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Abstract

With different approaches to finding prognostic or diagnostic biomarkers for Alzheimer’s disease 

(AD), many studies pursue only brief lists of biomarkers or disease specific pathways, potentially 

dismissing information from groups of correlated biomarkers. Using a novel Bayesian graphical 

network method, with data from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study 

of aging, the aim of this study was to assess the biological connectivity between AD associated 

blood-based proteins. Briefly, three groups of protein markers (18, 37, and 48 proteins, 

respectively) were assessed for the posterior probability of biological connection both within and 

between clinical classifications. Clinical classification was defined in four groups: high 

performance healthy controls (hpHC), healthy controls (HC), participants with mild cognitive 

impairment (MCI), and participants with AD. Using the smaller group of proteins, posterior 
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probabilities of network similarity between clinical classifications were very high, indicating no 

difference in biological connections between groups. Increasing the number of proteins increased 

the capacity to separate both hpHC and HC apart from the AD group (0 for complete separation, 1 

for complete similarity), with posterior probabilities shifting from 0.89 for the 18 protein group, 

through to 0.54 for the 37 protein group, and finally 0.28 for the 48 protein group. Using this 

approach, we identified beta-2 microglobulin (β2M) as a potential master regulator of multiple 

proteins across all classifications, demonstrating that this approach can be used across many data 

sets to identify novel insights into diseases like AD.
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INTRODUCTION

The concept that an ideal biomarker should be directly related to disease pathophysiology 

and be informative of the disease process, even in the very early pre-clinical phase [1], 

seems unlikely for the complex and often heterogeneous Alzheimer’s disease (AD). It is also 

pertinent that an efficacious biomarker be non-invasive, easily translatable to routine clinical 

testing or eventually microfluidic high-throughput population screening and expedient serial 

monitoring. Despite enormous resources being poured into the search for candidate 

biomarkers that fit this definition, a consensus is yet to come to fruition. However, 

peripheral tissues, especially blood fractions have been mined for biomarkers that match at 

least one or more of the above characteristics.

With the decreasing cost of non-invasive blood-based biomarker screening, it is now likely 

that a successful biomarker for the early diagnosis of AD will consist of a panel of analytes 

from a range of ‘panomic’ screening techniques and sample components.

Biomarker screening for AD has elucidated a long list of candidates from various platforms, 

with insufficient cross-validation. However, the ‘gold standard’ peripheral biomarker for 

AD that will reliably identify individuals on a path toward AD, or even correlate with 

promising, but invasive and impractical cerebrospinal fluid (CSF) [2] and positron emission 

tomography (PET) biomarkers [3], is yet to emerge. Nevertheless, much hope is dedicated to 

the idea that such a marker does exist in the periphery. Multiple research groups have found 

a panoply of individual markers using assemblies of statistical methods, methods that are 

primarily designed to choose the best representative from groups of biomarkers.

Recently a number of approaches to screening large sample data sets have been sought to 

screen for biomarkers that have diagnostic and prognostic utility [4–16]. However in many 

cases, dependant upon the volume of data accumulated, and the ‘pan-omic’ approach to 

sample screening and subsequent data interrogation, biological networks have been 

uncovered with one or more targets that meet diagnostic or prognostic utility, but the direct 

relationship to pathology has been unexplained [17–26]. A single analyte (or analyte panel) 

may be insufficient to allow the researcher to understand how the marker fits in the cascade 

of disease process, which could lead to novel therapies. For this reason, others have turned 

Rembach et al. Page 2

J Alzheimers Dis. Author manuscript; available in PMC 2015 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to a Bayesian network classifier to integrate diverse data sets, incorporate biological 

information, and infer/impute missing data from well characterized networks, where all the 

nodes may not have been initially screened [27–31].

In this study we applied a novel approach for Bayesian inference of multiple graphical 

networks, using data from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study 

of aging. We assessed the biological networks identified using three biomarker sets, and 

highlight the importance of biomarker connectivity in understanding biological processes 

related to disease pathology.

