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a  b  s  t  r  a  c  t

The  nutritional  potential  of protein  isolate  from  rubber  seed  (RPI)  in the  diets  of Labeo  rohita
(initial  average  weight  4.45  ± 0.01  g) was  assessed  in  a  60  days  feeding  trial.  Five isoni-
trogenous  (32.62  ± 0.13  CP  Kg−1) and  isocaloric  (18.47  ±  0.08 MJ  kg−1) experimental  diets
were  formulated  with graded  level  of  RPI  like  0%, 25%,  50%,  75%,  or 100%  in replacement
for  soybean  protein  isolate  (SPI),  and  designated  as Control,  RPI25,  RPI50,  RPI75,  RPI100,
respectively.  The  RPI  contributed  0%, 13%,  26%,  39%  or  52%  of the  total  dietary  protein  in
the  diets.  Each  diets  were  randomly  assigned  to 15  experimental  tanks  containing  12  fish
in triplicates  and  fed  to  satiation  twice  daily  at 10:00 h  and  18:00  h. At the  end  of  the  feed-
ing  trial,  the  growth  performance  and  nutrient  utilization  indices  such  as  percent  weight
gain (WG%),  specific  growth  rate  (SGR),  daily growth  coefficient  (DGC),  feed  intake  (FI),
protein  efficiency  ratio  (PER),  feed  conversion  ratio  (FCR)  and  protein  retention  (PR)  values
were not  significantly  (p  >  0.05)  affected  by  the dietary  treatments  irrespective  of  inclusion
levels  of RPI.  A  significantly  higher  (p  < 0.05)  hepatosomatic  index  (HSI)  was  recorded  in
the control  and  RPI  50 group compared  to other  treatment  groups  (p <  0.05).  The  intestinal
somatic  index  (ISI) and  Survival  rate  were  similar  (p  >  0.05)  in  all  the  groups.  The  apparent
digestibility  coefficients  (ADCs)  of dry matter  and  protein  for fish  fed  the  control  and  RPI
100  diets  were  found  to be  similar,  while  RPI 50 and RPI  75  groups  exhibited  a significantly
lower  value  corresponding  to the  protease  enzyme  activity.  The  whole  body  compositions
and  digestive/metabolic  enzymes  activities  among  the  various  groups  did  not  differ  signifi-
cantly (p > 0.05).  The  serum  cholesterol  and  triglyceride  levels  were  found  to be  significantly
higher  (p <  0.05)  in  the control  compared  to  the RPI  fed  groups.  Significantly  higher  serum
glucose  level  was  recorded  in  RPI 50,  while  a reverse  was  seen  in the  liver  glycogen  con-
tents.  Overall,  this  study  clearly  showed  that  RPI  from  rubber  seed  can serve  as  alternative
protein  source  in  the  diets  of L.  rohita  fingerlings  without  any  adverse  effects  on  growth,
nutrient  utilization  and  physio-metabolic  responses.
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1. Introduction

The current world population of about 7.3 billion is expected to reach 9.7 billion by 2050 (UN-DESA, 2015), and the
global demand for animal protein and hence protein rich feed ingredients for production of animal protein are expected
to increase accordingly. Although, aquaculture production continues to grow at a relatively high rate compared to other
animal production sector (SOFIA, 2007), but not immune from ingredients shortage occasioned by the high demand and
constraint in fish meal production (Tacon and Metian, 2008; Shamna et al., 2015). Aside from the limited availability, the
price of the commonly used ingredients is on the rise due to increased demand in the feed of poultry and livestock as well
(Coffey et al., 2016). Presently, soybean meal (SBM) is one of the most available plant protein source commonly used in
aquafeed production for many fish species including Labeo rohita (El-Sayed, 1999; Storebakken et al., 2000). This is due to
the high protein and energy contents, high digestibility and relatively well-balanced amino acid profile of soybean meal
(Hertrampf and Piedad-Pascual, 2000; Yue and Zhou, 2008). However, the price of SBM is becoming high and competitive,
thereby making it less cost efficient for aquafeed production. Hence, there is the need for its replacement with a potential
non-conventional plant protein sources for cost efficient and sustainable aquafeed development. Therefore, in the present
scenario, non-edible oil seeds cake or kernel would be one of the most preferred choice provided they are made free of
deterrent factors, and nutritionally compatible to cultured species (Marrufo-Estrada et al., 2013; Suprayudi et al., 2015).

Rubber seed cake obtained from rubber tree seed (Hevea brasiliensis) is a potential non-conventional feedstuff, which
have received scant research attention is fish nutrition (Alegbeleye et al., 2004; Sharma et al., 2014; Suprayudi et al., 2015;
Deng et al., 2015). According to the Natural Rubber Statistic Report (2015), the world natural rubber plantation by acreage
in 2014 stand at 12 million hectares. Rubber seeds has enormous potential for aquaculture feed industry if well harnessed.
The protein content of rubber seed cake ranges between 17–25% (Sharma et al., 2014), and are very rich in n-3 and n-6 fatty
acid (Eka et al., 2010). Despite the moderate protein content, the nutritive value of rubber seed cake is undermined by the
presence of anti-nutritional factors (ANFs) especially cyanogenic glycosides, whose metabolic product is hydrogen cyanide
that impacts negatively on the physio-metabolic responses of fish (Francis and Becker, 2001; Sharma et al., 2014; Deng et al.,
2015). Other deterrent factors include phytate, tannin, high fiber and complex carbohydrate, which also have detrimental
effects on feed palatability, phosphorus availability, digestibility and growth (Watson et al., 2012). However, improvement
in plant protein processing technologies has proven to overcome many of these problems, not only by inactivating the
anti-nutritional factors or reducing the level of the toxic component but also by improving the nutritional value of the
by-products. Many studies have been conducted in this regard, and the concept of protein concentrates/isolates attained
relevance in fish nutritional research.

