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Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay
plays a central role in the dynamics of genetic regulatory networks as it stems from the sequen-
tial assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently
modeled as stochastic birth-death processes with delay. Here, we examine the relationship between
delay birth-death processes and their appropriate approximating delay chemical Langevin equations.
We prove a quantitative bound on the error between the pathwise realizations of these two pro-
cesses. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the
delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dy-
namical features such as the oscillatory behavior in negative feedback circuits, cross-correlations
between nodes in a network, and spatial and temporal information in two commonly studied motifs
of metastability in biochemical systems. Overall, these results provide a foundation for using delay
stochastic differential equations to approximate the dynamics of birth-death processes with delay.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4878662]

I. INTRODUCTION

Gene regulatory networks play a central role in cellular
function by translating genotype into phenotype. By dynam-
ically controlling gene expression, gene regulatory networks
provide cells with a mechanism for responding to environ-
mental challenges. Therefore, creating accurate mathematical
models of gene regulation is a central goal of mathematical
biology.

Delay in protein production can significantly affect the
dynamics of gene regulatory networks. For example, delay
can induce oscillations in systems with negative feedback,1–7

and has been implicated in the production of robust, tun-
able oscillations in synthetic gene circuits containing linked
positive and negative feedback.8, 9 Indeed, delayed negative
feedback is thought to govern the dynamics of circadian
oscillators,10, 11 a hypothesis experimentally verified in mam-
malian cells.12

In genetic regulatory networks, noise and delay interact
in subtle and complex ways. Delay can affect the stochastic
properties of gene expression and hence the phenotype of the
cell.2, 13–16 It is well known that noise can induce switching
in bistable genetic circuits;17–26 the infusion of delay dramat-
ically enhances the stability of such circuits27 and can induce
an analog of stochastic resonance.28, 29 Variability in the delay
time (distributed delay) can accelerate signaling in transcrip-
tional signaling cascades.30

Given the importance of delay in gene regulatory net-
works, it is necessary to develop methods to simulate and an-
alyze such systems across spatial scales. In the absence of de-

lay, it is well known that chemical reaction networks are ac-
curately modeled by ordinary differential equations (ODEs)
in the thermodynamic limit, i.e., when molecule numbers are
sufficiently large. When molecule numbers are small, how-
ever, stochastic effects can dominate. In this case, the chem-
ical master equation (CME) describes the evolution of the
probability density function over all states of the system.
Gillespie’s stochastic simulation algorithm (SSA)31 samples
trajectories from the probability distribution described by the
CME.

While exact, the CME is difficult to analyze and the SSA
can be computationally expensive. To address these issues, a
hierarchy of coarse-grained approximations of the SSA has
been developed32 (see Figure 1): Spatially discrete approxi-
mations, such as τ -leaping33–36 and K-leaping37 trade exact-
ness for efficiency. At the next level are chemical Langevin
equations (CLEs), which are stochastic differential equations
(SDEs) of dimension equal to the number of species in the
biochemical system. CLEs offer two advantages. First, unlike
the SSA, the well-developed ideas from random dynamical
systems and stochastic differential equations apply to CLEs.
Second, it is straightforward to simulate large systems using
CLEs. Finally, in the thermodynamic limit, one arrives at the
end of the Markovian hierarchy: the reaction rate equation
(RRE).

The Markovian hierarchy above (no delay) is well-
understood,32, 40 but a complete analogue of the Markovian
theory does not yet exist for systems with delay. The SSA
has been generalized to a delay version – the dSSA – to al-
low for both fixed2, 41 and variable30, 38 delay. Notably, the
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FIG. 1. Schematic of the modeling hierarchy for biochemical systems. The
black arrows link the various components of the theory for Markov systems
(no delay); red arrows link the corresponding delay components. Numbers at-
tached to arrows refer to papers that establish the corresponding links. Empty
arrowheads denote heuristic derivations; in this paper, we rigorously establish
the dSSA to dCLE and dCLE to dRRE links.

modification of the SSA to incorporate non-Markov processes
predates the dSSA;42 here, many exponential steps from a lin-
ear chain are replaced by a gamma-distributed delay. Some
analogues of τ -leaping exist for systems with delay; see, e.g.,
D-leaping.43

Several methods have been used to formally derive a de-
lay chemical Langevin equation (dCLE) from the delay chem-
ical master equation (dCME); see Sec. IV for details. Brett
and Galla39 use the path integral formalism of Martin, Sig-
gia, Rose, Janssen, and de Dominicis to derive a dCLE ap-
proximation without relying on a master equation. The Brett
and Galla derivation produces the “correct” dCLE approxima-
tion of the underlying delay birth-death (dBD) process in the
sense that the first and second moments of the dCLE match
those of the dBD process. However, their derivation has some
limitations (see Sec. IV). In particular, it gives no rigorous
quantitative information about the distance between the dBD
process and the dCLE; it does not clarify for what types of de-
terministic dynamics (in the thermodynamic limit) the dCLE
accurately approximates the delay birth-death process, and on
what timescales; and it does not clarify in what sense (dis-
tributionally or pathwise) the dCLE approximates the delay
birth-death process. Our analysis answers these questions.

