Cytotoxic Components Against Human Oral Squamous Cell Carcinoma Isolated from *Andrographis paniculata*

RYUICHIRO SUZUKI¹, YASUAKI MATSUSHIMA¹, NORIYUKI OKUDAIRA², HIROSHI SAKAGAMI² and YOSHIAKI SHIRATAKI¹

¹Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan; ²Division of Pharmacology, Meikai University School of Dentistry, Sakado, Japan

Reprinted from
ANTICANCER RESEARCH 36: 5931-5936 (2016)
Anticancer Research
International Journal of Cancer Research and Treatment

ISSN (print): 0250-7005
ISSN (online): 1791-7530

Editorial Board

P. A. Abrahamsson, Malmö, Sweden
B. B. Aggarwal, Houston, TX, USA
T. Akimoto, Kashiwa, Chiba, Japan
P. Z. Anastasiadis, Jacksonville, FL, USA
A. Argiris, San Antonio, TX, USA
J. P. Armand, Toulouse, France
V. I. Avramis, Los Angeles, CA, USA
R. C. Bost, Houston, TX, USA
D. T. Bau, Taichung, Taiwan, ROC
G. Bauer, Freiburg, Germany
E. E. Baulieu, Le Kremlin-Bicêtre, France
E. J. Benz, Jr., Boston, MA, USA
J. Bergh, Stockholm, Sweden
F. T. Bosman, Lausanne, Switzerland
G. Broich, Monza, Italy
Ø. S. Brueland, Oslo, Norway
J. M. Buatti, Iowa City, IA, USA
M. M. Burger, Basel, Switzerland
M. Carbone, Honolulu, HI, USA
C. Carlberg, Kuopio, Finland
J. Carlsson, Uppsala, Sweden
A. F. Chambers, London, ON, Canada
P. Chandra, Frankfurt am Main, Germany
L. Cheng, Indianapolis, IN, USA
J.-G. Chung, Taichung, Taiwan, ROC
E. de Clercq, Leuven, Belgium
W. Den Otter, Amsterdam, The Netherlands
E. P. Diamandis, Toronto, ON, Canada
G. Th. Diamandopoulos, Boston, MA, USA
D. W. Eilers, Stanford, CA, USA
A. J. Fernandez-Pol, Chesterfield, MO, USA
J. J. Fidler, Houston, TX, USA
A. P. Fields, Jacksonville, FL, USA
B. Fuchs, Zürich, Switzerland
D. Fuchs, Innsbruck, Austria
G. Gabbiani, Geneva, Switzerland
R. Ganapathi, Charlotte, NC, USA
A. F. Gazdar, Dallas, TX, USA
J. H. Geschwind, Baltimore, MD, USA
A. Giordano, Philadelphia, PA, USA
G. Gitsch, Freiburg, Germany
R. H. Goldfarb, Guilford, CT, USA
L. Helenso, Quakertown, PA, USA
R. M. Hoffman, San Diego, CA, USA
S. C. Jhanwar, New York, NY, USA
J. V. Johannessen, Oslo, Norway
B. Kaina, Mann, Germany
P.-L. Kellokumpu-Lehtinen, Tampere, Finland
D. G. Kieback, Schleswig, Germany
R. Klapdor, Hamburg, Germany
S. D. Kotaridis, Athens, Greece
G. R. F. Krueger, Köln, Germany
Pat M. Kumar, Manchester, UK
Shant Kumar, Manchester, UK
O. D. Laerum, Bergen, Norway
F. J. Lejeune, Lausanne, Switzerland
L. F. Liu, Piscataway, NJ, USA
D. M. Lopez, Miami, FL, USA
E. Lundgren, Umeå, Sweden
Y. Mameha, Fukuoka, Japan
M. Marin, Kanazawa, Ishikawa, Japan
R. Narayanan, Boca Raton, FL, USA
K. Nilsson, Uppsala, Sweden
S. Pathak, Houston, TX, USA
J. L. Persson, Malms, Sweden
G. J. Pilkinson, Portsmouth, UK
C. D. Platsoucas, Norfolk, VA, USA
A. Polliaek, Jerusalem, Israel
M. Rigaud, Limoges, France
U. Ringborg, Stockholm, Sweden
M. Roselli, Rome, Italy
A. Schauer, Göttingen, Germany
M. Schneider, Wuppertal, Germany
A. Seth, Toronto, ON, Canada
G. V. Sherbet, Newcastle-upon-Tyne, UK
G.-A. Soma, Kagawa, Japan
G. S. Stein, Burlington, VT, USA
T. Stigbrand, Umeå, Sweden
T. M. Theophanides, Athens, Greece
P. M. Ueland, Bergen, Norway
H. van Vlierberghe, Ghent, Belgium
R. G. Vile, Rochester, MN, USA
M. Weller, Zürich, Switzerland
B. Westarberg, Uppsala, Sweden
Y. Yen, Duarte, CA, USA
M. R. Young, Charleston, SC, USA
B. Zumboff, New York, NY, USA
J. G. Delinasios, Athens, Greece
Managing Editor
G. J. Delinasios, Athens, Greece
Assistant Managing Editor and Executive Publisher
E. Iliadis, Athens, Greece
Production Editor

