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Abstract

Multidomain peptide (MDP) nanofibers create scaffolds that can present bioactive cues to promote 

biological responses. Orthogonal self-assembly of MDPs and growth-factor-loaded liposomes 

generate supramolecular composite hydrogels. These composites can act as delivery vehicles with 

time-controlled release. Here we examine the controlled release of placental growth factor-1 

(PlGF-1) for its ability to induce angiogenic responses. PlGF-1 was loaded either in MDP matrices 

or within liposomes bound inside MDP matrices. Scaffolds showed expected rapid infiltration of 

macrophages. When released through liposomes incorporated in MDP gels (MDP(Lipo)), PlGF-1 

modulates HUVEC VEGF receptor activation in vitro and robust vessel formation in vivo. These 

loaded MDP(Lipo) hydrogels induce a high level of growth-factor-mediated neovascular maturity. 

MDP(Lipo) hydrogels offer a biocompatible and injectable platform to tailor drug delivery and 

treat ischemic tissue diseases.
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INTRODUCTION

Therapeutic angiogenesis is critical for the salvage of ischemic tissue.1,2 The lack of blood 

flow (ischemia) to tissue causes development of low oxygen environments (hypoxia). 

Ensuing from this is retention of proinflammatory cytokines, waste products, high CO2 

microenvironments, and consequent tissue necrosis.3 Similarly, to enhance tissue 

regeneration beyond the diffusion limit, new blood vessel growth, neoangiogenesis, is 

required.

Current strategies to induce blood vessel growth include growth factor delivery, cell therapy, 

matrix interaction, and metabolic control.3 Growth factors (GFs) affecting angiogenesis such 

as VEGF,4,5 FGF,2 PlGF,6,7 and PDGF8 have been delivered to ischemic tissue in a variety 

of methods to stimulate vascularization. Emerging therapies employ multiple GFs to control 

cellular infiltration and create niches for blood vessel formation.9,10 Transplantation of allo-/

autologous bone marrow stromal cells, mesenchymal stem cells, and endothelial progenitor 

cells has been attempted with modest success; the need for multiple surgeries and the 

proliferative potential of these cells are of concern.3,>11–>13 Cell therapy has been combined 

with bioactive materials designed to closely mimic the natural extracellular matrix 

(ECM).3,14,15 Administration of nitrite/ nitric oxide to ischemic tissue increases expression 

of VEGF; concerns over systemic and local side effects and stability have limited this 

technique.3,16,17 There are three critical features of angiogenesis that need to be addressed: 

(1) retention of nascent vessels, (2) development of mature vessels, and (3) resorption of 

excessive or unnecessary vasculature.1 These factors promote an environment that supports 

growing vessels that are stabilized by pericytes, buttressed by smooth muscle cells, and 

resorb without creating chronic inflammatory sites.15

Multidomain peptides (MDPs) offer a method to enhance therapeutic angiogenesis and can 

be used to address the above three features.15,18–22 MDPs have multiple domains 

(hydrophilic, hydrophobic, charged) that aid in self-assembly to nanofibers.18,23 These 

amphiphiles assemble by eliminating water in their hydrophobic regions, forming hydrogen 

bonding networks wherein fiber length is controlled by terminal charge repulsion.24,25 With 

the addition of multivalent ions (such as PO4
3−), charge repulsion is overcome by shielding, 

allowing growth of long-range ECM mimetic nanofibers.1–3 These hydrophilic nanofibers 

entangle, forming hydrogels. Self-assembly by noncovalent interactions allows shear 

thinning and recovery and consequent injectability.15,22,26 MDPs have also been shown to 

have antimicrobial behavior27 and can also be modified for a variety of biological 

activities.15,28 Specific to angiogenesis, we have developed a MDP covalently bound to a 

mimic of VEGF-165. This peptide, termed SLanc, results in rapid cellular infiltration and a 

high degree of angiogenesis.15 In contrast to covalent immobilization above, in this work, 

we used a complementary approach to obtain in vivo angiogenesis: orthogonal assembly of 