In this paper, we establish a rigorous link between dBD
processes and dCLEs by proving that the distance between
the dBD process and the correct approximating dCLE process
converges to zero as system size tends to infinity (as measured
by expectations of functionals of the processes). In particular,
this result applies to all moments. It is natural to express dis-
tance in terms of expectations of functionals because the dBD
process is spatially discrete while the correct dCLE produces
continuous trajectories (see Figure 2). This first result is just
a corollary of our main mathematical theorem. We rigorously
estimate the probability that a trajectory of the correct dCLE
remains inside a narrow tube around the corresponding trajec-
tory of the dBD process. This quantitative tube estimate will
allow practitioners to determine the accuracy of simulations

(a)

(b)

(c)

FIG. 2. (a) Typical trace obtained by using the dCLE. (b) Corresponding
trace obtained using dSSA. By zooming into a small time segment, we see
that the trace obtained from the dCLE (c) consists of equi-spaced time points
(corresponding to an Euler discretization) and is continuous. The correspond-
ing segment of the trace from the dSSA (d) consists of events that occur at
random times and has jump discontinuities. The displayed traces were gath-
ered after a long transient. The model simulated is the single-gene positive
feedback model with N = 500; see Sec. II C 1.

of concrete biochemical reaction networks. The mathemati-
cal results hold for both fixed delay and distributed delay (see
Figure 3(a)).

The correct dCLE approximation is distinguished within
the class of Gaussian approximations of the dBD process by
the fact that it matches both the first and second moments
of the dBD process. As we will see, it performs remarkably
well at moderate system sizes in a number of dynamical set-
tings: steady state dynamics, oscillatory dynamics, and certain
metastable switches. We will demonstrate via simulation and

(a)

(b) (c)

(d) (e)

FIG. 3. (a) The effect of distributed delay on the protein production process.
The “input process” is the first step in the transcription process, while the
“output process” is the final mature product that enters the population. The
time delay τ accounts for the lag between the initialization of transcription
and the production of mature product. In a system with distributed delay,
different production events can have different delay times; the order of the
output process may therefore not match that of the input process. (b)–(e)
Simulated gene regulatory network motifs: a transcriptional cascade (b), os-
cillators (c), and metastable systems (d) and (e).
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argue mathematically using characteristic functions that no
other Gaussian process with appropriately scaled noise per-
forms as well. In the following, the term “dCLE” shall refer
specifically to the dCLE derived by Brett and Galla39 and ex-
pressed by (15), unless specifically stated otherwise. We pro-
vide a proof of our mathematical results in the supplementary
material.44

II. SIMULATIONS/OUTLINE AND INTERPRETATION
OF RESULTS

Genetic regulatory networks may be simulated using an
exact dSSA to account for transcriptional delay.2, 30, 38, 41 Here,
we provide a heuristic derivation of a related dCLE, and show
that in a number of concrete examples it provides an excellent
approximation of the system (see Figure 3). These simula-
tions raise the following questions: Is the dCLE approxima-
tion valid in general? Can the expected quality of the approx-
imation be quantified in general? We answer these questions
mathematically in Sec. III.

We will adopt the following notation for reactions with
delay:

X + Y
α(X,Y )-----→

μ
Z.

Here, α(X, Y) denotes the rate of the reaction, the dashed ar-
row indicates a reaction with delay, and μ is a probability
measure that describes the delay distribution. Solid arrows in-
dicate reactions without delay.

A. A transcriptional cascade

First, we consider a transcriptional cascade with two
genes that code for proteins X and Y. Protein X is produced
at a basal rate; production of Y is induced by the presence of
X. The state of the system is represented by an ordered pair
(X, Y). Note that we use X and Y to denote both protein names
and protein numbers. The reactions in the network, and the
associated state change vectors vi , are given by

∅ a--→
μ

X v1 = (1, 0), (1)

X
b1X−−→ ∅ v2 = (−1, 0), (2)

∅ ψ(X)
----→

μ
Y v3 = (0, 1), (3)

Y
b2Y−−→ ∅ v4 = (0,−1). (4)

This system can be simulated exactly using the dSSA:
Suppose the state of the system and the reactions in the queue
are known at time t0 (the queued reactions can be thought of
as the “input process”; see Figure 3(a)), and that the delay
kernel μ is supported on a finite interval [0, τ 0].45

(1) Sample a waiting time tw from an exponential distribu-
tion with parameter A0 := a + b1X + ψ(X) + b2Y .

(2) If there is a reaction in the queue that is scheduled to
exit at time tq < t0 + tw, advance to time tq and set
t0 → tq and (X, Y ) �→ (X, Y ) + (v(1)

i , v
(2)
i ), where vi

= (v(1)
i , v

(2)
i ) is the change in the system due to the

scheduled reaction. Finally, sample a new waiting time
for the next reaction.