Executive Publisher: International Institute of Anticancer Research, 1st km Kapandritiou-Kalamou Rd., Kapandriti, Greece; Tel: +30-22930-53389.
U.S. Branch: Anticancer Research USA, Inc., 111 Bay Avenue, Highlands, NJ 07732, USA.
E-mails: Editorial Office: journals@iiar-anticancer.org
Managing Editor: editor@iiar-anticancer.org

Anticancer Research supports: (a) the establishment and the activities of the International Institute of Anticancer Research (IIAR, Kapandriti, Greece); and (b) the organization of the International Conferences of Anticancer Research. The IIAR is a member of IIUCR and for more information about Anticancer Research, visit the IIAR website: www.iiar-anticancer.org

Publication Data: Anticancer Research (AR) is published monthly from January 2009. Each annual volume comprises 12 issues. Annual Author and Subject Indices are included in the last issue of each volume. Anticancer Research (Vol. 24, 2004) and onwards appears online with Stanford University HighWire Press from April 2009.

Copyright: On publication of a manuscript in AR, which is a copyrighted publication, the legal ownership of all published parts of the paper passes from the Author(s) to the Journal.

Annual Subscription Rates 2016 per volume: Institutional subscription US$ 1,500.00 (online) or US$ 2,277.00 (print & online). Personal subscription US$ 697.00 (online) or US$ 997.00 (print). Prices include delivery and insurance. The complete previous volumes of Anticancer Research (Vol. 1-35, 1981-2015) are available at 50% discount on the above rates.

Subscription Orders: Orders can be placed at agencies, bookstores, or directly with the Publisher. (e-mail: subscriptions@iiar-anticancer.org)

Advertising: All correspondence and rate requests should be addressed to the Editorial Office.

Book Reviews: Recently published books and journals should be sent to the Editorial Office. Reviews will be published within 2-4 months.

Articles in Anticancer Research are regularly indexed in all bibliographic services, including Current Contents (Life Sciences), Science Citation Index, Index Medicus, Biological Abstracts, PubMed, Chemical Abstracts, Excerpta Medica, University of Sheffield Biomedical Information Database, EMBASE, CAB, EMBiology, Elsevier BIOBASE, FLUIDEX, Textiles, Scopus, Progress in Palliative Care, Cambridge Scientific Abstracts, Cancergram (International Cancer Research Data Bank), MEDLINE, Reference Update - RIS Inc., PASCAL-CNRS, Inpharma-Reactions (Datastar, IRS), ABC, Immunology Abstracts, Telegen Abstracts, Genetics Abstracts, Nutrition Research Newsletter, Daisy Science Abstracts, Current Titles in Dentistry, Inpharma Weekly, BioBASE, MedBASE, CAB Abstracts/Global Health Databases, Investigational Drugs Database, VINITI Abstracts Journal, Leeds Medical Information, PubHub, Sociedad Iberoamericana de Informacion Cientifica (SIC) Data Bases. Authorization to photocopy items for internal or personal use, or the internal or personal clients, is granted by Anticancer Research, provided that the base fee of $2.00 per copy, plus 0.40 per page is paid directly to the Copyright Clearance Center, 27 Congress Street, Salem, MA 01970, USA. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Service is 0250-7005/2016 $2.00 - 0.40.

The Editors and Publishers of Anticancer Research accept no responsibility for the opinions expressed by the contributors or for the content of advertisements appearing therein.

Copyright © 2016, International Institute of Anticancer Research (Dr. John G. Delinasios). All rights reserved.

