

values in CL biochar amended soils were below the saline limits of soils (4 dS/m) (Mohamed 240 

et al., 2015) and would not cause salt stress to plant growth.  241 
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The CL biochar increased soluble anions (Cl-, PO4
3- and SO4

2-) of both soils 242 

significantly (Table A1). As for soluble cations (Table A1), CL biochar increased soluble Na 243 

of soil Ba by 10 fold and other mineral element Mg, K, Ca, Fe, Al by 1-3 fold. In contrast, 244 

CL biochar increased only soluble Na and Ca of soil Mt at a magnitude of 2.2 and 1.7 fold, 245 

respectively. Soil Mt had a high initial K, Mg, Fe, Al concentration, hence effects from CL 246 

biochar was not significant. These soluble minerals stored in biochar can serve as plant 247 

nutrients (fertilizer) during drought or nutrient deficient conditions (Cao et al., 2014; Hagner 248 

et al., 2016). Hence, the WS biochar did not provide much fertilizer benefit while CL could 249 

potentially be a source of plant nutrients (K, Ca, Mg, P, Fe).  250 

 251 

3.2 Surface charges of soils 252 

Adsorption of heavy metals in soil is mainly governed by interactions with negatively 253 

charged soil components (Naidu et al., 1997b; Bolan et al., 1999; Chintala et al., 2013). This 254 

surface charge of soil samples evaluated by cation exchange capacity (CEC) and zeta 255 

potential are shown in Fig 1. Results showed that CEC of soil Mt (33.4 cmol+/kg) was 256 

around three times that of soil Ba (11.6 cmol+/kg) (Fig. 4). The higher TOC content, CaCO3 257 

equivalence as well as amorphous Mn, Al, Fe oxides of soil Mt than soil Ba (Table 1) can be 258 

responsible for higher negative charge of soil Mt. In addition, higher pH of soil Mt can also 259 

contribute to its higher CEC (Naidu et al., 1990; Yu, 1997).  260 

Both biochars failed to change soil CEC significantly (p>0.05). This indicated low 261 

CEC values of these two studied biochars. Normally biochars are considered to develop more 262 

oxygen-containing functional groups (Bruun et al., 2011; Manyà, 2012) and hence increased 263 

CEC and negative charge of soils (Lehmann, 2007a; Maia et al., 2011; Mohamed et al., 2015; 264 

Zhang et al., 2017). Our study, however, suggested the increase of soil functional groups 265 

caused by biochars was not significant enough to change soil surface charge. Previously, 266 
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Slavich et al., (2013) observed no effect of a green waste biochar (10 t/ha) on exchangeable 267 

cations and CEC of a Ferrosol in a 36-month field experiment. Schulz and Glaser (2012) 268 

found biochar (5%) failed to change CEC of an infertile sandy soil in a greenhouse 269 

experiment. Given that CEC is the indicator of capacity of soils to retain nutrients, our 270 

studied biochars did not increase the ability of studied soils to hold nutrients. 271 

Surface charge as indicated by zeta potential, the electrical potential of a sliding plane 272 

of soil colloids (Zhao et al., 2015b) were negative at original soil pH (0.01M NaNO3) for all 273 

soil samples (Fig 1). Hence, all soil samples carried negative surface charge. And the zeta 274 

potential values after both biochar amendment were comparable (p>0.05) to that of biochar-275 

free soils. These results were consistent with results from CEC on that both biochar 276 

amendment did not noticeably change the surface charge characteristics of the studied soils.  277 

 278 

3.3 C sequestration potential 279 

Soil PyC is the fraction of TOC that was assumed to be more stable and therefore 280 

resistant to thermal oxidation (combustion at 375°C) than other soil organic matter. Table 3, 281 

Fig 2a and 2b show the TOC and PyC content in studied soil samples. Results showed that 282 

after 11 months, TOC content of soil Ba (13.2 mg/g) increased by 253% (p<0.05) due to 283 

addition of WS biochar (to 46.4 mg/g) and CL biochar by 88.9% (to 24.9 mg/g), respectively. 284 

The PyC content of soil Ba (0.61 mg/g) was increased significantly (p<0.05, Table 3) to 3.25 285 

mg/g by WS but was not significantly changed by CL biochar. Regarding soil Mt, after 11 286 

months, WS biochar increased its TOC (81.7 mg/g) by 11.1% (to 90.8 mg/g) but this increase 287 

was not statistically significant (p>0.05). Hence, we conclude that both biochars did not show 288 

statistically significant change of TOC and PyC level of soil Mt but increased that of soil Ba 289 

noticeably.  290 
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Given that the C content of WS and CL biochar were 75.6% and 33.7%, respectively 291 

