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A spectrum exhibiting E8 symmetry is expected to arise when a small longitudinal field is introduced in
the transverse-field Ising chain at its quantum critical point. Evidence for this spectrum has recently come
from neutron scattering measurements in cobalt niobate, a quasi-one-dimensional Ising ferromagnet.
Unlike its zero-temperature counterpart, the finite-temperature dynamics of the model has not yet been
determined. We study the dynamical spin structure factor of the model at low frequencies and nonzero
temperatures, using the form factor method. Its frequency dependence is singular, but differs from the
diffusion form. The temperature dependence of the nuclear magnetic resonance (NMR) relaxation rate has
an activated form, whose prefactor we also determine. We propose NMR experiments as a means to further
test the applicability of the E8 description for CoNb2O6.
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Introduction.—Quantum criticality is a subject of exten-
sive interest in various contexts [1,2]. These range from
correlated-electron bulk materials, which can be tuned to
the border of magnetism, to systems in low dimensions,
where quantum fluctuations are enhanced. The collective
fluctuations of a quantum critical point (QCP) often lead to
unusual properties. Even in equilibrium, the statics and
dynamics are mixed at a QCP. This gives rise to dynamical
scaling, while also making it difficult to calculate the
fluctuation spectrum. The latter is especially so for the
dynamics at nonzero temperatures (T > 0) in the “quantum
relaxational” regime, which corresponds to small frequen-
cies (ω ≪ kBT=ℏ) or long times. Indeed, even for the
canonical QCP of a transverse-field Ising model in one
dimension, it has been challenging to calculate such real-
frequency dynamics [3,4].
We are interested here in the one dimensional transverse

field Ising model in the presence of a small longitudinal
field. The transverse-field-induced QCP in the absence of a
longitudinal field [5] has an emergent conformal invariance
in the scaling limit [6]. When a small longitudinal field is
turned on at the QCP, the excitation spectrum becomes
discrete at low energies. The perturbed conformal field
theory [7] provided evidence that certain properties of the
spectrum of the resulting relativistic field theory and the
scattering matrix can be organized in terms of E8, an
exceptional simple Lie group of rank 8. The discrete
spectrum corresponds to eight particles, whose masses
form ratios which are related to the roots of the E8 algebra.
(For introductory discussions, see Refs. [8,9].) The first two
particles describe bound states that are well below the
continuum part of the spectrum. Recently, neutron scatter-
ing measurements have been carried out in a ferromagnetic
cobalt niobate CoNb2O6, whose Co2þ are coupled in a

quasi-1D way; the experiment identified two excitations
whose energy ratios are close to the predicted value, the
golden ratio [10].
In this Letter, we study the low-frequency dynamical

spin structure factor at finite temperatures using the form
factor method [11]. From a theoretical perspective, our
calculation provides an illustrative setting to determine the
dynamics in the quantum-relaxational regime. For the E8

model, the dynamics at finite temperatures have not been
systematically studied. From the perspective of the material
CoNb2O6, our study determines the temperature depend-
ence of the NMR relaxation rate. We note that our results
bear some similarities with those for another model, the O
(3) nonlinear sigma model [12,13], although our study here
benefits from the exactly regularized form factor series
[14,15]. We also note that a numerical analysis of a
generalized transverse-field Ising chain suggests that the
E8 description survives suitable generalizations of the
interactions beyond the nearest-neighbor ferromagnetic
coupling [16].
The model.—Consider the Hamiltonian

HZ ¼ −J
�X

i

σziσ
z
iþ1 þ g

X
i

σxi þ hz
X
i

σzi

�
; ð1Þ

where σxi and σzi are the Pauli matrices associated with the
spin components Sμ ¼ σμ=2, (μ ¼ x; y; z), and i marks a
site position; in addition, g and hz are the physical trans-
verse and longitudinal fields, respectively, in units of the
nearest-neighbor ferromagnetic exchange coupling J
between the longitudinal (z) components of the spins. In
the absence of the longitudinal field (hz ¼ 0) the system
undergoes a quantum phase transition when the transverse
field is tuned across its critical value g ¼ gc ¼ 1 [5]. As is
well known, the QCP is described by a (1þ 1)-dimensional
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conformal field theory (CFT) with a central charge 1=2 [6].
More surprising is what happens when a small longitudinal
field hz is introduced at the QCP g ¼ gc. The action in the
continuum limit is given by