(3) If no reaction exits before t0 + tw, set t0 �→ t0 + tw and
sample a reaction type from the set {1, 2, 3, 4} with
probabilities proportional to {a, b1X, ψ(X), b2Y}, re-
spectively. If the reaction chosen is a non-delayed re-
action, perform the update (X, Y) �→ (X − 1, Y) (or (X,
Y) �→ (X, Y − 1)). However, if the reaction chosen is a
delayed reaction, the state change vector (1, 0) (or (0,
1)) is put into the queue along with an exit time tq. The
difference τ = tq − t0 between the current and the exit
time is sampled from the delay distribution μ.

We now heuristically derive the dCLE for the feed-
forward system from this spatially discrete process.

Suppose the delay kernel μ is given by a probability den-
sity function κ supported on [0, τ 0] (dμ(s) = κ(s)ds). We first
approximate the number of reactions that produce Y (Eq. (3))
that will be completed within the interval [t0, t0 + �], where
t0 denotes the current time and � is a small increment. Since
the production of Y involves delay, a reaction of this type that
is completed within [t0, t0 + �] must have been initiated at
some time within [t0 − τ 0, t0]. Let t0 > t0 − � > t0 − 2�

> · · · be the partition of [t0 − τ 0, t0] into intervals of length
�. The (random) number of reactions completed within [t0,
t0 + �] and initiated within [t0 − (i + 1)�, t0 − i�] may be
approximated by a Poisson random variable with mean

ψ(Xt0−(i+1)�)� · κ((i + 1)�)�.

Summing over i, the (random) number of reactions completed
within [t0, t0 + �] may be approximated by a Poisson random
variable with mean

�
∑

i

[ψ(Xt0−(i+1)�)(κ((i + 1)�)�)];

this is a Riemann sum that approximates the integral

�

∫ τ0

0
ψ(Xt0−s)κ(s) ds.

Known as τ -leaping, this line of reasoning produces a Poisso-
nian approximation of the dBD process

δXt = Poisn(a�) − Poisn(b1Xt�),

δYt = Poisn

(
�

∫ τ0

0
ψ(Xt−s) dμ(s)

)
− Poisn(b2Yt�).

Here, Poisn(η) denotes a Poisson random variable with
mean η.

If these Poisson random variables have large mean, they
can be approximated by normal random variables. For exam-
ple, the Poisson variable representing the number of reactions
that produce Y can be approximated by a normal random vari-
able with mean and variance equal to �

∫ τ0

0 ψ(Xt−s) dμ(s).
Since each reaction changes the state of either X or Y (but
never both), it follows that the evolution of the system can be
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approximated by the stochastic difference equation

δXt = �(a − b1Xt ) +
√

�(a + b1Xt )N(0, 1), (5a)

δYt = �

(∫ τ0

0
ψ(Xt−s) dμ(s) − b2Yt

)

+
√

�

(∫ τ0

0
ψ(Xt−s) dμ(s) + b2Yt

)
N(0, 1),

(5b)

where N(0, 1) is the standard normal random variable.
System (5) may be written in terms of concentrations.

Let N be a system size parameter. We think of N as a char-
acteristic system size; Xt/N and Yt/N therefore represent frac-
tions of this characteristic value. Writing xt = Xt/N, yt = Yt/N,
ψ̃(x) = ψ(Nx)/N , and assuming that the basal production
rate a scales with N as a = ãN , we obtain

δxt = �(ã − b1xt ) + 1√
N

√
�(ã + b1xt )N(0, 1), (6a)

δyt = �

(∫ τ0

0
ψ̃(xt−s) dμ(s) − b2yt

)

+ 1√
N

√
�

(∫ τ0

0
ψ̃(xt−s) dμ(s) + b2yt

)
N(0, 1).

(6b)

Equation (6) is the Euler–Maruyama type discretization
of a delay stochastic differential equation (dSDE). Replacing
� with dt and

√
�N(0, 1) with dWt in (6), we obtain

dxt = (ã − b1xt ) dt + 1√
N

√
(ã + b1xt ) dW 1

t , (7a)

dyt =
(∫ τ0

0
ψ̃(xt−s) dμ(s) − b2yt

)
dt

+ 1√
N

√(∫ τ0

0
ψ̃(xt−s) dμ(s) + b2yt

)
dW 2

t .

(7b)

This is the dCLE for the transcriptional cascade in this sec-
tion.

Taking the formal thermodynamic limit, N → ∞, in
Eq. (7) yields the reaction rate equations derived in Ref. 38

dxt = (ã − b1xt ) dt, (8a)

dyt =
(∫ τ0

0
ψ̃(xt−s) dμ(s) − b2yt

)
dt. (8b)

The dynamics described by Eq. (8) are quite simple; if b1 > 0
and b2 > 0, then (8) has a globally attracting stable stationary
point.

