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We study a dynamic stochastic general equilibrium model in which agents are
concerned about model uncertainty regarding climate change. An externality
from greenhouse gas emissions damages the economy’s capital stock. We assume
that the mapping from climate change to damages is subject to uncertainty, as op-
posed to risk, and we use robust control to study efficiency and optimal policy. We
obtain a sharp analytical solution for the implied environmental externality and
characterize dynamic optimal taxation. The optimal tax that restores the socially
optimal allocation is Pigouvian. We study optimal output growth in the presence
and in the absence of concerns about model uncertainty, and find that these can
lead to substantially different conclusions regarding the optimal emissions and
the optimal mix of fossil fuel. In particular, the optimal use of coal will be signifi-
cantly lower on a robust path, while the optimal use of oil/gas will edge down.
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1. Introduction

We study optimal taxation in a dynamic stochastic economy in which there is uncer-
tainty about the effects of climate change. So as to introduce concerns about uncer-
tainty, we employ the setup in Hansen and Sargent (2008). We then investigate how opti-
mal taxation depends on the concentration of carbon in the atmosphere in the presence
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of such concerns. Moreover, we show that model uncertainty has significant quantitative
implications regarding the optimal greenhouse gas (GHG) emissions and, in particular,
the optimal mix of fossil fuel used.

The use of fossil fuel and the resulting rise of GHG concentrations are widely ac-
cepted to cause climate change, resulting in adverse effects on the current and future
capital stock and output of the world economy. The precise relationship between fossil
fuel use and economic damage is complex due to several factors, including uncertainty
about productivity growth in different sources of energy, the future elasticity of substitu-
tion between renewable and fossil fuel sources, the exact amount of fossil fuel available,
and the effect from the dynamics of carbon concentrations. Moreover, there is substan-
tial uncertainty about the resulting damages to capital stock and output. After all, man-
made climate change is unprecedented, and there is an ongoing heated debate about its
potential effects. These range from the effect of the rise of sea levels on coastal cities to
the risks of large-scale human migration resulting in conflict. Given that the introduc-
tion of even one source of model uncertainty complicates the model significantly, in this
paper we will focus on this last source. We will study the implications of model uncer-
tainty for economic damages, the optimal fuel mix, and economic growth. While model
uncertainty (also referred to as Knightian uncertainty or ambiguity) has been studied in
economics mainly in the context of macroeconomics and financial economics, we be-
lieve that the unprecedented effects from manmade climate change make this approach
quite relevant in the context of environmental economics.

So as to model the climate effects from the externality associated with GHG emis-
sions, we employ the framework used in Golosov, Hassler, Krusell, and Tsyvinski (2014;
GHKT hereafter). While they assume that the mapping from climate change to damages
is subject to risk, in our model this mapping is subject to uncertainty. While restrictive,
this framework provides a tractable setup that allows us to derive an analytical solution
for a benchmark case. We then develop a recursive method for solving the model com-
putationally under more general assumptions.

An important difference between our results and GHKT is in relation to their main
finding. The core theoretical result in GHKT is that, when expressed as a proportion of
gross domestic product (GDP), the optimal tax on emissions depends only on the dis-
count factor, the measure of the expected damages, and the depreciation of the carbon
concentration. In particular, the tax rate in their model is independent of the stochastic
value of the future output and of the stock of carbon in the atmosphere. The following
assumptions are necessary for their result: (i) utility is logarithmic, which implies a con-
stant saving rate; (ii) the climate damages are proportional to GDP and have constant
elasticity with respect to the level of the carbon concentration; and (iii) the stock of car-
bon is linear in past and current emissions.1 We will demonstrate that, even under these
restrictive assumptions, once we consider model uncertainty, the expected level of dam-
ages is no longer sufficient to determine the optimal tax. Specifically, we will show that

1For a related paper, see van den Bijgaart, Gerlagh, and Liski (2013). Rezai and van der Ploeg (2014) con-
sider more general specifications that include temperature lags, population growth, and damages that are
not proportional to GDP. We will restrict attention to the GHKT structure in what follows.
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the robust optimal tax rises as the level of GHG concentration increases, even though
the expected damages remain unchanged.

As is standard in the robust control literature, our paper postulates that the decision-
maker views his model as an approximation, termed the approximating model. We then
formulate the problem of optimal fossil fuel use as a two-person zero-sum dynamic
game. In each stage, a social planner (a representative household in the decentralized
version) maximizes social welfare (lifetime utility) by choosing the level of energy, con-
sumption, labor, and capital investment. Subsequently, a malevolent player chooses al-
ternative distributions so as to minimize the respective payoff. Intuitively, the malev-
olent player leads the decision-maker to search for decision rules that are robust to a
worst-case scenario about model misspecification. As is standard, we assume that the
malevolent player pays a penalty, which is a decreasing function of the social planner’s
(the representative household’s) concern about model uncertainty.

We find that the robust optimal tax that restores the optimal allocation in the pres-
ence of model uncertainty is Pigouvian. However, unlike GHKT, the robust optimal tax
does depend on the GHG concentration. In the presence of concern about model un-
certainty, a higher GHG concentration increases the cost of model misspecification. The
robust optimal emission tax rises to account for this additional effect.

In the calibrated version of the model, we find that an increase in the concern about
model uncertainty causes a significant decline in the use of coal, while the use of oil/gas
is only slightly delayed. This difference is partly due to the abundance of coal and the
higher emissions resulting from generating energy from coal. Even when we assume a
more constrained stock of coal, model uncertainty implies that the optimal use of coal
is reduced. In contrast, the scarcity effect dominates the model uncertainty effect when
determining the optimal use of oil/gas. However, when we consider a higher level of the
initial stock of oil/gas, the concern about model uncertainty substantially discourages
the use of this oil/gas as well.2 Finally, the concern about model uncertainty does not
have a sizable effect on the robust optimal path of green energy use, since this type of
energy does not create emissions. However, as green energy, coal, and oil/gas are sub-
stitutes, uncertainty indirectly affects the use of green energy, through its effect on coal
and oil/gas. Nevertheless, this indirect effect does not generate noticeable implications
for the robust optimal path of green energy use.

The main implication of the concern about model uncertainty would be realized if
the damages from climate change evolve according to the worst-case model. Under one
of our two specifications for the approximating model, the carbon concentration sur-
passes a breakout threshold after 20 years on the nonrobust path. That is, if the nonro-
bust path is followed and the worst-case scenario is realized, the damages could become
beyond repair after 20 years. However, under our alternative specification, damages are
always bounded on the nonrobust path. Nevertheless, if the worst-case scenario is real-
ized, then the difference between the robust and nonrobust path could reach 50 percent

2Additional future sources of oil/gas include unconventional sources from shale and deep water, as well
as methane hydrates. See Boswell and Collett (2011), Hartley, Medlock, Temzelides, and Zhang (2016), and
references therein for a more detailed discussion on total estimated fossil fuel resources.
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of the output within 200 years. Needless to say, avoiding the damage under the worst-
case scenario is the main reason for the difference between the robust and nonrobust
paths when there is concern about model uncertainty.

There is a growing body of literature studying the interplay between the environ-
ment and the macroeconomy. Acemoglu, Aghion, Bursztyn, and Hemous (2012) study a
model that connects growth and environmental issues. Nordhaus and Boyer (2000) and
Stern (2007) point to the importance of uncertainty.3  Bommier (2006) and Bommier and
Rochet (2006) uncover a link between risk aversion and discounting in life-cycle models.
Bommier, Lanz, and Zuber (2015) introduce the possibility of economic collapse whose
hazard rate depends on the stock of pollution using a model without additively separa-
ble preferences. They show that multiplicatively separable preferences lead to a higher
social value of catastrophic risk reduction. Gerlagh and Liski (2014) investigate how en-
vironmental policy responds to the delayed arrival of information about damages. In a
recent paper, Anderson, Brock, Hansen, and Sanstad (2014) explicitly deal with model
uncertainty in the context of climate models.4 Earlier related modeling that precedes
robust control includes Jacobson (1973), Whittle (1981, 2002), and van der Ploeg (1993).
As discussed in Hansen and Sargent (2010), in the presence of misspecification, it makes
sense to introduce learning, which makes an interesting extension of the present paper
for future research.5

The paper proceeds as follows. Section 2 describes the general model. Section 3 im-
poses a set of simplifying assumptions that allows us to solve the model analytically.
Section 4 solves a more detailed version of the model and allows us to study the im-
plications of the concern about uncertainty for the use of different types of fossil fuel.
Section 5 concludes. The Appendix contains some related technical material.

2. The economic environment

In this section, we will describe the economic environment leading to the “robust plan-
ner’s problem.” This setup will allow us to study optimal policy in the presence of con-
cerns about model uncertainty in dealing with climate change resulting from GHG.
Later, we will show how the solution to the robust planner’s problem can be imple-
mented as a decentralized market equilibrium.

Time, t, is discrete and the horizon is infinite. The economy is populated by a unit
measure continuum of infinite-lived representative agents with utility

E0

∞∑
t=0

βtu(Ct)�

3GHKT discuss in detail the connection of their model to Nordhaus’s dynamic integrated climate econ-
omy (DICE) model. Two differences in the climate modeling are in the time profile of the depreciation of
carbon emissions and in the assumption that the full temperature response to atmospheric carbon is im-
mediate.

