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We investigate the thermodynamic properties of a superfluid Fermi gas subject to Rashba spin-orbit coupling
and effective Zeeman field. We adopt a T-matrix scheme that takes beyond-mean-field effects, which are
important for strongly interacting systems, into account. We focus on the calculation of two important quantities:
the superfluid transition temperature and the isothermal compressibility. Our calculation shows very distinct
influences of the out-of-plane and the in-plane Zeeman fields on the Fermi gas. We also confirm that the in-plane
Zeeman field induces a Fulde-Ferrell superfluid below the critical temperature and an exotic finite-momentum

pseudogap phase above the critical temperature.
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I. INTRODUCTION

Ultracold Fermi gas [1], with tunable atom-atom interaction
through Feshbach resonance [2], has been an ideal platform
for the study of the crossover physics from weak-coupling
Bardeen-Cooper-Schrieffer (BCS) pairing to a Bose-Einstein
condensate (BEC) of bound pairs [3-5]. Recently, synthetic
gauge fields [6] and spin-orbit (SO) coupling [7-11] were
realized in experiments, opening up a completely new avenue
of research in superfluid Fermi gases. The interplay of Zeeman
fields and SO coupling leads to many novel phenomena at
both zero [12-17] and finite temperatures [18,19], from
mixed singlet-triplet pairing to topological phase transition
[12,20-24].

Many of the interesting physics of SO-coupled Fermi gas
can be captured by mean-field theory. However, it is also true
that mean-field theory may fail under many circumstances.
For example, mean-field theory, which does not include the
effect of noncondensed pairs, fails to describe accurately
the phase transition from a superfluid to a normal gas,
particularly for systems with strong interaction. Beyond-mean-
field theoretical methods have been proposed [25-29]. Here
we present a theoretical investigation under the framework of
the T-matrix scheme to address the superfluid properties of
a Rashba SO-coupled Fermi gas over the entire BCS-BEC
crossover regime [30—43]. In the absence of the Zeeman
field, it was shown that the SO coupling enhances superfluid
pairing [16,42,44,45]. At the mean-field level, we know that
the presence of both the SO coupling and a perpendicular
(out-of-plane) Zeeman field give rise to effective p-wave
pairing [46,47]. Meanwhile, introducing an in-plane Zeeman
component creates an anisotropic Fermi surface which fa-
vors finite-momentum pairing, giving rise to a Fulde-Ferrell
superfluid [21-24,48,49]. These previous studies motivated
our present work, in which we investigate the thermodynamic
properties of an SO-coupled Fermi gas subject to a Zeeman
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field. We will focus our calculation on two important quantities
that are measurable in experiment: the superfluid to normal
transition temperature and the isothermal compressibility.

We organize the paper as follows. In Sec. II, we give an
introduction to the Rashba SO-coupled model and briefly
describe the T-matrix scheme used in the calculation. Then
in Sec. III, we briefly review the zero-temperature properties
of the system. The superfluid transition temperature 7, in
the BEC-BCS crossover is investigated in Sec. IV, and its
dependence on the Zeeman field is emphasized. We present
the numerical results of compressibility in Sec. V before we
provide a summary in Sec VI. We show that both the superfluid
transition temperature and the compressibility have distinct
dependence on the out-of-plane and the in-plane Zeeman
fields. In the Appendix we present technical details of the
T -matrix formalism.

II. MODEL

We consider a three-dimensional two-component degener-
ate Fermi gas with Rashba SO coupling together with effective
Zeeman fields. This system can be described by the following
Hamiltonian:

H = /er(Ho + Heo + h.0, + heo )Y (r)
+U/Mﬂmummmmm, ()

where ¥/(r) = (Y4 ,%,)" represents the fermionic field oper-
ator and Hy = —V?2/(2m) — u represents the kinetic energy,
with u being the chemical potential. The Rashba SO-coupling
term takes the form Hy, = a(kyo, — k.0,) in the xy plane,
with the parameter o characterizing the strength of the SO
coupling. We consider both an out-of-plane Zeeman field 4,
and an in-plane Zeeman field /.. The quantity U represents the
bare two-body interaction constant and in the calculation will
be replaced by the s-wave scattering length a; through the stan-
dard regularization scheme: 1/U = m/(4nh*a;) — Y, m/k>.
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In the mean-field BCS theory, we introduce an order
parameter A =U ) (Y g4k1¥o-k,) to characterize the
property of the superfluid. Here Q represents the center-of-
mass momentum of the pairs. A finite Q arises from the
presence of the in-plane Zeeman field [18,19,21-23,48,49]. At
finite temperature in a 7-matrix scheme, the order parameter
A(T) can be divided into two parts: A2 = A2, + Aﬁg [42].
Here Ay is the superfluid gap arising from the condensed
pairs and vanishes above the superfluid transition temperature
T,. The pseudogap Agg ~ (AXT)) — (A(T))? describes the
thermodynamic fluctuation of noncondensed pairs [30,50].
Below the superfluid transition temperature 7, the thermo-
dynamic quantities are determined by the Thouless criterion
[51] within the T-matrix scheme instead of the BCS formalism
in the mean-field model. This is because at finite temperature
thermodynamic fluctuation plays a critical role with a tendency
towards destroying the pairing condensation. The Thouless
criterion for finite pairing momentum @ takes the form

U™+ x(0,0) =0, 2

where x(0, Q) is the spin-symmetrized pair susceptibility.
More technical details are given in the Appendix.

The T-matrix scheme adopted here was first developed in
the context of high-7, cuprates [30-33]. It was later applied
to study the BEC-BCS crossover phenomenon in ultracold
atomic Fermi gases [34]. The T-matrix theory was found to
be reasonably successful in providing theoretical support for
the measured radio-frequency (1f) spectrum [35-37], density
profiles [39], and thermodynamic properties such as heat
capacity [38], pressure [40], and isothermal compressibility
[41] of ultracold Fermi gases. More recently, this theory was
also applied to Fermi gases with spin-orbit coupling [42,43].
In Ref. [43], it was found that the theoretical calculation
qualitatively agrees with the measured rf spectrum of a
spin-orbit-coupled Fermi gas on the BEC side of the resonance.
Given these past successes, we are confident that the 7'-matrix
scheme indeed represents a vast improvement over the simple
mean-field theory and should be at least qualitatively valid
over the whole BEC-BCS crossover regime.

III. ZERO-TEMPERATURE PROPERTIES

We first briefly review the main features of the system at
zero temperature. Note that the pseudogap tends to zero in
the low-temperature limit as A,y ~ T34 [see Eq. (A18)] and
vanishes at 7 = 0. Hence, the 7-matrix scheme we adopted
here reduces to the mean-field theory at zero temperature.
The Rashba SO coupling and the Zeeman field have opposite
effects on the magnitude of the gap parameter: the former
tends to enhance the gap, while the latter tends to reduce the
gap. Figure 1(a) displays the gap parameter as a function of
interaction strength for several different Zeeman fields. The in-
plane Zeeman field is known to break the symmetry of the band
structure and results in Cooper pairs with finite momentum, a
signature of the Fulde-Ferrell superfluid. In Fig. 1(b), we show
how the magnitude of the momentum of Cooper pairs Q = | Q|
(Qisalongthe y axis [22]) changes in the BEC-BCS crossover.
Q decreases quickly on the BEC side of the resonance as the
two-body s-wave interaction, which favors zero-momentum
pairing, dominates in that regime.
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FIG. 1. (Color online) Thermodynamic quantities at zero tem-
perature, (a) order parameter and (b) pairing momentum, as functions
of interaction strength characterized by 1/a, K for different 6,,. Here
the SO-coupling strength is « K = 2.0E, and the effective Zeeman
field strength is 7 = 0.5EFr. 6, is the angle between the effective
Zeeman field and the z axis, such that i, = h cos 6, and h, = hsin6,.
Therefore, 6, = 0 represents a pure out-of-plane Zeeman field, while
0, = m/2 represents a pure in-plane Zeeman field. Ky and Ef are
the Fermi wave number and Fermi energy of the ideal Fermi gas,
respectively.