Extraction of protein from defatted seed cake has been described as a way of reducing the contents of antinutrient
and toxic components (Marrufo-Estrada et al., 2013) with high levels of protein, which often have digestibility similar or
greater than that of fishmeal protein (Makkar et al., 2008). Since rubber kernel meal contain less protein, a large amount of
indigestible material and anti-nutrients, there is need to convert them into a better useful products by isolating the protein
for optimum utilization. Several studies were conducted recently to explore the inclusion level of various plant protein
isolates in fish such as soybean protein isolate in Acipenser schrenckii (Xu et al., 2012), rapeseed (Brassica napus)  protein
isolate in juvenile Psetta maxima (Nagel et al., 2012), canola (Brassica campestris)  protein isolate in Oncorhynchus mykiss
(Slawski et al., 2013), jatropha protein isolate in Cyprinus carpio (Kumar et al., 2012; Latif et al., 2015), and pea protein isolate
in juvenile Oreochromis niloticus (Schulz et al., 2007). The results from these findings were encouraging, and to the best of our
knowledge, no work on protein isolates from rubber seeds has been reported in fish and livestock. With this backdrop, protein
isolate was prepared from rubber kernel meal and fed to Labeo rohita (rohu) to assess the potential utilization for aquafeed
production. Presently, rohu is the most popular and widely cultured freshwater fish in South-east Asia and command high
demand among the consumer. Therefore, L. rohita was selected as the candidate species with the aims of investigating the
nutritional potential of protein isolate prepared from rubber kernel meal and examine its impact on growth performance,
nutrient utilization, whole body composition, digestibility, metabolic enzyme activity, and serum metabolites.

2. Materials and methods

2.1. Production of protein isolate from rubber seed (RPI) and amino acid analysis

Dried rubber seeds were collected from Tripura (22◦56′N–24◦32′N, 90◦09′ E–92◦20′E), India. The seed were dehulled and
the kernel obtained were powdered and defatted with hexane (three sequential times) to obtain defatted rubber kernel meal
used for the preparation of protein isolate. RPI was prepared by alkali extraction and acid precipitation at its iso-electric
point following the method of Saetae and Suntornsuk (2011) with little modification. Ground defatted rubber kernel meal of
2000 g was dispersed in distilled water in the ratio of 1:15 (w/v). The pH of the dispersion was adjusted to 12 with 1 N NaOH

and stirred for 2 h at room temperature. The slurry was centrifuged at 7000 rpm for 20 min, and supernatant was collected
and adjusted to pH 4 with 1 N HCl to precipitate the protein. The precipitated protein was  centrifuged and washed twice
with distilled water to obtain the protein isolate. The wet protein isolate was  lyophilized (ScanvacTM cool safe 100-9 pro),
and the final protein content was found to be 908 g Kg−1 (Table 1). Amino acid analysis was carried out following the method
described by Devappa and Swamylingappa (2008), and quantitfied by High performance liquid chromatography (HPLC).
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Table  1
Proximate composition (g kg−1 DM), antinutrient contents and amino acid composition of rubber protein isolate (RPI) and soybean protein isolate (SPI).

Variables RPI SPI RKMa

Dry matter 942 968 940
Crude protein 908 845 221
Crude lipid 15 35 330
Ash  20 40 39
cTotal carbohydrate 57 80 410
dGross energy (MJ  kg−1) 23.3 23 25.6

Indispensable Amino acids (g kg−1) AAb

Arginine 109.5 67 –
Histidine 26.4 23 –
Isoleucine 34.1 43 –
Leucine 62.9 72 –
Lysine 16.6 55 –
Phenylalanine 47.2 46 –
Methionine 17.0 12 –
Threonine 30.8 33 –
Tryptophan ND 12 –
Valine 78.7 44 –

Dispensable amino acids (g kg−1)
Alanine 33.1 38 –
Glycine 41.5 37 –
Aspartate 102.8 102 –
Glutamic acid 140.5 169 –
Proline 43.8 45 –
Serine 49.6 46 –
Cystine 19.4 11 –
Tyrosine 28.5 34 –

Antinutritional factors
Cyanide (mg  HCN Kg−1) 27 – 75.6
Phytic acid (g Kg−1) 15.4 14.3 31.5
Tannin (g Kg−1) 0.4 8.2 5.2

a Rubber kernel meal (g kg−1 DM).
b AA − based on company analysis (Soy GrowthTM, Medicamen Organics Limited, India) ND – not determine.
c
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Total carbohydrate = 1000 − (Crude protein + Crude lipid + ash).
d Calculated Gross energy (MJ  kg-1) = [23.9 x CP (g kg−1) +39.8 x CL (g kg−1) + 17.6 x TC (g kg−1)]/1000.

