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Abstract: Sub-pixel mapping (SPM) is a process for predicting spatially the land cover classes within mixed 12 

pixels. In existing SPM methods, the effect of point spread function (PSF) has seldom been considered. In this 13 

paper, a generic SPM method is developed to consider the PSF effect in SPM and, thereby, to increase 14 

prediction accuracy. We first demonstrate that the spectral unmixing predictions (i.e., coarse land cover 15 

proportions used as input for SPM) are a convolution of not only sub-pixels within the coarse pixel, but also 16 

sub-pixels from neighboring coarse pixels. Based on this finding, a new SPM method based on optimization is 17 

developed which recognizes the optimal solution as the one that when convolved with the PSF, is the same as 18 

the input coarse land cover proportion. Experimental results on three separate datasets show that the SPM 19 

accuracy can be increased by considering the PSF effect. 20 
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1. Introduction 26 

 27 

Mixed pixels are inevitable in remote sensing images and have brought great challenges in land cover 28 

mapping. The spectral unmixing technique has been studied for decades to estimate the proportions of land 29 

cover classes within mixed pixels (Bioucas-Dias et al., 2012; Heinz & Chang, 2001; Keshava & Mustard, 30 

2002). The proportions are at the same spatial resolution as the input images and cannot inform the spatial 31 

distribution of classes within mixed pixels. To further estimate the spatial distribution of land cover, sub-pixel 32 

mapping (SPM) was developed as a post-processing analysis of spectral unmixing outputs. SPM divides mixed 33 

pixels to sub-pixels and predicts their class attributes under the coherence constraint from prior spectral 34 

unmixing predictions (i.e., coarse land cover class proportions). SPM transforms the conventional pixel-level 35 

classification to a finer spatial resolution hard classification (Atkinson, 1997), which can provide more explicit 36 

thematic information (e.g., the boundaries between land cover classes can be characterized by more pixels). 37 

In recent decades, various SPM approaches have been developed. As a post-processing step of spectral 38 

unmixing, two main groups of SPM approaches can be identified. The first group considers the relation 39 

between sub-pixels and solutions are always produced based on defined objectives. Based on the assumption of 40 

spatial dependence, the objective can be determined empirically as maximizing the spatial attraction between 41 

sub-pixels (Makido & Shortridge, 2007), maximizing the Moran’s I (Makido et al., 2007) or minimizing the 42 

perimeter of the area for each class (Villa et al., 2011). Based on prior knowledge, the objective can also be 43 

matching prior patterns extracted from training images, such as characterized by the semivariogram (Tatem et 44 

al., 2002), two-point histogram (Atkinson, 2008) or landscape structure (Lin et al., 2011). The SPM solutions 45 

of this type of methods are achieved based on optimization, including the Hopfield neural network (HNN) 46 

(Ling et al., 2010; Muad & Foody, 2012; Nguyen et al., 2011; Tatem et al., 2001), pixel swapping algorithm 47 

(PSA) (Atkinson, 2005; Shen et al., 2009; Xu & Huang, 2014), maximum a posteriori method (Zhong et al., 48 

2015), genetic algorithm (Li et al., 2015; Mertens et al., 2003; Tong et al., 2016), and particle swarm 49 

optimization (PSO) (Wang et al., 2012). Several iterations are involved for this group of SPM methods and, 50 
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thus, a relatively long computing time may be required. The second group of SPM methods considers the 51 

relation between sub-pixels and neighboring pixels. The coarse class proportions within each pixel are used 52 

directly to characterize the relation between it and sub-pixels and calculate the fine spatial resolution 53 

proportions for sub-pixels. Under the coherence constraint, the sub-pixel classes are determined by comparing 54 

the fine spatial resolution proportions. As the coarse proportions are fixed for a given pixel, iterations (as in the 55 

first method type) are not necessarily involved and SPM solutions can be produced more quickly. Methods 56 

falling into this type include sub-pixel/pixel spatial attraction model (SPSAM) (Mahmood et al., 2013; Mertens 57 

et al., 2006; Xu et al., 2014), back-propagation neural network-based algorithm (Gu et al., 2008; Zhang et al., 58 

2008), learning-based algorithm (Zhang et al., 2014), kriging (Verhoeye & Wulf, 2002; Boucher & Kyriakidis, 59 

2006) and radial basis function (RBF) (Wang et al., 2014a) interpolation. They can also be summarized as the 60 

soft-then-hard SPM (STHSPM) algorithms, a concept proposed in our previous work (Wang et al., 2014b; 61 

Chen et al., 2015). In addition, to reduce the uncertainty introduced by spectral unmixing, some SPM methods 62 

that do not rely absolutely on coarse proportions were developed, including spatial-spectral methods (Ardila et 63 

al., 2011; Kasetkasem et al., 2005; Li et al., 2014; Tolpekin & Stein, 2009), spatial regularization (Ling et al., 64 

2014; Zhang et al., 2015) and contouring methods (Foody & Doan, 2007; Ge et al., 2014; Su et al., 2012). 65 

In remote sensing images, the point spread function (PSF) effect exists ubiquitously. It means that the signal 66 

for a given pixel is a weighted combination of contributions from within the pixel and also contributions from 67 

neighboring pixels (Townshend et al., 2000; Van der Meer, 2012). The PSF can brighten dark objects and 68 

darken bright objects observed from the surface (Huang et al., 2002). It results in a fundamental limit on the 69 

amount of information that remote sensing images can contain (Manslow & Nixon, 2002). The PSF is a 70 

two-dimensional function accounting for both the across-track and along-track directions (Campagnolo & 71 

Montano, 2014; Radoux et al., 2016). The PSF effect is caused mainly by the optics of the instrument, the 72 

detector and electronics, atmospheric effects, and image resampling (Huang et al., 2002; Schowengerdt, 1997). 73 