D.T.P. BY IAR PRINTED BY ENTYPO, ATHENS, GREECE. PRINTED ON ACID-FREE PAPER
Cytotoxic Components Against Human Oral Squamous Cell Carcinoma Isolated from *Andrographis paniculata*

RYUICHIRO SUZUKI, **YASUAKI MATSUSHIMA**, **NORIYUKI OKUDAIRA**, **HIROSHI SAKAGAMI** and **YOSHIAKI SHIRATAKI**

1Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan; 2Division of Pharmacology, Meikai University School of Dentistry, Sakado, Japan

Abstract. Background: The 5-year survival rate of patients with oral cancer has remained approximately 50% during the past 30 years, possibly due to the poor tumor selectivity of conventional anticancer drugs. This prompted us to search for new candidates for anticancer drugs that have higher cytotoxicity and tumor selectivity. Materials and Methods: Dried leaves of *Andrographis paniculata* were supplied from a market in Shanghai. The methanolic fraction of *A. paniculata* was further fractionated to identify cytotoxic principles by spectroscopic analysis and comparison with literature values. Viable cell number was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide method, and tumor specificity was calculated by relative cytotoxicity against oral squamous cell carcinoma cell lines compared to that against normal oral cells. Apoptosis induction was detected by cleaved poly (ADP-ribose) polymerase and caspase-3 on western blot analysis. Results: Major cytotoxicity in the methanol extract of a leaf of *A. paniculata* was recovered by partitioning with EtOAc, followed by silica gel chromatography. Further purification with reversed-phase high-performance liquid chromatography led to isolation of four known cytotoxic compounds, 14-deoxyandrographolide, andrographolide, neoandrographolide and deoxyandrographiside. Among them, andrographolide had the greatest cytotoxicity and tumor specificity, also inducing caspase-3 activation of HSC-2 oral squamous cell carcinoma cells. Conclusion: The present study identified andrographolide as a major antitumor principle in the methanolic extract of leaves of *A. paniculata*.

Correspondence to: Professor Yoshiaki Shirataki, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan. Tel: +81 492717053, Fax: +81 492717984, e-mail: shiratak@josai.ac.jp

Key Words: *Andrographis paniculata*, cytotoxicity, human oral squamous cell carcinoma.
General experimental procedures. Nuclear magnetic resonance (NMR) spectra were measured on a 400 MHz Agilent-400MR-vmnrs 400 spectrometer (Agilent Technologies, Santa Clara, CA, USA) at room temperature using standard pulse sequences. Electron ionization-mass spectra (EI-MS) were measured with a JOEL JMN 700 spectrometer (JEOL Ltd., Tokyo, Japan). Electrospray ionization (ESI)-MS was also measured with an API4000-QTRP (AB SCIXE, CA, USA). Open column chromatography was performed on silica gel. High-performance liquid chromatography (HPLC) was performed with Senshu Pak ODS column (4.6 mm i.d. × 150 mm for analysis, 10 mm i.d. × 250 mm for preparation; Senshu Scientific Co., Ltd., Tokyo, Japan). AQUASIL SP100 (10 mm i.d. × 250 mm; Senshu Scientific Co., Ltd.) was also used as preparative column for HPLC purification.

Assay for cytotoxic activity. The cells were seeded (2.5×10^3 cells/well, 0.1 ml/well) in 96-microwell plates (Becton Dickinson and Company, Franklin Lakes, NJ, USA) and incubated for 48 h to allow cell attachment. Near-confluent cells were treated for 48 h with different concentrations of the test compounds in fresh medium. The relative viable cell number of adherent cells was then determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenylyltrazolium bromide (MTT) method (5). In brief, control and treated cells were incubated for 4 h with 0.2 mg/ml of MTT in the culture medium. After removing the medium, the reaction product, formazan, was extracted with DMSO and the absorbance (corresponding to the relative viable cell number) was measured at 540 nm by a microplate reader (Multiskan Bichromatic Labsystems, Helsinki, Finland). The 50% cytotoxic concentration (CC_{50}) was determined from the dose–response curve. The tumor-specificity (TS) was calculated by the following equation: TS=mean CC_{50} (normal cells)/mean CC_{50} (all tumor cell lines).