.2. In vitro protein digestibility

In vitro protein digestibility assay was carried out by pH-drop method following the method described by Ali et al. (2009).
resh tissue of alimentary canal was homogenized under cold condition and diluted with distilled water (1:10 w/v) followed
y centrifuging at 12000 rpm for 15 min  at 4 ◦C. An equivalent amount of RPI that provided 160 mg  of crude protein was
eighed and dispersed in 20 mL  of distilled water, and 2 mL  of intestinal homogenenate (enzyme source) to obtain 8 mg

rude protein per milliliter, and the pH was adjusted to 8:00 (Eutop pH tutor, Thermo Fisher Scientific, Singapore). The pH
rop was recorded at every minutes interval for 10 min. Casein was  used as the reference protein.

Relative Protein Digestibility was calculated using the following formula:
Relative Protein Digestibility (RPD%) = (�pH of rubber protein isolate/�pH of casein) × 100.

.3. Diets preparation

Five experimental diets were prepared to be isonitrogenous (32.62 ± 0.13% CP) and isocaloric (18.47 ± 0.08 MJ  kg−1), with
ontrol diet containing soybean protein isolate (SPI) as the major protein source (Table 2). The SPI protein was replaced at
5%, 50%, 75%, or 100% with RPI (designated as RPI 25, RPI 50, RPI 75, RPI 100, respectively). The RPI thereby contributed 0%,
3%, 26%, 39% or 52% of the total dietary protein, respectively. The diets were supplemented with vitamins-mineral mix, and
icalcium phosphate to ensure that all diets satisfied the dietary requirement of L. rohita fingerlings (Debnath et al., 2007).
arboxymethyl cellulose (CMC) was added as a binder and butylated hydroxytoluene (BHT) was  incorporated as antioxidant

n the diets. All the ingredients were milled and mixed thoroughly to form homogenous blend, then oil and water were

dded to form dough. The prepared dough was passed through a hand pelletizer using 2 mm die and the pellets were air
ried, and stored at −20 ◦C until use. A 5 g Kg−1 chromium oxide was added to each diet as an inert marker for the estimation
f apparent digestibility coefficients (ADC) as described by Hardy and Barrows (2002).
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Table 2
Feed and proximate composition of the experimental diets (DM basis) fed to Labeo rohita fingerlings during the 60 days experimental period.

Ingredients(g kg−1) C RPI25 RPI50 RPI75 RPI100

Soy protein isolatea 200 150 100 50 0
Rubber  protein isolate 0 47 93 139 187
Ground nut cakeb 126 126 126 126 126
Fish  mealb 50 50 50 50 50
Rice  branb 240 240 240 240 240
Wheat  flour 290 293 297 301 303
Sunflower oil:cod liver oil(1:1)a 60 60 60 60 60
Dicalcium phosphatec 10 10 10 10 10
Vitamin/mineral mix  10 10 10 10 10
Choline Chloridec 2 2 2 2 2
Butylated hydroxytoluenec 2 2 2 2 2
Carboxymethyl cellulosec 10 10 10 10 10
Total  1000 1000 1000 1000 1000
Cr2O3 5 5 5 5 5

Proximate composition (g kg−1 DM)
Dry matter 92.1 92.1 91.8 91.7 92.1
Crude  protein 329 329 323.8 323.8 325.5
Crude  lipid 62.5 62.5 65 65 67.5
Ash  84.6 79.6 79.6 75 75
Crude  fibre 65 70 70 70 70
NFEd 459 459 462 466 462
Gross  energy (MJ  kg−1)e 18.4 18.4 18.4 18.5 18.6

Antinutritional factorsf

Cyanide (mg  HCN Kg−1) 0.00 1.27 2.51 3.75 5.05
Phytic  acid (g kg−1) 2.86 2.87 2.86 2.86 2.88
Tannin  (g kg−1) 1.64 1.25 0.86 0.47 0.07

Composition of vitamin-mineral mix  (PRE-EMIX PLUS) (quantity/kg): Vitamin A, 55, 00 000 IU; Vitamin B, 2 000 mg;  Vitamin D3, 11, 00 000 IU; Vitamin E,
750  mg;  Vitamin K, 1000 mg;  Vitamin B6, 1000 mg;  Vitamin B1, 2,6 mcg; Calcium Pantothenate,2500 mg;  Nicotinamide, 10 g; Mn,  27 000 mg;  I, 1000 mg;
Fe,  7500 mg;  Zn, 5000 mg;  Cu, 2000 mg;  Co, 450; L-lysine, 10 g; DL-Methionine, 10 g; Selenium, 125 mg.

a Soy GrowthTM, Medicamen Organics Limited, India.
b Purchased from local animal feed ingredient dealer, Mumbai, India.

c Himedia Pvt, Mumbai, India.
d NFE (Nitrogen free extract) = 1000 − (Crude protein + Crude lipid + crude fibre + ash).
e Calculated gross energy (MJ  kg−1) = [23.9x CP (g kg−1) +39.8x CL (g kg−1) + 17.6x NFE (g kg−1)]/1000.
f Calculated based on cyanide, phytic acid and tannin concentration in RPI, and SPI.