MDP and liposomes, with a proangiogenic growth factor. Achieving similar levels of 

angiogenesis with this strategy demonstrates its facile nature for delivery of a variety of GFs 

with distinct effects. Additionally, temporal control of growth factor delivery may allow 

tuning of angiogenic responses.
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Two recent studies have demonstrated the tailoring of immune responses in a temporal 

fashion as a function of growth factor/cytokine delivery.28,29 The MDP in this study, termed 

SLac, has a sequence of KSLSLSLRGSLSLSLKGRGDS.18,20,21 It contains a cell adhesion 

fibronectin-derived (RGD) moiety promoting infiltration. Further, SLac has a central matrix 

metal-loproteinase (MMP) cleavage sequence (LRG) allowing biodegradation.4,5,18

We have previously shown that MDPs are rapidly infiltrated by cells as observed in 

subcutaneous injections in rats. After just 3 days, millimeter-sized scaffolds showed 

unprecedented infiltration into the center of scaffolds.15,26 We have demonstrated the 

release of cytokines to modulate inflammatory environments by activating prohealing M1 

macrophages, specifically IL-4.28 The success of these SLac hydrogels in tailoring 

inflammatory processes guided the use of MDP scaffolds for angiogenesis. Tailoring of 

time-controlled release of GFs and cytokines utilizing MDP scaffolds may allow more 

precise control of in vivo responses. As proof of principle, and of most relevance here, is our 

recently reported work involving the two-step self-assembly of a composite hydrogel for 

temporal release of bioactive factors.22 This composite system consisted of MDPs and 

growth factors encapsulated by liposomes and are termed here as MDP–Liposome 

Composites (MLCs).

Liposomes offer a number of advantages for drug delivery and have been used for many 

decades as vehicles for delivery.5,30–32 The lipid bilayer in liposomes mimics the cellular 

plasma membrane. Degradation of liposomes can be caused by fusion of liposomal 

membranes to cell membranes, engulfment of liposomes by cells, and/or collapse of 

liposomes due to instability.22,30 Time delay of cargo release caused by encapsulation in 

liposomes may allow dictation of a variety of stimuli in composite systems. The liposomes 

synthesized in the above study were 100 ± 50 nm in size and displayed a PlGF-1 loading 

efficiency of approximately 60%. Orthogonal self-assembly of these loaded liposomes and 

MDPs into a higher order structure (Figure 1) have been shown to drive controlled release, 

while providing an ECM mimetic environment.22 We published a drug delivery method 

capitalizing on liposomes as carriers of GF molecules, which could be expanded to a broad 

spectrum of proteins or small molecules. Release studies with MLCs involving bioactive 

factors MCP-1, EGF, and PlGF-1 demonstrated bimodal release in vitro: burst release from 

the MDP matrix alone and delayed release from MLCs (liposomes incorporated inside 

MDPs).22 Thus, we were able to achieve temporal control in release, dependent on discharge 

by liposomes.22 We have demonstrated maintenance of bioactivity after release and stability 

of growth factors in MDP matrices.28 We believe MLCs are unique in that they provide a 

more generalized delivery strategy for bimodal controlled release, largely independent of the 

entrapped material.30 Additionally, MLCs have proven to be more effective in delivery than 

liposomes alone due to their ability to localize the released load (targeted injection) and 

stabilize the surrounding environment via cellular infiltration.

In this study, we investigated three different hydrogel systems for their potential to serve as 

scaffolds for cellular infiltration and angiogenesis (Table 1). Hydrogels were loaded with 

placental growth factor-1 (PlGF-1). PlGF-1 is a key angiogenic and vasculogenic factor, 

reported to stimulate angiogenesis by direct and indirect mechanisms via its ability to bind 

and activate VEGFR-1.6,7,9,33–35 Although it has not been studied as extensively as VEGF, 
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Luttun et al. and Autiero et al. have indicated the proangiogenic potential of PlGF-1 in 

ischemic heart and limb models with comparable efficacy to VEGF.6,7,33,34 The use of 

PlGF-1 here was prompted by studies that have demonstrated its potential in forming large 

mature, durable vessels (arteriogenesis) that persist for prolonged periods, while indicating 

no complications such as edema, hyperpermeability, and hemangioma genesis observed with 