The PSF effect may not be an important issue for homogeneous regions, but it is crucial for heterogeneous 74 

landscapes dominated by mixed pixels. To the best of our knowledge, very few SPM methods have considered 75 
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the PSF effect in downscaling. For example, in most of the existing SPM methods, the coherence constraint 76 

from class proportions is satisfied simply by fixing the number of sub-pixels for each class within a single 77 

coarse pixel (i.e., the ideal square wave PSF is considered). The number of sub-pixels to be allocated to a class 78 

within a coarse pixel is calculated as the product of the coarse class proportion within the coarse pixel and the 79 

square of the zoom factor. Due to the PSF effect, however, the coarse proportions estimated by spectral 80 

unmixing are actually a function, in part, of the neighboring coarse pixels. The uncertainty in coarse 81 

proportions is propagated to the post-SPM process where the coarse proportions contaminated by neighboring 82 

coarse pixels are used as the coherence constraint. There is, therefore, a great need for an approach accounting 83 

for the PSF effect in SPM to increase the prediction accuracy. 84 

There are two plausible solutions to cope with the PSF effect in SPM. One is to consider the PSF effect in the 85 

pre-spectral unmixing process and to estimate more reliable coarse proportions from observed multispectral 86 

images. Based on the more reliable predictions, the PSF need not be considered in SPM (i.e., the ideal square 87 

wave PSF can be considered in SPM, as in existing SPM approaches). However, spectral unmixing is an 88 

ill-posed inverse problem. It is more complicated when part of the neighboring coarse pixels (i.e., neighboring 89 

sub-pixels) are involved as this technique is generally performed at the pixel resolution. Currently, it is 90 

challenging to account for the PSF in spectral unmixing and obtain reliable proportions. The alternative 91 

solution, considered here, is to model the PSF effect in the SPM process, based on the proportions 92 

contaminated by neighboring coarse pixels. This strategy is more feasible as SPM is conducted at the sub-pixel 93 

scale and contributions from neighboring sub-pixels in PSF can be straightforwardly modeled. 94 

In this paper, to increase the SPM accuracy, the PSF effect is considered directly in the SPM process. Most 95 

SPM methods need to first calculate the number of sub-pixels for each class within each coarse pixel. Based on 96 

these fixed numbers, the sub-pixel classes are then predicted. This is not a problem for the ideal square wave 97 

PSF, as mentioned earlier. When considering the non-ideal PSF, however, the coarse proportions are a 98 

convolution of the sub-pixel class values in a larger local window, rather than the single coarse pixel in the 99 

ideal square-wave PSF. In this case, the number of sub-pixels for each class in each coarse pixel cannot be 100 
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determined using only the single coarse proportion (i.e., product of the coarse proportion and the square of the 101 

zoom factor, as in existing SPM methods), and it actually cannot be calculated explicitly. In this case, SPM 102 

methods such as the STHSPM algorithms are not suitable choices. A plausible solution to this issue is to 103 

convolve the fine spatial resolution SPM realization with the PSF and compare the estimated proportion with 104 

the actual coarse proportion, and use the error to guide further updating of the current realization. The 105 

iteration-based HNN is a method of this type. Therefore, in this paper, the HNN is used to reduce the 106 

uncertainty in SPM introduced by the PSF effect. 107 

The remainder of this paper is organized into four sections. Section 2 first introduces the mechanism of the 108 

PSF effect in SPM and then the details of the proposed strategy for considering the PSF in SPM. The 109 

experimental results for three groups of datasets are provided in Section 3 for validation of the proposed 110 

method. Section 4 further discusses the proposed SPM method, followed by a conclusion in Section 5. 111 

 112 

 113 

2. Methods 114 

 115 

2.1. The PSF effect in SPM 116 

This section will illustrate the PSF effect in SPM and demonstrate that the coarse proportions in SPM are a 117 

convolution of the sub-pixel class values in a local window centered at the coarse pixel. Let VS  be the spectrum 118 

of coarse pixel V, kR  be the spectrum of class endmember k (k=1, 2, …, K, where K is the number of land 119 

cover classes), and ( )kF V  be the proportion of class k in pixel V. Based on the classical linear spectral mixture 120 

model (Bioucas-Dias et al., 2012; Heinz & Chang, 2001; Keshava & Mustard, 2002), the spectrum of each 121 

coarse pixel is a linear combination of the spectrum of endmembers, where the weights are determined as the 122 

class proportions within the coarse pixel. That is 123 

1

( )
K

V k k

k

F V


S R .                                                                    (1) 124 
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Due to the PSF effect in remote sensing images, Eq. (2) holds 125 

V v Vh S S                                                                          (2) 126 

where vS  is the spectrum of sub-pixel v, Vh  is the PSF and * is the convolution operator. For sub-pixel v, its 127 

spectrum vS  can be characterized as 128 

1

( )
K

v k k

k

I v


S R                                                                       (3) 129 

in which ( )kI v  is a class indicator as follows 130 

1, if sub-pixel  belongs to class 
( )

0, otherwisek

v k
I v  .                                               (4) 131 

By substituting Eq. (3) into Eq. (2), we have 132 

 
1 1

( ) = ( )
K K

V k k V k k V

k k

I v h I v h
 

 
   
 
 S R R .                                                 (5) 133 

The comparison between Eq. (1) and Eq. (5) leads to 134 

( ) ( )k k VF V I v h  .                                                                    (6) 135 

Let z be the zoom factor, that is, each coarse pixel is divided into z by z sub-pixels. As shown in the one 136 

dimensional illustration in Fig. 1, when the PSF takes the ideal square wave filter in Eq. (7) 137 

2

1
, if ( , ) ( , )( , )

0, otherwise
V

i j V i jh i j z

   


                                                       (7) 138 

where (i, j) is the spatial location of the sub-pixel and ( , )V i j  is the spatial extent of the coarse pixel V 139 

containing the sub-pixel at (i, j). Further, the convolution in Eq. (6) can be simplified as 140 

, 1

2

( )

( )

z

k ij

i j

k

I v

F V
z





.                                                                   (8) 141 

In Eq. (8), all sub-pixels ijv  are located within coarse pixel V. This means that based on the assumption of an 142 

ideal square wave PSF, the coarse class proportion estimated from the linear spectral mixture model in Eq. (1) 143 
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is viewed as the average of all sub-pixel class indictors within the pixel. This is the common case considered in 144 

most SPM methods. 145 

 146 

pixel

PSF

sub-pixel

Ideal square PSF

 147 

Fig. 1 A one dimensional illustration of the PSF in SPM. Based on the real PSF, the coarse pixel value (or coarse class proportion) 148 

should be a convolution of the sub-pixel values (or sub-pixel class indicators) located within the local window centered at the coarse 149 

pixel, rather than only within the single coarse pixel (as assumed in the ideal square wave PSF). 150 