4See also Funke and Paetz (2010).
5Our work contributes to the literature of applications of robust control in economics in two ways. First,

we explore a class of models under a nonquadratic objective and nonlinear constraints. Second, we employ
the exponential, in addition to the normal distribution as the approximating distribution.
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where u is a standard concave period utility function, Ct represents final goods con-
sumption in period t, and β ∈ (0�1) is the discount factor. The final goods sector uses
energy, E, capital, K, and labor, N , to produce output. Labor supply is inelastic. The
economy’s capital stock is assumed to depreciate fully.6 Henceforth, the end-of-period
capital before interacting with the climate factor through the process described below,
denoted by K̃, is given by

K̃t+1 = Yt −Ct�

There are four production sectors. The final goods sector, indexed by i = 0, pro-
duces the consumption good. The corresponding production function is given by
Y = F(K�N0�E). Thus, in addition to capital and labor, production of the final good
requires the use of energy, E. The three energy-producing sectors for oil/gas, coal, and
green energy (labeled by i = 1�2�3, respectively) produce energy amounts E1, E2, and E3

(measured in carbon equivalents). We assume

E = (
κ1E

ρ
1 + κ2E

ρ
2 + κ3E

ρ
3

)1/ρ
�

where ρ < 1 denotes the elasticity of substitution between the different types of energy.
The parameter κi captures the relative efficiency of the different types of energy and is
normalized by setting

∑3
i=1 κi = 1.7 The oil/gas sector is assumed to produce oil/gas at

zero cost. We denote by R the total oil/gas energy stock, and we impose the resource
constraint Rt ≥ 0 for all t. Note that the oil/gas stock evolves according to R′ = R − E1.
Both the coal and the green energy sectors use linear technologies

Ei = AiNi� i = 2�3�

We will denote the labor productivity growth by AN ; that is, N ′ =ANN . We follow GHKT
in modeling a simplified carbon cycle as follows. The variable S (measured in units of
carbon content) represents the GHG concentration in the atmosphere in excess of the
preindustrial level. We denote by P and T the permanent and temporary components
of S, respectively, which evolve according to the equations

P ′ = P +φL(E1 +E2)�

T ′ = (1 −φ)T + (1 −φL)φ0(E1 +E2)�

S′ = P ′ + T ′�

where φL denotes the fraction of GHG emission that adds to the permanent atmo-
spheric GHG concentration, 1 − φ0 is the fraction that is absorbed immediately from
the temporary component, and φ is the fraction of the temporary component of the
GHG concentration that is absorbed every period.

6We will concentrate on a long-term horizon and abstract from short-term dynamics, such as fluctua-
tions of capital accumulation over the short run. Each period will be calibrated to be 10 years, which par-
tially justifies the 100 percent capital depreciation assumption.

7Since coal produces more carbon per unit of energy than oil/gas, we will impose that κ1 >κ2.
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We introduce model uncertainty regarding the effect of climate change through a
stochastic variable, γ, which reduces the end-of-period capital stock K̃′ by a factor of
h(S′�γ) to K′.8 That is,

K′ = h
(
S′�γ

)
K̃′�

We use π(γ) to denote the approximating distribution of γ, while π̂(γ) denotes the
welfare-minimizing distribution and m(γ) = π̂(γ)

π(γ) is the likelihood ratio. The distance,


, between π̂(γ) and π(γ) is measured by relative entropy:9

δ ≡ 

(
π̂(γ)�π(γ)

) ≡ E
[
m(γ) logm(γ)

] ≡ Ê
[
logm(γ)

]
(1)

≡
∫ [

m(γ) logm(γ)
]
π(γ)dγ�

As is standard in the robust control literature, the concern about model uncertainty
is represented by a two-person zero-sum dynamic game in which, after observing the
choice of a social planner, a “malevolent player” chooses the worst specification of the
model in each period. Our attention will be restricted to a particular type of equilibrium,
the so-called Markov perfect (or feedback) equilibrium. This equilibrium is strongly
time consistent. At the beginning of a period, the state (K�N�P�T�R) is revealed. Then
the planner chooses (C�Ei�Ni� K̃

′�P ′�T ′� S′�R′) so as to maximize expected social wel-
fare. After observing the planner’s choice, the malevolent player chooses an alterna-
tive distribution π̂(γ) or, equivalently, m(γ) to minimize expected welfare. The malev-
olent nature’s deviation from the approximating distribution is penalized by adding
α
(π̂(γ)�π(γ)) to the planner’s objective function, where α represents the magnitude
of the deviation “punishment.” Recall that 
 is the distance between the approximating
distribution, π, and the malevolent player’s choice of distribution, π̂. Therefore, a larger
α punishes the malevolent player’s deviation from the planner’s approximating distribu-
tion by adding a larger amount to the planner’s problem. Thus, a higher α makes a large
deviation less likely, which is equivalent to a lower concern about robustness.

8This specification implicitly captures model uncertainty about the composition of two mappings: from
carbon concentrations to temperature changes, and then from temperature changes to damages. While γ

directly affects output in GHKT, we assume that γ adversely affects the economy’s capital stock. The two as-
sumptions are identical under a Cobb–Douglas production function and an exponential damage function
(which we assume throughout this paper). Our specification allows us to assume that the social planner
moves before nature in each period. The resulting max-min game is easier to analyze. To see the equiv-
alence with GHKT, assume that the economy enters a period with capital k and carbon concentration S.
In GHKT, the final goods production is given by A0e

−γSKθN1−θ−ν
0 Eν , while in our model it is given by

A0(e
−γSK)θN1−θ−ν

0 Eν = A0e
−θγSKθN1−θ−ν

0 Eν . These expressions are identical if γ is scaled up by a factor
of 1

θ .
9Relative entropy, also called the Kullback–Leibler distance, is widely used in robust control as a measure

of the distance between two probability distributions. It is not a metric, as it violates symmetry and triangle
inequality. However, it is a pre-metric, satisfying 
(π̂(γ)�π(γ)) ≥ 0 and 
(π(γ)�π(γ)) = 0. Relative entropy
has a positive semidefinite Hessian matrix, which allows us to derive the worst-case distribution, π̂(γ), for
the max-min problem, given the approximating distribution, π(γ).
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Incorporating the malevolent player’s decision, the social planner’s problem can be
written as

V (K�N�P�T�R;A)

= max
{C�Ei�Ni�K̃′�P ′�T ′�S′�R′}

min
m(γ)

{
u(C) (2)

+β

∫ [
m(γ)V

(
K′�N ′�P ′�T ′�R′) + αm(γ) logm(γ)

]
π(γ)dγ

}
�

s.t.

Ei = AiNi� i = 2�3�

E = (
κ1E

ρ
1 + κ2E

ρ
2 + κ3E

ρ
3

)1/ρ
�

N =N0 +N2 +N3�

K̃′ = F(K�N0�E)−C�

K′ = h
(
S′�γ

)
K̃′�

R′ =R−E1 ≥ 0�

N ′ =ANN�

P ′ = P +φL(E1 +E2)�

T ′ = (1 −φ)T + (1 −φL)φ0(E1 +E2)�

S′ = P ′ + T ′�

1 =
∫

m(γ)π(γ)dγ�

The social planner’s problem can be solved analytically under a set of additional as-
sumptions. We will first focus on the analytical solution. While restrictive, the solution
provides intuition that will carry over when we relax these assumptions and solve the
calibrated model computationally. We will also discuss decentralization and show that
the socially optimal allocation can be restored by imposing appropriate fossil fuel taxes
on the energy-producing sector.

3. The baseline analytical solution

In this section, we will impose a set of assumptions that will allow us to fully solve the
model analytically. As we shall see, certain aspects of the solution remain instructive in
the next section, when the restrictive assumptions are dropped and the model is solved
numerically. The assumptions are as follows:

A1. The period utility function is given by u(C) = log(C).

A2. The production function is given by F(K�N0�E)=KθN1−θ−ν
0 Eν .

A3. The damage function is given by h(S′�γ) = e−S′γ .
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A4. The approximating distribution for γ is exponential, with mean λ−1 and variance

λ−2; that is, π(γ) = λe−λγ .10

A5. There is no population growth or, equivalently, labor productivity improvement.

The aggregate labor supply is normalized to 1. That is, AN = 1 and N = 1 in all periods.

A6.1. We have φL = 0.11

A6.2. We have φ = 0.

A7. There is a single fossil energy sector producing oil/gas at zero cost. Production is
subject to a resource feasibility constraint: R′ ≥ 0. As a result, N1 = 0 and N0 =N .

A8. The resource feasibility constraint is not binding.

We will first solve the social planner’s problem. We will then discuss the decentral-
ized problem and show that the socially optimal allocation can be restored by imple-
menting fossil fuel taxes on the energy-producing sector.

Under A1–A8, the social planner’s problem can be rewritten as

V (K�S)
(3)

= max
C�E�K̃′�S′

min
m(γ)

{
u(C)+β

∫ [
m(γ)V

(
K′� S′) + αm(γ) logm(γ)

]
π(γ)dγ

}
�

s.t.

K̃′ = KθEν −C�

K′ = e−S′γK̃′� (4)

S′ = S +φ0E�

1 =
∫

m(γ)π(γ)dγ�

To solve this problem, we first guess and then verify that V (·) takes the form

V
(
K′� S′) = f

(
S′) + Ā log

(
K′) + D̄ = f

(
S′) + Ā log

(
e−S′γ · K̃′) + D̄� (5)

where Ā and D̄ are undetermined coefficients. The functional form for f (·) will be de-
rived when we solve the minimizing malevolent player’s problem.

10The exponential distribution with mean λ−1 is the maximum-entropy distribution among all contin-
uous distributions supported in [0�∞] that have mean λ−1. The worst-case distribution for γ is also expo-
nential, with mean (λ∗)−1 and variance (λ∗)−2, where λ∗ = λ(1 − ΔS′∗) = λ(1 − Δφ0cE)(1 − ΔS). That is,
π∗(γ) = λ∗e−λ∗γ . Since λ∗ = λ(1 − ΔS′∗) < λ, the worst-case mean of γ, (λ∗)−1, is strictly greater than the
approximating mean, λ−1.

11If φL > 0, we need to depict the dynamics of P and T separately before we sum them to obtain the
dynamics of S. Assuming that φL = 0 allows us to express the dynamics of S without the need to consider
P and T separately. That is, S′ = (1 −φ)S +φ0E. Moreover, A6.1 and A6.2 imply that S′ = S +φ0E, which is
necessary for an analytical solution.
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We define the robustness problem (the inner minimization problem) by

R(V )
(
K̃′� S′) = min

m(γ)

∫ [
m(γ)V

(
K′� S′) + αm(γ) logm(γ)

]
π(γ)dγ� (6)

s.t.