AE8
¼ Ac¼1=2 þ h

Z
dxdτσðτ; xÞ: ð2Þ

This is an integrable field theory, and is referred to as the E8

model because of the aforementioned connection between
its properties and the E8 group [7,11]. In the above
equation, τ is the imaginary time, Ac¼1=2 stands for the
action of the two dimensional CFTwith central charge 1=2,
and σðxÞ is a primary field with scaling dimension 1=8. In
addition, h ¼ cJhz=a, where a is the lattice constant and
c ≈ 0.783 converts between the σ field of the continuum
theory and its lattice counterpart σz [17]. This describes a
scattering theory of eight massive particles, which we will
denote by a; b; c; d; e; f; g; h from the lightest to the
heaviest. The mass of the lightest particle Δa scales with
the longitudinal field as Δa ≈ 4.405jhj8=15 [18]. The mass
of the second lightest particle Δb is Δa multiplied by the
golden ratio ð ffiffiffi

5
p þ 1Þ=2. These two particles are clearly

separated from the two-particle continuum, which appears
at energies above 2Δa.
Local dynamics and NMR relaxation rate.—We focus on

the local dynamical structure factor (DSF) of the E8 model
in the low frequency and low temperature limit: ω ≪ Δa
and T ≪ Δa (hereafter, we set ℏ ¼ 1 and kB ¼ 1).
A useful means to probe the local DSF is via NMR. The

NMR relaxation rate is given by [19]

1

Tα
1

¼ 1

2N
A2

X0

β

Sββðω0Þ: ð3Þ

Here, α and β label the principal axes, and the primed
summation is over the principal axes perpendicular to the
field orientation α; Tα

1 is the spin-lattice relaxation time, N
is the number of ions per unit cell, and ω0 is the nuclear
resonance frequency. In addition, A describes the hyperfine
coupling between the spins of a nucleus and the electrons;
while this coupling depends on the wave vector q, the
dependence is generically smooth and we will take it as a
constant. We will consider the static field of the NMR setup
to be the transverse field, α ¼ x. Correspondingly, the local
DSF of interest to NMR is given by Szzðω0Þ þ Syyðω0Þ. As
shown in the Supplemental Material [20], for the model we
consider,

SyyðωÞ ¼ ω2SzzðωÞ=ð4J2Þ: ð4Þ

Thus, in the low-frequency regime of interest here, SyyðωÞ
is negligible compared with SzzðωÞ. In the following, we
will therefore only consider Szz.
We now turn to the calculation of SzzðωÞ through a

systematic form factor expansion. Because the excitation

spectrum has a gap, we expect that the leading contribu-
tions in the low temperature and low frequency limit come
from those associated with the few particle states of the
light particles. Indeed, we show below that the dominant
contribution comes from the two one-particle states of
the lightest particle, which we calculate analytically. The
conclusion is confirmed by a numerical calculation for
contributions that extend to higher orders.
The form factor series.—Integrable field theory tech-

niques made possible the analytic calculation of matrix
elements of local observables in the asymptotic scattering
state basis, called form factors. The asymptotic states are
eigenstates of the energy and momentum operators. It is
convenient to use the standard reparametrization in rela-
tivistic theories of a particle’s energy and momentum
through the rapidity of the particle. In terms of the rapidities
fθig of the particles, the energy and momentum eigenval-
ues of the eigenstate jθα11 ;…; θαnn i (with fα1;…; αng
marking different types of particles) are

En ¼
Xn
i¼1

Δαi coshðθiÞ; ð5Þ

Pn ¼
Xn
i¼1

Δαi sinhðθiÞ: ð6Þ

We denote by Fσ
nðθα11 ;…; θαnn Þ the form factors of the

primary field σðt; xÞ in the E8 model [cf. Eq. (2)] between
the vacuum and an n-particle asymptotic state,