In Fig. 2, we show how the zero-temperature superfluid
gap varies as the Zeeman field strength changes. For a weak
Zeeman field, the gap is insensitive to the orientation of the
field. In general, A decreases as h = /hg + h)% increases due
to the pair-breaking effect of the Zeeman field. However, as &
exceeds some threshold value, the decrease of the gap becomes
sensitive to the orientation of the field: The larger the in-plane
Zeeman field component is, the steeper the decrease of the gap
becomes. As we will show below, this threshold value
corresponds to the field strength at which the quasiparticle
excitation gap vanishes.

Another important feature induced by the Zeeman field
is that it closes the bulk quasiparticle excitation gap at a
critical value. Figure 3(a) represents a phase diagram in
which we plot the critical Zeeman field at which the system
changes from gapped to gapless. The region below each line
represents the gapped phase. As the interaction strength varies
from the BCS side to the BEC side, the order parameter
increases [see Fig. 1(a)], and correspondingly, the critical
field strength increases, and the gapped region enlarges. In
the absence of the in-plane Zeeman field (i.e., when i, = 0),
the system becomes gapless due to the presence of the discrete
Fermi points [12] located along the k, axis in momentum

spaceatk, = :I:\/Zm(,u + +/h? — A?). These Fermi points are
topological defects. Hence, the transition from the gapped to
the gapless region in this case also represents a transition from
a topologically trivial to a topologically nontrivial quantum
phase. For finite /,, by contrast, the gapless region features a
nodal surface in momentum space on which the single-particle
excitation gap vanishes [17,18,52]. An example of such a
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FIG. 2. (Color online) Superfluid gap at 7 = 0 as a function of
the Zeeman field strength for (a) 1/a,Kr = —0.5, (b) 0, and (c) 0.5.
The solid, dashed, and dot-dashed lines correspond to 6, = 0, /4,
and /2, respectively. The SO-coupling strength is « Ky = 2.0Ef.
The vertical arrows indicate the critical Zeeman field strength at which
the system becomes gapless.

nodal surface is plotted in Fig. 3(b). The vertical arrows in
Fig. 2 indicate the critical Zeeman field strength at which the
system becomes gapless. One can see that the sharp drop in
the superfluid gap is correlated with the appearance of the
nodal surface induced by a large in-plane Zeeman field. As
we shall show below, the presence of the nodal surface also
has dramatic effects on the thermodynamic properties of the
system.

IV. SUPERFLUID TRANSITION TEMPERATURE

We now turn our attention to the finite-temperature prop-
erties of the system. The first quantity we want to address is
the superfluid transition temperature 7., which is identified
as the lowest temperature at which the superfluid gap Ay
vanishes. Figure 4(a) shows an example of how the gap varies
as the temperature increases. As temperature increases, the
superfluid gap A, decreases monotonically and vanishes at 7.
In contrast, the pseudogap A, is a monotonically increasing
function Ay ~ T3/4 below T, and decreases above T,. On the
other hand, Fig. 4(b) shows that the center-of-mass momentum
Q of the Cooper pairs is quite insensitive to the temperature for
T < T, and slowly decreases for T > T.. This indicates that
the in-plane Zeeman field not only induces a Fulde-Ferrell
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FIG. 3. (Color online) (a) The critical magnetic field that sepa-
rates the gapped region and the gapless region. The region below
the lines is gapped. Here the SO-coupling strength is « Ky = 2.0Ef.
(b) The nodal surface in the gapless region for 7, = 0.0, h, = 1.0EF,
aKp =2.0EF, and 1/a;Kr = 0.0. The range of the plot is from
—2K to 2K along each direction.

superfluid below T, but also induces an exotic normal state
above T, featuring a finite-momentum pseudogap [49].