VEGF.33,36–38

Depending on the method in which PlGF-1 is incorporated, we hypothesized marked 

differences in the in vivo response. Specifically, we hypothesized that controlled release can 

tailor cellular recruitment and neovascularization. PlGF-1 was incorporated into the 

hydrogels in two ways: in the MDP matrix, MDP(PlGF-1), and inside liposomes of the 

MLCs, MDP(Lipo(PlGF-1)). This allowed evaluation of delayed release for formation and 

stabilization of blood vessels, in and around the implant site. We hypothesized that initial 

cellular recruitment to the implant will form a niche for the subsequent infiltration and 

stabilization of blood vessels. Furthermore, we hypothesized that delayed release of PlGF-1 

(after completion of cellular infiltration) would be superior to burst release from MDP alone.

The work presented herein shows that temporal control in PlGF-1 release leads to the 

development of robust, mature vasculature. Notably, no signs of fibrous encapsulation, 

hematomas, or hemorrhaging were observed. The materials and methods described in this 

study may provide a powerful tool in the arsenal of therapies used in regenerative medicine, 

a tool that bridges nascent leaky vessels, immature and small capillaries, and ultimately 

demonstrates facile control of neoangiogenesis. More importantly, this represents an 

exciting approach wherein highly biocompatible materials tailor tissue responses39 through 

orthogonal self-assembly and biphasic release.

EXPERIMENTAL SECTION

Synthesis and Characterization of MDP

MDP with the sequence K(SL)3RG(SL)3KGRGDS (SLac) was synthesized on a low loading 

Rink amide MBHA resin on a 0.15 mM scale using a Focus XC automated solid-phase 

peptide synthesizer (Aapptec, Louisville, KY) by using an optimized protocol reported 

previously.18 Peptide was cleaved from the resin using a mixture of TFA, triisopropylsilane, 

water, ethanedithiol, and anisole in a 36:1:1:1:1 ratio. Resulting peptide had neutralized 

termini due to the acetylated N-terminus and amidated C-terminus. Cleaved peptide was 

rotoevaporated, precipitated in cold ether, and dried overnight. Crude peptide was dissolved 

in Milli-Q water to form a 1 wt % solution and pH adjusted to 7.4 prior to dialysis (MWCO 

500–1000 Da) for 3 days with buffer changes twice daily. Postdialysis, the peptide solution 

was frozen and lyophilized. Synthesis of the correct peptide was confirmed by matrix-

assisted laser desorption/ionization time-of-flight (Bruker Daltonics, Billerica, MA) mass 

spectroscopy (MALDI-TOF). Secondary structure analyzed by circular dichroism was 

published previously.22

Synthesis of Liposomes and Encapsulation of PlGF-1

Phospholipids and cholesterol were purchased from Avanti Polar Lipids, Inc. 

Dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphos-phatidylglycerol (DPPG), and 
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cholesterol were mixed in chloroform in the molar ratio of 5:1:4, and the solvent was 

evaporated by passing nitrogen. The dried lipids were left under high vacuum overnight to 

allow complete evaporation of chloroform. Encapsulation of PlGF-1 was carried out in situ 

during the hydration phase of liposome preparation. Dry lipid films were hydrated with 1 

μg/mL solution of human recombinant PlGF-1 (PeproTech, Rocky Hill, NJ) in carrier-free 

HBSS (Life Technologies, Carlsbad, CA). The mixture was sonicated briefly and incubated 

for 1 h with intermittent agitation. Then it was subjected to five freeze–thaw cycles and 

extruded through a 100 nm polycarbonate membrane using a Mini-Extruder (Avanti Polar 

Lipids Inc., Alabaster, AL). Afterward, the unencapsulated PlGF-1 was removed by passing 

the liposome suspension through a Sephadex G-75 column. The efficiency of encapsulation 

of PlGF-1 has been calculated as 62% in previously published release studies.22 Liposomes 

were sized by dynamic light scattering experiments performed on a Malvern Zen 3600 

Zetasizer (Malvern Instruments Ltd., Malvern, UK).22

In Vitro PlGF-1 Release from MDP–Liposome Composite Gel

Lyophilized SLac peptide was dissolved at 20 mg/mL in Milli-Q water with 298 mM 

sucrose, and the pH was adjusted to 7.4. The MDP–liposome composite gel was made by 

mixing 100 μL of purified PlGF-1-entrapped liposomes with 100 μL of 20 mg/mL SLac. 