K′ = e−S′γK̃′�

1 =
∫

m(γ)π(γ)dγ�

This is the problem of the malevolent player, who chooses a deviation from the ap-
proximating distribution, m(γ). This choice is made after the robust planner has cho-
sen the installed level of capital, K̃′, and the atmospheric concentration of GHG, S′.
As a result, the realization of the damage parameter, γ, comes from the distribution
π̂(γ)=m(γ) ·π(γ), instead of the planner’s initial approximating distribution π(γ).

The first-order condition for m(γ) from (6) combined with (5) implies

π̂∗(γ) =m∗(γ)π(γ) = λ∗e−λ∗γ� (7)

where λ∗ = λ(1 − ΔS′) and Δ = Ā
αλ . In other words, the worst-case distribution for γ is

an exponential distribution with distorted mean (λ∗)−1 and variance (λ∗)−2. If the GHG
concentration exceeds a threshold value, S′ ≥ 1

Δ , then the system cannot be “robusti-
fied,” in the sense that the value of the game goes to negative infinity.12 We call 1

Δ the
breakout threshold.

Substituting the solution (7) into the minimization problem (6) and using the
guessed value function (5), we obtain

R(V )
(
K̃′� S′) = f

(
S′) + Ā log

(
K̃′) + D̄+H

(
S′;α� Ā)

�

where H(S′;α� Ā) denotes the robust version of the externality from GHG emissions and
is given by

H
(
S′;α� Ā) = α log

(
1 −ΔS′) = α log

(
1 − Ā

αλ
S′

)
� (8)

Next, we solve the optimal choice problem of the robust planner (the outer maxi-
mization problem), which is given by

V (K�S) = max
{C�E�K̃′�S′}

{
log(C)+βR(V )

(
K̃′� S′)}

or, equivalently,

f (S)+ Ā log(K)+ D̄

= max
C�E

{
log(C)+β

[
f
(
S′) + Ā log

(
K̃′) + D̄+ α log

(
1 −ΔS′)]}�

12However, if the economy starts with an initial S0 <
1
Δ , then St will converge to 1

Δ as t → +∞.
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s.t.

K̃′ = KθEν −C�

S′ = S +φ0E�

The first-order conditions imply

C = KθEν

1 +βĀ
� (9)

−φ0

[
∂f

(
S′)

∂S′ + −αΔ

1 −ΔS′
]

= 1 +βĀ

β
· ν

E
� (10)

We guess that f (S) = B̄ log(1 −ΔS), where B̄ is an undetermined coefficient. As a result,
(10) can be simplified as

E = ν(βĀ+ 1)
βφ0Δ(α+ B̄)

· (1 −ΔS′)�
After some derivations, we obtain

Ā= θ

1 −βθ
�

B̄ = 1
1 −β

[
αβ+ ν

1 −βθ

]
�

The expression for D̄ is more complicated and less intuitive. Substituting Ā = θ
1−βθ into

the first-order conditions, we obtain the optimal allocation. We summarize the above
discussion in the following proposition.

Proposition 3.1. Assume that A1–A8 hold. The two-person zero-sum dynamic game
described by (3) has a feedback (Markov perfect) equilibrium. The equilibrium strategies
are given by

C∗ = (1 −βθ)KθE∗ν = (1 −βθ)Kθ
[
cE(1 −ΔS)

]ν
� (11)

E∗ = cE(1 −ΔS)� (12)

S′∗ = S +φ0cE(1 −ΔS)�

π̂∗(γ) = λ∗e−λ∗γ�

where cE = ν(1−β)
[βα(1−βθ)+ν]φ0Δ

and λ∗ = λ(1 −ΔS′∗) for Δ= θ
(1−βθ)αλ .

Certain properties of the optimal allocation are worth noting. The value function
V (K�S) is increasing in K, decreasing in S, and jointly concave in K and S. The value of

Ā is the same as in the model without concern about model uncertainty, that is, ∂Ā
∂α = 0.

Both oil/gas use, E∗, and next-period GHG concentration, S′∗, are affine functions of
the current GHG concentration, S. Moreover, E∗ is decreasing in S, and S′∗ converges to
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1
Δ = αλ(1−βθ)

θ . It can be shown that, given S, both E∗ and S′∗ are increasing functions of α.
This relationship is intuitive since a greater α implies a larger resulting penalty from a
deviation of γ from its approximating distribution; thus, there is a lower concern about
model uncertainty. Note that C∗ is affected by S only through E∗, due to the logarithmic
utility assumption. As a result, a greater concern about model uncertainty will lower
both E∗ and C∗.

The marginal value of the externality from one unit of emissions in terms of utility
evaluated on the optimal path, (K′∗� S′∗), is given by

λs = −β
∂V

(
K′� S′)
∂E

∣∣∣∣
K′∗�S′∗

= ν

(1 −βθ)E∗ = ν

(1 −βθ)cE(1 −ΔS)
� (13)

The optimal oil/gas use, E∗, is a decreasing function of the GHG concentration, S, and
a decreasing function of the concern about model uncertainty, captured inversely by α.
Therefore, the externality from emissions, λs, is increasing in both the GHG concen-
tration and the concern about model uncertainty. The intuition behind this result is
straightforward. As the GHG concentration increases, a deviation from the approximat-
ing distribution becomes more attractive for the malevolent player. Thus, the robust
planner would find emitting more costly because of the malevolent player’s reaction to
a higher GHG concentration. A higher concern about model uncertainty, captured by a
lower α, would make the externality from carbon emissions more pronounced. As we
will show in our numerical investigation, this result holds under more general assump-
tions.

Robust control modeling can be introduced in a variety of ways. In this model, we
have used a closed-loop zero-sum dynamic game in which the social planner moves
first in each period. Alternatively, we could construct a game with the same information
structure by interchanging the order of max and min in equation (3). The two games dif-
fer only in terms of the timing protocol. However, both lead to the same (unique) feed-
back saddle-point equilibrium if certain conditions are satisfied. More precisely, if A1–A8
hold, the objective in (3) is strictly concave in C and E, and strictly convex in m(γ). Con-
sequently, the two closed-loop zero-sum dynamic games admit the same unique pure-
strategy saddle-point Nash equilibrium, which is the one described in Proposition 3.1.

3.1 Robust energy consumption

The binding limit on oil/gas use in our model comes not from the resource constraint A8,
but rather from the externality generated by carbon emissions.13 As a result, the concern
about model uncertainty is the major determinant of oil/gas use. Using St+1 = St +φ0Et ,
we arrive at the expression for aggregate oil/gas extraction,

∞∑
t=0

Et = lim
t→∞φ−1

0 (St − S0) =φ−1
0

(
1
Δ

− S0

)
�

13Our benchmark model is similar to the oil/gas regime in GHKT, except that we assume that the resource
constraint is not binding.
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Figure 1. Robustness concerns and optimal use of fossil fuel.

where limt→∞ St = 1
Δ follows from S′∗ = S +φ0cE(1 −ΔS). Thus, the resource constraint

is not binding if and only if the aggregate oil/gas reserves are greater than φ−1
0 ( 1

Δ − S0),
which would be another way of expressing A8.

The left panel of Figure 1 shows how the robust optimal oil/gas use, E∗, varies across
different values of the penalty parameter, α, whose inverse captures the concern about
model uncertainty. Recall that a higher penalty makes the malevolent player less likely
to alter the distribution governing the damage parameter, γ. A higher α corresponds to a
lower concern about model uncertainty, which, in turn, makes the robust planner more
comfortable with a higher level of oil/gas use, resulting in higher carbon emissions.

The distance (relative entropy) between π̂∗(γ) and π(γ) is given by

δ≡ 

(
π̂∗(γ)�π(γ)

) = log
(
1 −ΔS′∗) + ΔS′∗

1 −ΔS′∗ �

where 
(π̂∗(γ)�π(γ)) can be viewed as the maximum deviation allowed from the ap-
proximating model, π(γ), given the penalty parameter, α. Since Δ = θ

αλ(1−βθ) , it follows
that the relative entropy, δ, is decreasing in the penalty parameter, α. The right panel of
Figure 1 shows how E∗ changes as we relax δ, allowing for additional uncertainty about
the approximating model. In the Appendix, we show that ∂E∗

∂δ |δ=0 = −∞. That is, even
an infinitesimal concern about model uncertainty can cause a significant drop in the
optimal energy extraction.

3.2 Decentralization

Next, we demonstrate how the robust optimal allocation can be implemented by im-
posing a tax on emissions. Recall that the extraction cost of energy (the cost of creating
emissions) is assumed to be zero. Thus, if the tax per unit of emissions is set at τt and
the resulting proceeds, τtEt , are rebated in a lump sum, agents will equate the tax cost
to the direct benefit they receive per unit of emissions. More formally, we have

τt = pt = ∂F(Kt�Et)

∂Et
= νKθ

t E
ν−1
t �
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The above expression captures the one-to-one relationship between emissions, or

equivalently energy, Et , and the tax rate, τt . To achieve the optimal emissions level, as

given by E∗
t = cE(1 −ΔS) in equation (12), we must impose τ∗

t = νcν−1
E (1 −ΔSt)

ν−1Kθ
t . It

is straightforward to show that τ∗
t = λs

u′(C∗
t )

, where C∗
t is the optimal consumption, given

by (11), and λs is the externality from one unit of emissions in terms of utility, given by

(13). That is, the robust optimal tax on emissions is equal to the corresponding GHG

externality, as measured in units of the consumption good.