 151 

In reality, the PSF is different to the ideal square wave filter. The spatial coverage of Vh  is generally larger 152 

than a coarse pixel size, but is finite, as shown in Fig. 1. For example, the PSF can be the Gaussian filter, which 153 

is used widely in remote sensing (Campagnolo & Montano, 2014; Huang et al., 2002; Manslow & Nixon, 2002; 154 

Townshend et al., 2000; Van der Meer, 2012; Wenny et al., 2015) 155 

2 2

2 2

1
exp , if ( , ) ( , )

( , ) 2 2

0, otherwise

V

i j
i j V i j

h i j  

   
         
 

                                         (9) 156 

where   is the standard deviation (width of the Gaussian PSF) and ( , )V i j  is the spatial extent of the local 157 

window centered at coarse pixel V (V covers the sub-pixel at (i, j)), see Fig. 1. Thus, any sub-pixel v involved in 158 

the calculations in Eq. (2) and Eq. (6) falls within a wider spatial coverage ( , )V i j , rather than only within 159 

( , )V i j . This means that based on the linear spectral mixture model in Eq. (1), the estimated coarse class 160 

proportions within each coarse pixel are actually a convolution of the sub-pixels in the local window centered 161 

at the coarse pixel, rather than only the sub-pixels within the coarse pixel (i.e., not the case in Eq. (8)). 162 

 163 

 164 
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2.2. Enhancing SPM by considering the PSF effect 165 

In conventional SPM, the number of sub-pixels for each class needs to be determined in advance, which is 166 

used as a coherence constraint in the mapping process. Let ( )kN V  be the number of sub-pixels for class k in 167 

pixel V, which is usually calculated as 168 

2( ) round ( )k kN V F V z    .                                                         (10) 169 

From Section 2.1, it is concluded that in reality the estimated coarse proportions are contaminated by their 170 

neighboring pixels due to the PSF effect (see Eq. (6)). Therefore, it is generally incorrect to use Eq. (10) for the 171 

coherence constraint in SPM, unless the correct land cover proportions (i.e., not contaminated by neighbors) 172 

can be produced. As can be seen from Eq. (5), even when the endmember set kR  and PSF Vh  are known 173 

perfectly, it is not trivial to determine the correct proportions. This is because the coarse proportions can 174 

sometimes be functions of neighboring sub-pixels, as can be seen from Eq. (6) and Fig. 1. In this case where 175 

sub-pixels are involved, spectral unmixing becomes challenging, as unmixing is carried out at the pixel 176 

resolution and cannot account for proportions at the sub-pixel resolution. Townshend et al. (2000) and Huang 177 

et al. (2002) proposed an interesting deconvolution method to reduce the impact of the PSF in coarse 178 

proportion predictions. This method was developed at the pixel resolution, which quantifies the contributions 179 

from neighbors in units of coarse pixels. That is, it treats all sub-pixels in a surrounding coarse pixel equally 180 

and assumes a uniform contribution to the center coarse pixel. According to Fig. 1, however, sub-pixels in the 181 

surrounding coarse pixel have a different spatial distance to the center coarse pixel and thus, should have 182 

different contributions to the center coarse proportion (e.g., some sub-pixels even have no contribution). 183 

In this paper, the coarse proportions contaminated by pixel neighbors are directly considered in SPM. As 184 

( )kN V  cannot be calculated explicitly, conventional SPM methods such as the STHSPM algorithms cannot be 185 

used. Guided by the mechanism in Eq. (6), the ideal SPM solution should be the one that when convolved with 186 

the PSF, is the same as the coarse proportion. Alternatively, an optimization-based SPM method is employed in 187 

this paper, where the convolution of the current SPM realization is compared with the contaminated coarse 188 
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proportions for updating SPM predictions iteratively. The HNN is a method suitable for this task and is used for 189 

accounting for the PSF in SPM. The HNN has been used widely in SPM, appreciating its highly satisfactory 190 

performance (Ling et al., 2010; Muad & Foody, 2012; Nguyen et al., 2011; Tatem et al., 2001). It considers 191 

each sub-pixel as a neuron and works by minimizing an energy function composed of a goal and a coherence 192 

constraint term. The HNN accounting for the PSF effect is introduced below. 193 

Suppose (k, i, j) is a neuron for sub-pixel at location (i, j) and is on the network layer representing land cover 194 

class k, and kijq  is its output. If kijq  is 1, it means that the sub-pixel at (i, j) is belongs to class k, and if kijq  is 0, 195 

the sub-pixel does not belong to class k. Using the HNN, the outputs are update iteratively for each sub-pixel. 196 

The output kijq  is a function of the input signal kiju  197 

 
1

1 tanh
2

kij kijq u  
 

                                                             (11) 198 

where   determines the steepness of the function. The input kiju  for the t-th iteration is updated by 199 

 
 kij

kij kij

du t
u t dt u dt

dt
                                                             (12) 200 

in which dt  is a time step. The second term on the right hand side of Eq. (12) is the energy change of the 201 

neuron and is described as 202 

 kij kij

kij

du t dE

dt dq
  .                                                                  (13) 203 

In Eq. (13), E represents the network energy function and is described as 204 

 1 2 3 41 2kij kij kij kij

k i j

E w G w G w P w M                                              (14) 205 

where 
1w , 

2w , 
3w  and 

4w  are four weights, G1 and G2 are two spatial clustering functions characterizing 206 

spatial dependence, P is the proportion constraint and M is the multi-class constraint (Ling et al., 2010; Nguyen 207 

et al., 2011). Accordingly, the energy change of the neuron for sub-pixel at (i, j) in Eq. (13) is determined by 208 

1 2 3 4

1 2kij kij kij kij kij

kij kij kij kij kij

dE dG dG dP dM
w w w w

dq dq dq dq dq
    .                                        (15) 209 
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The first two terms of the right hand side of Eq. (15) are calculated as 210 

 
1 1

1 1

1 1 1
1 tanh 0.5 1

2 8

i i
kij

kbc kij kij

b i c jkij

dG
q q q

dq


 

   

   
        

    
                                   (16) 211 

1 1

1 1

2 1 1
1 tanh 0.5

2 8

i i
kij

kbc kij kij

b i c jkij

dG
q q q

dq


 

   

   
       