To test the validity of the dCLE approximation given in
Eq. (7), we examine if it captures the interaction between the
two proteins in our transcriptional cascade network. Figure 4
shows the cross correlation functions obtained by simulating
the system with N = 1000 using dSSA. From left to right,

FIG. 4. Cross correlation functions for the two-species feed-forward
architecture at system size N = 1000. The inset shows sample trajectories
for X (black; top) and Y (blue; bottom). The mean field model has a fixed
point, and for this reason, stochastic dynamics stay within a neighborhood
of this fixed point (see Theorem 1). However, the effect of increasing delay
is clearly seen in the cross correlation function. The color bar displays
the delay size corresponding to the cross correlation curves. Parameter
values are given by ψ̃(X) = ã1x

3/(m3 + x3), ã = 0.92, ã1 = 1.39, b1 = b2
= ln (2), m = 1.33, μ = δτ . The cross correlations have been normalized by
dividing by the standard deviations σX and σ Y of X and Y. Time has been
normalized to cell cycle length.

the curves correspond to fixed delay τ increasing from 0 to
3. The corresponding cross correlation curves for the dCLE
approximation (7) are indistinguishable from those obtained
using dSSA.

In the heuristic derivation above, we first fix N and let �

→ 0 to obtain the dCLE; we then separately let N → ∞ to
obtain the thermodynamic limit. Brett and Galla39 also derive
the dCLE by first fixing N and then sending � → 0. How-
ever, the two limits, � → 0 and N → ∞, cannot be taken in-
dependently; this is a common problem with heuristic deriva-
tions of stochastic differential equations, even in the absence
of delay.46 The time discretization, �, can be thought of as a
sampling frequency, while the system size, N, determines the
rate at which reactions fire. If N becomes too large for a given
�, then the number of reactions that fire within [t, t + �]
no longer follows a Poisson distribution with mean dependent
only on the state of the system at time t. On the other hand,
if N is too small for a given �, then the Poisson distribution
cannot be approximated by a normal distribution. In order to
rigorously derive the Langevin approximation and estimate
the distance between the dBD and dCLE processes, we will
have to take a careful limit by relating � to N (with � → 0 as
N → ∞). We describe the proper scaling in Sec. III.

Applied to the transcriptional cascade, our main math-
ematical result (Theorem 1 in Sec. III) provides an explicit
bound on the probability that the dCLE trajectory deviates
from a narrow tube around the dBD trajectory (provided � is
correctly scaled with respect to N).

In the previous example, the limiting deterministic sys-
tem has a fixed point. Time series for the stochastic system
therefore stay within a small neighborhood of this fixed point
(see inset, Fig. 4). In the next example, we show that the
dCLE approximation remains excellent even when the lim-
iting deterministic dynamics are non-trivial. We consider a
degrade-and-fire oscillator for which the limiting determin-
istic system has a limit cycle. The dCLE correctly captures
the peak height and the inter-peak times for the dSSA realiza-
tion of the degrade and fire oscillator, in addition to statistics
such as the mean and variance. The approximation does not
break down at small instantaneous protein numbers. Indeed,
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the mathematical theory developed in this work makes an im-
portant point: protein numbers at any particular time do not
limit the quality of the dCLE approximation (in the presence
of delay, or otherwise). Instead, the quality of the dCLE ap-
proximation depends on the latent parameter N. Theorem 1
makes this more precise: if one fixes the allowable error ε in
the approximation of the dBD process by the dCLE process,
then the time T during which the approximation error stays
smaller than ε increases with N.

In the analysis of the previous example, and in the rest of
this work, we make an assumption: There exists an integer N
which describes the characteristic number of proteins in the
system and all protein numbers and propensity functions can
be scaled by this characteristic number. Because of this as-
sumption, our setting is different from that of Gillespie,47 who
used the term chemical Langevin equation to differentiate his
approximating Langevin equation from previous work such
as that of van Kampen.48 While we assume the existence of a
system size parameter, we obtain the approximating Langevin
equation without reference to a chemical master equation.

B. Degrade and fire oscillator

The degrade and fire oscillator depicted schematically in
Figure 3(c) consists of a single autorepressive gene and cor-
responds to the reaction network

∅ ψ(X)
----→

μ
X

γX−→ ∅,

X + E
η(X)−−→ E.

The production rate ψ(X) is given by ψ(X) = Nf(X/N), where
f is the propensity function

f (x) = α

1 + (x/C1)4 ;

the enzymatic degradation rate η(X) is given by η(X)
= Ng(X/N). Here, g(x) = Vmaxx/(K + x); K is the Michaelis-
Menten constant, Vmax the maximal enzymatic degradation
rate, and γ the dilution rate coefficient. In the thermodynamic
limit, the system is modeled by the delay differential equation

dx

dt
=

∫ τ0

0

α

1 +
(

x(t−s)
C1

)4 dμ(s) − γ x(t) − Vmaxx(t)

K + x(t)
. (9)

As before, x(t) denotes the concentration of protein X. We
model the formation of functional repressor protein us-
ing distributed delay (described by the probability measure
μ); this delayed negative feedback can induce oscillations.5

Figure 5(a) depicts a sample realization of the stochastic ver-
sion of the degrade and fire oscillator (the finite system size
regime) generated by dSSA.