Statistical treatment. Experimental values are expressed as the mean±standard deviation (SD). Statistical analysis was performed by using Student’s t-test. A p-value of less than 0.05 was considered to be significant.

Results

Isolation of active components. During the search for candidate natural products for the treatment of oral cancer, methanolic extract of A. paniculata was found to show slightly higher cytotoxic activity against oral squamous cell carcinoma (HSC-2, HSC-3 and HSC-4) than human oral normal cells (HGF, HPLF, HPC), with an approximate TS fraction had the strongest cytotoxicity. Therefore, the EtOAc-soluble fraction was further purified to yield three compounds: 1 (87.8 mg) and 2 (75.1 mg) were separated by column chromatography using silica gel and polarity etanol (1:1), respectively. 4 (35.3 mg) was purified by preparative HPLC.

Cell culture. Human oral squamous cell carcinoma cell lines (HSC-2, HSC-3, HSC-4) were purchased from Riken Cell Bank (Tsukuba, Japan). The normal human oral cells, HGF, HPLF and HPC were purchased from the Medicines of Josai University.

Preparation of medicinal extract. Methanolic extract of leaves of A. paniculata (3 kg) was prepared by extraction with MeOH under reflux for 3 h. This extract was completely dried in vacuo to give the corresponding dried extract (146 g).

Isolation of components from methanolic extract. The methanolic extract was suspended in water, then extracted with EtOAc and n-BuOH, successively. Each solution was evaporated in vacuo to give EtOAc (57.2 g) and n-BuOH (43.1 g) fractions, respectively. The EtOAc fraction was chromatographed on a silica gel column by step-wise elution with a CHCl3-MeOH mixture (CHCl3: MeOH=100:1) to give three fractions (Fr. 1-3). Fr. 1 (31.2 g) was further purified with silica gel open-column chromatography eluting with CHCl3-MeOH mixture (CHCl3: MeOH=100:1→1:1→1:2) to give three fractions (Fr. 1-3). Fr. 2 (31.2 g) was further purified with silica gel open-column chromatography eluting with CHCl3-MeOH mixture (CHCl3: MeOH=100:1→1:2→1:3) to give three fractions (Fr. 2-1, 2-2, 2-3). Fr. 3 (15.1 g) was further purified with silica gel open-column chromatography eluting with CHCl3-MeOH mixture (CHCl3: MeOH=100:1→1:3→1:4→1:5) to give five fractions (Fr. 3-1, 3-2, 3-3, 3-4, 3-5). Fr. 4 (12.5 g) was rechromatographed on silica gel open-column chromatography eluting with CHCl3-MeOH mixture (CHCl3: MeOH=100:1→1:5→1:7→1:15→1:30) to give three fractions (Fr. 4-1, 4-2, 4-3).

General experimental procedures. Nuclear magnetic resonance (NMR) spectra were measured on a 400 MHz Agilent-400MR-vmnrs 400 spectrometer (Agilent Technologies, Santa Clara, CA, USA) at room temperature using standard pulse sequences. Electron ionization-mass spectra (EI-MS) were measured with a JOEL JMN 700 spectrometer (JEOL Ltd., Tokyo, Japan). Electrospray ionization (ESI)-MS was also measured with an API4000-QTRP (AB SCIXE, CA, USA). Open column chromatography was performed on silica gel. High-performance liquid chromatography (HPLC) was performed with Senshu Pak ODS column (4.6 mm i.d. × 150 mm for analysis, 10 mm i.d. × 250 mm for preparation; Senshu Scientific Co., Ltd., Tokyo, Japan). AQUASIL SP100 (10 mm i.d. × 250 mm; Senshu Scientific Co., Ltd.) was also used as preparative column for HPLC purification.

Plant materials. The dried leaves of A. paniculata were supplied from a market in Shanghai. The specimen was identified by Dr. Y. Shirataki and voucher specimens (#20104521) were also deposited in the Department of Pharmacognosy and Natural Medicines of Josai University.

Preparation of medicinal extract. Methanolic extract of leaves of A. paniculata (3 kg) was prepared by extraction with MeOH under reflux for 3 h. This extract was completely dried in vacuo to give the corresponding dried extract (146 g).