The optimal consumption, C∗
t , is achieved under the optimal tax, as we show us-

ing the representative agent’s problem. Since we have established a one-to-one rela-

tionship between Et and τt , we may assume without loss of generality that the planner

chooses Et = E∗
t . In addition, since E∗

t = cE(1 − ΔS), we can similarly assume that the

emissions/energy choice is given as a function of the atmospheric GHG concentration,

that is, E = E(S). Given the choice of E, aggregate capital stock K, (accumulated) GHG

concentration S, and a malevolent player with penalty parameter α, an agent with start-

ing capital k solves the problem

V (k�K�S) = max
c�k̃′

min
π̂(γ)

{
log(c)+βÊγ

[
V

(
k′�K′� S′) + α log

(
π̂(γ)

π(γ)

)]}
�

s.t.

c + k̃′ = r(K�S)k+ τ(K�S)E(S)+πprofit�

K̃′ =G(K�S)�

k′ = e−γS′
k̃′�

K′ = e−γS′
K̃′�

S′ = S +φ0E(S)�

Capital income in the above expression is given by r(K�S) = θKθ−1[E(S)]ν . Per-unit tax

on energy/emissions is given by τ(K�S) = νKθ[E(S)]ν−1. Hence, the lump-sum tax re-

bate is τ(K�S)E(S). The representative firm’s profit is πprofit = θKθ[E(S)]ν − r(K�S) ·K,

while the equilibrium transition law for the aggregate capital stock is given by K̃′ =
G(K�S). Here, (k�K�S) stands for the beginning-of-period state and (k̃′� K̃′� S′) stands

for the end-of-period state. The next period’s GHG concentration, S′, evolves by adding

the unabsorbed fraction of new emissions, φ0E(S), which is a function of the current

level of GHG concentration. Notice that (k̃′� K̃′) is not equal to the beginning-of-next-

period state, (k′�K′), due to the capital deterioration resulting from the climate effect,

as captured by the factor e−γS′
. Moreover, Êγ is calculated with respect to the worst-case

distribution for γ, π̂(γ), as chosen by the malevolent player. Since the minimizing player

moves after the maximizing player, the worst distribution is, in general, conditional on

the end-of-period state, (k̃′� K̃′� S′).
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It can be shown that the optimal consumption sequence satisfies the Euler equa-
tion

u′(c∗) = β

∫
e−γS′

r
(
K′� S′) · u′(c′∗) ·

{
e−V (k′�K′�S′)/απ(γ)∫
e−V (k′�K′�S′)/απ(γ)dγ

}

︸ ︷︷ ︸
π̂(γ)

dγ�

where e−γS′
r(K′� S′) is the realized next period per-unit capital income after consid-

ering the effect of GHG-induced deterioration. Weighting the expectation by π̂(γ) =
e−V (k′�K′�S′)/απ(γ)∫
e−V (k′�K′�S′)/απ(γ)dγ

instead of π(γ) captures the effect of model uncertainty. Moreover,

on the equilibrium path, the optimal capital choice of the representative agent must be
consistent with the transition law for the aggregate capital stock, that is, k̃∗(K�K�S) =
G(K�S). Some algebra leads to the following proposition.

Proposition 3.2. Assume that A1–A8 hold. The optimal tax, τ∗(K�S) = λs

u′(C∗) =
νKθ[cE(1 −ΔS)]ν−1, rebated as a lump-sum payment, leads to a competitive equilibrium
allocation that coincides with the solution to the planner’s problem. That is, the equilib-
rium energy/emissions are E∗ = cE(1 −ΔS) and the equilibrium consumption is given by
c∗ = C∗ = (1 −βθ)Kθ[cE(1 −ΔS)]ν .

4. Calibration and the computational solution

To investigate the implications of model uncertainty for optimality and for environmen-
tal policy, we will develop and calibrate a generalized version of the model studied in the
previous section. While the theoretical model remains instructive, the calibrated model
illustrates two distinct results from GHKT. First, the concern about model uncertainty
causes a significant decline in the use of coal. In contrast, the use of oil/gas is delayed,
but eventually oil/gas reserves are exhausted. Second, similar to the analytical results of
the benchmark model, but unlike in GHKT, the level of GHG concentration affects the
optimal tax rate.

We will calibrate the model after (i) relaxing assumption A5 and allowing the la-
bor productivity (or the population) to grow at an exogenous rate g, which we cali-
brate to be 2 percent per year, (ii) relaxing assumptions A6.1 and A6.2, which will al-
low for the dynamics of the GHG concentration to mimic GHKT’s environmental model,
(iii) relaxing assumption A7 and incorporating a “coal” and a “green” sector into the
model, and (iv) relaxing assumption A8 so as to study the effect of a finite supply of
oil/gas.

To solve (2) under assumptions A1–A4 and with labor productivity given by AN =
1 + g, we will make use of the analysis in the previous section. The main difference is
that the function f (·), defined as in (5), is now a function of labor productivity, the per-
manent and temporary parts of the GHG concentration, and the remaining reserves of
oil/gas. Moreover, f (·) no longer has a closed-form expression. We will again apply the
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outer- and inner-loop method used in Section 3. The inner-loop minimization prob-

lem is unchanged, while the outer-loop maximization problem will be solved in parts.

It is useful to note that solving the optimization problem for Ei, P ′, T ′, and R′ can be

carried out separately from solving for C∗ = (1 − βθ)Y ∗ and K̃′∗ = βθY ∗, where Y ∗

denotes the optimal output level. After substituting for C∗, the optimization problem

for Ei, P ′, T ′, and R′ can be simplified, leading to the dynamic programming prob-

lem

f (N�P�T�R) = max
E1�E2�E3

{
1

1 −βθ
log

[(
1 − E2

A2N
− E3

A3N

)1−θ−ν

Eν

]
(14)

+β
[
f
(
N ′�P ′�T ′�R′) + α log

(
1 −ΔS′)]}�

s.t.

E = (
κ1E

ρ
1 + κ2E

ρ
2 + κ3E

ρ
3

)1/ρ
�

N ′ = (1 + g)N�

R′ =R−E1 ≥ 0�

P ′ = P +φL(E1 +E2)�

T ′ = (1 −φ)T + (1 −φL)φ0(E1 +E2)�

S′ = P ′ + T ′�

The marginal value of the externality from GHG as a fraction of output, denoted by

Λ̂S , can be defined as follows.14 Increasing E1 + E2 by one unit is equivalent to si-

multaneously increasing P by φL units and T by (1−φL)φ0
1−φ units. Therefore, Λ̂S is given

by

Λ̂S =φLΛ̂
P + (1 −φL)φ0

1 −φ
Λ̂T � (15)

where Λ̂P = −(1 −βθ) ∂f
∂P and Λ̂T = −(1 −βθ) ∂f

∂T give the marginal value of the external-

ity caused by P and T , respectively. Applying the envelope theorem to the choice of P

and T in (14) yields

∂f

∂P
= β

(
∂f

∂P ′ − αΔ

1 −ΔS′
)
� (16)

∂f

∂T
= β(1 −φ)

(
∂f

∂T ′ − αΔ

1 −ΔS′
)
� (17)

14If we denote the marginal value of the externality measured in units of utility by λ, then Λ= λ
u′(c) would

be the marginal value of the externality in terms of output, which is equal to the optimal tax, τ∗ = Λ. Then
Λ̂= Λ

Y represents the marginal value of the externality proportional to output.
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Using equations (16) and (17) and restoring the time index, t, we calculate the marginal
values of the externalities associated with P and T to be

Λ̂P
t = θγ̄

+∞∑
j=1

βj

1 −ΔSt+j
� (18)

Λ̂T
t = θγ̄

+∞∑
j=1

[
β(1 −φ)

]j
1 −ΔSt+j

� (19)

where we used (1 − βθ)αΔ = (1 − βθ)α Ā
αλ = θλ−1 = θγ̄. Here, λ−1 = γ̄ is the mean of γ

under the exponential approximating model. Thus, from (15), the marginal externality
of S can be expressed as

Λ̂S
t = θγ̄

+∞∑
j=1

[
φL

βj

1 −ΔSt+j
+ (1 −φL)φ0

1 −φ

[
β(1 −φ)

]j
1 −ΔSt+j

]
� (20)

It is instructive to consider the case when there is no concern about model uncertainty,
that is, α → +∞. Since Δ→ 0 as α→ +∞, in this case we have

lim
α→∞ Λ̂S

t = θβγ̄

[
φL

1 −β
+ (1 −φL)φ0

1 − (1 −φ)β

]
� (21)

Contrasting this equation with the corresponding equation (12) in GHKT, Λ̂S
t = γ̄[ φL

1−β +
(1−φL)φ0
1−(1−φ)β ], we can identify two differences. First, equation (21) contains an addi-

tional term, θ, because in our model, GHG directly affects aggregate capital instead
of output. Second, the externality related to P and T is weighted by β in equation
(21) because GHG affects the next period’s, rather than the current period’s, capi-
tal.

Using the marginal externalities from the different types of energy, we find that the
optimal choice of E3, E2, and E1 in the solution for (14) implies

νκ3

E
1−ρ
3 Eρ

= 1 − θ− ν

A3N
� (22)

νκ2

E
1−ρ
2 Eρ

− Λ̂S = 1 − θ− ν

A2N
� (23)

νκ1

E
1−ρ
1 Eρ

− Λ̂S = β

[
νκ1(

E′
1
)1−ρ(

E′)ρ − (
Λ̂S

)′
]
� (24)

Note that since the energy produced from renewable sources and that produced from
coal are assumed to use labor, their optimal levels, characterized by (22) and (23), de-
pend on the relative labor productivity in the corresponding sectors, as well as on the
share of labor in the final goods production, 1 − θ − ν. In contrast, since oil/gas is not
using labor, its optimal choice, characterized by (24), is independent of the labor pro-
ductivity and share. Instead, given a limited supply of oil/gas, the optimal choice of E1
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is found by equating the marginal net benefit from using one unit of oil/gas reserves in
the current period to the present value of the marginal net benefit from postponing con-
sumption until the next period. Note that the marginal net benefits from energy coming
from oil/gas and coal, given in the left-hand sides of (23) and (24), respectively, incor-
porate the marginal robust externality from the resulting GHG emissions, Λ̂S . Finally,
note that the expectation operator, Et , does not appear on the right-hand side of (24).
While fossil fuel use depends on the current level of GHG concentration, S, and on the
expected marginal externality, it is independent of the level of capital and, thus, of the
realized value of the damage parameter, γ. In this sense, the path of fossil fuel use is
predetermined.