METHODS

Population sample and biomarker selection

Of the total 1,112 participants from the AIBL study at baseline, 659 healthy control (HC), 

112 mild cognitive impairment (MCI), and 186 Alzheimer’s disease (AD) subjects with 

complete data for each of the biomarker panels tested, were selected for analyses. Two 

neuropsychological composite scores (episodic memory composite score and non-memory 

composite score [32] as well as the Mini–Mental State Examination (MMSE) were tested as 

part of the demographic assessment. Biomarkers were selected in three sets; Set A) the top 

18 biomarkers from [24], Set B) the top 37 biomarkers as selected using a Linear Models for 

Microarray Data (LIMMA) analysis with a q-value cut off of 0.0003, and Set C) the top 48 

biomarkers selected using a LIMMA analysis with a q-value cut off of 0.05. Biomarker lists 

and accompanying Venn diagrams are shown in Supplementary Table 1 and Supplementary 

Figure 1. Biomarkers included both those proteins measured using the Rules Based 

Medicine (RBM) Human Discovery xMAP® panel [24], and those clinical pathology 

measures routinely tested as part of the AIBL protocol [33]. Further information regarding 

sample preparation and processing, including biomarker selection, can be found in [24]. 

Biomarker data was log transformed and qq-normalized prior to analyses. As an internal 

validation, we split the HC subject into two groups, high performing HC (hpHC), and 

normal HC (HC) via an unsupervised mixed modelling approach (using six 

neuropsychological test scores), resulting in a total of four groups for comparison, hpHC, 

HC, MCI, and AD.

Statistical methodology

Sample demographics were tabled and compared using χ2 and generalized linear modelling. 

We then use a graphical model approach, which describes the conditional dependence 

relationships among random variables, in order to make inference on the protein interaction 

networks. Specifically we use the approach of [34] to assess the relationships between 

biomarkers both within and between clinical groups. This Bayesian approach is designed to 

simultaneously infer multiple undirected networks in situations where some networks may 

be unrelated, while others may have a similar structure. The proposed approach infers a 

separate graphical model for each group but allows for shared structures, when supported by 

the data. Moreover, this approach allows obtaining a measure of relative network similarity 

across groups. This measure of similarity reflects how appropriate the assumption that the 

networks for any two groups have common edges is, based on the data for each group. This 
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Bayesian approach was run using the default hyperparameter setting and posterior inference 

procedure as described in [34].

RESULTS

Population demographics

While both MCI and AD groups had significantly older participants than both HC and hpHC 

groups (p < 0.0001), there was no significant difference in the distribution of males and 

females per group (p = 0.84). Both MCI and AD groups had more participants with the 

variant APOEε4 allele than the HC groups, while all three neuropsychological score 

measures showed lower scores for participants within the MCI and AD groups as compared 

with the HC groups (p < 0.0001).

Biological networks

The inferred biomarker connections, along with the posterior probability of similarity 

between networks were plotted for each of the different clinical groups and each of the three 

different sets of proteins where the posterior probability of connection was greater than 0.5 

(Fig. 1, Supplementary Table 2). Immediately noticeable across all the plots, was the 

network hub surrounding beta-2 microglobulin (β2M), with differing numbers of 

connections between β2M and other biomarkers dependent upon classification group and the 

number of biomarkers analyzed. Using biomarker set A and comparing the connections for 

β2M between hpHC and AD groups, we found six biomarkers common to both groups 

[pancreatic polypeptide (PPY), macrophage inflammatory protein 1 alpha (MIP1α), 

homocysteine (HCY), CD40, zinc (Zn) and vascular cell adhesion molecule 1 (VCAM1)], 

while the AD group had an extra three unique biomarker connections [hemoglobin (Hb), 

insulin growth factor binding protein 2 (IGFBP2), epidermal growth factor receptor 

(EGFR)] (Fig. 1A, B). Due to only a small number of differences in biomarker connections 

between the clinical groups, the posterior probability of network similarity between clinical 

groups was quite high (hpHC versus HC: 0.86, hpHC versus AD: 0.90).