2.4. Experimental set-up

Rohu (Labeo rohita)  fingerlings were obtained from Srushti Aquaculture, Sudhagad, Raigad District, Maharashtra, India,
and transported to the wet laboratory of the Division of Fish Nutrition, Biochemistry and Physiology, ICAR-Central Institute
of Fisheries Education, Mumbai. Fish were carefully transferred to two circular fibre tank (1000 L) for acclimatization under
aerated condition and fed with control diets. One hundred and eighty rohu fingerlings were randomly distributed in 15
plastic rectangular tubs (75 L capacity) each containing 12 fish (initial average weight 4.45 ± 0.01 g) per tank, in triplicates.
Fish were hand fed with their respective diets to apparent satiation twice daily at 10:00 h and 18:00 h under normal light
regime. The fish in each tub were weighed at the start and every two  weeks over a period of 60 days. The fish were not fed
on the day of weighing. Water quality parameters were monitored and maintained at optimal level (temperature 25–29

◦
C;

pH 7.5–8.1; DO 6.3–7.5 mg/l; ammonia 0.05–0.09 ppm). Prior to the commencement of the feeding trial, a total of 15 fish
were sacrificed and stored at − 20

◦
C for the analysis of initial whole body composition.

2.5. Fish sampling and chemical analysis

Fish were fasted for 24 h on the completion of 60 days feeding trial, weighed and the growth performance and nutrient
utilization parameters like percent weight gain (WG%), specific growth rate (SGR), daily growth coefficient (DGC), feed intake
(FI), protein efficiency ratio (PER), feed conversion ratio (FCR) and protein retention (PR) were calculated according to the
formulae given beneath Table 3. Difference in number of fish stocked at the beginning and end of the experimental trial
were determined for calculation of survival. The liver and intestine from six fish per treatment were pooled together and
weighed for the calculation of hepatosomatic index (HSI) and intestinal somatic index (ISI). Three fish from each tank were

sampled for the analysis of whole body composition. The moisture, crude protein, crude lipid and ash content in the diets
and whole body were carried out as per the standard methods of the Association of Official Analytical Chemists (AOAC,
1995). Moisture was determined after drying in an oven at 105 ◦C until constant weight. Ash content was determined by
muffle furnace at 550 ◦C for 6 h. Crude protein content (N × 6.25) was determined by the Kjeldahl method after acid digestion
using an Auto Kjeldahl System (2200 Kjeltec auto distillation; Foss Tecator, Hoganas Sweden). Crude lipid was  determined
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Table  3
Growth performance, nutrient utilization, survival and apparent digestibility coefficient of Labeo rohita fingerlings fed different experimental diets.

Variables Diets SEMa P-values

Control RPI 25 RPI 50 RPI 75 RPI 100 Overall Linear Quadratic

Weight gain (%)b 131.66 121.04 114.28 117.08 121.39 4.485 0.147 0.115 0.041*

SGRc 1.40 1.32 1.27 1.29 1.32 0.034 0.151 0.115 0.043*

FId 6.08 5.98 5.83 5.93 6.16 0.148 0.584 0.837 0.133
DGCe 3.24 3.00 2.83 2.90 3.01 0.114 0.185 0.148 0.050
PERf 1.98 1.90 1.87 1.87 1.85 0.070 0.688 0.202 0.600
FCRg 1.55 1.61 1.65 1.64 1.66 0.059 0.661 0.189 0.552
Protein  retentionh 33.77 32.03 31.49 31.54 31.49 1.974 0.905 0.436 0.603
HSIi 0.88 0.70 0.76 0.64 0.65 0.042 0.014* 0.003* 0.259
ISIj 2.99 2.47 2.10 2.22 2.01 0.304 0.233 0.045* 0.353
Survivalk 100 97.22 100 100 97.22 1.756 0.580 0.628 0.682
ADC  of DMl 67.04 63.03 62.01 63.22 67.98 0.648 0.004* 0.359 <0.001*

ADC of protein 85.27 86.24 80.49 80.97 84.51 0.236 <0.001* <0.001* <0.001*

ADC of lipid 89.44 88.17 72.37 71.56 85.75 6.343 0.247 0.285 0.111
ADC  of Pm 40.02 45.26 39.63 39.25 40.87 0.729 0.010* 0.121 0.495
Liver  glycogenn 33.18 35.10 23.34 50.26 50.06 3.626 0.001* 0.002* 0.033*

* Estimated Marginal Means (P < 0.05).
a Standard error of the mean.
b Weight gain% = (final body weight − initial body weight)/initial body weight × 100.
c Specific growth rate (SGR, %/day) = 100 × (ln final body weight−ln initial body weight)/experimental duration in days.
d Feed intake (g kg−1MBW/day) = total dry feed given per fish (g fish−1)/MBW/experimental duration in days; mean metabolic body weight

(MBW)  = {(initial body weight in g/1000)0.75 + (final body weight in g/1000)0.75}/2 (Deng et al., 2015).
e Daily growth coefficient (DGC, % days−1) = 100 × {(final body weight in g)1/3−(initial body weight in g)}1/3/experimental duration in days.
f Protein efficiency ratio (PER) = Net weight gain (g)/protein fed (g).
g Feed conversion ratio (FCR) = total dry feed given (g)/wet weight gain (g).
h Protein retention (PR) = 100 x {(final body weight x final body protein content) − (initial body weight × initial body protein content)}/(protein content

in  diet × total feed intake).
i Hepatosomatic index (HSI) = 100 x wet weight of liver (g)/whole body weight of fish (g).
j Intestinal somatic index (ISI) = 100 x wet weight of intestine (g)/whole body weight of fish (g).
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k Survival (%) = 100 x (total number of fish harvested)/(total number of fish stocked).
l ADC − Apparent digestibility coefficient; DM-  Dry matter.

m P − Phosphorus.
n (mg/g wet  tissue).

y the ether-extraction method in a soxhlet extraction apparatus (Socsplus, SCS-08-As, Pelican equipment, Chennai, India).
he cyanide content of the RPI was analysed according to alkaline titration method of AOAC (2000), phytic acid and tannin
ontents were analysed as per the method of Gao et al. (2007) and Schanderi (1970), respectively.