    
  .                                   (17) 212 

If the average output of the surrounding neurons is larger than 0.5, the function G1 increases the neuron output 213 

to approach 1 to increase the spatial correlation between neighboring sub-pixels. Otherwise, if the average 214 

output of the surrounding neurons is less than 0.5, the function G2 decreases the neuron output to 0. 215 

The multi-class constraint means that for any sub-pixel, the sum of neuron outputs for all K classes should be 216 

equal to 1, thus 217 

1

1
K

kij

nij

nkij

dM
q

dq 

 
  
 
 .                                                               (18) 218 

Considering the PSF effect, the proportion constraint for class k is expressed as 219 

( ) ( )
kij

k ij k ij

kij

dP
L V F V

dq
                                                                 (19) 220 

where ijV  is the coarse pixel that sub-pixel at (i, j) falls within, ( )k ijF V  is the target coarse proportion of class k 221 

in the pixel (i.e., spectral unmixing predictions), and ( )k ijL V  is the coarse proportion estimated as convolution 222 

of the current SPM realization. Based on the mechanism in Eq. (6), ( )k ijL V  is calculated as 223 

 

  0 0

( , ) ( , )

1
( ) 1 tanh 0.5 *

2

1
1 tanh 0.5 ( , )

2

k ij k V

k V x y

x y V i j

L V q h

q h x i y j d d






    

      
                               (20) 224 

in which ( , )V i j  is defined in the same way as that in Eq. (9) and 
0 0( , )i j  is the spatial location of the center of 225 

coarse pixel ijV . The tanh function is used in Eq. (20) to ensure that if the neuron output 
kq  is above 0.5, it is 226 

counted as an output of 1 (i.e., belongs to class k) for the coarse proportion calculation; If 
kq  is below 0.5, it is 227 
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not counted for class k instead. This ensures that the neuron output exceeds 0.5 in order to be counted within the 228 

calculations for each class. 229 

In Eq. (19), the target coarse proportion ( )k ijF V  is used to examine the current SPM realization. The 230 

convolution of the final SPM prediction should be the same as the target coarse proportion. Specifically, if the 231 

convolution of the current SPM realization, ( )k ijL V , is larger than the target proportion ( )k ijF V , a positive 232 

gradient is produced and the energy is reduced to decrease the neuron output (see Eq. (12) and Eq. (13)) to cope 233 

with this overestimation issue. On the contrary, if ( )k ijL V  is smaller than ( )k ijF V , a negative gradient is 234 

produced and the neuron output is increased correspondingly to cope with underestimation. After a number of 235 

iterations (usually over 1000), ( )k ijL V  will approach ( )k ijF V , suggesting that the convolution of the final 236 

prediction is almost identical to the target coarse proportion contaminated by the PSF effect. In this way, the 237 

PSF effect in SPM is considered and a more reliable sub-pixel class distribution can be reproduced. It should be 238 

noted that the proposed HNN-based SPM method accounting for the PSF is suitable for any PSF. Its 239 

implementation is not affected by the specific form of PSF. Once the PSF of the sensor is available or estimated, 240 

it can be used readily in the proposed method, as shown in Eq. (20). 241 

As suggested in Tatem et al. (2001), for the HNN, the network will converge to similar energy minima given 242 

any initialization and the network will converge to an accurate prediction in fewer iterations if a 243 

proportion-constrained initialization is used. This scheme was employed in the proposed method for faster 244 

convergence of the optimization. According to Eq. (6), in the estimated coarse proportions images, if a pixel is 245 

presented as a pure pixel (e.g., belongs entirely to class k), all sub-pixels in the local window centered at the 246 

coarse pixel must belong to class k. Thus, for any pure pixel in the coarse proportion image for class k, we 247 

directly initialize the neuron outputs of all sub-pixels within it as 1 for class k and 0 for other classes. These 248 

values are fixed and not changed in the optimization process. For mixed pixels, random initialization (between 249 

0 and 1) was applied.  250 

 251 
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3. Experiments 252 

 253 

Experiments were carried out on three groups of synthetic datasets, including a dataset with six different 254 

targets, a land cover map with multiple classes, and a multispectral image. They were used to test the 255 

performance of SPM methods on different typical shapes in Section 3.1, multiple classes in Section 3.2 and the 256 

case involving realistic unmixing in Section 3.3. As mentioned earlier, the proposed method is suitable for any 257 

PSF. The estimation of the PSF of sensors is still an open problem, and uncertainty unavoidably exists in the 258 

process. It is beyond the scope of this paper to estimate the PSF. Alternatively, to concentrate solely on the 259 

performance of SPM, all coarse data for the three groups of datasets were produced by convolving the available 260 

fine spatial resolution data, using a Gaussian PSF shown in Eq. (9), which is a widely used PSF (Campagnolo 261 

& Montano, 2014; Huang et al., 2002; Manslow & Nixon, 2002; Townshend et al., 2000; Van der Meer, 2012; 262 

Wenny et al., 2015). The width of the PSF was set to half of the coarse pixel size. Based on this strategy, the 263 

fine spatial resolution data are known perfectly and can be used as a reference for evaluation. All SPM results 264 

were evaluated both visually and quantitatively. For quantitative evaluation, the classification accuracy of each 265 

class and the overall accuracy (OA) in terms of the percentage of correctly classified pixels were used. In 266 

addition, to emphasize the improvement of the proposed method over the other methods, an index called the 267 

reduction in remaining error (RRE) (Wang et al., 2015) was also used, as calculated below 268 

1 0

1

RE RE
RRE 100%

RE


                                                              (21) 269 

where 1RE  and 0RE  are the remaining errors of OA (i.e., 100%-OA) for the benchmark method and the 270 

proposed method, respectively. 271 

 272 

3.1. Experiment on the six targets 273 

In this experiment, six binary images (pixel value 1 for white target while 0 for black background) with 274 

different targets were used for validation. They represent typical, basic shapes in nature. All six images have a 275 
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spatial size of 56 by 56 pixels and were marked as T1-T6, as shown in Fig. 1(a). Each image was degraded with 276 

a Gaussian PSF and a zoom factor of 7, generating coarse images with 8 by 8 pixels, as shown in Fig. 1(b). The 277 

coarse images are exactly the simulated coarse proportions of the white targets in each image. 278 