Increasing the number of biomarkers in the analyses to 37 (set B) both increased the 

complexity of the differences between clinical groups and decreased the posterior 

probability of similarity between the hpHC and AD networks (hpHC versus HC: 0.84, hpHC 

versus AD: 0.55). Interestingly, β2M was connected to five biomarkers in both the hpHC 

and AD groups [chromogranin A (CgA), tumor necrosis factor (TNF) receptor superfamily, 

member 6 (FAS), receptor tyrosine kinase (AXL), CD40, intercellular adhesion molecule 1 

(ICAM1)]; connected to three unique biomarkers in the hpHC group [alpha 1 antitrypsin 

(A1AT), angiopoientin 2 (ANGPT2), human chemokine 4 (HCC4)]; and connected to 

further four unique biomarkers in the AD group [epidermal growth factor (EGF), MIP1α, 

interleukin 8 (IL8), and heparin-binding EGF- like growth factor (HBEGF)] (Fig. 1C, D).

Further increasing the number of biomarkers to 48, and including two different measures of 

apolipoprotein E (one commercial ELISA [35], one RBM[24]), decreased the posterior 

probability of similarity between the hpHC and AD networks (hpHC versus HC: 0.84, hpHC 

versus AD: 0.28). Again assessing the connections around β2M, we find seven biomarker 
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connections in common between the hpHC and AD groups [HCY, CgA, FAS, MIP1α, 

VCAM1, CD40, haptoglobin (HAPT)], while the hpHC group had an extra four unique 

connections [HCC4, ANGPT2, macrophage-derived chemokine (MDC)], and the AD group 

had an extra five connections [Hb, albumin (Alb), EGFR, HBEGF, ICAM1] (Fig. 1E, F).

Although β2M was clearly the most frequently connected biomarker across all marker sets 

and clinical groups, we also sought those proteins that formed mini biomarker hubs (smaller 

than the β2M hub) across the clinical groups. Epidermal growth factor (EGF) emerged, with 

five and eight connections for the hpHC and AD groups respectively, within biomarker set 

B, and six and eight connections for the hpHC and AD groups, respectively, within 

biomarker Set C (Fig. 1D, E, G, H). Other biomarkers with greater than four connections in 

either biomarker set A/B included CD40, HGF, VCAM1, ICAM1, IGFBP2, BDNF, 

albumin, MDC, adiponectin, glucagon, and hemoglobin. Furthermore, a brief analyses of 41 

of the 48 biomarkers that had information available via IPA, identified important and well 

known complexes such as NFκB, IL12, and P13K, and other markers including PDGF BB, 

TNF, and ERK1/2. A graphical representation of the IPA analyses is presented in 

Supplementary Figure 2.

Lastly, we assessed the differences and similarities between graphical networks for hpHC 

and AD groups for all three biomarker sets using the iGraph R package (http://cran.r-

project.org/web/packages/igraph/igraph.pdf). Supplementary Figure 3 shows an increasing 

number of connections appearing in the hpHC group that were not seen in the AD group 

between networks with increasing numbers of biomarkers (Supplementary Figure 3A, C, E), 

but more importantly a greater focus around β2M post intersection of hpHC and AD groups 

(Supplementary Figure 3B, D, F).

DISCUSSION

The aim of this research was to assess biomarker network interaction using three sets of 

overlapping proteins and four clinical classifications. We used a novel Bayesian graphical 

network approach [34] to assess the differences between the networks, and present the 

identified biomarker β2M as a central network regulator. We show that by increasing the 

number of biomarkers in the analyses spectrum, we see stepwise increases in both the 

complexity of the network, and in the information provided by the interaction networks. It 

can clearly be seen that there is a plethora of information that can be mined from these 

analyses that would be otherwise missed in variable selection/dimension reduction analyses. 