So as to compare the case in which there is concern about model uncertainty with
the case where there is none, we numerically solve (14) for the cases of α = 0�01 and
α = ∞. To make comparisons as straightforward as possible, we use the same parameter
values as in GHKT, with the exception of the parameter governing the distribution of
the damage function, which will be discussed below. The parameter values are reported
in Table 1, and we refer the reader to GHKT for a detailed discussion. The results are
reported in Figures 2 and 3.15

We will refer to the optimal paths under α = ∞ as the nonrobust optimal paths and
to those under α = 0�01 as the robust optimal paths. The nonrobust paths are almost
identical to GHKT, as we adjust the approximating distribution to incorporate the dif-
ference between our model and the model used by GHKT. Specifically, we assume that
λ−1 = (βθ)−1 · γ̄GHKT, where γ̄GHKT is the mean of the distribution governing the exter-
nality parameter in GHKT. Under this parametrization, the expected externality from
GHG is very close across the two models.16

Figure 2 shows the optimal path for the use of green energy, coal, and oil/gas, as well
as the resulting carbon concentration, for different levels of concern about model uncer-
tainty.17 Since the green energy sector does not emit carbon, the optimal path for green

Table 1. Calibration summary.

θ ν β R0
0�3 0�04 0�98510 253�8

κ1 κ2 ρ 1 + g

0�5008 0�08916 −0�058 1�0210

P0 T0 A2�0 A3�0
103 699 7693 1311

φ φL φ0 λ−1

0�0228 0�2 0�393 2�38 × 10−5

15The reported results assume that the realized value of the damage parameter, γ, is equal to its expected
value, given the underlying distribution.

16Although GHKT employ a normal approximating distribution, while we use an exponential, both dis-
tributions yield very similar results, as we show in the next subsection.

17We assume throughout that the realized value of the damage parameter, γ, is equal to the mean of the
distribution.
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Figure 2. Robust and nonrobust optimal use of energy.

Figure 3. Robust and nonrobust capital stock and output.
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energy use does not directly depend on the concern about model uncertainty. However,

since green energy is a substitute for energy generated by coal and oil/gas, model un-

certainty considerations affect the use of green energy indirectly. The numerical results

reported on the top-left panel of Figure 2 suggest that the indirect effect on green energy

use is minute.

The robust optimal use of coal is significantly lower than the nonrobust use, as the

top-right panel of Figure 2 depicts. Moreover, while the nonrobust optimal path of coal

use is increasing, the robust path is decreasing. This finding results from the fact that

under model uncertainty, the marginal externality is dependent on the level of the GHG

concentration. More formally, from (20) it follows that for α = ∞, we have Δ = 0; thus, the

externality from carbon emissions, Λ̂S , is independent of the current and future levels of

GHG concentration. However, as discussed in the previous section, when α<∞, higher

GHG concentrations increase the level of the externality from carbon emissions. Thus,

unlike the nonrobust optimal path, coal use declines with increasing GHG emissions

along the robust optimal path.

As reported in the bottom-left panel of Figure 2, in contrast to the use of coal,

the concern about model uncertainty only delays the optimal use of oil/gas. Since

the supply of oil/gas is finite and binding, model uncertainty has only a small effect

on the cumulative use of oil/gas. However, since under model uncertainty the exter-

nality from carbon emissions is dependent on the level of the GHG concentration, a

smoother path of oil/gas use would allow for the partial absorption of the temporary

part of the atmospheric GHG, T , and would thus reduce the total externality from emis-

sions.

The concern about model uncertainty reduces the optimal GHG concentration sig-

nificantly. As shown in the bottom-right panel of Figure 2, atmospheric carbon concen-

tration on the nonrobust path continues to grow over time, as the externality from car-

bon emissions is not affected by the carbon concentration. However, the robust path

of carbon concentration remains below the Δ−1 = (1−βθ)αλ
θ breakout threshold.18 This

boundedness property results from the fact that a higher carbon concentration would

increase the externality from carbon emissions, and thus curb the optimal emissions

level. The difference between the nonrobust and robust optimal carbon concentration

is quantitatively significant. The calibrated model predicts that the nonrobust carbon

concentration (net of the pre-industrial level) will rise almost threefold over the course

of 200 years and reach a level of 600 gigatons. In contrast, the robust optimal carbon con-

centration in our model will increase by less than one-third and remain well below 300
gigatons.

The effect of model uncertainty on global temperatures is substantial. To map car-

bon concentrations from the calibrated model into global temperatures, we use the ex-

18As we discussed in the previous section, if the GHG concentration S′ ≥ 1
Δ , then the system cannot be

“robustified,” in the sense that the value of the game goes to negative infinity.
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pression in GHKT,19

T(St) = 3 ln
(
St

S̄

)/
ln 2�

where S̄ is the pre-industrial level of atmospheric carbon concentration.
In GHKT, the average current global temperature is calculated to be 1�4 degrees Cel-

sius above its pre-industrial level. In the calibrated version of the model, carbon concen-
tration in the nonrobust path implies an average global temperature increase of more
than 1�6 degrees Celsius over the course of 200 years, with global temperatures reach-
ing more than 3 degrees Celsius above the pre-industrial level. In contrast, the average
global temperature in the robust path implies an increase of about 0�2 degrees Celsius.

It is worth providing some perspective on the effects from various temperature in-
creases. The most recent Intergovernmental Panel on Climate Change (IPCC) report
outlines the perceived damages from a range of temperature increases and points to
the need for further rigorous assessment. According to the report, a 1-degree Celsius in-
crease would increase the risk of extreme weather events, such as heat waves, heavy pre-
cipitation, and coastal flooding. Under a warming of above 2 degrees Celsius, the risks of
affecting crop yields and water availability are perceived to be high. Risks to the global
economy are judged to be moderate under an additional 1–2 degrees Celsius warming.
The IPCC report emphasizes that a few quantitative estimates are available for a warm-
ing of above 3 degrees Celsius. Risks associated with tipping points are perceived to be
moderate between 0 and 1 degrees Celsius, but they increase at a steepening rate under
an additional 1–2 degrees of warming and are perceived to become high above 3 degrees
Celsius.20

According to the calibrated model, the difference between the nonrobust and the ro-
bust carbon concentration paths has a noticeable effect on the real economy. The panels
on the left side of Figure 3 depict how switching from the nonrobust to the robust path
affects the economy’s capital stock and output based on the approximating model—the
decision maker’s baseline model—being the true model. As before, we assume that the
realized value of the damage parameter, γ, is equal to the mean of the corresponding
distribution on the entire path. Due to the lower accumulation of atmospheric carbon
on the robust path, the expected damage to the capital stock will be about 3 percentage
points lower and will remain below 3 percent of the capital stock after 200 years. How-
ever, the increased damages do not have a significant effect on the capital stock or on
output, because the lower carbon emissions on the robust path are achieved by a sig-
nificant cut in the use of coal and, thus, a lower energy input used in the production of
the final good. In fact, for the first 100 years, output is lower on the robust path and only
surpasses the robust path toward the end of the reported 200 years.

19GHKT argue that the reduced-form composition mapping from carbon concentrations to temperature
increases and then to damages that they employ, is a reasonable approximation to the one calibrated by
Nordhaus (Figure 1 in GHKT). So as to identify the effects from introducing model uncertainty as cleanly as
possible, we keep the other aspects of their modeling, including the damage formula, initial temperature,
and so forth, intact.

20See IPCC (2014).
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The panels on the right-hand side of Figure 3 depict how switching from the nonro-
bust to the robust path affects capital stock and output, assuming that the true distri-
bution of the damage parameter, γ, evolves according to the worst-case model in each
period. Again, we assume that the realized value of γ is equal to the mean of the corre-
sponding distribution. The carbon concentration on the nonrobust path surpasses the
breakout threshold after 20 years (see the bottom-right panel of Figure 2). Even on the
robust path, the carbon concentration gets very close to the breakout threshold. Thus,
the expected damages according to the worst-case model rise to as high as 70 percent
of the capital stock over 200 years. Note that the worst-case distribution depends on
the level of the GHG concentration. Therefore, as carbon concentrations increase, the
mean of the distribution of the damage parameter, which is assumed to be the real-
ized value of γ on the reported path, rises. The resulting sharp decline in capital stock
and on output are reported in the two bottom-right panels in Figure 3. The dramatic
effects of the worst-case model on capital stock and on output are the reason for the
sharp cut in the use of coal on the robust path, as reported in the top-right panel of
Figure 2. These effects are partly magnified by the assumption that the approximating
distribution of the damage parameter is exponential. As we discuss next, the losses are
somewhat reduced, though still large, if the approximating distribution is assumed to be
normal.21

4.1 Robust optimal taxation

As we showed in the benchmark model, the robust optimal allocation can be imple-
mented by imposing a tax on carbon emissions and rebating the proceeds to the agents.
The same type of tax/rebate can implement the optimal allocation in the general case. As
depicted in the top panel of Figure 4, a higher concern about model uncertainty results
in a higher carbon tax. Specifically, the optimal tax rate for the “robust” path discussed
earlier (α = 0�01) would surpass more than 25 times the optimal tax in the nonrobust
path, in which there is no concern about model uncertainty (α = ∞). Moreover, un-
like the nonrobust optimal tax, which remains constant over time, the robust optimal
tax is increasing over time. Note that, as discussed in the benchmark model, the opti-
mal tax rate depends on the level of consumption or, equivalently, on output; that is,
τ∗ = λ

u′(C) . To abstract from the increase in the carbon tax rate that is the result of eco-
nomic growth, we are reporting the tax rate in terms of the output in the starting year,
$70 trillion.22

The rise of the robust optimal carbon tax rate is due to the externality from increased
GHG concentrations. As we showed in the analytical solution for the benchmark model,
a deviation from the approximating distribution is more attractive for the malevolent
player when the GHG concentration is higher. The externality from carbon emissions is

21Stern (2013) has criticized existing estimates of costs associated with climate change for not taking
into consideration nonnegligible probabilities of catastrophic events. As the exponential distribution is “fat
tailed,” it implies a higher probability of extreme values than, say, a normal distribution.