.6. In vivo digestibility

Faecal samples were collected daily by siphoning for 15 days (45 to 60th day). Three hours after feeding each day, the
anks were checked for uneaten feed, but there was no feed left out in the tubs. Faecal sample were collected 7 h after feed-
ng, centrifuged at 5000 rpm for 15 min  to separate the water, the wet  faecal sample was stored at −20 ◦c and lyophilized.
nalysis of crude protein and lipid contents were carried out according to AOAC (1995) and chromium content of feed
nd faecal matters was determined by the method of Furukawa and Tsukahara (1966). The apparent dry matter digestibil-
ty of diets and nutrients were calculated according to Law (1986): ADC of dry matter of diet (%) = 100 x {1- (% Cr2O3 in
eed)/(% Cr2O3 in faeces)}; ADC of Nutrients/phosphorus in the diets (%) = 100 x [1 − {(% Cr2O3 in feed/% Cr2O3 in faeces) × (%
utrients/phosphorus in faeces/(% Nutrients/phosphorus in feed)}].

.7. Serum biochemistry and enzyme assay

After 24 h of fasting, blood samples were collected from randomly selected fish (four from each replicate). The fish
ere anaesthetized with clove oil (50 �L of clove oil per litre of water; Debnath et al., 2007) and blood was collected from

he caudal vein without anticoagulant into a dried eppendorf tube and allowed to stand in a slanted position at room
emperature. The blond were centrifuged at 5000g for 10 min  in a cooling centrifuge (REMI CPR-24, India), and transferred
nto another eppendorf tube and kept in − 20 ◦C until use. Serum cholesterol, triglyceride and glucose were estimated using

 commercial kit (Erba® Diagnostic Mannheim, Transasia Bio-medicals Ltd, Solan, HP, India). The liver, muscle and intestinal

issues were dissected out and homogenized in cold 0.25 M sucrose solution in 15 mL  plastic tubes using a Teflon-coated

echanical homogenizer (MICCRA D-9, ART Prozess and Labortechnik, Germany). The tubes were continuously kept in
ce to avoid heating. The homogenate was centrifuged (5000g for 10 min  at 4

◦
C) and the supernatant stored at −20 ◦C until

nalysis. The protease enzyme activity was determined by the casein digestion method (Drapeau, 1974). Amylase activity was
stimated as the reducing sugars produced due to the action of glucoamylase and ∝-amylase on carbohydrate using dinitro-
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salicylic-acid method (Rick and Stegbauer, 1974). The aspartate amino transferase (AST) and alanine amino transferase (ALT)
activities were measured by the method described by Wooten (1964). Lactate dehydrogenase (LDH) enzyme activity was
measured following the method of Wroblewski and Ladue (1955). Protein contents of the tissues were determined according
to Bradford (1976), adapted to microplate in other to express enzyme activities as a function of the protein content. Bovine
serum albumin was used as the protein standard.

2.8. Hepatic glycogen content

Liver glycogen content was estimated colorimetrically by the method described by Hassid and Abraham (1957). The
tissue was digested with 30% KOH and 95% ethanol was  added. Glycogen was  precipitated upon centrifugation at 5000g for
5 min, which was dissolved in distilled water. To a known quantity of aliquot, anthrone reagent was added and mixed by
swirling the tube. The tubes were covered with glass marble and heated for 10 min  in boiling water followed by cooling. The
absorbance was recorded at 590 nm.  The reading was compared with standard glycogen and expressed as mg/g wet  tissue.

2.9. Statistical analysis

All data were subjected to a one way ANOVA using the General Linear Model Procedure of IBM SPSS package, version 20.
The overall treatments effects were determined and polynomial contrasts were used to test linear and quadratic effects of
dietary inclusion of RPI. Significance was defined at P < 0.05.

3. Results

3.1. Protein isolate production, antinutritional factors and in vitro protein digestibility

The protein, lipid, ash and carbohydrate contents of the RPI were found to be 908, 15, 20 and 57 g kg−1, respectively
(Table 1). The protein content of RPI increased more than threefold with a corresponding decrease in the lipid, fibre and total
carbohydrate contents compared to the rubber kernel meal (RKM). The cyanide, phytic acid and tannin contents estimated
in the RKM (75.6, 31.5, 5.2 g kg−1, respectively) and RPI (27, 15.4, 0.4 g kg−1, respectively) samples are given in Table 1. The
amino acid composition of RPI is comparable to that of soybean protein isolate (SPI) except lysine, which is lower in RPI. The
RPI protein digestibility in vitro was found to be 93.2%.