We have, for the sake of brevity, and due to the strength of the β2M network across all 

clinical groups and biomarker sets, chosen to focus on the key information from the 

interaction network surrounding β2M.

In the initial Doecke et al. paper, β2M was shown to be significantly increased by 1.24 fold 

(p = 0.006) and was increased in AIBL, ADNI, and TARC datasets [18, 24]. Its relationship 

to other makers in the plasma proteome was a consistent feature in the Bayesian graphical 

network analysis. The centralized relationship of so many proteins leads us to conclude that 

β2M may be a master regulator of a number of downstream pathways, a significant finding 

that may have been over looked if not investigated using this Bayesian approach. In support 
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of this conclusion, β2M is involved in a range of biological pathways, primarily through its 

activity in stabilizing class I MHC complexes.

β2M is the light chain of the MHC-class I complex [36], which is important in t-cell 

regulation and the immune system pathway [37]. It also has a role in iron uptake, through 

interactions with the hemochromatosis protein (HFE), which is a transferrin protein receptor 

[38]. The MHC class I complex has also been reported to affect receptor activity, in 

particular that of insulin receptors, albeit only in the absence of β2M [39]. The broad range 

of interactions of MHC I complexes illustrates that β2M is indeed a central member of a 

number of regulatory pathways, most likely through its chaperone-like activity in stabilizing 

the MHC complex.

Interestingly, β2M in certain microenvironments can form toxic fibrillar amyloid aggregates, 

particularly linked to dialysis related amyloidosis [36, 40–42]. Some studies have shown 

that the β2M fibrils (not the monomers) are the cytotoxic species of the protein and when 

aggregated can lead to membrane disruption and permeabilization [40, 41, 43].

β2M has also been implicated in some non-renal, cardiovascular conditions suggesting its 

role in physiology is still being elucidated [44]. β2M is highly expressed on motor neurons 

and shown to play a role in the progression in a murine model of motor neuron disease [45]. 

One of the major hallmarks of AD is the accumulation of amyloid fibril formation and there 

appears to be some commonalities between amyloid-β [46] and β2M propensity for fibril 

formation and membrane disruption. β2M obviously has a role to play in the sequence of 

events in AD and needs to be followed up with more research.

The current research has demonstrated that increasing the number of proteins in the network 

elucidates further biomarkers that may have important roles in the underlying biological 

disease mechanisms. Analyzing multiple biomarker sets with overlapping markers has had 

the advantage of demonstrating the robustness of biomarker relationships across biomarker 

sets. We see multiple markers besides β2M consistently acting as mini-biomarker hubs, 

connected to the same biomarkers across the biomarker sets (VCAM1, CD40, EGF, HGF), 

while others are consistently not connected (Ang, ApoE4).

A possible limitation of this study stems from using only one assay platform to conduct the 

analyses. Further work is underway to validate these findings using a separate protein array 

platform. Yeh et al. showed that increasing the number of biomarkers in analyses via the 

integration of biological knowledge enabled the reconstruction of gene regulatory networks 

[47]. Our research follows a similar premise, where increasing the number of proteins in the 

network identified novel interactions for β2M in AD. Similarly, Wang and colleagues 

recently used Bayesian network classifiers to integrate data from multiple platforms to 

identify biomarkers confirming previously published results [31]. Previous research using 

Bayesian networks to define marker connections in AD has primarily been performed using 

imaging data [28, 29], however these methods have not defined the posterior probability of 

both within and between group connections.

The strength of the methodology used in the current study is demonstrated by the posterior 

probabilities shown in Fig. 1. We show that increasing the number of biomarkers increases 
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the network differences, with posterior probabilities of network similarity between hpHC 

and AD groups decreasing from 0.895 using 18 markers to 0.282 using 48 markers. 