Fσ
nðθα11 ;…; θαnn Þ ¼ h0jσð0; 0Þjθα11 ;…; θαnn i: ð7Þ

The few-particle form factors are explicitly known
[17,24,25] and have been used to calculate the static
spin-spin correlations of the E8 model in the ground state
[17,24]. Here we study the finite-temperature dynamics by
a low-temperature expansion series for integrable field
theory [14,26], using a finite-volume regularization [14].
The finite temperature two-point correlation function is

given by

Cðt; xÞ ¼ Tr

�
e−H=T

Z
Oðt; xÞ O†ð0; 0Þ

�
; ð8Þ

where Z ¼ Tre−H=T is the partition function, and we are
interested in the local observable operator Oðt; xÞ ¼
σðt; xÞ. The corresponding DSF is

Sðω; qÞ ¼
Z

∞

−∞
dx

Z
∞

−∞
dtCðt; xÞeiωt−iqx; ð9Þ

We insert the complete set of asymptotic states between
the operators, yielding a double sum, Cðt; xÞ ¼
Z−1P

r;sCr;sðt; xÞ, where
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Cr;sðt;xÞ¼
X

fαjg;fα0kg

Z
dθ1…dθr
ð2πÞrr!

Z
dθ01…dθ0s
ð2πÞss! e−βEr

×e−itðEs−ErÞe−iðPr−PsÞxjhθα11 …θαrr j Ojθ0α011 …θ0α
0
s

s ij2:
ð10Þ

We use the same set of states to write the partition
function as Z ¼ P∞

n¼0 Zn, where

Zn ¼
X
fαjg

Z
dθ1…dθn
ð2πÞnn! e−βEnhθα11 …θαnn jθα11 …θαnn i: ð11Þ

In infinite volume all the Zn’s contain singularities
associated with the scalar product of two momentum
eigenstates with identical rapidities. Similarly, for the
observables we are calculating, Cr;s also diverge due to
the kinematical poles of the form factors whenever two
rapidities in the two sets coincide, θi ¼ θ0j [26]. However,
the double sums can be reorganized such that the afore-
mentioned singularities cancel each other [14],

Cðt; xÞ ¼
X∞
r;s¼0

Dr;sðt; xÞ; ð12Þ

where

D0;s ¼ C0;s; ð13Þ

D1;s ¼ C1;s − Z1C0;s−1; ð14Þ

D2;s ¼ C2;s − Z1C1;s−1 þ ð Z2
1 − Z2ÞC0;s−2; ð15Þ

…etc: ð16Þ

The natural small parameter in the series (12) is e−Δa=T .
At low frequencies, the energy conserving Dirac deltas in
the Fourier transform Eq. (9) force the two states appearing
in the form factors to have nearly equal energy,
Er ¼ ωþ Es. The magnitude of the Boltzmann factor is
then set by the sum of the masses in the “heavier” state, i.e.,

Dr;s ∼ exp

�
−
1

T
max

�Xr

i¼1

Δi;
Xs

i¼1

Δi

��
: ð17Þ

Thus, in the regime of interest (T=Δa ≪ 1 and ω=Δa ≪ 1),
the expansion series in Eq. (12) is a good perturbation
series. In this regime, we can safely truncate the series
beyond the terms up to the order of e−2Δa=T . Simple

counting implies that we only need D0;1, D1;0, D0;2,
D2;0, D1;1, D1;2 þD2;1, D2;2 with lightest particles, which
we now determine. We also note that the series for the two-
point correlator per se contains a δðωÞ piece, which is,
however, absent in the connected correlation function of
interest here [20].
Leading contributions.—D0;1 is the channel between the

vacuum and one-particle asymptotic “in” state, and is equal
to C0;1 from Eq. (13). The corresponding contribution to
DSF is

S0;1ðω;qÞ ¼ 2πjFσ
1j2

Z
dθδðq−Δ1 sinhθÞδðω−Δ1 coshθÞ;

ð18Þ
where Δ1 is the mass of a single particle state, and the one-
particle form factor Fσ

1ðθÞ is rapidity independent [17].
Since cosh θ ≥ 1 always holds, for the parameter regime
ω < Δa the terms S0;1 and S1;0 do not contribute. Similarly,
the D0;s and Dr;0 terms for general r and s also vanish.
The first nontrivial contribution is given by connected

parts in D1;1, i.e., the term coming from the one-particle–
one-particle form factors, for which we obtain [20]