The dCLE approximation is in this case given by

dxt =
∫ τ0

0
f (xt−s) dμ(s) − γ xt − g(xt ) dt

+ 1√
N

[∫ τ0

0
f (xt−s) dμ(s) + γ xt + g(xt )

] 1
2

dWt. (10)

(a)

(b) (c)

(e)(d)

FIG. 5. Comparison of dSSA results to dSDE approximations for the de-
grade and fire oscillator. (a) depicts a stochastic realization of the oscillator
generated by dSSA. We compare dSSA statistics (black dots in (b)–(e)) to
those generated by the dCLE approximation given by Eq. (10) (black curves).
We also show results for the dSDE approximation given by Eq. (11), obtained
by removing delay from the diffusion term in Eq. (10) (red curves). At sys-
tem size N = 50, the dCLE approximation given by Eq. (10) closely matches
dSSA with respect to spike height distribution (b) and interspike interval dis-
tribution (c). In contrast, removing delay from the diffusion term results in
a poor approximation of these distributions, as shown by the sizable shifts
affecting the red curves. (d) and (e) illustrate mean repressor protein level
and repressor protein variance, respectively, as functions of system size N.
Equation (10) provides a good approximation for all simulated values of N
while the performance of Eq. (11) improves as N increases. The quantity P
represents protein number, not protein concentration. Parameter values are α

= 20.8, C1 = 0.04, β = ln (2), Vmax = 5.55, γ 0 = 0.01, μ = δ0.14. A soft
boundary was added at 0 to ensure positivity.

Figure 5 illustrates that Eq. (10) provides a good approxima-
tion of the dBD dynamics, even when system size is rela-
tively small. At system size N = 50, the spike height distri-
bution and interspike interval distribution obtained using the
dSSA (black dots in Figures 5(b) and 5(c)) are nearly indistin-
guishable from those obtained using Eq. (10) (black curves in
Figures 5(b) and 5(c)). Further, we see a close match with re-
spect to mean repressor protein level and repressor protein
variance across a range of system sizes (Figures 5(d) and
5(e)).

Interestingly, the dCLE approximation is very good even
though the protein number approaches zero during part of the
oscillation. This illustrates a central feature of the theory: the
quality of the dCLE approximation is a function of a latent
parameter N, not of the number of molecules present at any
given time.

The exact form of the diffusion term is crucial to the ac-
curacy of the dCLE approximation. If we remove delay from
the diffusion term in Eq. (10), we obtain

dxt =
∫ τ0

0
f (xt−s) dμ(s) − γ xt − g(xt ) dt

+ 1√
N

[
f (xt ) + γ xt + g(xt )

]1/2
dWt. (11)
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At system size N = 50 (red curves in Figures 5(b) and 5(c)),
dSDE (11) produces dramatically different results from those
generated by the correct dCLE approximation. The perfor-
mance of Eq. (11) improves as N increases (Figures 5(d) and
5(e)). This is expected, as both Eqs. (10) and (11) converge
weakly to Eq. (9) as N → ∞.

C. Metastable systems

Understanding metastability in stochastic systems is
of fundamental importance in the study of biological
switches.17–26 While metastability is well understood mathe-
matically in the absence of delay, understanding the impact of
delay on metastability remains a major theoretical and com-
putational challenge.27, 49, 50 We examine two canonical exam-
ples to show that for certain systems, the dCLE can be used to
study the impact of delay on metastability: a positive feedback
circuit and a co-repressive genetic toggle switch.

We offer a cautionary note before we proceed with the
examples. Even in the Markovian context, SDE and Fokker-
Planck modeling does not always accurately capture large de-
viations statistics associated with an underlying spatially dis-
crete stochastic process. Existing work for systems without
delay (see, e.g., Refs. 51–53) illustrates the delicate relation-
ship between continuum and discrete treatments of hitting
times, extinction times, and the like. Determining when the
dCLE accurately approximates the large deviations statistics
of the underlying dBD process is an open problem.

1. Single species positive feedback circuit

The simplest metastable system consists of a single pro-
tein that drives its own production (Figure 3(d)). The chemical
reaction network is given by

∅ ψ(X)
----→

μ
X

γX−→ ∅

with ψ(X) = Nf(X/N) for the propensity

f (x) = α + βxb

cb + xb
.

In the thermodynamic limit, the dynamics of this model are
described by the DDE

dxt =
∫ τ0

0
α + β

x(t − s)b

cb + x(t − s)b
dμ(s) − γ x(t) dt. (12)

Here, x represents protein concentration and b is the Hill co-
efficient. In the thermodynamic limit, there are two stable sta-
tionary states, xl and xh, as well as an unstable stationary state
xs. These states satisfy xl < xs < xh.