3.2. Growth performance, nutrient utilization and survival rate

After the 60 days feeding trial, the weight gain (%), SGR, DGC, PER, PR and FCR values did not differ significantly among
the various groups (p > 0.05) and no linear trend was observed (Table 3). However, weight gain (%) and SGR values showed a
quadratic trend (P < 0.05). The HSI value showed overall significant effects (p < 0.05) and followed linear trends. The ISI and
fish survival rate were not significantly (p > 0.05) affected as a result of feeding RPI. Overall, the groups of fish fed RPI-based
diets showed similar performance in terms of growth and nutrient utilization with the control group.

3.3. Apparent digestibility coefficients (ADC)

The apparent digestibility coefficient of dry matter showed similar value between the fish fed control and RPI 100 diets
(Table 3), whereas RPI 50 and RPI 75 fed groups registered a significantly lower value (p < 0.05). The ADC of protein showed
both linear and quadratic effects, with the highest value recorded in RPI 25. Similar results were recorded in ADC of phospho-
rus with a significantly higher value recorded in RPI 25, but showed no linear and quadratic trends. Nonetheless, phosphorus
digestibility was observed to be lower in all the groups (39.25%–45.26%). No significant variation was observed in the ADC
of lipid (71.56%–89.44%) among the various groups (p > 0.05).

3.4. Whole body composition

The dietary inclusion of RPI showed no significant difference (p > 0.05) in the whole body composition of the treatment
groups compared with the control (Table 4). The initial fish body composition showed higher ash content compared to the
experimental fish (final body ash), wherein the reverse was  found in the case of protein and lipid contents.

3.5. Digestive and metabolic enzyme activitivies, serum metabolites and liver glycogen contents
There was no significant difference (p > 0.05) in the protease (0.37- 0.47 U mg−1 protein) and amylase (0.99–1.32) enzymes
activities among the various groups (Table 5). The activities of the metabolic enzymes (AST, ALT and LDH) in the liver and
muscle were not significantly (p > 0.05) affected as a result of feeding RPI, and no observable trends recorded (Table 6). The
cholesterol and triglyceride levels in the serum were found to be significantly higher (p < 0.05) in the control compared to
the RPI fed groups (Table 5). The serum cholesterol level tends to decrease linearly with the increasing dietary RPI levels,
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Table  4
Whole body (wet weight basis) composition of Labeo rohita fingerlings fed different experimental diets.

Diets Variables

Moisture Crude protein Crude lipid Ash

Control 70.72 15.46 7.82 2.61
RPI  25 73.62 15.28 6.36 2.76
RPI  50 72.25 15.17 7.31 2.71
RPI  75 72.36 15.24 6.08 2.80
RPI  100 73.04 15.38 6.11 2.92
SEMa 0.666 0.413 0.585 0.148
Overall 0.096 0.988 0.208 0.686
Linear  0.140 0.885 0.075 0.198
Quadratic 0.264 0.607 0.724 0.900

Initial fish − 79.42 moisture; 13.35 crude protein; 2.28 crude lipid; 3.91 ash.
Estimated Marginal Means (P < 0.05).

a Standard error of the mean.

Table 5
Intestinal protease and Amylase, serum cholesterol (mg/dl), serum triglyceride (mg/dl), and serum glucose (mg/dl) levels in Labeo rohita fingerlings fed
different experimental diets.

Diets Variables

Proteaseb Amylasec Cholesterol Triglyceride Glucose

Control 0.47 1.32 92.70 132.95 105.47
RPI  25 0.47 0.99 84.13 124.90 116.41
RPI  50 0.41 1.00 77.46 110.73 124.84
RPI  75 0.37 1.00 79.37 111.11 81.21
RPI  100 0.45 1.12 73.33 122.99 111.02
SEMa 0.025 0.233 3.914 4.504 2.208
Overall  0.104 0.834 0.046* 0.025* <0.001*

Linear 0.130 0.605 0.006* 0.039* 0.006*

Quadratic 0.119 0.344 0.373 0.009* 0.114

* Estimated Marginal Means (P < 0.05).
a Standard error of the mean.
b Protease: U mg  protein−1.
c Amylase specific activity expressed as micromole of maltose released min−1 g protein−1.

Table 6
Metabolic enzymes activity in the liver and muscle of Labeo rohita fingerlings fed different experimental diets.

Diets Variables

ALT AST LDH

Liver Muscle Liver Muscle Liver Muscle

Control 2.11 9.34 14.06 15.31 3.25 2.04
RPI  25 2.87 8.92 17.72 15.42 3.71 1.78
RPI  50 1.99 8.63 15.50 12.86 2.63 1.88
RPI  75 2.04 9.06 17.00 14.37 3.07 1.49
RPI  100 1.93 9.96 16.44 13.96 2.76 1.31
SEMa 0.274 0.650 1.154 1.097 0.372 0.509
Overall  0.168 0.671 0.270 0.491 0.324 0.845
Linear  0.199 0.520 0.293 0.306 0.199 0.300
Quadratic 0.442 0.198 0.298 0.477 0.982 0.864

Estimated Marginal Means (P < 0.05).
Alanine transaminase (ALT): specific activities expressed as nanomoles of sodium pyruvate formed mg  protein−1 min−1 at 37 ◦C; Aspartate transaminase
(AST):  specific activities expressed as nanomoles of oxaloacetate released min −1 mg protein−1 at 37 ◦C. Lactate dehydrogenase (LDH): specific activity
e

b
t
i
r
l

xpressed as Units min−1 mg  protein−1 at 37 ◦C.
a Standard error of the mean.