In Fig. 5, we show the superfluid transition temperature
T, in the BEC-BCS crossover. In Fig. 5(a), we plot T, as
a function of the interaction strength for several different
values of the SO-coupling strength without the Zeeman field.
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FIG. 4. (Color online) (a) The total gap A, pseudogap Ap,
and superfluid gap A, as functions of the temperature. (b) The
corresponding pairing momentum Q as a function of the temperature.
The parameters used are 1/a;Kr = 0.0, «Kr =2.0Ep, h, = 0.0,
and h, = 0.5Ef. In this example, the green vertical dashed line
indicates the critical temperature 7, = 0.210EF.
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FIG. 5. (Color online) Critical temperature 7, in the BEC-BCS
crossover for (a) different spin-orbit couplings (the values of the
SO-coupling strength e, in units of E /K r, are shown in the legends)
with no Zeeman field and for (b) different (4, 6,) witha K = 2.0E .
h is in units of Ef.

For comparison, the mean-field result is also included. For
weak interaction, where 1/(a;Kr) is large and negative, the
mean-field result agrees with the 7-matrix result. As the
interaction increases towards the BEC limit, the mean-field
theory predicts an unphysically large critical temperature, a
clear indication of its breakdown. In the BEC limit where
the two-body attractive interaction is dominant, the system
behaves like a condensation of weakly interacting tightly
bound bosonic dimers with effective mass 2m, regardless of
the SO-coupling strength [15,16,53,54]. The BEC transition
temperature for this system is 0.218 Er [26-28].

In Fig. 5(b), we examine how the Zeeman field affects 7.
In the BEC limit, we have again T, = 0.218 E ¢, insensitive to
either the SO-coupling strength or the Zeeman field strength
[15]. On the BCS side, however, the Zeeman field tends to
decrease T,. This effect is much more pronounced with the
in-plane Zeeman field than with the out-of-plane Zeeman field,
indicating that the finite-momentum Fulde-Ferrell pairing is
less robust than the zero-momentum Cooper pairing.

To show the effect of the Zeeman field on the transition
temperature more clearly, we plot in Fig. 6 T, as a function of
the Zeeman field strength at different orientations. Across the
BEC-BCS crossover, T, is not very sensitive to the out-of-plane
Zeeman field over a large range of Zeeman field strengths. By
contrast, when the in-plane Zeeman field is present, 7, starts
to drop rather sharply near the critical Zeeman field strength
where the system becomes gapless. This steep downturn of 7,
is particularly pronounced on the BEC side of the resonance.
We attribute this steep drop of 7, and the corresponding steep
drop of the zero-temperature superfluid gap (see Fig. 2) to the
enhanced fluctuation as a result of the emergence of the nodal
surface induced by a large in-plane Zeeman field.
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FIG. 6. (Color online) Critical temperature 7, as functions of the
Zeeman field strength for (a) 1/a,Kr = —0.5, (b) 0, and (c) 0.5.
The solid, dashed, and dot-dashed lines correspond to 6, = 0, /4,
and /2, respectively. The SO-coupling strength is « Ky = 2.0EF.
The vertical arrows indicate the value of the Zeeman field strength at
which the system become gapless.

V. ISOTHERMAL COMPRESSIBILITY

The isothermal compressibility, defined as x = }lg—ﬁlT,

measures the change in the density n in response to the
change in the pressure P. A recent experiment measured the
compressibility of a Fermi gas across the superfluid phase
transition [55], which is found to be in reasonable agreement
with the 7-matrix theory [41]. In the superfluid regime, it
is found that « increases with temperature; that is, the gas
becomes more compressible as temperature increases. This can
be intuitively understood as a lower temperature yields a larger
superfluid gap and hence a gas less likely to be compressed.
Here we want to examine how SO coupling affects the behavior
of k.
For our system, « can be expressed as [41,56,57]