22Formally, Figure 4 reports Λ̂S
t ×Y2015, where Λ̂S is the marginal externality proportional to output, while

the robust optimal tax rate should be τ∗
t = ΛS

t = Λ̂S
t ×Yt .
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Figure 4. Robust optimal taxation.

larger for higher GHG concentrations due to the concern about the malevolent player’s
reaction. The interaction between the concern about model uncertainty and the GHG
concentrations is depicted in the bottom panel of Figure 4.23 A higher concern about

23The permanent and the transitory components of the GHG concentration are associated with different
externalities, as shown in (18) and (19). Thus, the robust optimal tax rates for the same levels of total GHG
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model uncertainty (lower α) not only results in a higher level of carbon tax rate per unit
of output, but also makes the rise of the tax rate on GHG concentrations steeper. To
curb consumption of fossil fuel as the GHG concentration gets closer to the breakout
threshold, the robust optimal tax rate must rise. Thus, a higher concern about model
uncertainty results in a steeper tax rise.

4.2 An alternative approximating distribution

In this section we explore the sensitivity of our results to assumption A3, regarding
the approximating distribution of the damage function parameter, γ. More precisely,
we will replace the exponential approximating distribution and assume instead that
the approximating distribution of γ is normal with mean γ̄ and variance σ2; that is,
π(γ) = 1√

2πσ2
e−(γ−γ̄)2/(2σ2). As we will show, this change has some implications for the

worst-case models and, therefore, for the breakout threshold. However, the quantitative
implications from switching to a normal distribution are more subtle.

Using a normal distribution to approximate γ eliminates the breakout threshold.
Unlike the exponential distribution, which is characterized by a single parameter, λ, the
normal distribution has 2 degrees of freedom: its mean, γ̄, and its variance, σ2. As the
exponential distribution has a “fat tail,” a larger mean implies a higher variance, which
in turn makes it harder for the system to be robustified. In contrast, under a normal
distribution, the malevolent player’s alteration of the distribution would affect only the
mean of the approximating distribution, and the worst-case distribution would have
the same variance. Thus, there is no breakout threshold for the mean above which the
system cannot be robustified.

More formally, using a normal approximating distribution for the penalty parameter,
α, the worst-case distribution will be given by

π̂∗(γ) ∼ N
(
γ̄ + Āσ2

α
S′2�σ2

)
�

while the robust externality is given by

H
(
S′;α� Ā) = −

(
γ̄ + Āσ2

2α
S′

)
ĀS′� (25)

Recall that the externality under an exponential distribution was given by (8). This equa-

tion can be written as H(S′;α� Ā) = α log(1− γ̄Ā
α S′), which is unbounded for S′ ≥ 1

Δ = α
γ̄Ā

.

In contrast, there is no threshold for S′ after which the externality under the normal dis-
tribution, given by (25), becomes unbounded.

A change in H(·) would also change the externality associated with the GHG con-
centration. In particular, by replacing the term α log(1 − ΔS′) in equation (14) with

concentrations, but a different composition of permanent and transitory parts, are different. The horizontal
axis in Figure 4 reports the total GHG concentrations over the robust path for different levels of concern
about model uncertainty.
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−(γ̄ + Āσ2

2α S′)ĀS′, we would have

Λ̂P
t = βθγ̄

1 −β
+ θĀσ2

α

+∞∑
j=1

βjSt+j�

Λ̂T
t = β(1 −φ)θγ̄

1 −β(1 −φ)
+ θĀσ2

α

+∞∑
j=1

[
β(1 −φ)

]j
St+j�

This expression, in turn, implies

Λ̂S
t = φLΛ̂

P
t + (1 −φL)φ0

1 −φ
Λ̂T
t

= βθγ̄

{
φL

1 −β
+ (1 −φL)φ0

1 −β(1 −φ)

}
(26)

+ θĀσ2

α

+∞∑
j=1

{
φL + (1 −φL)(1 −φ)j−1φ0

}
βjSt+j�

As in the exponential case, if the concern about model uncertainty goes to zero (α → ∞)
or, alternatively, if the approximating distribution collapses to a single point (σ2 → 0),
we would have, similar to (21) in the exponential distribution case,

Λ̂S
t = θβγ̄

[
φL

1 −β
+ (1 −φL)φ0

1 − (1 −φ)β

]
�

Given (26), the optimal mixture of renewable, coal, and oil/gas use—namely E3, E2, and
E1—follows (22)–(24), as before.

Figure 5 reports the robust and the nonrobust optimal path for different types of
energy use, as well as the resulting carbon concentration paths under a normal approx-
imating distribution with the same mean and variance as the exponential distribution
used previously. By construction, the nonrobust paths are identical to the nonrobust
paths of Figure 2. Comparing the top-left panels of Figures 2 and 5 shows that switching
from an exponential distribution to an equivalent normal distribution would leave the
robust optimal green energy use intact. However, the robust optimal use of coal is larger
under the normal distribution. Yet, the use of coal remains slightly decreasing and sig-
nificantly below the nonrobust use of coal, as shown in the top-right panel of Figure 5.
Under a normal approximating distribution, the robust optimal oil/gas use would be
higher and would decline faster over time compared with the exponential distribution
case. Thus, as depicted in the bottom-left panel of Figure 5, the effect of switching from
a nonrobust to a robust optimal path will be less significant under the normal distribu-
tion. Finally, as shown in the bottom-right panel of Figure 5, unlike in the exponential
case, in which it was bounded below 300 gigatons, the robust path of carbon concentra-
tion surpasses 300 gigatons in less than 100 years. The higher carbon concentration is
mainly due to a higher use of coal under the normal distribution.24

24A higher GHG concentration translates to an increase of about 0�4 degrees Celsius in the average global
temperature over the course of 200 years relative to the robust path under an exponential distribution. Thus,
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Figure 5. Robust and nonrobust optimal use of energy with normal approximating distribu-
tion.

The difference between the robust paths under the two alternative distributions is
due to two reasons. First, as we discussed previously, there is no breakout threshold un-
der the normal distribution. Thus, carbon emissions are not cut dramatically as the GHG
concentration approaches a threshold. Second, although we use the same value for the
penalty parameter (α = 0�01) in both cases, the effects on the choice of the worst-case
distribution are different. Specifically, the resulting distances between the approximat-
ing distributions, π, and those chosen by the malevolent player, π̂, as measured by rel-
ative entropy are different across the two cases. Everything else being equal, the choice
by the malevolent player is further apart from the approximating distribution in the ex-
ponential case. In addition, robust optimal carbon emissions are more conservative rel-
ative to the normal distribution case. It is also worth noting that the difference between
the robust paths under the two alternative distributions is significantly smaller than the
difference between the nonrobust paths.

Under a normal approximating distribution, the system can be robustified for any
level of carbon concentration. Therefore, unlike the exponential case, the nonrobust
paths based on the worst-case model are well defined, as reported in the right-side pan-
els of Figure 6. Moreover, the difference between the robust paths of the capital stock
and of output based on the approximating distribution (left-side panels of Figure 6) are
not significant. However, while the corresponding robust and nonrobust paths based on
the worst-case distribution (right-side panels of Figure 6) are not significantly different

under a normal approximating distribution, temperatures on the robust path are 2 degrees Celsius above
the pre-industrial level.
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Figure 6. Robust and nonrobust capital stock and output with normal approximating distribu-
tion.

in early years, the differences rise to 50 percent of the output and capital stock within
200 years.

Finally, the robust path of total damages based on the approximating model is less
than 1 percentage point higher under the normal approximating distribution compared
with the exponential distribution, as reported on the top-left panels of Figure 6 and Fig-
ure 3. The subtle difference is due to the relatively small difference between the robust
paths of carbon concentration, which are reported in the bottom-right panels of Figure 2
and Figure 5.25

4.3 The stock of fossil fuel

The supply of both oil/gas and coal are finite. For comparison, we would like to dis-
cuss the more realistic case, where there is a finite supply of coal. At the same time,
advancements in unconventional oil/gas (and the future potential from offshore un-
conventional, methane hydrates, etc.) imply that the future supply of oil/gas is likely to
be significantly larger than the one considered in GHKT.

While the concern about model uncertainty seems to affect the optimal use of coal
significantly, it appears to have a limited effect on the consumption of oil/gas. This ob-
servation is at least partly due to our combined assumptions of an unbounded supply of

25The difference in carbon emissions and in output levels across the alternative distributions corre-
sponds to the difference between the corresponding optimal tax policies, which is not reported for brevity.
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Figure 7. Robust and nonrobust optimal use of energy with unlimited oil/gas.

coal and a strictly binding supply of oil/gas. In this subsection, we will briefly study the
implications of modifying these assumptions.

Figure 7 reports the robust and the nonrobust optimal paths for the consumption of
different types of energy, as well as the resulting carbon concentrations, for the bench-
mark case when the supply of oil/gas is unlimited. As the economy grows, so does the
nonrobust optimal use of oil/gas. This growth is similar to the growth in the nonrobust
use of coal. In contrast, the robust optimal consumption path for oil/gas is bounded and
decreasing because the rising GHG concentration increases the externality from carbon
emissions, thus curbing the use of oil/gas. Interestingly, even the use of green energy is
eventually lower on the robust optimal path. Since the GHG concentration is higher on
the nonrobust path, the capital stock will eventually be lower on the nonrobust path. In
turn, the lower capital input in the final goods production leads to the allocation of extra
resources in the production of all types of energy, including green energy.

Figure 8 reports both the robust and the nonrobust paths when the supply of oil/gas
and that of coal are limited, and it compares these with the benchmark case of an unlim-
ited supply of coal. More precisely, we assume that the initial stock of oil/gas is given by
253�8 GtC (the GHKT benchmark), while the initial stock of coal is given by Rcoal = 666.26

While adopting this more realistic assumption about the stock of coal does not appear
to have a noticeable effect on the robust optimal use of different types of energy, it has a
significant effect on the optimal nonrobust use of coal and, thus, on carbon concentra-
tions. Nevertheless, the assumption that the stock of coal is limited is not sufficient to

26The total stock of coal is obtained by applying the conversion factors provided by the U.S. Energy In-
formation Administration to the estimated resources of coal as reported by the U.S. Geological Survey. This
calculation leads to 2441 gigatons (Gt) of CO2 or, applying the 12/44 conversion, to 665�7272 GtC.
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Figure 8. Effect of coal on robust and nonrobust optimal use of energy.

bring the nonrobust use of coal in line with its robust use. In short, the concern about
robustness matters for the optimal consumption of coal, even when its supply is limited.