Isolation of components from methanolic extract. The methanolic extract was suspended in water, then extracted with EtOAc and n-BuOH, successively. Each solution was evaporated in vacuo to give EtOAc (57.2 g) and n-BuOH (43.1 g) fractions, respectively. The EtOAc fraction was chromatographed on a silica gel column by step-wise elution with a CHCl3-MeOH mixture (CHCl3: MeOH=100:1→1:1→1:3) to give three fractions (Fr. 1-3). Fr. 2 (31.2 g) was further purified with silica gel open-column chromatography eluting with CHCl3-MeOH mixture (CHCl3: MeOH=100:1→1:2→1:3→1:4→1:5) to give five fractions (Fr. 2-1, 2-2, 2-3, 2-4, 2-5). Fr. 3 (15.1 g) was further purified with silica gel open-column chromatography eluting with CHCl3-MeOH mixture (CHCl3: MeOH=100:1→1:3→1:4→1:5→1:7→1:15→1:30) to give three fractions (Fr. 3-1, 3-2, 3-3, 3-4, 3-5).

Cell culture. Human oral squamous cell carcinoma cell lines (HSC-2, HSC-3, HSC-4) were purchased from Riken Cell Bank (Tsukuba, Ibaraki, Japan). Normal human oral cells, HGF, HPLF and HPC were prepared from periodontal tissues, according to the guideline of the Intramural Ethic Committee (No. A0808), after obtaining informed consent from the 12-year-old patient at the Meikai University Hospital (4). Since normal oral cells have a limited lifespan of 43-47 week, with a medium change between the subcultures.

Western blot analysis. The cells were washed with PBS and resuspended in 50 mM Tris-HCl (pH 7.6), 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 0.5% deoxycholic acid, 1% NP-40, and protease inhibitors (RIPA buffer). After ultrasonication using Bioruptor (UCD-250, Cosmo Bio Tokyo, Japan) for 12.5 min (10 s on, 20 s off) at the middle level of output (250 W) at 4°C. The soluble cellular extracts were recovered after centrifugation for 10 min at 16,000 × g. The protein concentration of each sample was determined using BCA Protein Assay Reagent Kit (Thermo Fisher Scientific Waltham, MA, USA), and cell extracts were subjected to western blot analysis. The blots were probed with primary antibody against PARP or caspase-3 followed by a horseradish peroxidase-conjugated secondary antibody. The immune complexes were visualized using Pierce Western Blotting Substrate Plus (Thermo Fisher Scientific). Western blot results were documented and quantified using ImageQuant LAS 500 (GE Healthcare Japan, Tokyo, Japan).

Statistical treatment. Experimental values are expressed as the mean±standard deviation (SD). Statistical analysis was performed by using Student’s t-test. A p-value of less than 0.05 was considered to be significant.
Identification of isolated compounds 1-4. Utilizing HPLC, major cytotoxic substances in Frs. 2-1, 2-2/2-3, 2-4 and 2-5 were isolated as compounds 1, 2, 3 and 4, respectively. On the basis of spectroscopic analysis including NMR, MS and comparison with those described in the respective literature, these compounds were identified as 14-deoxyandrographolide [1] (6), andrographolide [2] (6), neoandrographolide [3] (7) and deoxyandrographiside [4] (8), respectively (Figure 1).

Cytotoxic activities of isolated compounds. The cytotoxicities of isolated compounds are shown in Table II. Among four isolated compounds, andrographolide had the highest cytotoxicity against human oral squamous tumor cells (mean CC50=8.0 μM) and the greatest tumor specificity (TS=9) (Table II). Neoandrographolide exhibited very weak cytotoxicity against both human tumor cells and normal cells. Deoxyandrographiside exhibited 2- to 3-fold lower cytotoxicity than deoxyandrographolide (Table II). Our preliminary study demonstrated that treatment of HSC-2 cells with 16 or 32 μM andrographolide induced the cleavage of PARP and caspase-3, suggesting the activation of caspase-3 (Figure 2).

Table I. Cytotoxicity of silica gel chromatography fractions prepared from the methanol extract of Andrographis paniculata. The cells were incubated for 48 h without or with test compounds and the 50% cytotoxic concentration (CC50) value was determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide method. Each value represents the mean of triplicate assays.