According to the encapsulation efficiency, approximately 60 ng of PlGF-1 was loaded in 

each gel. Fifteen such MDP–liposome gels were made (5 gels per time point) in a 24-well 

plate. Each gel was topped with 1.5 mL of supernatant media (Medium 200 with 1% FBS 

from Life Technologies) and incubated at 37 °C and 5% CO2 for 10 days. At time points day 

2, day 5, and day 10, 1 mL of the release media was removed and frozen at −80 °C until 

human umbilical vein endothelial cells (HUVECs) were ready for treatment.

Assessment of Angiogenic Receptor Activation in HUVECs by PlGF-1 Release

HUVECs (Life Technologies) were seeded in 6-well plates at 2 × 105 cells per well and 

cultured in full media (Medium 200 with 10% LVES from Life Technologies) overnight. 

Cells were then starved for 24 h in low serum media (Medium 200 with 0.5% LVES). 

PlGF-1 release aliquots obtained at each time point in release study were added to cells and 

kept for another 24 h. Two controls were tested: (1) negative control with only low serum 

media and (2) positive control with 1 mL of a 100 ng/mL solution of PlGF-1. PCR was used 

to characterize HUVEC phenotypic expression, n = 5 for three independent repeats. RNA 

extraction was performed according to manufacturer’s protocol (RNeasy, Qiagen, 

Gaithersburg, MD). RNA concentrations were determined using Nanodrop (Thermo 

Scientific, Waltham, MA), and reverse transcription to cDNA was carried out using iScript 

(Qiagen), followed by RT-PCR using a Biorad CFX96 Real-Time PCR machine (Biorad, 

Berkeley, CA) and SsoAdvanced SYBR-green KIT (Qiagen). PCR primers were purchased 

from Life Technologies. Primers used: vascular endothelial growth factor receptor 1, 

VEGFR-1 forward: 5-TCCCTTATGATGCCAGCAAGT-3, VEGFR-1 reverse: 5-

CCAAAAGCCCCTCTTCCAA-3; vascular endothelial growth factor receptor 2, VEGFR-2 

forward: 5-CACCACTCAAACGCTGACATGTA-3, VEGFR-2 reverse: 5-

GCTCGTTGGCGCACTCTT-3; housekeeping ribosomal 60s subunit L37a forward primer: 

ATTGAAATCAGCCAGCACGC, L37a reverse primer: 

AGGAACCACAGTGCCAGATCC. CT values generated by the software were compared to 
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L37a expression. Expression of the gene of interest was normalized to control expression 

(media control) noted in each experiment.

In Vivo Subcutaneous Implants in Rats

All experiments were approved by the Rice University Institutional Animal Care and Use 

committee. Female Wistar rats (225–250 g, Charles River Laboratories, Wilmington, MA) 

were anesthetized using isofluorane (2% for induction and 1% for maintenance) and dorsal 

aspects shaved under sterile conditions. Three different hydrogels were made (n = 4 for each 

gel) and loaded in syringes with 22 gauge needles. The gels were prepared as follows:

1. MDP alone (SLac): 20 mg/mL SLac mixed with HBSS in 1:1 ratio

2. MDP(PlGF-1): 20 mg/mL SLac mixed with 1 μg/mL of recombinant rat PlGF-1 

(PeproTech) made in HBSS, in 1:1 ratio.

3. MDP(Lipo(PlGF-1)): 20 mg/mL SLac mixed with rat PlGF-1-encapsulated 

liposomes (containing approximately 60 ng PlGF-1) made in HBSS, in 1:1 ratio.

Two hundred microliter subcutaneous injections were made in four separate 1.5 in. spaced 

randomized sites on the dorsal aspect, on either side between the lower thoracic and upper 

lumbar vertebrae. At tested time points day 2, day 5, and day 10, rats were euthanized using 

an overdose of isoflurane, CO2 asphyxiation, and bilateral thoracic puncture. The dorsal skin 

around the entire implant was removed, washed with PBS, and fixed in neutral buffered 

formalin for 24 h prior to processing.