S1;1ðω; qÞ ¼
jFσ

2ðαþ iπ; 0Þj2ðe−βΔ1 cosh θþ þ e−βΔ1 cosh θ−Þ
Δ1Δ2j sinh αj

;

ð19Þ
where Δ1 and Δ2 are the masses of the one-particle
states, α ¼ arccosh½(Δ2

1 þ Δ2
2 − ðω2 − q2Þ)=ð2Δ1Δ2Þ� and

cosh θ� ¼ ½ωðΔ2
1 − Δ2

2 þ ω2 − q2Þ � 2qΔ1Δ2 sinh α�=
½2Δ1ðq2 − ω2Þ�; hereafter, the symbols that denote the
types of particles in the form factor are dropped for
notational convenience [Eq. (7)].
The corresponding local DSF is S1;1ðωÞ ¼R∞

−∞ S1;1ðq;ωÞdq. Equation (17) implies that, up to
e−2Δa=T , we need only to consider the channels a − a,
b − b, and c − c, as well as a − b, a − c, b − c. When
Δ1 ¼ Δ2 ¼ Δi (i ¼ a;…; h),

S1;1ðωÞjΔ1¼Δ2¼Δi
¼

Z
∞

ω
fðq;ωÞe−ðΔi=TÞgðq;ωÞdq; ð20Þ

with fðq;ωÞ ¼ ð2=Δ2
i ÞjFσ

2ðαþ iπ; 0Þj2=j sinh αj and
gðq; ωÞ ¼ −ðω=2ΔiÞ þ ðq=2ΔiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ð4Δ2

i =q
2 − ω2Þ

p
.

We can expand the result for small ω. With the details given
in the Supplemental Material [20], we find the result to
leading order:

S1;1ðωÞjΔ1¼Δ2¼Δa
≈

8>>><
>>>:

2jFσ
2
ðiπ;0Þj2
Δa

e−Δa=T

�
ln 4T

ω − γE þ � � �
�
ðω ≪ T ≪ ΔaÞ

2jFσ
2
ðiπ;0Þj2
Δa

e−Δa=T

� ffiffiffiffi
πT
ω

q
−

ffiffi
π

p
4

	
T
ω



3=2 þ � � �

�
ðT ≪ ω ≪ ΔaÞ

; ð21Þ
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where γE is the Euler constant. (The same form applies to
the contributions by the other particles b;…; h, which
are suppressed by their thermal factors.) In deriving this
expression, we have replaced αðω; qÞ by αðω ¼ 0; q ¼ 0Þ.
This is because the dominant contribution comes from the
minimum of the energy dispersion at small momentum; it is
well supported by the numerical calculation carried out
without this replacement (see below).
We observe that the finite-T local DSF diverges loga-

rithmically as ω → 0. This divergence differs from the
diffusion form [27] of the inverse square root; this is
reasonable given that the total Sz is not conserved here.
When Δ1 ≠ Δ2, the denominator on the right-hand side of
Eq. (19) does not have any singularity so there will be no
divergence.
Next, we consider D1;2 þD2;1, the terms with a one-

particle and a two-particle state. Up to the orderOðe−2Δa=TÞ,
we focus on the casewhen all three particles are the lightest a
particle (the other channels aa − b and aa − c are expected
to behave similarly), which we find to be [20],

Sð1;2Þþð2;1Þðω; qÞ ¼
1

π

Z
∞

−∞

dθe−βΔa cosh θ

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf ~ω; ~q; θÞ − 1Þ2 − 1

p
j

× Fσ
3ðθ þ iπ; ln xþ; ln x−Þ

× Fσ
3ðθ þ iπ; ln x−; ln xþÞ; ð22Þ

where

x� ¼ 1

2
ð ~ωþ cosh θ þ ~qþ sinh θÞ

× ð1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2=fð ~ω; ~q; θÞ

p
Þ; ð23Þ

and fð ~ω; ~q; θÞ ¼ ½ð ~ωþ cosh θÞ2 − ð ~qþ sinh θÞ2�=2 with
~ω ¼ ω=Δa and ~q ¼ q=Δa. Our analysis [20] shows no
contributions from the range ~ω > ~q ≥ 0, where cosh θ ∼
1= ~ω ≫ 1. In the range ~ω ≤ ~q, we have cosh θ ≳ 2 − ~ω,
indicating there exists a small region of ~q where cosh θ
is slightly smaller than 2. This contribution is expected
to be small, and we confirm this by including the channels
D1;2 þD2;1 in our numerical calculation shown below.
For connected parts in D2;2, a similar Jacobian will