(Table 2) and biochar amendment ratio was 5 wt%, the percentage of biochar-C sequestered 292 

as TOC and PyC by each soil were calculated by the following equations： 293 

	Biochar	C	sequestered	as	TOC(%) =
(���	����ℎ��	� !"#!#	$��%$ − ���	��"'��%	$��%$)/)$��%

*���ℎ��	�/)$��%
∗ 100 

Biochar	C	sequestered	as	PyC(%) =
(01�	����ℎ��	� !"#!#	$��%$ − 01�	��"'��%	$��%$)/)$��%

*���ℎ��	�/)$��%
∗ 100 

The calculated percentage (Table 4) showed that, within a time range of 11 months, 294 

87.9% and 69.5% of WS and CL biochar-C was sequestrated by soil Ba as TOC. Comparably, 295 

only 24.0% of WS biochar-C was stored as TOC in soil Mt while CL biochar-C totally 296 

degraded in soil Mt. Similarly, soil Ba stored 6.96% and 3.54% of WS and CL biochar-C as 297 

thermally stable OC (PyC), whereas no contribution of biochar-C to PyC of soil Mt was 298 

noted.     299 

Hence, overall, both biochars had the capacity to increase total OC of soil Ba but 300 

acidic WS biochar showed a higher capacity within a period of 11 months. This may be due 301 

to the higher C content of WS biochar than CL biochar (Table 2). In addition, WS biochar 302 

had a smaller O/C ratio (0.25) than CL biochar (0.41) (Table 2), suggesting C in WS biochar 303 

may have more stable conjugated aromatic structures (Slavich et al., 2013) that resist 304 

degradation more. Meanwhile, soil Ba displayed a better C sequestration effect than soil Mt. 305 

One of the reasons may be lower pH of soil Ba than soil Mt as lower pH was suggested to 306 

favour C stabilization (Skjemstad et al., 1996; Clough and Skjemstad, 2000). According to 307 

PyC content obtained by CTO-375 method, soil Ba can store only <7% while soil Mt stored 308 

negligible percentage of biochar-C as stable OC in the 11-month period. Our previous study 309 

showed that combustion of biochars (including biochars used in this study) at 375 °C for 24 h 310 

almost oxidized all the C in biochars (data not shown). This was also noted by other studies 311 

(Quénéa et al., 2006; Roth et al., 2012; Kerré et al., 2016). Comparing to other commonly 312 

used methods, the CTO-375 method can remove all of the char PyC and tends to obtain the 313 
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smallest PyC value that represents highly condensed soot PyC (Hammes et al., 2007; Poot et 314 

al., 2009; Qi et al., 2017). Hence, on one hand, the CTO-375 method may have 315 

underestimated the PyC introduced from biochar into soils. Better methods to quantify PyC 316 

dynamics in biochar-amended soils are needed in the future. On the other hand, the better 317 

survival of biochars through CTO-375 combustion in soil Ba matrix than their bare biochar 318 

counterparts suggests possible incorporation of biochar-C into soil aggregates which provides 319 

physical protection of biochar-C from thermal degradation. This is also one of the most 320 

important mechanisms for TOC and PyC to be stabilized into soils.  321 

 322 

3.4 Sorption Properties 323 

3.4.1 Sorption isotherms 324 

The studied soils and biochars contain very low amounts of heavy metal(loid)s and 325 

only  negligible amount of Cd (supporting information Table A2). The sorption isotherms of 326 

all soils were L type (Limousin et al., 2007) where the ratio of equilibrium solute 327 

concentration in solution to that on soils decreased with increasing solute concentration and 328 

suggested the soil surfaces were progressively get saturated by Cd. The sorption isotherms of 329 

all soil samples were fitted into Langmuir models, with linear form of this model as follows 330 

(Yan et al., 2015): 331 

�2

32
=
�!