Fig. 3 shows the relation between the PSF-convolved coarse proportions and actual proportions for the six 279 

white targets. The actual proportions were generated by averaging the sub-pixel class indicators within each 280 

coarse pixel. As observed from the plots, the proportions are very different to the actual values due to the PSF 281 

effect. For example, in all six plots, many proportions should be 0 (i.e., pure background pixel and no target 282 

pixel in the coarse pixel), but were actually calculated as values larger than 0 (i.e., mixed pixel). The reason is 283 

that although no target pixels exist in a coarse pixel, they may be located in neighboring pixels. According to 284 

Eq. (6), these neighboring pixels will contaminate the center pixel which will then not be recognized as a pure 285 

background pixel. The accuracies of the coarse proportions were quantified in terms of root mean square error 286 

(RMSE) and correlation coefficient (CC), as listed in Table 1. The uncertainty in the PSF-convolved coarse 287 

proportions motivates the development of SPM methods considering the PSF effect. 288 

 289 

Table 1 Accuracy of the coarse proportion images for the six targets 290 

 T1 T2 T3 T4 T5 T6 

RMSE 0.0421 0.0602 0.0671 0.0707 0.0924 0.0972 

CC 0.9949 0.9902 0.9820 0.9868 0.9677 0.9668 

 291 

The SPM results of the HNN without PSF (that is, with ideal PSF) and with the Gaussian PSF are shown in 292 

Fig. 2(c) and Fig. 2(d), respectively. It is seen clearly that by considering the PSF effect, more accurate SPM 293 

results can be produced. In the results for target T1-T3, the proposed method produces more compact shapes 294 

that are closer to the reference. For T4 and T5, the proposed method produces a straighter line than the HNN 295 

without PSF. In T6, the more complex boundaries of the target are reproduced by the proposed method. 296 

 297 

 298 

 299 
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(a)                               (b)                              (c)                               (d) 300 

    301 

    302 

    303 

    304 

    305 

    306 

Fig. 2 SPM results of six targets. (a) Reference images (56 by 56 pixels). (b) Coarse images (8 by 8 pixels) produced by degrading (a) 307 

with a Gaussian PSF and a factor of 7. (c) SPM results produced using the HNN without PSF (or with ideal PSF). (d) SPM results 308 

produced using the proposed HNN with the Gaussian PSF. Lines 1-6 are results for T1-T6. 309 

 310 
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 311 

Fig. 3 Relation between the actual proportions (for white target) and proportions (for white target) contaminated due to the PSF effect 312 

for the six binary images (z=7). From left to right are results for T1-T6. 313 

 314 

Quantitative assessment in terms of OA (accuracy statistics for both target and background in each image) is 315 

listed in Table 2. As mentioned earlier, for pure pixels, all sub-pixels within them are simply assigned to the 316 

same class to which the pure pixel belongs. As suggested by the existing literature (Mertens et al., 2003), this 317 

copy process will only increase the SPM accuracy statistics without providing any useful information on the 318 

actual performance of the SPM methods. Hence, for the synthetic coarse images, we did not consider the pure 319 

pixels in the accuracy statistics. The quantitative evaluation was conducted for two different zoom factors, z=4 320 

and 7. As observed from the table, the HNN with PSF produces a larger OA than the HNN without PSF. 321 

Moreover, the advantage tends to be more obvious when a larger zoom factor is involved. More precisely, for 322 

T2 and T5, using the proposed method, the accuracy gains are below 1% for z=4, but increase to be above 2% 323 

for z=7. For T6, the proposed method considering the PSF increases the OA by 1.4% for z=4 and 4.7% for z=7. 324 

In addition, all RREs are generally large (over 10%) and some even reach over 60%, suggesting that the 325 

accuracy increase is obvious. 326 

 327 

Table 2 OA (%) of HNN-based SPM with two different schemes for the six binary images 328 

  T1 T2 T3 T4 T5 T6 

z=4 

no PSF 99.34 98.72 98.00 98.44 98.30 96.66 

PSF 99.34 99.52 99.26 99.19 98.67 98.08 

RRE 0% 62.50% 63.00% 48.08% 21.76% 42.51% 

z=7 

no PSF 99.41 97.31 97.89 97.34 94.48 90.53 

PSF 99.46 99.26 98.16 97.91 97.51 95.18 

RRE 8.47% 72.49% 12.80% 21.43% 54.89% 49.10% 

 329 
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            330 
 331 

Fig. 4 The accuracy of the two SPM methods in relation to the width of the PSF (in units of coarse pixel, which was produced by 332 

degrading Fig. 2(a) with a factor of 7). From left to right are results for T1, T2 and T5, respectively. 333 

 334 

The influence of the width of the Gaussian PSF was also analyzed, as shown in Fig. 4. The fine spatial 335 

resolution T1, T2 and T5 images were degraded with a factor of 7. Three PSF sizes, 0.5, 0.75 and 1 coarse 336 

pixels, were considered for each target. Three observations can be made from the results in Fig. 4. First, for all 337 

PSF sizes, the consideration of the PSF effect can lead to consistently larger OA than that produced without the 338 

PSF. Second, the accuracy of SPM methods decreases as the width of the PSF increases, no matter whether the 339 

PSF is accounted for or not. This is because more neighboring sub-pixels are involved in the convolution 340 

process and the SPM problem becomes more complex as the width increases. Third, as the width increases, the 341 

advantage of considering the PSF is more obvious. 342 

 343 

3.2.Experiment on the land cover map with multiple classes 344 

A land cover map produced from an aerial photograph covering an area in Bath, UK was used in this 345 

experiment, as shown in Fig. 5. The image has a spatial resolution of 0.6 m, and a spatial size of 360 by 360 346 

pixels. Four classes were identified in the land cover map, including roads, trees, buildings and grass. The map 347 

was degraded with a factor of 8 and a Gaussian PSF, generating four proportion images at a spatial resolution 348 

of 4.8 m. The relation between the simulated coarse proportions and actual proportions is shown in the plots in 349 

Fig. 6. Table 3 lists the accuracies of the proportions. Similarly to the observation in Fig. 3 and Table 1, the two 350 

types of proportions are very different due to the PSF effect. 351 

O
A

 (
%

) 

O
A

 (
%

) 

O
A

 (
%

) 

σ σ σ 



 

 