1 |:<8N> <3N> (8A>
Kk=—||— + (= =
N2\ ) r.ap IA) 7,0\ ) 1.0
oN 8Q> ]
+H— — , 3)
(8Q)T,;4,A<3M T,A
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FIG. 7. (Color online) Compressibility in the superfluid regime
as a function of temperature for different Zeeman field strengths
and scattering lengths. The scattering lengths are 1/Kra;, = —0.5
for panels (al) and (bl), 1/K ra, = 0 for panels (a2) and (b2), and
1/K ra; = 0.5 for panels (a3) and (b3). For panels (al), (a2), and (a3),
h, = 0; for panels (bl), (b2), and (b3), h, = 0. The SO-coupling
strength is oKy = 2.0EFr. The compressibility is normalized by
Ko = 5 wp the compressibility of an ideal Fermi gas, and the
temperature is normalized to the superfluid transition temperature 7,
for the given set of parameters. In the legends, we also indicate
whether the quasiparticle excitations of the corresponding system are
gapped or gapless. In (a2), we show « in the absence of SO couplings
and Zeeman fields (the dotted line) by taking x = & = 0. In this limit,
our calculation recovers the result reported in Ref. [41].
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In Fig. 7, we show the compressibility « as a function of
temperature 7 in the superfluid regime on both sides of the
Feshbach resonance. In the left panels, we set the in-plane
Zeeman field 4, = 0. Across the Feshbach resonance, we see
that regardless of the strength of the out-of-plane Zeeman
field h,, x increases smoothly as the temperature increases
from zero to T, just like in a superfluid Fermi gas without
SO coupling [41,55]. By contrast, the presence of the in-plane
Zeeman field gives rise to some surprising effects. In the right

where
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FIG. 8. (Color online) Compressibility at 7 = 0 as a function of
the Zeeman field strength. The dashed line corresponds to the in-plane
Zeeman field (6, = m/2), and the solid line corresponds to the out-
of-plane Zeeman field (6, = 0). The dashed and solid arrows indicate
the critical field strength at which the system becomes gapless in the
presence of an in-plane Zeeman field and an out-of-plane Zeeman
field, respectively. The SO-coupling strength is « K = 2.0EF, and
the scatter length is set at 1/Kra, = 0.

panels of Fig. 7, we set i, = 0. One can see that for small %,
such that the system is gapped, « is a monotonically increasing
function of T. However, once &, exceeds the critical value such
that the system becomes gapless, « becomes a nonmonotonic
function of temperature. In certain regimes, « even decreases
as T increases.

The drastically different effects on compressibility by the
in-plane and the out-of-plane Zeeman fields can also be seen in
Fig. 8, where we plot « at the unitarity limit at zero temperature
as a function of the Zeeman field strength. For the out-of-plane
Zeeman field, « decreases smoothly as the field strength
increases. In particular, it does not exhibit any distinctive
feature when the system changes from gapped to gapless.
This is consistent with the fact that the gapped to gapless
transition in the presence of a pure out-of-plane Zeeman field
represents a topological phase transition which does not leave
a trace in thermodynamic quantities. On the other hand, when
the Zeeman field is in plane, with its strength increasing from
zero, k first decreases and then rises sharply near the critical
field when the system becomes gapless. Hence, the in-plane
Zeeman-field-induced gapless superfluid, featuring a Fermi
nodal surface, is highly compressible.

The nodal surface resulting from the in-plane Zeeman
field is not unique to Rashba SO coupling. For example, in
the experimentally realized equal-weight Rashba-Dresselhaus
coupling, a large in-plane Zeeman field can also induce a
nodal surface [58,59]. We have checked that for that system,
the Zeeman-field dependence of the compressibility exhibits
very similar behavior. As is known, using the standard form of
the fluctuation-dissipation theorem for a balanced system, the
isothermal compressibility can be rewritten as k = %( (¥ ?,;N - )
[57]; that is, «k is directly proportional to number fluctuation
of the system. The increase in x can therefore be interpreted
as a consequence of enhanced number fluctuation induced by
the nodal surface.
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VI. SUMMARY