In the stochastic (finite N) regime, the stationary states
xl and xh become metastable. We simulate the metastable dy-
namics using dSSA and the dCLE approximation (15) given
in this case by

dxt =
∫ τ0

0
f (xt−s) dμ(s) − γ xt dt

+ 1√
N

[∫ τ0

0
f (xt−s) dμ(s) + γ xt

] 1
2

dWt. (13)

(a)

(b)

FIG. 6. Hitting time distributions for the positive feedback circuit. Black
curves represent dSSA data; blue curves represent data from the dCLE ap-
proximation. (a) corresponds to the Markov case τ = 0 and a Hill coefficient
of b = 15. (b) corresponds to a delay τ = 0.75 and b = 25. The tail of the
hitting times distribution becomes longer with both increasing delay and in-
creasing Hill coefficient b. The dCLE captures the lengthening of the tail
due to both effects. Parameter values are α = 0.35, β = 0.15, c = 0.615,
γ = ln (2), μ = δτ , N = 1000.

Figure 6 displays hitting time distributions for the dSSA sim-
ulations (black curves) and Eq. (13) (blue curves). A hitting
time is defined as follows: We choose neighborhoods (xl − δl,
xl + δl) and (xs − δs, xs + δs) of xl and xs, respectively. We
start the clock when a trajectory enters (xl − δl, xl + δl) from
the right. The clock is stopped when that trajectory first enters
(xs − δs, xs + δs). A hitting time is the amount of time that
elapses from clock start to clock stop. We see that for no de-
lay (Figure 6(a)) and fixed delay τ = 1 (Fig. 6(b)), the dCLE
approximation accurately captures the hitting time distribu-
tions for Hill coefficients increasing from 15 to 25. Hence,
the dCLE approximation accurately captures the rare events
associated with a spatially discrete delay stochastic process.
This is significant because dSDEs are more amenable to large
deviations theoretical analysis than their spatially discrete
counterparts.

Hitting times increase dramatically as the delay increases
from 0 to 1, in accord with earlier analysis.27 A dramatic in-
crease is also seen as the Hill coefficient increases. This is due
to the fact that the potential wells around xl and xh deepen as
b increases.

2. Co-repressive toggle switch

The co-repressive toggle switch (Figure 3(e)) is a two-
dimensional metastable system described in the thermody-
namic limit by the DDEs

dxt =
∫ τ0

0

β

1 + y(t − s)2/k
dμ1(s) − γ x dt, (14a)

dyt =
∫ τ0

0

β

1 + x(t − s)2/k
dμ1(s) − γy dt. (14b)
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FIG. 7. Conditional density plots for the co-repressive toggle switch. The
two left panels illustrate trajectories that leave a neighborhood of the stable
point (xh, yl) and fall back into the same neighborhood before transition-
ing into a neighborhood of the stable point (xl, yh); displayed densities are
conditioned on this set of trajectories. The two right panels illustrate trajec-
tories that leave a neighborhood of (xh, yl) and transition to a neighborhood
of (xl, yh) before falling back into the first neighborhood; displayed densi-
ties are conditioned on the set of such trajectories. Top panels correspond to
dSSA; bottom panels correspond to dCLE. Cartoons of typical trajectories
corresponding to failed transitions (left) and successful transitions (right) are
shown for the dCLE process. Plots are shown for N = 30. The values of the
other parameters are β = 0.73, k = 0.05, γ = ln (2).

The measure μ1 describes the delay associated with produc-
tion in this symmetric circuit. Equation (14) has two stable
stationary points (xl, yh) and (xh, yl) separated by the unsta-
ble manifold associated with a saddle equilibrium point (xs,
ys). In the stochastic (finite system size) regime, the stable
stationary points become metastable. In this regime, a typical
trajectory spends most of its time near the metastable points,
occasionally moving between them.

Figure 7 displays density plots corresponding to trajec-
tories that either successfully transition between metastable
states (four panels on the right) or make failed transition at-
tempts (four panels on the left). Even for the moderate system
size N = 30, the density plots generated by dSSA (top four
panels) closely match those generated by the dCLE approxi-
mation in Eq. (15) (bottom four panels).

Given the importance of rare events throughout stochas-
tic dynamics, it is encouraging that the dCLE approximation
captures well the dynamics of two popular biochemical motifs
of metastability.

III. MAIN MATHEMATICAL RESULTS

The simulations thus far described suggest that the dCLE
closely approximates the dBD process provided that the time
increment � scales properly with N. Here, we mathematically
quantify the quality of the approximation and we determine
the optimal scaling of �.

The general biochemical setup is as follows. Consider a
reaction network of D biochemical species and M possible
reactions. We are interested in describing the dynamics as a
function of a latent system parameter N, the system size. The
state of the system at time t is described by the vector BN (t)
∈ ZD that lists the number of molecules of each species
present at time t.

Each reaction Rj is described by the following:

(a) A propensity function fj : RD → R+. The firing rate of
reaction Rj is given by Nfj(BN(t)/N). It is reasonable to
use propensity functions to model firing rates in well-
mixed chemical systems.47 We assume the propensities
satisfy mild technical conditions;44 these conditions are
essentially always satisfied by chemical reaction net-
works. Examples include reactions of first and second
order, Michaelis-Menten kinetics, and propensities of
Hill type.

(b) A state-change vector v j ∈ ZD . The vector v j describes
the change in the number of molecules of each species
that results from the completion of a reaction of type j.