3456
+

1

�3456
 

where Ce (mg/L) and qe (mg/g) are the equilibrium concentrations of Cd in solution 332 

and on soil samples, respectively. Langmuir constants qmax (mg/g) and b (L/g) represent 333 

maximum sorption capacity and sorption strength, respectively.  334 

The Cd sorption isotherms (Fig 3a and 3b) of biochar free and biochar amended soils 335 

all followed the Langmuir model (R2 = 0.82-0.99) (Table 5). The amount of Cd sorbed on all 336 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 

 

soil samples increased with increasing initial Cd concentrations. An assessment of the 337 

sorption maxima (qmax) calculated from Langmuir model showed that soil Mt had 338 

significantly higher qmax (10.2 mg/g) than soil Ba (3.71 mg/g). This may be due to difference 339 

in properties of the two soils. Higher pH and higher capacity to maintain pH (higher ANC) of 340 

soil Mt should favour the higher sorption capacity of soil Mt. This is because higher pH 341 

affords more negative surface charge (Naidu et al., 1994; Zhou and Wong, 2001; Forján et al., 342 

2016; Jiang et al., 2016a) and more hydrolysis Cd2+ that is with higher affinity than free Cd2+ 
343 

ions to sorbent surface (Davis and Leckie, 1978; Naidu et al., 1994; Yu, 1997; Jiang et al., 344 

2016a). Higher TOC and CaCO3 content (Uchimiya et al., 2011b; Forján et al., 2016; Usman 345 

et al., 2016) and Fe, Al and Mn oxides (Yu, 1997; Jiang et al., 2012b) of soil Mt could also 346 

drive its high sorption capacity for Cd. WS biochar amendment did not noticeably change 347 

sorption capacity of both soils. CL biochar application increased qmax of soil Ba by 25.6% 348 

and but showed no effect on sorption capacities of soil Mt. This indicated application of both 349 

biochars to alkaline organic matter rich soils may not show its remedial function and acidic 350 

biochar would not show remedial effects for both soils. 351 

 352 

3.4.2 Proportions of specific sorption 353 

 Sorption of metal cations are relevant to negative surface charge (Naidu et al., 1994; 354 

Naidu et al., 1997a; Chintala et al., 2013). Mechanisms involved in metal ions attraction from 355 

soil solutions to soil surfaces include non-specific sorption (outer-sphere complexes) through 356 

cation exchange reactions where charge of soils are balanced by sorbed metal ions, specific 357 

sorption (inner-sphere complexes) where chemical bonds form between metals and soil 358 

surface (Evans, 1989; Naidu et al., 1994; Echeverria et al., 1998; Strawn and Sparks, 2000; 359 

Appel and Ma, 2002; Bradl, 2004; Bolan et al., 2014) and co-precipitation. On a relative basis, 360 

specific sorption and co-precipitation can retain Cd nearly irreversibly in many cases while 361 
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nonspecific sorption renders the metals most labile and easily reversible (Appel and Ma, 362 

2002).  363 

The nonspecifically sorbed metals were estimated by the amount released from 364 

desorption process (Jiang et al., 2012b; Dai et al., 2015). Data from Fig 4 shows that at lower 365 

Cd loading rate (150µM), non-specific sorption accounted for around 0.19% of the total 366 

sorption of soil Mt, and this ratio increased to around 0.35% at a higher intial Cd 367 

concentration (1500µM) but was still minimal. The ratio of non-specific sorption for soil Ba 368 

was relatively higher which was around 2.21% and 8.17%, at 150 and 1500 µM Cd loading, 369 

respectively. Hence, both soils, especially soil Mt, were dorminated by specific sorption. This 370 

specific sorption can be through Cd complexation by multidentate ligands on the surface of 371 

particulate organic matter and nonbridging -OH sites of various hydro(oxide)s (Uchimiya et 372 

al., 2011c). On the one hand, the large number of functional groups of soil organic matter can 373 

retain heavy metal mostly by surface complexation and surface precipitation (Bradl, 2004). 374 

On the other, various Fe, Al and Mn oxides could have a good contribution to the specific 375 

sorption capacity of metal ions (Yu, 1997) with correlation of specific sorption with free Fe 376 

oxides having been reported (Jiang et al., 2012b).  377 

Biochar amendments did not noticeably influence the ratio of non-specific sorption 378 

of the two soils except a 50.0% reduction caused by CL biochar on that of soil Ba. The P- 379 

and Si-related minerals may be responsible for the CL manure biochar to increase the non-380 

electrostatic Cd sorption of soil Ba (Dai et al., 2015). The combination of Cd with Si, Al, P 381 

may be supported by the EDS spectrum of CL biochar in soil Ba matrix (Fig 5).  382 