5. Conclusion

We studied optimal taxation and the resulting optimal energy mix in a dynamic stochas-
tic general equilibrium model in which agents are concerned about model uncertainty
regarding damages resulting from climate change. We used robust control to model the
optimal response to this uncertainty by optimizing agents. We demonstrated that Pigou-
vian taxation restores the socially optimal allocation. This is in sharp contrast to existing
policies around the world, which subsidize fossil fuel. We showed that the concern about
model uncertainty causes a significant decline in the optimal use of coal, and a smoother
path of oil/gas consumption. Interestingly, the concern about model uncertainty does
not have a noticeable effect on the optimal path of green energy use. Moreover, we show
how the concern about model uncertainty yields a robust optimal Pigouvian tax, under
which the excessive damages of the worst-case scenarios are avoided.

Our work built heavily on the model introduced in GHKT. While admittedly restric-
tive, this framework allowed us to derive an analytical solution for the benchmark case
and to develop a recursive method to solve the model computationally under more gen-
eral assumptions. As in GHKT, we concluded that the use of coal should be constrained.
Furthermore, we showed that the concern about model uncertainty results in a signifi-
cant additional decline in the robust optimal use of coal. The core theoretical result in
GHKT is that, when expressed as a proportion of GDP, the optimal tax on emissions is
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independent of the stochastic value of the future output and of the stock of carbon in
the atmosphere. In contrast, we showed that even under the restrictive assumptions in
GHKT, the robust optimal tax rises as the GHG concentration increases once we con-
sider model uncertainty, even though the expected damages remain unchanged.

In this paper, we concentrated on the uncertainty associated with damages from car-
bon concentration. Of course, several other variables can be introduced and modeled as
being subject to uncertainty. These variables include those governing the dynamics of
carbon concentration, those governing productivity growth and, hence, future produc-
tion, the labor costs and elasticities of substitution associated with different sources of
energy, and the risks from nuclear energy. Studying alternative sources of uncertainty
is a natural extension of our model. Similarly, we could study the effect of introducing
extraction/exploration costs, as in Hartley et al. (2016). Our model can be extended in
other ways. In this paper, we assume that the growth rate of renewables is independent
of the concern about model uncertainty. It would be interesting to endogenize growth in
renewable energy productivity as in Adao, Narajabad, and Temzelides (2012). A related
extension could involve using a distortionary tax on labor to subsidize research and de-
velopment in renewables and studying the resulting effects on energy composition and
growth. These extensions are left to future research.

Appendix

Here we demonstrate that the optimal level of GHG, E∗, has the properties ∂E∗
∂δ < 0 and

∂E∗
∂δ |δ=0 = −∞, where δ is the upper bound for entropy allowed in the constraint game.

Proof. Recall that E∗ = cE(1 − ΔS) and δ = log(1 − ΔS′∗) + ΔS′∗
1−ΔS′∗ , where S′∗ = S +

φ0cE(1 − ΔS). Define a = α−1 and b = 1 − ΔS′∗ = (1 − Δφ0cE)(1 − ΔS). It follows im-
mediately that E∗ is decreasing in a. In addition, since both Δ and cE are functions of a,
it follows that b is a function of a:

b(a) = [
1 −Δ(a)φ0cE(a)

][
1 −Δ(a)S

]
�

It is easy to see that b is decreasing in a. Thus, it defines a as an implicit function of b,
with a negative slope. Moreover, we can rewrite δ as

δ= logb+ 1 − b

b
�

which defines b as an implicit function of δ. Direct calculation shows that ∂b
∂δ = − b2

1−b < 0,
as b ∈ (0�1). Thus,

∂E∗

∂δ
= ∂E∗

∂a

∂a

∂b

∂b

∂δ
< 0�

Evaluating this expression at δ= 0, we obtain

∂E∗

∂δ

∣∣∣∣
δ=0

=
(
∂E∗

∂a

∣∣∣∣
a=0

)(
∂a

∂b

∣∣∣∣
b=1

)(
∂b

∂δ

∣∣∣∣
δ=0

)
�
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It is straightforward to show that the first two terms on the right-hand side in the previ-
ous expression are strictly negative and finite, while the last term goes to −∞. Therefore,
∂E∗
∂δ |δ=0 = −∞. �

A.1 Equivalence between the recursive game and the date-0 game

Here we discuss the equivalence between the recursive Stackelberg game and its date-0
counterpart. We concentrate on the one-sector model. In the recursive version of the
Stackelberg game, the worst-case model for γt+1 depends on the endogenous state, St ,
and on the choice variable, Et . This feature can be difficult to interpret.27 Alternatively,
we can construct a date-0 Stackelberg game in which the malevolent player, as the leader
of the game, chooses first the distorted models of {γt+1}, {π̂(γt+1)}. This choice leads to
{π̂(γt+1)} being independent of the endogenous states. We then show that, on the equi-
librium path, the worst-case models derived from the date-0 Stackelberg game coincide
with those derived from the recursive game. We demonstrate the equivalence by using
the “big K–little k” result from Chapter 7 in Hansen and Sargent (2008).

Consider the Stackelberg game in which, at date-0, the minimizing player chooses
the distorted probability process {π̂(γt+1)}, followed by the maximizing player choosing
the control process {ut = (Ct�Et)}:

inf
m∈M

sup
u∈U

E

[ ∞∑
t=0

βtMt
(
u(Ct)+βαmt+1 logmt+1

)∣∣∣S0�K0

]
� (27)

s.t.

Mt+1 = Mtmt+1�

St+1 = St +φ0Et� (28)

Kt+1 = h(St+1�γt+1)
[
F(Kt�Et)−Ct

]
� (29)

where U denotes the space of control processes u = {ut : t = 0�1� � � �} and M denotes the
space of likelihood ratio processes m= {mt+1 = π̂(γt+1)

π(γt+1)
: t = 0�1� � � �}.

We introduce an exogenous state vector process {(Ŝt � K̂t)}, which evolves as

Ŝt+1 = Ŝt +φ0Êt(Ŝt)� (30)

K̂t+1 = h(Ŝt+1�γt+1)
[
F

(
K̂t� Êt(Ŝt)

) − Ĉt(Ŝt � K̂t)
]
� (31)

where Êt(Ŝt) = cE(1 − ΔŜt) and Ĉt(Ŝt � K̂t) = (1 − βθ)K̂θ
t [Êt(Ŝt)]ν .28 Note that {Ŝt � K̂t�

Êt � Ĉt} are independent of the control variables {Et�Ct}. Moreover, we set (S0�K0) =
(Ŝ0� K̂0).

27We thank Lars Hansen for bringing this point to our attention and for suggesting the use of the big
K–little k result as a way to bypass the difficulty.

28The exogenous processes Êt (Ŝt ) and Ĉt (Ŝt � K̂t ) are constructed to mimic the optimal controls E∗
t (St)

and C∗
t (St �Kt) by replacing the endogenous state (St �Kt) by the exogenous state (Ŝt � K̂t ).
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Define the distorted process {γt+1} by

γt+1 ∼ π̂(γt+1) = λ̂(Ŝt)e
−λ̂(Ŝt )γt+1� (32)

where the distorted parameter, λ̂, is given by λ̂(Ŝt)= λ(1−ΔŜt+1)= λ(1−φ0cE)(1−ΔŜt).
Clearly, ut does not affect Ŝt+1 and, thus, the distorted distribution π̂(γt+1).

Given the previous exogenous distorted process, the maximizing player chooses {ut}
at date zero to maximize the social welfare given in equation (27). With the aid of the
exogenous state, this maximization problem can be expressed in a recursive form as

Ṽ (St�Kt� Ŝt� K̂t) = max
Ct�Et

{
u(Ct)+ αβ

∫
π̂(γt+1) logmt+1 dγt+1

+β

∫
Ṽ (St+1�Kt+1� Ŝt+1� K̂t+1)π̂(γt+1)dγt+1

}
�

subject to (28), (29), (30), and (31). As shown in the main text, the relative entropy∫
π̂(γt+1) logmt+1 dγt+1 equals log( λ̂(Ŝt )λ ) + λ−λ̂(Ŝt )

λ̂(Ŝt )
. Since Ṽ (·) depends on (Ŝt � K̂t) only

through π̂(γt+1) or, equivalently, λ̂(Ŝt), the exogenous state, K̂t , is eliminated from Ṽ (·).
Consequently, the aforementioned problem can be rewritten as

Ṽ (St�Kt� Ŝt) = max
Ct�Et

{
u(Ct)+ αβ

[
log

(
λ̂(Ŝt)

λ

)
+ λ− λ̂(Ŝt)

λ̂(Ŝt)

]

+β

∫
Ṽ (St+1�Kt+1� Ŝt+1)π̂(γt+1)dγt+1

}
�

subject to (28), (29), (30), and (31).
We proceed to find the solution to this date-0 problem, given the distorted process

{γt+1} in equation (32). Then we will argue that this solution is identical to the Markov
perfect equilibrium of the sequential game defined in the main text. We implement a
guess-and-verify method. We first guess that Ṽ (·) takes the form

Ṽ (St�Kt� Ŝt) = f (St� Ŝt)+ Ã log(Kt)+ D̃�

where Ã and D̃ are undetermined coefficients. The functional form for f (·) will be de-
rived later. Using the analysis above and the simplifications in the main text, we can
write the problem as

f (St� Ŝt)+ Ã log(Kt)+ D̃

= max
Ct�Et

{
log(Ct)+ αβ

[
log

(
λ̂(Ŝt)

λ

)
+ λ− λ̂(Ŝt)

λ̂(Ŝt)

]