<table>
<thead>
<tr>
<th></th>
<th>Human oral squamous cell carcinoma cell lines</th>
<th>Human normal oral cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HSC-2 HSC-3 HSC-4 Mean</td>
<td>HGF HPLF HPC Mean TS</td>
</tr>
<tr>
<td>MeOH extr.</td>
<td>34±15 26±2 21±7 28</td>
<td>67±10 83±26 72±8 74 3</td>
</tr>
<tr>
<td>Fr. 2-1</td>
<td>36±3 33±2 29±1 32</td>
<td>193±3 161±5 89±2 148 5</td>
</tr>
<tr>
<td>Fr. 2-2</td>
<td>7±1 ±5 ±7 5 5</td>
<td>41±1 29±0 12±1 27 5</td>
</tr>
<tr>
<td>Fr. 2-3</td>
<td>11±1 ±6 ±7 7 7</td>
<td>48±3 29±1 13±5 30 4</td>
</tr>
<tr>
<td>Fr. 2-4</td>
<td>46±5 ±9 ±7 ±9</td>
<td>98±6 165±0 250>171 5</td>
</tr>
<tr>
<td>Fr. 2-5</td>
<td>99±6 182±29 97±10 112</td>
<td>>250 >250 243±77 >248 2</td>
</tr>
<tr>
<td>Fr. 2-6</td>
<td>131±9 213±7 139±18 145</td>
<td>>250 >250 250>250 2</td>
</tr>
<tr>
<td>Fr. 2-7</td>
<td>76±2 134±5 80±10 84</td>
<td>>1000 >1000 >1000 >1000>43</td>
</tr>
<tr>
<td>5-FU</td>
<td><8 ±3 ±6 ±8</td>
<td>>7.5 >7.5 >7.5 >7.5 >7.5 >63</td>
</tr>
<tr>
<td>DXR</td>
<td><0.06 0.21 0.08 0.12</td>
<td></td>
</tr>
</tbody>
</table>

TS, Tumor-specificity index; HGF, human gingival fibroblast; HPC, human pulp cells; HPLF, human periodontal ligament fibroblast; DXR, doxorubicin; 5-FU, 5-fluorouracil.

Figure 1. Structures of major cytotoxic compounds from the methanolic extract of Andrographis paniculata: 14-deoxyandrographolide [1], andrographolide [2], neoandrographolide [3] and deoxyandrographiside [4].
Discussion

The present study identified andrographolide as the major antitumor principle in the methanolic extract of the leaves of *A. paniculata*. During the purification of andrographolide, the TS value increased from 3 (methanolic extract), to 4-5 (EtOAc partition, followed by silica gel chromatography) to 9 (final purification step with reversed phase HPLC) (Tables I and II). For the determination of TS, we used human malignant (HSC-2, HSC-3, HSC-4) and non-malignant (HGF, HPLF, HPC) cells as target cells, since the TS value determined by the present method well correlated with their in vivo antitumor activity, regardless of different cell types (either epithelial or mesenchymal) (9). For example, 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan used as clinical antitumor medicine, had a TS value of 808 by this assay method (10).

We next considered the structure–activity relationship of isolated components. The cytotoxicity of andrographolide against human oral squamous cell carcinoma cell lines (CC$_{50}$=8 μM) was higher than that of 14-deoxyandrographolide (CC$_{50}$=204 μM). The differences in chemical structure between these compounds are the position of the double bond on the tetrahydrofuran (endo- or exo-) and existence of a hydroxyl group connected at C-14. Thus, the hydroxyl group connected at C-14 and the position of the olefin bond are important for cytotoxicity against tumor cells. Furthermore, glycosylation of these diterpenoids significantly reduced their cytotoxic activity against tumor cells, as shown by the comparison of neoando grapholide (CC$_{50}$ >1,000 μM) and deoxyandrographiside (576 μM). Based on comparison of the structures of these glycosides, the existence of a hydroxyl group at the C-3 position is essential for their cytotoxicity.

The present study demonstrated the possible induction of apoptosis in HSC-2 cells by andrographolide. Although induction of apoptosis by andrographolide via nuclear factor-kappa B inhibition has been reported (11-14), very few studies have dealt with its tumor specificity (15). It remains to be investigated why this compound exhibits tumor-selective cytotoxicity.

Conflicts of Interest

The Authors confirm that there are no conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Acknowledgements

This work was supported in part by Grant-in-Aid for Challenging Exploratory Research from The Ministry of Education, Culture, Sports, Science and Technology, research funds from Meikai University School of Dentistry (Sakagami H. 25670897).
References

Received August 6, 2016
Revised August 31, 2016
Accepted September 5, 2016