In summary, we have investigated the effect of the pairing
fluctuation on the thermodynamic properties of a Rashba
SO-coupled superfluid Fermi gas by adopting a 7-matrix
scheme. We focus on the effect of the Zeeman field. In
particular, the in-plane Zeeman component leads to finite-
momentum Cooper pairing, and when its magnitude becomes
sufficiently large, it induces a nodal Fermi surface on which
the quasiparticle excitation gap vanishes. The presence of the
nodal surface has dramatic effects on the superfluid properties:
it greatly suppresses the superfluid transition temperature and
increases the isothermal compressibility. Both phenomena can
be attributed to the enhanced fluctuation due to the presence of
the nodal surface. By stark contrast, when only the out-of-plane
Zeeman field is present, both 7, and x exhibit smooth behavior
when the Zeeman field strength is increased, even when the
system becomes gapless at large Zeeman field strength. The
key difference here is that a large out-of-plane Zeeman field,
unlike its in-plane counterpart, does not give rise to a nodal
surface but only discrete Fermi points along the k, axile. These
Fermi points are topological defects, and their appearance does
not manifest on any thermodynamic quantities. In addition,
we also find an unconventional pseudogap state above the
superfluid transition temperature, in which the noncondensed
pairs possess nonzero center-of-mass momentum. We attribute
it to the anisotropic Fermi surface induced by the in-plane
Zeeman field, which is independent of temperature.
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APPENDIX: GENERAL FORMALISM

Introducing ~ the ~ Nambu-Gorkov ~ spinor W =
(WT,lﬂl,lﬁ;,wI)T, the Green’s function is given by
G(K) F(K)
g(K)= | ~ ~ , (AD)
F(K) G(K)

where K = (iw,,k) is the four-dimensional vector and
iw, = (2n + 1) T is the fermionic Matsubara frequency. The
relation of the four Green’s functions is given by

Gliwn k) = —[G(—iw,,—k)]", (A2)

Fliwp,k) = [F(—iw,, k). (A3)

Different from the conventional mean-field theory, the pair
propagator consists of two parts in the 7 -matrix scheme,

1(Q') = 1:(Q) + 1 (). (A4)
The superfluid condensate part is
1(Q) = —ALS(Q" — 0, (AS5)
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FIG. 9. (Color online) Feynman diagrams in a 7'-matrix scheme.
where Q =(0,0) and @ is the pairing momentum of
superfluid. This item comes from the mean-field theory. The

pseudogap part is introduced by beyond-mean-field effects,
and in the T-matrix scheme (Fig. 9) it is given by

fe (@) =U""+ x(Q),

where x (Q') is the pair susceptibility in GoG formalism [42],

(A6)

) 1 .~ i
x(0) = ﬁTrZ G(K)io,Go(K — Q)io,. (A7)

K

The full Green’s function can be determined as shown
in Fig. 9. At T < T, the vanishing chemical potential
implies [60]

e (@) =U""+x(0)=0.

It means that 7,,(Q") behaves like a Dirac § function [31,42],

(A8)

1pe(Q) = —A2,8(Q' — Q). (A9)
The self-energy is given by
1 ~
BK.Q =5 > 1(Q)io,Go(K — Qi
Q/
= —(AL + AL)io,Go(K — Qioy
= —A%io,Go(K — Q)ia,. (A10)

According to Dyson’s equation in the Nambu-Gorkov
spinor W = (¥4(Q/2 + K).¥,(Q/2 + K).¥1(0/2 — K),
¥1(0/2 — K), the full Green’s function is

G U(K,0) =G, (K,0)— (K, Q).

Thermodynamic quantities A, u, and @ are obtained by
self-consistently solving the Thouless criterion,

U+ x0,0)=0,

(Al1)

(A12)
the number density conversation,

n=y YLy, k), (A13)
ko
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and the saddle point of paring susceptibility x (Q) [61],

0
——x(0,0’ =0. Al4
TR (Al4)

The pseudogap order parameter can be given as follows.
From Egs. (A6) and (A8), we can expand x (Q")at Q = (0, Q),

3

’r_ 2
X(Q)=x(Q)+Z (QE) -3 %) . (A15)
i=1 !

where Q) = iw, = 2nm T is the bosonic Matsubara frequency,

, _ dx(@) Z 19X
T80, 2 907

(Al6)

)

0'=0 2m,‘

Q'=0
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Then 1,,(Q’) is given by
3 o 32
1pe(Q)" = Z<Q6 - %). (A17)
i=1 !
Substituting Eq. (A17) into Eq. (A9), we obtain
1 1
A = 3 > ALSQ - Q)= -3 > (0
o’ o’
1 3 Tm,~ 3
-2 1V 54(3) (18

where ¢(3/2) = 2.61237535....
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