(c) A probability measure μj that models the delay between
the initiation and completion of a reaction of type j. We
allow the delay to be distributed (μj has a density) or
fixed (μj is a Dirac mass δτ at a fixed delay τ ). For in-
stantaneous reactions, μj = δ0.

In order for the dCLE to closely approximate the dBD
process, the time step � must be small enough so that the
propensity functions remain essentially constant on time in-
tervals of length � and large enough so that many reactions
fire on such intervals. Gillespie47 calls such a � a macro-
scopic infinitesimal time for the reaction network. The pri-
mary mathematical result of this paper provides a scaling of
� as a function of N for which � is rigorously shown to be a
macroscopic infinitesimal time for the reaction network. Fur-
ther, we quantify the quality of the dCLE approximation: with
high probability, the solution trajectory of the dCLE will re-
main inside a narrow tube around the solution trajectory of
the dBD process. We state the main result precisely and then
discuss implications.

Since BN(t) is a vector of molecule numbers, we rescale
by N to allow for a direct comparison of the dBD process
and the dCLE. The correct dCLE approximation of (bN(t))
= (BN(t)/N) is given for 1 ≤ k ≤ D by

dxk =
⎛
⎝ M∑

j=1

∫ τ0

0
vjkfj (x (t − s)) dμj (s)

⎞
⎠ dt

+ 1√
N

(
 dW)k, (15)

where W is a D-dimensional vector of independent standard
Brownian motions and 
2 is given by


2
lm =

M∑
j=1

vjlvjm

∫ τ0

0
fj (x (t − s)) dμj (s).

Let �N denote the stochastic process defined by (15).



204108-8 Gupta et al. J. Chem. Phys. 140, 204108 (2014)

Theorem 1. For any fixed time T > 0, �(N) = N−1/4 is a
macroscopic infinitesimal time on [0, T]: There exist constants
K1 and K2, depending only on T and the chemical reaction
network, such that

P

(
max

t∈[0,T ]
‖bN (t) − �N (t)‖ >

K1

N1/8

)
� K2e

− 1
3 N1/4

. (16)

Theorem 1 has several interesting corollaries. First, for
every continuous observable � (real-valued function of tra-
jectories of the processes), the difference between the ex-
pected value of � with respect to the dBD and dCLE pro-
cesses converges to zero as N → ∞. This implies in particu-
lar that the distance between every moment of the processes
converges to zero as N → ∞. Second, since the right side of
Eq. (16) is summable with respect to N, it follows from the
Borel-Cantelli lemma that a trajectory of the dCLE process
will, with probability one, lie within the tube of radius K1/N1/8

around the corresponding trajectory of the dBD process for all
but finitely many values of N.

One would use Theorem 1 in a concrete situation by first
fixing a desirable probability bound, say 1/1000. Using (16),
one would then solve for the radius of the tube around the
trajectory of the dBD process for which the dCLE trajectory
will remain in this tube up to time T with probability at least
999/1000.

We prove Theorem 1 in three steps.44 First, we prove that
the family of measures on trajectories associated with bN is a
tight family, roughly meaning that they are all approximately
supported on a common compact set of trajectories. Second,
we prove a version of (16) for “discrete-time tubes” wherein
the maximum on the left side of (16) is taken not over all
t ∈ [0, T] but rather over only 0, �, 2�, . . . , (T/�)�. Third, we
study the size of fluctuations of the dBD and dCLE processes
on time intervals of length � in order to upgrade the discrete-
time tube estimate to the continuous-time tube estimate (16).
We determine the optimal scaling of � during this final step.
At the beginning of the proof, we assume that � scales with
N as �(N) = N−α and then look for the optimal value of α. In
order to both prove the discrete-time tube estimate and control
fluctuations of the dCLE process on intervals of length �, we
scale the radius r(N) of the continuous-time tube as

r(N ) = C1

Nα/2
+ C2

N (1−3α)/2
.

The first term in the sum measures local fluctuations of the
dCLE while the second comes from the proof of the discrete-
time tube estimate. In order to minimize r(N), it is asymptoti-
cally optimal to have α = 1 − 3α, giving α = 1/4.

We conclude this section with a cautionary note about
what the main theorem does not say. Theorem 1 is formulated
for fixed time intervals: one must first fix T and only then al-
low N to vary. As a consequence, this theorem does not apply
when one scales T with N such that T → ∞ as N → ∞, as
one does in the large deviations context.

IV. DISCUSSION

SDEs are one of our main tools for modeling noisy
processes in nature. Interactions between the components

of a system or network are frequently not instantaneous. It
is therefore natural to include such delay into correspond-
ing stochastic models. However, the relationship between
dSDEs and the processes they model has not been fully
established.