Evaluation of Cellular Infiltrate, Neomatrix Development, and Angiogenesis

Tissue was processed to paraffin blocks, sectioned at 7 μm, deparaffinized, and stained for 

cellular infiltrate using H&E. Masson’s Trichrome staining was carried out according to 

manufacturer’s instructions (Sigma-Aldrich, St. Louis, MO) to visualize collagen deposition. 

Cellular infiltrate was determined using immunostaining for macrophages: rabbit anti-rat 

CD68+ (Abcam, Cambridge, UK), and nucleic DAPI counterstain. Angiogenic evaluation 

was performed by immunostaining for endothelial cells: rabbit anti-rat vWF+ (ABCam), 

biotin anti-rat Lectin+ (Santa Cruz Biotechnology, Dallas, TX); smooth muscle cells: rabbit 

anti-rat α-SMA+ (Dako, Carpenteria, CCA), mouse anti-rat α-SMA+ (Abcam); pericytes: 

mouse anti-rat Nestin+ (Millipore, Darmstadt, Germany) and nucleic DAPI counterstain. 

Secondary antibodies used were donkey anti-rabbit AF 647, goat anti-mouse FITC, 

streptavidin AF 647 (Life Technologies), donkey anti-rabbit AF 568. Cellular infiltrate was 

quantified by counting DAPI-stained nuclei and cells stained as macrophages using ImajeJ 

software. Angiogenesis was quantified by determining vessel density (vessels per unit area, 

n = 4 separate sections, n = 4 samples).

Statistical Analysis

Data are represented as mean ± SD. One-way ANOVA was conducted for multiple 

comparisons of parametric data, with Tukey post-hoc analysis for all pairwise comparisons 

of the mean responses to the different treatment groups. Values of p < 0.05 were considered 

to be statistically significant.
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RESULTS AND DISCUSSION

Temporal Control of PlGF-1 Release Leads to Controlled Activation of Angiogenic 
Receptors

In vitro angiogenic marker expression of HUVECs was quantified by RT-PCR in response 

to PlGF-1 release. Release media aliquots at days 2, 5, and 10 resulted in upregulation of 

canonical angiogenic marker VEGFR-1 and VEGFR-2 expression. Receptor upregulation 

was normalized to ribosomal housekeeping gene L37a.15,40 Day 2 expression levels were 

not immediately upregulated to a significant extent (Figure 2). Peak expression is seen at 

day 5 with a decrease by day 10. This suggests that signaling by PlGF-1 is delayed past day 

2, due to liposomal release occurring around day 3, affirming GF release previously 

reported.22 VEGFR-1 and VEGFR-2 upregulation is critical for angiogenesis.7,9,34 These 

results suggest that in vivo angiogenesis can be tailored temporally by employing MLCs to 

delay angiogenic stimuli. Loading of PlGF-1 in the matrix resulted in more immediate 

receptor upregulation compared to delayed liposomal release in MDP-(Lipo(PlGF-1)).

Rapid Infiltration of Cells Precedes Vessel Formation

In vivo implantation of MLCs was performed under the dorsal subcutaneous aspect of 

Wistar rats (Figure S1). Composite gels 2 and 3 presented PlGF-1 in the matrix and PlGF-1 

within liposomes, respectively (Figure 1). Harvested tissue at days 2, 5, and 10 was fixed 

and embedded. H&E and immunostaining was used to determine cellular infiltrate. 

Identification of the implant was facilitated by cellular density and hydrogel morphology 

(Figure S2). Representative images at day 2 showed high levels of cellular infiltration into 

each of the implants, irrespective of GF presence (Figure 3). This is in congruence with 

previous studies of MDP/SLac.15,28 Cellular density within implants was maintained at days 

5 and 10 (Figures S3–S5). Cytotaxis is either through MMP-mediated scaffold degradation, 

phagocytosis, or physical motility through soft injectable gels.18,20,28 Cellular infiltration in 

unloaded gels demonstrates MDP potential for molecular reorganization and provision of a 

cytocompatible niche.