Assessing the hpHC and HC groups, we saw only a very minor decrease in posterior 

probability; 0.875 using 18 markers to 0.835 using 48 markers, demonstrating that 

increasing the complexity of the model did not decrease the sensitivity of the inter-group 

comparisons.

Our novel methodology to interrogate the biomarker interaction networks both within and 

between groups for relationships has elucidated biological pathways and identified critical 

targets that may be useful in future biomarker screening. With increasing interest 

demonstrated in using protein array technology to investigate protein-disease pathology 

relationships, we advocate the use of graphical network methodologies to ascertain a better 

understanding of the underlying biological relationships that can potentially explain disease 

pathology.

In summary, the current study has interrogated a small set of biomarkers from a large and 

well-characterized study of ageing, with the express aim of searching for changes in 

biomarker interaction networks. We find that by increasing the search space to include a 

large number of biomarkers, we gain a better understanding of biological interactions that 

may elucidate disease specific pathways. Since many biomarker selection studies choose 

only the best candidates to represent the disease classification, it is our belief that more 

information could be assembled from many studies that opt for that smaller set of 

biomarkers to functional modules that predict disease status, and we look forward to 

verification of our biological network results in other populations in the near future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

A1AT Alpha 1 antitrypsin

α2M Alpha 2 macropglobulin

β2M Beta 2 microglobulin

Adi Adiponectin
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Alb Albumin

Ang Angiotensinogen

ANGPT2 Angiopointen 2

ApoD Apolipoprotein D

ApoE Apolipoprotein E

ApoH Apolipoprotein H

AXL AXL receptor tyrosine kinase

BDNF Brain-derived neurotrophic factor

Ca Calcium

CD143 Angiotensin-converting enzyme

CD40 TNF receptor superfamily member 5

CEA Carcinoembryonic antigen

CgA Cromogranin A

CKB Creatine Kinase

EGF Epidermal Growth Factor

EGFR Epidermal growth factor receptor

ENA78 C-X-C motif chemokine 5

FAS TNF receptor superfamily, member 6

FasL TNF receptor superfamily, member 6 receptor

GLP1 Glucagon-like peptide-1

HEGF Human Epidermal Growth Factor

Hb Hemoglobin

HBEGF Human Epidermal Growth Factor

HCC4 Human CC chemokine-4

HCY Homocysteine

HGF Hepatocyte Growth Factor Level

HPT Hygromycin phosphotransferase

ICAM1 Inter-Cellular Adhesion Molecule 1 Level

IGFBP2 Insulin-like growth factor-binding protein 2

IgM Immunoglobulin M

IL-17 Interluekin-17

IL-8 Interleukin-8
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MDC Macrophage-derived Chemokine Level

MIF Macrophage Migration Inhibiting Factor Level

MIP1α Macrophage Inflammatory Protein alpha

MMP2 matrix metalloproteinase-2

NrCAM Plasminogen Activator Inhibitor-1 Level

PPY Pancreatic Polypeptide

SOD1 Superoxide dismutase 1

VCAM1 Vascular Cell Adhesion Molecule 1

Zn Zinc
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Fig. 1. 
A) Biomarker Set A (18 biomarkers): calculated connections between biomarkers for the 

hpHC group. B) Biomarker Set A (18 biomarkers): calculated connections between 

biomarkers for the AD group. C) Posterior probability of biomarker connection between 

classification groups for Biomarker Set A. D) Biomarker Set B (37 biomarkers): calculated 

connections between biomarkers for the hpHC group. E) Biomarker Set B (37 biomarkers): 

calculated connections between biomarkers for the AD group. F) Posterior probability of 

biomarker connection between classification groups for Biomarker Set B. G) Biomarker Set 
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C (48 biomarkers): calculated connections between biomarkers for the hpHC group. H) 

Biomarker Set C (48 biomarkers): calculated connections between biomarkers for the AD 

group. I) Posterior probability of biomarker connection between classification groups for 

Biomarker Set C.
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