Delay stochastic differential equations have previously
been formally derived from the dCME. Unlike the chemical
master equation, however, the dCME is not closed; this com-
plicates the derivation of dSDE approximations. Closure in
this context means the following: Let P(n, t) denote the prob-
ability that the stochastic system is in state n at time t. The
dCME expresses the time derivative of P(n, t) in terms of joint
probabilities of the form P(j, t; k, t − τ ) – the probability that
the system is in state j at time t and was in state k at time t −
τ , where τ is the delay. The one-point probability distribution
P( · , t) is therefore expressed in terms of two-point joint dis-
tributions, resulting in a system that is not closed. Timescale
separation assumptions have been used to close the dCME. If
the delay time is large compared to the other timescales in the
system, one may assume that events that occur at time t − τ

are decoupled from those that occur at time t and close the
dCME2, 54 by assuming the joint probabilities may be written
as products

P (j, t ; k, t − τ ) = P (j, t)P (k, t − τ ).

Having closed the dCME, one may then derive dSDE
approximations54 as well as useful expressions for autocor-
relations and power spectra.2

Approximations of dSDE type have also been de-
rived using system size expansions such as van Kampen
expansions48, 55 and Kramers-Moyal expansions for both fixed
delay56 and distributed delay.57

Brett and Galla39 use the path integral formalism of Mar-
tin, Siggia, Rose, Janssen, and de Dominicis to derive the
dCLE without relying on the dCME. Using this formalism,
a moment generating functional may be expressed in terms
of the system size parameter N and the sampling rate �. In
the continuous-time limit, � → 0, the dCLE may be inferred
from the moment generating functional. However, the Brett
and Galla derivation has some limitations. First, the � → 0
limit cannot be taken without simultaneously letting N → ∞.
Intuitively, this is because as � → 0, the Gaussian approxima-
tion to the Poisson distribution with mean Nλ� breaks down
unless the parameter Nλ simultaneously diverges to infin-
ity. Second, the derivation gives no quantitative information
about the distance between the dCLE and the original dBD
process.

Here, we addressed these shortcomings. We proved rig-
orously that the dBD process can be approximated by a class
of Gaussian processes that includes the dCLE. In particular,
we established that for most biophysically relevant propensity
functions, the dCLE process will approximate all moments of
the dBD process. Our proof includes bounds on the quality
of the approximation in terms of the time T for which the
approximation is desired to hold and the characteristic sys-
tem size N (see Theorem 1). The error bounds also indicate
that the quality of the dCLE approximation worsens with in-
creasing upper bounds on the reaction propensity functions
and state-change vectors. Physically, this means that high
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reaction rates and reactions that cause large changes in the
protein populations are detrimental to the quality of the dCLE
approximation.

The dCLE is one of many Gaussian processes that ap-
proximate the dBD process. Among all Gaussian approxima-
tions with noise components that scale as 1/

√
N , the dCLE is

optimal because it is the only such approximation that exactly
matches the first and second moments of the dBD process. We
formally justify this assertion in the supplementary material44

using characteristic functions. As our simulations of the de-
grade and fire oscillator demonstrate, the dCLE can signifi-
cantly outperform other Gaussian approximations at moderate
system sizes.

Nevertheless, the quantitative tube estimates in Theorem
1 apply to any Gaussian approximation of the dBD process
provided the noise scales as 1/

√
N . This is significant because

it is often advantageous to use linear noise approximations of
the dCLE. Delay appears in the drift component of a linear
noise approximation but not in the diffusion component. Lin-
ear noise approximations are therefore easier to analyze than
their dCLE counterparts. In particular, elements of the theory
of large deviations for Markovian systems can be extended to
SDEs with delay in the drift.58

For metastable systems, our simulations indicate that the
dCLE may capture both temporal information (such as hitting
times for the positive feedback model; see Fig. 6) and spatial
information (such as densities for trajectories corresponding
to failed and successful transitions; see Fig. 7) for some ex-
amples. While SDE approximations (without delay) do not in
general capture the dynamics in the presence of metastability
even for Markov systems,51–53 our work suggests that dCLE
approximations may be used, on a case by case basis, to study
rare events for metastable biochemical systems.

We have made a number of simplifying assumptions in
order to be able to prove the existence of a macroscopic in-
finitesimal time postulated by Gillespie.47 In particular, we
assumed the existence of a latent system size parameter N, in
terms of which this macroscopic infinitesimal time � can be
expressed. However, for many biochemical systems, it is of-
ten unclear what the system size is, and in this case, a more
careful analysis will be required to rigorously justify the use
of delay stochastic differential equations to approximate the
dynamics of the underlying discrete systems. Further com-
plications can arise when the system size itself changes as
a function of time or if there is a scale separation between
the fast and slow components of the system. In the non-
delayed case, hybrid systems59–61 are often used to address
these challenges. Developing a mathematical theory for hy-
brid systems in the presence of delays is an important future
direction.

We have shown that the dCLE provides an accurate ap-
proximation of a number of stochastic processes. Although
we chose gene regulatory networks in our examples, the the-
ory is applicable to general birth-death processes with delayed
events. SDEs, and the chemical Langevin equation in partic-
ular, are fundamental in modeling and understanding the be-
havior of natural and engineered systems. We therefore expect
that the dCLE will be widely applicable when delays impact
system dynamics.
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