appear as in the calculation of the equal mass case of
Eq. (20), and we will encounter the same logarithmic
divergence in the frequency dependence. We find no
singular terms beyond the logarithmic divergence [20].
This contribution is therefore suppressed by the thermal
weight e−2Δa=T . Low-frequency divergences are also
expected to come from the Dnn terms (at n > 2) with
particles of the same mass in the two asymptotic states of
the form factors. The fact that D22 with the same particle
does not contain singularities stronger than lnω is a strong
indication that none of the higher terms in the series will
give a stronger (e.g., power-law) singularity. We conjecture
that the Dnn terms at n > 2 have a similar logarithmic

singularity in the frequency dependence, and they are then
also negligible compared toD11 due to the stronger thermal
suppression factor.
Numerical analysis.—Figure 1 shows the results and fit

for the NMR relaxation rate as a function of temperature in
the range Δa=T ∈ ½10; 100� at a fixed low frequency
ω=Δa ¼ 0.001 appropriate for the NMR experiments
(satisfying ω ≪ T). The fitting function ΔaSðTÞ ¼
631e−Δa=T indicates that the behavior of relaxation rate
at low frequency and low temperature region is dominated
by the contribution from the a − a channel, as clearly
shown in the inset to Fig. 1. The prefactor 631 compares
well with the analytical expression associated with S1;1 of
the lightest a particle, since 2jFσ

2ðiπ; 0Þj2Δ1¼Δ2¼Δa
≈ 130.

We also study the frequency dependence of the local
DSF at fixed temperatures for T, ω ≪ Δa. Figure 2 shows

FIG. 1 (color online). The NMR relaxation rate as a function
of temperature. The frequency is chosen to be ω=Δa ¼ 0.001.
The temperature dependence is well described by ΔaSðTÞ ¼
631e−Δa=T . The inset picture shows that channels other than a − a
give negligible contributions.

FIG. 2 (color online). The local dynamical structure factor as
a function of frequency at a fixed temperature T=Δa ¼ 0.05.
The ω dependence is well described by 107ΔaSðωÞ ¼
−5.28þ 2.48 lnðΔa=ωÞ.
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the result at a fixed T=Δa ¼ 0.05 with ω=Δa ranging from
0.001 to 0.01 (satisfying ω ≪ T. It is well fitted as
107ΔaSðωÞ ¼ −5.28 − 2.48 lnðω=ΔaÞ, which is in accor-
dance with the asymptotic form Eq. (21).
Discussion.—We conclude that the temperature depend-

ence of the NMR relaxation rate is given by

1

T1

≈
c2b
Δa

A2

2N
e−Δa=T ; Δa ≈ 4.405jhj8=15: ð24Þ

In the prefactor, c ≈ 0.783 is the aforementioned conver-
sion factor between the σ field and the lattice spin [17],
and b ≈ lnð4T=ω0Þ − γE.
We next consider the implications of our results for

CoNb2O6. The neutron scattering experiments provided
evidence for the two lightest particles of the E8 spectrum
[10]. This has been understood by considering the effect of
the interchain coupling in the three-dimensionally ordered
state as inducing a longitudinal field [10,28]. Further test of
the E8 description would be provided by measuring the
spin dynamics at finite temperatures. Our study here
provides a concrete prediction of the temperature depend-
ence of the NMR relaxation rate in the E8 model, which can
be used for the desired further test. During the final stage
of writing the present manuscript, NMR measurements in
CoNb2O6 have been reported in the higher-temperature
quantum critical regime [29]; such measurements at
the lower-temperature E8 regime should therefore be
feasible.
To summarize, we have determined the local dynamical

spin structure factor of the perturbed quantum-critical Ising
chain at temperatures and frequencies that are small
compared to the mass of the lightest E8 particle. The
frequency dependence shows a logarithmic singularity. Our
calculation yields a concrete prediction for the temperature
dependence of the NMR relaxation rate, which we have
suggested as a means to further test the E8 description of
the spin dynamics in CoNb2O6.
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