 383 

3.4.3 Sorption mechanisms 384 

 Heavy metal can be removed by biochar through direct electrostatic interactions 385 

and cation exchange (nonspecific) as well as surface complexation with functional groups 386 
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(specific) (Trakal et al., 2014; Inyang et al., 2015; Lu et al., 2017) and co-precipitation. 387 

Hence, sorptive mechanisms of biochar-amended soils for Cd will be discussed from non-388 

specific and specific aspects in this section. To make the discussion easy, co-precipitation 389 

was included in the specific irreversible sorption.  390 

3.4.3.1 Non-specific sorption  391 

The surface of all soil samples were negatively charged as indicated by negative 392 

zeta potential (Table 3 and Fig 1). Hence, the sorption systems were favourable and direct 393 

electrostatic interaction can contribute to the sorption of Cd. In addition, given measurable 394 

CEC of both soils (Table 3 and Fig 1), Cd can be sorbed on soil constituents by replacing 395 

readily exchangeable cations such as Ca2+ and Mg2+ (Uchimiya et al., 2011b). In this study, 396 

Ca and Mg was released after Cd loading (mmol/g, after subtracting the amount released 397 

from control sample, 0mM) for both soils, suggesting cation exchange as one of the 398 

mechanisms of Cd sorption (Cui et al., 2016; Usman et al., 2016) (Table A3). Both Ca and 399 

Mg release were higher at higher initial Cd loading in all soil samples. Soil Ba had more 400 

release of Mg while soil Mt had higher release of Ca. Assuming 1 mg/kg Mg or Ca will be 401 

released to sorb 1 mg/kg Cd, we calculated the total contribution of Ca + Mg release to Cd 402 

retention (Rexchange) (Table A3). We can see that Rexchange of soil Mt (5.27%) at lower Cd 403 

concentration (150µM) was slightly higher than soil Ba (3.40%), and this may be due to 404 

higher CEC of soil Mt. However at higher concentration (1500µM), Rexchange of soil Mt 405 

reduced to around 3.30% and that of soil Ba increased to 4.82%. Higher Rexchange of soil Ba 406 

at higher Cd loading (1500µM) may be because not all cations were released from soil Ba 407 

at 150µM, while the decrease of Rexchange of soil Mt at higher concentration was likely due 408 

to a higher increase of Cd sorption than cation release. Overall, WS biochar did not 409 

infuence the amount of cation release markedly while CL biochar increased the release of 410 
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Mg in soil Ba and Mt at both Cd laodings. This indicated CL biochar increase the amount 411 

of Cd sorbed through increasing Mg exchange in both soils.  412 

 413 

3.4.3.2 Specific sorption 414 

As pH can be the governing factor for metal sorption in aqueous systems, we cannot 415 

ignore the changes of pH during sorption. The comparison of equilibrium pH of Cd-soil 416 

reaction systems at an initial Cd loading of 0 and 300 µM showed that pH drop of soil Mt 417 

(0.01-0.14 units) was not as significant as that of soil Ba (0.2-0.35) (Table A4). This drop 418 

of pH after metal immobilization in sorption systems suggests either ion exchange of Cd 419 

with dissociable proton (proton exchange) (Uchimiya et al., 2010; Inyang et al., 2012) or 420 

forming of Cd(OH)2 precipitants (Dong et al., 2014). For soil Mt, a pH decrease in the soil 421 

Mt system may be higher than the obtained value as its high ANC could counter-balanced 422 

part of the pH drop (Inyang et al., 2012). Given that Cd(OH)2 precipitation can form when 423 

solution pH ranges from 8 to 9 (Sun et al., 2014; Zhao et al., 2016), both precipitation of 424 

Cd(OH)2 and ion exchange may have occurred in soil Mt system. For soil Ba, Cd(OH)2 425 

may not be likely to form given the equilibrium pH range from 5.6-6.5, hence proton 426 

exchange should have caused the pH drop. The precipitation of CdCO3 in soil Mt was 427 

indicated by saturation index calculated by PHREEQC Interactive v3.3.7. Sun et al. (2014) 428 

also reported surface precipitation of Cd as carbonate in crop straws and wood shaving 429 

biochar sorption systems.  430 

Cadmium can be sorbed by complexing with functional groups present on sorbent 431 

surface (Sun et al., 2014; Cui et al., 2016). Soil organic matter and various soil hydr(oxide)s 432 