+β

[
f (St+1� Ŝt+1)+ Ã log

(
F(Kt�Et)−Ct

) + D̃− ÃSt+1

λ̂(Ŝt)

]}
�

subject to (28) and (30). Furthermore, we guess that f (·) takes the form B̃ log(1 −ΔŜt)+
G̃St

1−ΔŜt
, where B̃ and G̃ are undetermined coefficients. After some tedious derivations, we
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obtain

Ã= θ

1 −βθ
� (33)

G̃= βθ

(1 −βθ)λ(β− 1 +Δφ0cE)
(34)

and

E
opt
t = ν(1 −ΔŜt+1)

(1 −βθ)βφ0

(
θ

(1 −βθ)λ
− G̃

) = cE(1 −ΔŜt)� (35)

C
opt
t = F(Kt�Et)

1 +βÃ
= (1 −βθ)Kθ

t

(
E

opt
t

)ν
� (36)

When (S0�K0) = (Ŝ0� K̂0), we obtain E
opt
t = Êt(Ŝt) = E∗

t (St), C
opt
t = Ĉt(Ŝt � K̂t) =

C∗
t (St�Kt), Ŝt+1 = St+1, and K̂t+1 = Kt+1, for t = 0�1� � � � . In addition, π̂(γt+1) =

λ̂(Ŝt)e
−λ̂(Ŝt )γt+1 , where λ̂(Ŝt) = λ(1 − φ0cE)(1 − ΔŜt) = λ(1 − φ0cE)(1 − ΔSt). That is,

the optimal choices in the date-0 game coincide with the Markov perfect equilibrium
allocation in the recursive game.

A.2 The numerical solution

Here we provide a brief description of our numerical procedure for both the normal dis-
tribution and the exponential distribution case regarding the parameter γ. Replication
files are available in a supplementary file on the journal website, http://qeconomics.
org/supp/463/code_and_data.zip.

A.2.1 Normal distribution of γ Assume (i) 100 percent capital depreciation, (ii) a Cobb–
Douglas production function, and (iii) an exponential damage function. From the anal-
ysis in Sections 3 and 4, it follows that the value function takes the form

V (K�N�P�T�R) = f (N�P�T�R)+ Ā log(K)+ D̄�

where Ā = θ
1−βθ and D̄ is a constant. The inner-loop minimization problem for π̂(γ)

remains the same as in the one-sector model in Section 3. Furthermore, the outer-loop
maximization problem for Ei, P ′, T ′, and R′ can be carried out separately from the op-
timization problem for C and K̃′. The solution to the latter also remains the same as in
Section 3; that is, C∗ = (1 − βθ)Y ∗ and K̃′∗ = βθY ∗, where Y ∗ denotes the optimal out-
put level. After substituting for C∗, the optimization problem for Ei, P ′, T ′, and R′ can
be simplified, leading to the dynamic programming problem

f (N�P�T�R) = max
E1�E2�E3�E�P ′�T ′�S′�R′

{
1

1 −βθ
log

[(
1 − E2

A2N
− E3

A3N

)1−θ−ν

Eν

]

+β
[
f
(
N ′�P ′�T ′�R′) + α log

(
1 −ΔS′)]}�

http://qeconomics.org/supp/463/code_and_data.zip
http://qeconomics.org/supp/463/code_and_data.zip
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s.t.

E = (
κ1E

ρ
1 + κ2E

ρ
2 + κ�3 E

ρ
3

)1/ρ
�

N ′ = (1 + g)N�

R′ =R−E1 ≥ 0�

P ′ = P +φL(E1 +E2)�

T ′ = (1 −φ)T + (1 −φL)φ0(E1 +E2)�

S′ = P ′ + T ′�

The value function f (N�P�T�R) is represented by a four-dimensional Chebyshev poly-
nomial and solved numerically using value function iteration. The above simplifica-
tion significantly reduces the computational burden from solving a dynamic max-min
game, allowing us to utilize the parallel toolbox of MATLAB on an eight-processor com-
puter. Value function iteration stops when ‖f k+1 − fk‖∞ < 1 × 10−6; by the contrac-

tion mapping property, the numerical error ‖f − f k‖∞ ≤ 1
1−β‖fk+1 − fk‖∞ < 1×10−6

1−0�98510 ≈
7�1 × 10−6.29 Table 2 reports the grid specifications (rectangular domain of P , T , R,
and N) used in the complete model for the normal distribution case.30

Table 2. Grid specifications of Chebyshev polynomial approximation (normal distribution
of γ).

(Roil
0 = 253�8 GtC) Unlimited Oil (Roil

0 = 253�8 GtC)
and Unlimited Coal; and Unlimited Coal; and Rcoal

0 = 666 GtC);
α= 0�01�∞ α = 0�01�∞ α = 0�01�∞

No. of grid points for P 6 6 6
No. of grid points for T 7 7 7
No. of grid points for Roil 15 NA 10
No. of grid points for Rcoal NA NA 10
No. of grid points for N 10 10 10
[P1�Pend] [0�1000] [0�3000] [0�1000]
[T1�Tend] [0�1000] [0�3000] [0�1000]
[Roil

1 �Roil
end] [0�5�255] NA [0�330]

[Rcoal
1 �Rcoal

end ] NA NA [0�770]
[N1�Nend] [0�8�100] [0�8�100] [0�8�100]

29Note that we only report the numerical error due to the stopping of contraction iteration, and not the
numerical error due to Chebyshev interpolation. For some of the difficulties associated with measuring
numerical errors of higher order interpolations, such as Chebyshev interpolation; see Santos and Vigo-
Aguiar (1998).

30Our numerical algorithm imposes the natural constraints that N ≥ 0 and R ≥ 0. Since the resource
constraint for oil/gas is binding given the initial stock, R = 253 GtC, and since the curvature of the value
function with respect to (w.r.t.) R increases as R approaches zero, we increased the number of nodes for R
from 15 to 30, but obtained identical results. The numerical procedure allows T and P to be negative. We
also used negative 100 as the lowest grid point for both P and T and found no noticeable change in the
numerical results.
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Figure 9. Trajectory of P and T with exponential distribution and α = 0�01.

A.2.2 Exponential distribution of γ We used the standard Chebyshev method to ap-
proximate the value function under a normal distribution assumption regarding γ. This
approximation estimates the value function when P and T lie in a rectangular area.
However, this method cannot be applied when the approximating distribution for γ is
exponential, as the domain of P and T is triangular in that case. In the exponential case,
the value function goes to −∞ as P + T approaches the breakout point, 1/Δ. Therefore,
the domain of P and T is contained in {(P�T)|P + T ≤ 1/Δ}. In particular, the breakout
point under α = 0�01 is 1/Δ = 268 GtC, which is very close to the maximum of the tra-
jectory of Pt + Tt in the simulation horizon, as is illustrated in Figure 9. As a result, we
are not able to find a rectangular area for P and T that (i) is large enough to contain
the trajectory of interest for {Pt�Tt} and (ii) does not intersect with the breakout point,
1/Δ.

We address this issue by transforming the state space for P and T into the state space
of X and Y by rotating the coordinates 45° counterclockwise, as depicted in Figure 9.
This rotation reshapes the triangular domain for P and T into a rectangular domain for
X and Y , thereby allowing us to apply the standard rectangular Chebyshev approxima-
tion. Specifically, let θrot = 45° and define

X = cos
(
θrot)P + sin

(
θrot)T�

Y = − sin
(
θrot)P + cos

(
θrot)T�
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Table 3. Grid specifications of Chebyshev polynomial approximation (exponential distribution
of γ).

(R0 = 253�8 GtC); (R0 = 253�8 GtC);
α = 0�01 α = 0�1�1�100�∞

No. of grid points for X 6 6
No. of grid points for Y 7 7
No. of grid points for R 15 15
No. of grid points for N 10 10
[X1�Xend] [0�189�13] [0�700]
[Y1�Yend] [−189�63�189�63] [−700�700]
[R1�Rend] [0�5�255] [0�5�255]
[N1�Nend] [0�8�100] [0�8�100]

This transformation implies

P = cos
(
θrot)X − sin

(
θrot)Y�

T = sin
(
θrot)X + cos

(
θrot)Y�

In addition, let f̃ (N�X�Y�R) = f (N�P(X�Y)�T(X�Y)�R). Then the computational
problem can be transformed as

f̃ (N�X�Y�R) = max
E1�E2�E3�E�X ′�Y ′�S′�R′

{
1

1 −βθ
log

[(
1 − E2

A2N
− E3

A3N

)1−θ−ν

Eν

]

+β
[
f̃
(
N ′�X ′�Y ′�R′) + α log

(
1 −ΔS′)]}�

s.t.

E = (
κ1E

ρ
1 + κ2E

ρ
2 + κ3E

ρ
3

)1/ρ
�

N ′ = (1 + g)N�

R′ =R−E1 ≥ 0�

X ′ =
√

2
2

[
φL + (1 −φL)φ0

]
(E1 +E2)+ 1

2
(X −Y)+ 1 −φ

2
(X +Y)�

Y ′ =
√

2
2

[−φL + (1 −φL)φ0
]
(E1 +E2)− 1

2
(X −Y)+ 1 −φ

2
(X +Y)�

S′ = √
2X ′�

Furthermore, to calculate the marginal externalities from P and T , we need to express
∂f
∂P and ∂f

∂T in terms of ∂f̃
∂X and ∂f̃

∂Y :

∂f

∂P
= ∂f̃

∂X

∂X

∂P
+ ∂f̃

∂Y

∂Y

∂P
=

√
2

2

(
∂f̃

∂X
− ∂f̃

∂Y

)
�

∂f

∂T
= ∂f̃

∂X

∂X

∂T
+ ∂f̃

∂Y

∂Y

∂T
=

√
2

2

(
∂f̃

∂X
+ ∂f̃

∂Y

)
�
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Similar to the case of normal distribution of γ, the value function iteration method is
employed to solve for f numerically with a similar stopping threshold and thus a similar
numerical error. Table 3 reports the grid specifications (rectangular domain of X , Y , R,
and N) used in the complete model for the exponential distribution case.
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