Further, from H&E sections and Masson’s Trichrome staining (Figure 4), it can be reasoned 

that high cellular infiltration seems to play a crucial role in preventing a thick fibrous 

encapsulation. It also indicates that the implant remains accessible to migrating cells and is 

not walled off from the rest of the tissue, restricting direct contact with cells, as is usually 

the case when a thick fibrous capsule forms and actively prevents cells from migrating into 

the implant.41–43 The seamless interface of native tissue and composite hydrogels 

demonstrates excellent tissue integration (Figures 3 and S2–S4). Additionally, no gross signs 

of inflammation (redness, swelling, altered gait/function) were observed, indicating minimal 

rejection by the host. This suggests that the host animal responds to the present artificial 

matrix as if it were native extracellular matrix. There are very few materials that exhibit no 

fibrous encapsulation.15,44,45 As per our design strategy, early infiltrating cells may provide 

a suitable niche for the stabilization of nascent vasculature induced by delayed PlGF-1 

release.15
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Characterizing the cellular infiltrate helped identify specific cell types that promote robust 

vascular formation. Immunofluorescent staining showed CD68+ macrophages in all 

scaffolds (Figures 3 S4). While CD68+ macrophages were present in all hydrogels at day 2, 

a higher number of macrophages were observed in the composite gels loaded with PlGF-1, 

compared to SLac alone. By day 5, macrophage counts for all scaffolds were similar, 

tapering by day 10 (Figure 3 and Figures S4 and S5). Resolution of the initial macrophage 

response potentially provides a niche for angiogenesis in MLCs, mimicking native tissue 

healing mechanisms of acute wounds.

Collagen staining using Masson’s Trichrome helped visualize the degradation of implant 

over time (Figures 4 and S6). At day 5, the edges of the implant show disintegration, and 

collagen deposition is found along the same edges as well as in the center of the implant, in 

some cases. Day 10 images indicate more collagen deposition with the size of the implant 

shrinking. It appears that a significant portion of the implant has degraded, and it is replaced 

by new matrix, which can be distinguished from the native fascia by the blue color of the 

collagen staining.

Development of Robust Vasculature

Two separate panels of markers were used to determine angiogenesis: (1) panel A: 

endothelial marker (vWF+; red), smooth muscle marker (α-SMA+; green) counterstained 

with DAPI; (2) panel B: endothelial marker (Lectin+; purple), pericyte marker (Nestin+; 

green), smooth muscle marker (α-SMA+; red) counterstained with DAPI. Angiogenesis 

showed dependence on PlGF-1 release (Figure 5). PlGF-1 releases rapidly from the 

matrix,22 resulting in nascent vessel-like structures defined only by a lining of endothelial 

cells. Early release of PlGF-1 from the hydrogel matrix signals immature and low vessel 

development in the short term (Figures 6 and S8). Incorporating PlGF-1 in liposomes delays 

its release up to 3 days, at which point liposomes lyse, releasing their load.22 Thus, the onset 

of angiogenesis is triggered immediately after that in MLCs. By day 5, many vessels in 

various stages of development are seen in MLCs. Day 5 implants of MLCs demonstrate 

robust angiogenesis in contrast to MDP(PlGF-1) gels releasing PlGF-1 directly from the 

matrix (Figure 6).

These MDP(Lipo(PlGF-1)) implants show the highest vessel density and the greatest 

number of vessels lined with pericytes and smooth muscle cells (Figure 5). Nascent vessels 

start to regress, leaving fewer but more mature vessels at day 10. As a result, the total vessel 

density decreases at day 10, although the presence of mature vessels is still significantly 

high (Figure 5–7). The fascia is not a region that is naturally vascularized. As the hydrogel 

degrades, we believe that excess vessels are also removed by resorption, so that the newly 

deposited matrix is made to closely mimic the native fascia, which normally has a low 

vessel density. Encapsulation of PlGF-1 in liposomes with delayed release after macrophage 

recruitment shows the most robust vessel development within 5 days. In summary, blood 

vessel development begins after 2 days and is most numerous at the 5 day time point, with 

retention of mostly robust mature vessels at the day 10 time point (Figures 7 and 8).
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Comparison to Previous Angiogenesis Attempts