ut showed no quadratic effects (p > 0.05). Highest triglyceride level was  detected in the control group, which was found
o follow linear and quadratic trends (p < 0.05). Significantly higher serum glucose level was recorded in RPI 50 and lowest
n RPI 75 fed group (p < 0.05). The liver glycogen contents showed both linear and quadratic effects, with the highest value

ecorded in RPI 75 (50.26 ± 0.66) and RPI 100 (50.06 ± 1.77) groups, while the group fed RPI 50 (23.34 ± 2.01) registered the
owest value (P < 0.05) (Table 3).
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4. Discussion

Improving the nutritional quality of plant protein ingredients for efficient utilization requires innovative approach for
sustainable aquafeed production. Isolation of protein is one of such approach by separating the pure protein fractions from
other non-proteinaceous components present in the ingredients including antinutritional factors (Mwachireya et al., 1999;
Devappa and Swamylingappa, 2008; Saetae and Suntornsuk, 2010; Wanasundara, 2011), thus improve the digestibility and
nutrient utilization. In the present study, the protein content of the isolated protein (RPI) from rubber kernel meal was
found to be 908 g kg−1 with a concomittant reduction in the cyanide contents (64.3%), phytic acid (51.1%), tannin (92.4%)
and insoluble carbohydrate. De-hulling the rubber seeds and subsequent treatment with alkali seems to help in reducing
the tannin contents to a very low levels as recommended by Griffiths (1991). The cyanide content in RPI (27 mg  kg−1) was
less than the value reported for detoxified rubber kernel meal (60.1 mg  kg−1) fed to L. rohita fingerling (Sharma et al., 2014).
The protein content of RPI was similar to canola protein isolate (Mwachireya et al., 1999), but more than those reported
by for rapeseed protein isolate (Nagel et al., 2012), pea protein isolate (Schulz et al., 2007), canola protein isolate (Slawski
et al., 2013) and jatropha protein isolate (Kumar et al., 2012). Isolating the proteins from rubber kernel meal resulted in a
significant increase in the protein content and reduction in the antinutritional factors as reported by other researchers in
different studies (Devappa and Swamylingappa 2008; Saetae and Suntornsuk, 2010; Nagel et al., 2012; Kumar et al., 2012;
Slawski et al., 2013). The higher in vitro digestibility of RPI recorded in this study may  be due to the significant reduction
in the soluble and indigestible carbohydrates, antinutritional factors, and more accessibility of amino acid peptide bonds
by the digestive enzymes as reported by Devappa and Swamylingappa (2008). Protein isolate (RPI) obtained in this study
exhibited lower in vitro digestibility values than casein (97%), but more than rapeseed (83%) and jatropha protein isolates
(88.5–90.6%) (Savoie et al., 1988; Devappa and Swamylingappa, 2008).

Although, rubber seed meal has been reported to be a promising alternative protein source for aquafeeds production
(Sharma et al., 2014; Suprayudi et al., 2015; Deng et al., 2015), but utilization by fish is limited due to the presence of ANFs,
especially cyanide. According to Deng et al. (2015), feeding rubber seed meal above 30% to juvenile tilapia (Oreochromis
niloticus x O. aureus)  lead to growth depression, which was  also supported by Alegbeleye et al. (2004). Contrarily, defatted
rubber seed meal successfully replaced 50% of the protein in common carp (Cyprinus carpio)  diets without adverse effects
on the feed intake and growth (Suprayudi et al., 2015). The variation in their results may  be due to the levels of ANFs, non-
starch polysaccharide, and or species differences. Literature have shown that varying level of antimetabolites, indigestible
carbohydrates, amino acid imbalances and other complexes may contribute to growth depression often observed when
plant protein ingredients are fed at higher inclusion levels to fish, rather than pinpointing one single factor as the primary
reason for the adverse effects noticed (Mambrini et al., 1999; Francis and Becker, 2001; Schulz et al., 2007; Slawski et al.,
2013; Shamna et al., 2015). However, in the present study, no significant variation was observed in the growth performance
of the fish fed RPI in replacement for SPI. This indicate that RPI was better utilized compared to detoxified rubber seed meal
fed to rohu (Sharma et al., 2014), and other fish species (Suprayudi et al., 2015; Deng et al., 2015). The presence of ANFs in
plant-based diets is one of the reason for diminishing feed intake, nutrient absorption and growth depression in fish due to
unpleasant tastes, and decreased feed acceptability (Francis and Becker, 2001). Conversely, the inclusion of RPI in the diets
of rohu as seen in this study did not cause any decrease in feed intake. Rather, the RPI 100 fed group recorded the highest
feed intake, though not differ from other fed groups, indicating that diets palatability and acceptability were not affected.
Our findings are in consonant with Slawski et al. (2013) and Kumar et al. (2012), who observed no significant difference
in the feed intake of rainbow trout and common carp fed canola and jatropha protein isolates, respectively. Sharma et al.
(2014) reported that feeding RKM diets containing a high level of cyanide (>39 mg kg−1) to rohu led to a reduction in protein
utilization and digestion processes, which resulted in poor growth performance. Similar result was observed (31.8 mg  kg−1

diets) in the work of Deng et al. (2015). However, feeding RPI in the present study showed no adverse effect on the nutrient
utilization, protein accretion, and digestion processes. This can be attributed to the low level of cyanide (1.27–5.05 mg  kg−1)
(Table 2) in the diets of the present study, which was  below the levels reported to cause no adverse effects in earlier studies.
The lack of differences in the PER, FCR and PR indicate that the RPI was  well digested, absorbed and utilized by the fish for
muscle growth. Also, the insignificant differences in the feed intake signifies that RPI can be accepted by rohu without any
palatability-mediated feed rejection.