17 

(a)                                                                (b) 352 

  353 

 354 

Fig. 5 The land cover map. (a) Original aerial photograph. (b) Reference map drawn manually from (a). 355 

 356 

 357 

Fig. 6 Relation between the actual proportions and proportions contaminated due to the PSF effect for the land cover map (z=8). From 358 

left to right are results for roads, trees, buildings and grass. 359 

 360 

Table 3 Accuracy of the coarse proportion images for the land cover map 361 

 Roads Trees Buildings Grass Mean 

RMSE 0.0440 0.0576 0.0591 0.0924 0.0633 

CC 0.9866 0.9867 0.9844 0.9792 0.9842 

 362 

The proposed method is not only compared to the original HNN method, but also to several typical SPM 363 

methods. As mentioned in the Introduction, there are mainly two families of SPM methods for post-processing 364 

of spectral unmixing. One is the method considering the relation between sub-pixels and neighboring pixels, 365 

while the other considers the relation between sub-pixels. The SPSAM (Mertens et al., 2006) and RBF (Wang 366 

et al., 2014a) methods were selected for the former and PSA (Makido et al., 2007) was selected for the latter. 367 
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For these three benchmark methods, the number of sub-pixels for each class needs to be determined first. The 368 

numbers were calculated according to Eq. (10), where uncertainty from the PSF effect exists in the coarse 369 

proportions. The SPM results of all five methods are presented in Fig. 7. 370 

 371 

(a)                                                                 (b)                                                                (c) 372 

   373 
(d)                                                                 (e)                                                                (f) 374 

   375 

 376 

Fig. 7 SPM results of the land cover map with 360 by 360 pixels (z=8). (a) SPSAM (no PSF). (b) RBF (no PSF). (c) PSA (no PSF). (d) 377 

HNN (no PSF). (e) The proposed HNN with PSF. (f) Reference. 378 

 379 

Due to the uncertainty in the coarse proportions, the SPM predictions of SPSAM and RBF contain a number 380 

of jagged artifacts and the boundaries of classes are rough. Although PSA is able to enhance the performance 381 

and produce a more compact result, the class boundaries are still not smooth and some noisy pixels exist. 382 

Different from the three methods, the original HNN method produces a cleaner result and the class boundaries 383 
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are smoother, although the PSF is not considered. The reason is that the HNN is not absolutely slavish to the 384 

coarse proportions, and can remove isolated pixels and produce a compact result by the two spatial clustering 385 

functions G1 and G2 (see Eq. (16) and Eq. (17)). However, there are some needle-like artifacts for restoration 386 

of roads and trees in the HNN result. Using the proposed method accounting for the PSF effect, the result is 387 

more accurate than the original HNN without the PSF method. For example, the prediction of the roads by the 388 

proposed method is smoother, and needle-like artifacts are removed. The result of the proposed method is the 389 

closest to the reference in Fig. 7(f) amongst all five methods. 390 

 391 

Table 4 SPM accuracy (%) of the different SPM schemes for the experiment on the land cover map 392 

  
SPSAM 

(no PSF) 

RBF 

(no PSF) 

PSA 

(no PSF) 

HNN 

(no PSF) 

HNN 

(PSF) 

z=4 

Roads 94.59 94.64 93.81 98.92 99.78 

Trees 92.16 92.53 91.45 94.38 95.41 

Buildings 91.20 91.69 90.43 93.50 95.28 

Grass 93.82 94.10 93.22 97.86 98.57 

OA 93.17 93.47 92.50 96.62 97.58 

RRE (in OA) 64.57% 62.94% 67.73% 28.40%  

z=8 

Roads 88.24 88.86 87.26 95.13 98.03 

Trees 86.20 87.48 86.13 85.20 90.08 

Buildings 82.51 83.81 81.83 82.92 88.64 

Grass 91.77 90.98 91.74 95.97 95.85 

OA 89.42 89.15 89.23 92.15 94.00 

RRE (in OA) 43.29% 44.70% 44.29% 23.57%  

 393 

Table 4 is the accuracy for the five SPM methods, where two zoom factors, 4 and 8, were tested. Again, the 394 

pure pixels were not considered in the accuracy statistics. For both zoom factors, the proposed HNN with PSF 395 

method produces the greatest accuracy for all classes, and thus, the largest OA amongst all methods. More 396 

specifically, SPSAM, RBF and PSA have very similar accuracies. The three methods produce OA of around 93% 397 

for z=4 and 89% for z=8. Compared to the three benchmark methods, the HNN without PSF method is more 398 

accurate. For z=4 and 8, the OA is increased by around 3.5% and 3%, respectively. With respect to the 399 

proposed HNN with PSF method, the accuracies of roads, trees, buildings and grass are increased by at least 400 
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5%, 3%, 3.5% and 4% in comparison with SPSAM, RBF and PSA for z=4, and correspondingly, the OA is 401 

increased by over 4%. In addition, with the PSF, the OA is 1% larger than the original HNN method. For z=8, 402 

the accuracies of roads, trees and buildings for the proposed method are 3%, 5% and 6% larger than for the 403 

HNN without PSF method. Moreover, the OA of the proposed method is 4.6%, 4.9%, 4.8% and 1.9% larger 404 

than the SPSAM, RBF, PSA and HNN without PSF methods, and the corresponding RREs are 43.29%, 405 

44.70%, 44.29% and 23.57%. 406 

 407 

3.3. Experiment on the multispectral image 408 

In this experiment, to control the experimental analysis and ensure the perfect reliability of the reference, a 409 

synthesized multispectral image was used. The original multispectral image was acquired by the Landsat-7 410 

Enhanced Thematic Mapper sensor in August 2001 and covers a farmland in the Liaoning Province, China. 411 

The spatial resolution is 30 m. The studied area has a spatial size of 240 by 240 pixels and covers mainly four 412 

land cover classes (marked as C1-C4). Fig. 8(a) and Fig. 8(b) show the original multispectral image and the 413 

corresponding manually digitized reference map. From the reference map, the mean and variance of each land 414 

cover class in the original 30 m Landsat image (bands 1-5 and 7 were considered) were calculated. Referring to 415 

Fig. 8(b), the six-band 30 m resolution multispectral image was synthesized based on the random normal 416 

distribution and the mean and variance of the classes. Fig. 8(c) shows the synthesized multispectral image. A 417 