MLCs loaded with growth factors were shown to elicit a controlled immune response and 

tailor angiogenic responses. Clinical outcomes for therapeutic revascularization have been 

met with modest success with current techniques. VEGF delivery via plasmid vector or 

whole growth factor has resulted in leaky vasculature, potential neoplasticity, and 

inadequate clinical improvement.46–48 Stem cell therapy has been used to attempt 

neovascularization. Ongoing clinical trials have shown modest results, with some groups 

suggesting that cell death causes a proinflammatory response that stimulates tissue 

growth.3,15,48

Use of growth factor release to modulate angiogenesis has been shown previously.2,4–8 The 

degree and maturity of the vessels that developed have been modest, compared to the 

neovasculature seen in this study. For example, VEGF delivery from PEG-based hydrogels 

has demonstrated high levels of VEGF release in the first two days with a gradual decrease 

over the next 2 weeks.46 The composites in this study have been shown to release PlGF-1 

after 3 days,22 allowing cellular infiltration to occur prior to PlGF-1 release triggering 

angiogenesis. Alternative strategies have used engineered variants of VEGF conjugated to 

fibrin matrices for sustained release, resulting in nonleaky vasculature.49,50 This delivery 

strategy is encumbered by growth factor modification and optimization for matrix binding. 

Liposomal carriers offer delayed release of a variety of GFs in a tailorable fashion without 

the need for chemical modification.30–32,51–53

Self-assembling peptide hydrogels have been used previously for GF delivery.54,55 

RADA16 has been utilized for delivery of EGF,56 PDGF-BB,57 SDF-1,58 and IGF-1.59 

Although these approaches have been met with appreciable success, our system differs in its 

modular nature. The use of liposomal carriers allows for long-term and delayed delivery of 

therapeutics. Further, initial in vivo studies have shown the rapid degradation of the 

RADA16 within 3–7 days, compared to the persistence of MLCs for over 2 weeks.15,28

This delivery strategy can be improved with encapsulation of a variety of drugs, growth 

factors, and cytokines in microspheres,60 micelles,61,62 and nanoparticles63,64 and possibly 

covalent conjugation65 for release in the long term as well as multiple GF delivery.10,66 

Additionally, we and others have demonstrated the ability to use heparin binding domains to 

attenuate release from MDP.20,62,67

MLCs can serve as matrices for tissue regeneration to treat a milieu of pathologies 

potentially including peripheral vascular disease, diabetic ulcers, and tissue infarcts.48 

Future in vivo experiments in disease models will better help guide the utility of MLCs in 

clinically relevant settings. We have demonstrated the ability to tailor and modulate 

inflammation to one of an M2 healing/pro-angiogenic phenotype from MDP.28 We have 

also shown the ability to abrogate adverse tissue reactions by passive loading of MDP. 

Given the synergistic nature of MLCs and their ability to temporally control tissue 

responses, as demonstrated in this study, we envision a series of models in ischemic tissue 

disease that can benefit from these approaches.2,6,48
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CONCLUSION

In this study, we have presented a technique to fabricate MLCs that modulate angiogenesis. 

MLCs with PlGF-1 loaded in the liposome component showed temporal control of in vitro 

angiogenic receptor activation. When MLCs with PlGF-1 loaded in the liposomes were 

injected subcutaneously in rats, MLCs showed spatial and temporal control of angiogenesis. 

These hydrogels showed high levels of cellular infiltration, creating a suitable environment 

for large stable microvasculature promoted by PlGF-1 release. The biological response 

observed by time-controlled release from these supramolecular constructs is directly 

dependent on structural aspects of MLCs. These constructs were rationally designed, with 

the intent of developing a system that can mimic the level of complexity seen in 

sophisticated natural systems. MLCs were engineered with multiple components capable of 

displaying orthogonal self-assembly and the subsequent time-controlled release.22

Supplementary Material
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Figure 1. 
Supramolecular orthogonal self-assembly. Schematic showing individual components that 

self-assemble to yield three different hydrogels (1–3).
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Figure 2. 
Angiogenic receptor activation as a function of temporal growth factor release. Quantitative 