contain large number of functional groups (Bradl, 2004; Uchimiya et al., 2011c). FTIR 433 

spectrum (Fig 6) confirmed our WS and CL biochar contained phenolic hydroxyl (-OH) 434 

groups at around 3450-3475 cm-1 (Tsai et al., 2012; Wang et al., 2012), aromatic C=C 435 
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functional groups at 1590 - 1641 cm-1 (Wang et al., 2011; Zaafouri et al., 2016), aliphatic 436 

ether C-O stretching at 1085/1110 cm-1 (Tsai et al., 2012; Yang and Jiang, 2014) as well as 437 

aromatic carbonyl/carboxylic groups (-COO/C=O) at 1427-1463 cm-1 with a weaker signal 438 

(Yuan et al., 2011; Choppala et al., 2012; Guo and Chen, 2014). Hence, surface 439 

complexation should be an important mechanism for Cd sorption to soil Mt and Ba given 440 

that around 99.7% and 91.8% of the sorption was specific (Fig 4).  441 

 442 

4. Conclusions and implications  443 

Chicken litter (CL) biochar had a statistically significant liming effect for the 444 

slightly acidic soil Ba as indicated by the significantly increased pH and acid neutralization 445 

capacity. Also, CL biochar can serve as short-term nutrient source (increased Mg, Ca, K, P 446 

levels) for lower-nutrient soil Ba but cannot improve the capacity of both soils to retain 447 

nutrients (no increase in CEC). Acidic wood shaving  (WS) biochar held little value in soil 448 

liming and soil nutrient supply but it had a higher C sequestration potential (87.9% WS-C 449 

in soil Ba and 69.5% WS-C in soil Mt) than CL biochar. The slightly acidic soil Ba could 450 

sequester more C from biochars as TOC (87.9% WS-C and 69.5% CL-C) than alkaline soil 451 

Mt (24.0% WS-C and -0.27% CL-C). The WS biochar did not change the sorption capacity 452 

and sorption reversibility of both soils for Cd while CL biochar improved sorption of the 453 

acidic soil Ba by 25.4% and reduced its desorption by around 50.0%. Hence based on the 454 

11-month experiment, WS biochar did not offer much value for nutrient supply or remedial 455 

aspects of studied soils but can be quite favourable for C sequestration, especially in the 456 

acidic soil. In contrast, CL biochar can increase soil nutrient levels and sorption capacity for 457 

Cd in soils with lower sorption capacities (like Ba) while offering no C sequestration 458 

benefits based on the 11-month experiment. Future longer term experiment will be needed 459 
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to evaluate these biochars. This study indicates biochars should be properly evaluated 460 

before large scale production and application according to the target use.  461 
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Table 1. Characteristics of original soil samples 

      Note: a pH and EC were in 1:5 solid : water ratio. bFeoxa, Aloxa, and Mnoxa - ammonium oxalate/oxalic acid extractable Fe, Al, Mn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Soils Soil type Sand (%) Silt (%) Clay (%) Texture 
class 

TOC  
(mg/g) 

CaCO3 
equivalence 

(%) 
pHa ECa 

(dS/m) 
CEC  

(cmol+/kg) 
Feoxa

b  
(mg/kg) 

Aloxa
b   

(mg/kg) 
Mnoxa

b 

(mg/kg) 

Ba Ferrosol 54.9±0.88 30.9±2.17 14.2±1.31 Loam 16.3±0.85 2.00±0.50 6.14±0.05 50.0±0.14 11.6±0.51 4370±37.2 1310±11.8 190±4.93 
Mt Dermosol 50.9±1.17 38.9±2.50 10.1±1.34 Loam 78.9±5.64 23.2±0.67 7.87±0.04 260±50.2 37.8±1.71 14900±858 2290±983 410±19.1 
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Table 2. Characteristics of biochar samples 

Note: aMolecular ratio of O/C and H/C are ash free base. bpH and EC were in 1:10 solid : water ratio. cSSA - (BET) specific surface area.  dANC - acid neutralization capacity. 
 