240 m coarse image, a spatial resolution comparable to that of medium-spatial-resolution systems such as 418 

Moderate Resolution Imaging Spectroradiometer (MODIS), was created by degrading the synthesized 30 m 419 

image with a factor of 8, using a Gaussian PSF. Fig. 8(d) shows the 240 m image. With this strategy, the 420 

reference land cover map at 30 m is known perfectly for accuracy assessment. 421 

Spectral unmixing was first performed on the 240 m coarse image using the classical linear spectral mixture 422 

model. Fig. 9 is the relation between the estimated proportions and actual proportions for the four classes. The 423 

errors are visually larger than those in Fig. 6. This is because the errors in proportions in this experiment 424 

originate not only from the PSF effect, but also from the spectral unmixing process. This can be supported by 425 
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the results in Table 5, where the accuracies of the proportions were evaluated using two different references. 426 

The convolved proportions were produced by convolving the 30 m land cover map in Fig. 8(b) with the 427 

Gaussian PSF. Using the convolved proportions as reference, errors can be observed from only spectral 428 

unmixing. As shown in the table, the spectral unmixing errors are particularly large for C1 and C2 (with 429 

RMSEs of 0.0418 and 0.0303, respectively). Furthermore, as the PSF introduces additional uncertainty, the 430 

accuracies evaluated using the actual proportions as reference are smaller than those for the convolved 431 

proportions. 432 

 433 

(a)                                          (b)                                          (c)                                           (d) 434 

    435 

Fig. 8 The multispectral image used for experiment 3. (a) Original 30 m multispectral image (bands 432 as RGB). (b) Reference map 436 

drawn manually from (a). (c) Synthesized 30 m multispectral image (bands 432 as RGB). (d) 240 m coarse image produced by 437 

degrading (c) with a factor of 8 using a Gaussian PSF. 438 

 439 

 440 

Fig. 9 Relation between the actual proportions and proportions estimated from spectral unmixing for the multispectral image (z=8). 441 

From left to right are results for C1-C4. 442 

 443 

Based on the estimated proportions, SPM was implemented and the results of the five methods are shown in 444 

Fig. 10. Failing to account for the PSF, the SPSAM, RBF and PSA predictions are dominated by noisy pixels 445 
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and spurs on boundaries between classes. As the original HNN method is not completely slavish to the coarse 446 

proportions, it can remove the noisy pixels and spurs and produce a smoother result than the SPSAM, RBF and 447 

PSA. In Fig. 10(d), however, there are jagged boundaries, such as for C3 and C4. The prediction is further 448 

enhanced by considering the PSF effect in the proposed method. The quantitative assessment in Table 6 449 

suggests that the proposed method produces a larger accuracy for all four classes as well as a larger OA than the 450 

other four SPM methods. Note that in this experiment, all pixels were considered in accuracy statistics, 451 

including pure pixels. This is because whether a pixel is pure or not is determined by spectral unmixing and we 452 

are concerned about the performance of spectral unmixing. The OA of the proposed method is 91.86%, with a 453 

gain of more than 5% over SPSAM, RBF and PSA. Compared with the HNN without PSF, the proposed 454 

method increases the accuracies of C1 and C4 by 4.5% and 5.5% and the OA by 1.3%. All RREs (in OA) are 455 

large, which means that the proposed method reduces the errors obviously. Note that due to the uncertainty in 456 

spectral unmixing, the OA of the proposed method is smaller than that for the land cover map in Table 2 (z=8). 457 

 458 

Table 5 Accuracy of the coarse proportion images for the multispectral image 459 

  C1 C2 C3 C4 Mean 

Actual 

proportion 

RMSE 0.0873 0.0950 0.0517 0.0529 0.0717 

CC 0.9703 0.9766 0.9844 0.9692 0.9751 

Convolved 

proportion 

RMSE 0.0418 0.0303 0.0085 0.0206 0.0253 

CC 0.9885 0.9957 0.9992 0.9913 0.9937 

 460 

(a)                                                                 (b)                                                                (c) 461 

   462 
 463 
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(d)                                                                 (e)                                                                (f) 464 

   465 

 466 
Fig. 10 SPM results of the multispectral image with 240 by 240 pixels (z=8). (a) SPSAM (no PSF). (b) RBF (no PSF). (c) PSA (no 467 

PSF). (d) HNN (no PSF). (e) The proposed HNN with PSF. (f) Reference. 468 

 469 

Table 6 SPM accuracy (%) of the different SPM schemes for the experiment on the multispectral image 470 

 
SPSAM 

(no PSF) 

RBF 

(no PSF) 

PSA 

(no PSF) 

HNN 

(no PSF) 

HNN 

(PSF) 

C1 75.88 77.65 75.98 76.89 81.40 

C2 90.92 91.71 90.92 96.57 96.26 

C3 82.50 84.30 81.68 87.08 89.81 

C4 71.18 73.38 72.95 77.75 83.15 

OA 85.91 87.07 85.95 90.57 91.86 

RRE (in OA) 42.23% 37.05% 42.06% 13.68%  

 471 

 472 

4. Discussion 473 

 474 

The PSF effect exists ubiquitously in remote sensing images and the pixel signal is contaminated by its 475 

neighbors as a result. Existing SPM methods are generally performed based on the assumption of the ideal 476 

square wave filter-based PSF and treat the signal of a coarse pixel as the mean of sub-pixel signals within it. 477 

This assumption ignores the effect from neighbors and limits unnecessarily the accuracy of SPM predictions. 478 

As shown in the experimental results, the SPSAM, RBF and PSA predictions contain noticeable errors where 479 

the PSF is ignored. Note that the performances of the SPSAM, RBF and PSA methods are not as satisfactory as 480 
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demonstrated in the literature where they were proposed (Makido et al., 2007; Mertens et al., 2006; Wang et al., 481 

2014a). The reason is that in the experimental design in the literature, the coarse images were simulated using 482 

the ideal square PSF and, thus, the sub-pixel maps can be satisfactorily reproduced by ignoring the PSF effect. 483 

The proposed SPM approach that considers the PSF effect is developed based on the iterative HNN method. 484 

The computing time is the product of the average time consumed in each iteration and the number of required 485 

iterations. When considering the PSF effect, more sub-pixels are involved in the convolution process (see Eq. 486 