RT-PCR showing expression levels of (a) VEGFR-1 and (b) VEGFR-2 in HUVECs at day 

2, day 5, and day 10 time points; fold expression over media control. HUVECs were treated 

with release aliquots from MLCs containing PlGF-1 encapsulated liposomes to induce 

expression of angiogenic markers. MLCs refer to Multidomain peptide–Liposome 

Composites. Different Greek letters indicate statistically significant differences between 

each receptor.
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Figure 3. 
Evaluation of cellular infiltrate. Top row: H&E images of subcutaneous implants in rats at 

day 2, showing rapid cellular infiltration (days 5 and 10 H&E images are shown in Figure 

S3); scale bar 500 μm. Bottom row: Immunostaining for monocytes/macrophages (CD68+; 

red) and nuclei (DAPI; blue) within the various implants at day 2. High macrophage 

infiltration can be seen in all cases (days 5 and 10 images are shown in Figures S4); scale 

bar 200 μm.
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Figure 4. 
Evaluation of new matrix formation. Masson’s Trichrome staining of subcutaneous implants 

in rats showing deposition of new collagen matrix at day 5 (top row). By day 10 (bottom 

row), significant degradation of peptide matrix is observed, with new collagen matrix 

deposited where the implant material existed previously. Masson’s Trichrome stain indicates 

muscle fibers in red, collagen in blue, cell cytoplasm in pink, and cell nuclei in dark brown. 

Scale bar 500 μm.
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Figure 5. 
Quantification of angiogenesis. Vessel density in the three implants was analyzed showing 

the significant effect of liposomal PlGF-1 release from MLCs on angiogenesis. At day 2, no 

vessel development is observed, while at day 5, the highest vessel density is seen in (3). At 

day 10, vessel density stabilizes in (3) due to loss of immature vessels, while it finally starts 

to increase in (1). A moderate increase in vessel density is seen in (2) from day 5 to day 10. 

Different Greek letters indicate statistically significant differences.
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Figure 6. 
Assessment of neoangiogenesis: day 5 time point. Two panels of angiogenic markers were 

used for qualifying vessel development: (A) endothelial marker (vWF+; red), smooth 

muscle marker (α-SMA+; green) counterstained with DAPI; (B) endothelial marker (Lectin

+; purple), pericyte marker (Nestin+; green), smooth muscle marker (α-SMA+; red) 

counterstained with DAPI. Both panels show development of mature vasculature by day 5 in 

the presence of PlGF-1. Scale bar 200 μm.
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Figure 7. 
Assessment of neoangiogenesis: MDP(Lipo(PlGF-1)). The degree of liposomal PlGF-1-

dependent vessel development at each time point can be seen in these images. At day 5, 

vigorous vessel formation is observed. By day 10, mature vessels remain intact while the 

immature ones resorb, giving a stabilized vascular network. Two panels of angiogenic 

markers were used for qualifying vessel development: (A) endothelial marker (vWF+; red), 

smooth muscle marker (α-SMA+; green) counterstained with DAPI; (B) endothelial marker 

(Lectin+; purple), pericyte marker (Nestin+; green), smooth muscle marker (α-SMA+; red) 

counterstained with DAPI. Scale bar 200 μm (component images are shown in Figure S6, 

and images for all other implants are shown in Figures S7 and S8).
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Figure 8. 
Schematic of proposed in vivo mechanism. Orthogonally self-assembled scaffolds recruit 

macrophages and release growth factors. Macrophages recruited to the implant resolve over 

the implant period, seguing the development of endothelial lined vessels (day 2) with 

supporting pericytes (day 5) and maturation into smooth-muscle-lined vessels (days 5–10).
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Table 1

Summary of Composite Hydrogels and MDP-Liposome Composites (MLCs)
a

day 2 day 5 day 10

nascent vessels mature vessels nascent vessels mature vessels nascent vessels mature vessels

MDP 0 0 0 0 2 1

MDP(PlGF-1) 1 0 2 0 2 2

MDP(Lipo (PlGF-1)) 0 0 2 3 1 3

a
Numbers indicate degree of response: 1 = low vessel density, 2 = moderate vessel density, 3 = high vessel density.
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