 

 

 

 

 

 

 

 

 

 

 

Chars    C (%) H (%) N (%) S (%) O (%) O/Ca H/Ca Ash (%)  
SSAc 

(m2/ g) 
pHb 

ECb 
(dS/m) 

CaCO3 

equivalence  
(%) 

ANCd 
(cmol H+/kg) 

WS 75.6±0.23 3.23±0.01 0.25±0.00 0.32±0.09 18.9±0.03 0.25 0.04 1.66±0.10 0.81±0.13 3.25±0.07 421±15.0 1.67±0.18 2.00±0.07 

CL 33.7±2.33 2.41±0.12 3.81±0.30 0.40±0.04 13.5±2.80 0.40 0.07 46.2±0.00 6.05±0.93 7.00±0.16 9190±439 10.1±0.23 222±12.4 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 Table 3. Characteristics of biochar amended soil 

Soils pHb ECb (dS/m) CEC (cmol+/kg) ANCc  (cmol H+/kg) zeta potential (mV) PyCd (mg/g) TOC (mg/g) 

Ba11 6.28±0.04 348±3.53 11.5±1.13 6.51±0.72 -30.2±0.14 0.61±0.31 13.2±2.42 

Ba11WS 6.20±0.02 3180±2.12a 11.9±0.88 5.50±0.71 -30.1±0.71 3.25±0.98a 46.4±9.46a 

Ba11CL 6.58±0.06a 7780±4.95a 12.6±0.85 12.0±1.41a -32.1±0.99 1.21±0.37 24.9±5.89a 

Mt11 7.60±0.00 797±4.24 36.5±0.94 27.0±0.71 -27.4±0.71 4.33±0.47 81.7±26.8 

Mt11WS 7.63±0.01 590±14.8a 33.4±1.80 25.0±0.71 -29.6±1.56 4.75±2.12 90.8±8.33 

Mt11CL 7.57±0.00 1170±41.7a 33.1±2.05 48.0±1.41a -30.6±0.57 4.28±1.65 76.5±12.2 

                              Notes: aSignifies difference from control is significant (p<0.05 by one-way AVONA anaylsis). bpH and EC were in 1:5 solid : water ratio. 
                                         cANC - acid neutralization capacity. dPyC - pyrogenic carbon. 
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Table 4. C sequestered from biochars as TOCa and PyCa in soils 

C 
sources 

Sequestered as TOC 
in acidic soil Ba (%) 

Sequestered as TOC in 
alkaline soil Mt (%) 

Sequestered as PyC 
in acidic soil Ba (%) 

Sequestered as PyC in 
alkaline soil Mt (%) 

WS-Cb 87.9 24.0 6.96 1.12 

CL-Cb 69.5 - 3.54 - 

Note: aTOC and PyC were total organic carbon and pyrogenic carbon, respectively. 
                              bWS-C and CL-C were C of wood shaving and chicken litter biochar, respectively. 

                                                                                - indicate decrease of soil TOC and PyC by biochar were negligible. 
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   Table 5. Langmuir isotherm model parameters 

 

 

 

 

 

 

Samples qmax (mg/g) b (L/mg) R2 

B11 3.50 0.19 0.99 

B11WS 3.53 0.21 0.99 

B11CL 4.39 0.31 0.99 

M11 9.55 0.69 0.89 

M11WS 8.69 0.78 0.90 

M11CL 9.87 0.69 0.88 
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Fig 1. CEC and zeta potential of soil samples 

Fig 2. TOC and PyC content of soil samples            

Fig 3. Sorption isotherm of soil samples         

Fig 4. Desorption ratio of Cd of soil Ba and Mt 

Fig 5. SEM image and EDS spectrum of CL biochar in soil Ba matrix 

Fig 6. FTIR spectrum of WS and CL biochars  
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Fig 1. CEC and zeta potential of soil samples 
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     Fig 2a. TOC content of soil samples                  Fig 2b. BC content of soil samples 
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Fig 3a. Sorption isotherm of soil Ba         Fig 3b. Sorption isotherm of soil Mt 
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Fig 4. Desorption ratio of Cd of soil Ba and Mt 
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Fig 5. SEM image and EDS spectrum of CL biochar in soil Ba matrix 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4000 3500 3000 2500 2000 1500 1000 500

50

55

60

65

70

75

Wavenumber (cm-1)

T
ra

ns
m

itt
an

ce
 (

%
)

WS

CL

C-O

C=C

-OH

-COO/C=O 

 

 

 

 

 

 

 

 

 

Fig 6. FTIR spectrum of WS and CL biochars  
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Highlights 

� The C rich acidic biochar did not work for nutrients supply or Cd retention but helped 

in storing C.  

� The neutral mineral rich biochar enhanced nutrient and sorption for some soils.  

� Neutral mineral rich biochar hardly increased soil C after 11 months. 

 