(20)) and more time is needed in each iteration. Moreover, the convergence rate is slower and a larger number 487 

of iterations is required. Thus, the proposed method has larger computational cost than the original HNN 488 

method without the PSF. In the experiments, the original HNN method is able to converge after 1000 iterations, 489 

but the proposed method needs 3000 iterations instead. For SPM of the multispectral image, the running time 490 

of the original HNN and the proposed method is 1 and 5 hours, respectively. Note that the computational cost 491 

of a SPM method is positively related to the spatial size of the input coarse image, number of classes and zoom 492 

factor. 493 

This paper considers using HNN to cope with the PSF effect. The solution is identified as modifying the 494 

proportion constraint term in the original HNN using a convolution process where contributions from 495 

neighboring coarse pixels are accounted for. It would be worthwhile to develop other solutions based on 496 

existing SPM methods, such as PSA and the STHSPM methods. For example, in the original PSA method, 497 

pixel swapping is allowed only within a coarse pixel. To account for the PSF, the SPM method can be extended 498 

by allowing sub-pixel swaps not only within a coarse pixel, but also between coarse pixels. The number of 499 

allowable sub-pixel swap between coarse pixels would be a key issue that needs to be addressed. Moreover, it 500 

would also be interesting to consider developing artificial intelligence-based methods (e.g., genetic algorithm 501 

and PSO, etc.). In such methods, the solutions in the set (called population in genetic algorithm and swarm in 502 

PSO) can be updated iteratively according to the fitness values (calculated according to the pre-defined 503 

objective) by using related operators (such as crossover and mutation in genetic algorithm and position update 504 

in PSO). An optimal solution is expected to be produced after a number of generations. A critical issue for this 505 
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type of approach would be the definition of the objective, where a constraint term is needed for taking the PSF 506 

effect into consideration. Both the prediction accuracy and computational cost will be important indices to 507 

identifying an effective method. 508 

Each sensor has its own PSF size. Based on the assumption of a Gaussian filter, some studies were 509 

conducted to estimate the PSF size of satellite sensor images. Radoux et al. (2016) estimated the PSF size of 510 

Landsat 8 and Sentinel-2 images. It was found that the full-width at half-maximum (FWHM) for Landsat 8 red 511 

band is 1.70 pixels (amounting to a width of 0.72 pixel) and ranges from 1.67 to 2.21 pixels (i.e., a width from 512 

0.71 to 0.94 pixel) for Sentinel-2 bands. Campagnolo & Montano (2014) estimated the PSF size of MODIS 513 

images at different view zenith angles. The size of the PSF is a critical factor affecting the performance of the 514 

proposed method, as displayed in Fig. 4. As the size increases, more neighboring sub-pixels contaminate the 515 

center coarse pixel, and the accuracy of the proposed method will decrease correspondingly. However, the 516 

advantage of the proposed method over the traditional method (i.e., accuracy gain) is obvious across different 517 

PSF sizes, especially for large ones. The encouraging performance will promote the application of the 518 

proposed method for sensors with various PSF sizes. 519 

The main objective of this paper was to find a generic solution to address the PSF effect in SPM and increase 520 

the accuracy of SPM predictions. A Gaussian PSF was assumed for convenience in the experimental validation. 521 

In reality, the PSF may not be the Gaussian filter, especially for sensors with a rotating/scanning mirror which 522 

will ensure that the shape has a directional component. For example, the MODIS sensor PSF was claimed to be 523 

triangular in the along-scan direction but rectangular in the along-track direction in Tan et al. (2006). As seen 524 

from Eq. (20), however, the proposed method is suitable for any PSF. Thus, in real cases, if the PSF is known 525 

or estimated reliably, it can be used readily in the proposed method. This paper provides a first guidance to 526 

increase SPM accuracy by considering the PSF effect. It could also help to initiate research on PSF estimation 527 

that would ultimately provide the information needed for the use of the proposed method. The PSF estimation 528 

mainly includes determination of the specific form of the function and related parameters. This is part of our 529 

ongoing research. 530 
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The spatial clustering functions G1 and G2 in the HNN make the proposed method more appropriate for 531 

SPM in the H-resolution case, where the objects of interest are larger than the pixel size of the input coarse 532 

image (Atkinson, 2009). In the L-resolution case where the objects of interest are smaller than the pixel size, 533 

alternative prior spatial structure information-based models, such as the semivariogram-based model in Tatem 534 

et al. (2002), are more suitable, and should be applied. It would also be worthy of developing models that can 535 

adaptively cope with different spatial patterns. Ge et al. (2016) performed a pioneering study for this issue. 536 

Although the proposed method can increase the SPM accuracy, uncertainty still exists. Based on Eq. (6), the 537 

ideal SPM solution is identified as the one that when convolved with the PSF, predicts the coarse proportion. 538 

There can be multiple solutions satisfying this condition, leading to the perfect coherence constraint. The 539 

uncertainty related to this issue can be further reduced by using additional information, such as sub-pixel 540 

shifted remote sensing images (Ling et al., 2010; Zhong et al., 2014), panchromatic images (Ardila et al., 2011; 541 

Li et al., 2014; Nguyen et al., 2011), high resolution color images (Mahmood et al., 2013), digital elevation 542 

models (Huang et al., 2014), time-series images (Wang et al., 2016), segmentation data (Aplin & Atkinson, 543 

2001; Robin et al., 2008) or shape information (Ling et al., 2012). It would be an interesting challenge to design 544 

the appropriate model to incorporate such additional information into the proposed method considering the 545 

PSF effect for possible enhancement in future research. 546 

 547 

 548 

5. Conclusion 549 

 550 

This paper presents a HNN-based method to account for the PSF effect in SPM and increase the SPM 551 

predictions. Based on the recognition of the PSF as a real effect, the coarse proportions are viewed as the 552 

convolution of sub-pixels within the local window centered at the coarse pixel, rather than of only the 553 

sub-pixels within the coarse pixel. In the proposed HNN-based method, the interim SPM realization is 554 

convolved with the PSF and compared with coarse proportions for further updating. The final solution is 555 
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identified as the one that when convolved with the PSF, is the same as the input coarse proportion. The 556 

proposed method is a generic method suitable for any PSF. The effectiveness of the proposed method was 557 

validated using three groups of datasets. 558 

 559 
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