HSI value can be correlated with the amount of fat or glycogen deposition (Gao et al., 2012; Debnath et al., 2007). In the
present study, significantly higher HSI value was recorded in the control and RPI 50 fed groups compared to others, which
indicate higher lipid deposition in the liver. Increased hepatic lipogenic enzymes activities has been reported in European
seabass fed soybean protein concentrates or corn gluten meal, thereby, leads to higher whole body lipid composition (Dias
1999; Kaushik et al., 2004). This may  be the reason for the higher HSI value recorded in control (0.88) and RPI 50 (0.76)
fed groups. The trends in both the HSI value and whole body lipid contents follow a similar pattern (y = 0.1216 × − 0.0934,
r2 = 0.94). This was further supported by Gao et al. (2012) who  found a correlation between HSI value and amount of fat
deposition in the body of red sea bream fed diets devoid of vitamin E. Similar results have also been reported in common

carp fed plant protein based diets (Kumar et al., 2012). Paradoxically, our data revealed higher glycogen contents in fish fed
RPI 75 and RPI 100. As observed in the work of Suprayudi et al. (2015), the groups of fish showing high HSI value recorded
low lipid and high glycogen contents in the hepatopancreas, while the groups with lower HSI value showed opposite trend
after fed rubber seed meal based diets. Our findings are in opposite to this, wherein we  observed that the groups with
higher HSI value recorded high lipid and low glycogen contents. This shows that an inverse relationship may exists between
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ipid and glycogen deposition in fish, but further study is required in this aspect. The non-significant difference observed in
he ISI value among the experimental groups, indicates that the physiological well-being of the digestive system was not
ompromised as a result of feeding RPI. These findings are in accord with Kumar et al. (2012) who observed a significantly
igher ISI in fish fed plant protein (soybean and jatropha protein isolates) based diets compared with fishmeal fed group.

Apparent digestibility coefficients of protein and phosphorus in L. rohita fingerlings fed practical diets with varying levels
f microbial phytase ranged between 73.90–82.13% and 52.08–65.39%, respectively (Baruah et al., 2007). However, higher
alue was recorded in the present study, with ADC of protein in RPI-fed groups ranging between 80.49–86.24%. Although RPI
0 and RPI 75 recorded the lowest values compared to other fed groups, but no significant impact was found on the protein
etention and growth performance, which indicates that the fish were able to utilize the protein in the diets optimally. The
DCs of protein and dry matter recorded in the present study were higher than the values reported for juvenile turbot fed
apeseed protein isolates (Nagel et al., 2012), but similar to those reported in common carp fed defatted rubber seed meal
Suprayudi et al., 2015). No significant difference in ADC of lipid were recorded among the various groups, which is also
imilar to the findings of Kumar et al. (2012).

The various dietary treatments did not significantly influence whole body composition. The similarity observed in the
rotein content in whole body composition suggest that RPI-based diets had a balanced amino acid profile for optimum
rowth of L. rohita fingerlings. The lower ADC of phosphorus observed among the various groups did not cause any decline
n the whole body ash, and this may  be due to the low level of phytic acid or dicalcium phosphate incorporated in the diets
s additional phosphorus source. Indian major carp has been reported to tolerate phytic acid level below 1% in the diets with
o adverse effect on growth and body composition (Usmani and Jafri 2002; Alvi, 1994), and the levels in all the fed diets were

ower than 1%. The insignificant difference in the whole body lipid content detected among the groups were inconsonant
ith those of Akinleye et al. (2012) and Slawski et al. (2013).

Improvement in the growth performance of animals is a function of the digestive enzyme influence on the digestion
rocesses (Lemieux et al., 1999). In the present study, no significant variation was  observed in the activities of digestive
nzymes (protease and amylase), signifying that the dietary RPI did not elicit any inhibitory effects on the digestion processes.
his may  be ascribed to the low level of ANFs present in the diets. Kumar et al. (2012) reported that dietary inclusion of
etoxified jatropha and soybean protein isolates did not alter the digestive enzymes activities in common carp. The authors
ttributed this to the absence of trypsin inhibitors, lectin and addition of phytase in the diets. Similarly, Luo et al. (2012)
ound no significant differences in the activities of protease and alpha-amylase enzymes in cobia fed rapeseed meal. The
on-significant slight decreased in protease activity observed in RPI 50 and RPI 75 correlate with the ADC of protein recorded

or this groups. Transaminase (AST and ALT) enzymes catabolize amino acids and transfer amino groups to �-keto acids. But
hen a diet is deficient in essential amino acids, the keto acids may  be reduced, thereby resulting in a decreased activities of
LT and AST enzymes (Cheng et al., 2010). In the present study, the activities of both protein metabolism enzymes were found

o be similar with the control, indicating that the dietary protein fed met  the fish requirement and adequately utilized by the
sh. Similar to these, Deng et al. (2015) found no significant differences in the hepatic ALT and AST activities of tilapia fed
ietary RSM. On the other hand, Luo et al. (2012) reported that feeding juvenile cobia with increasing dietary rapeseed meal

ed to a reduction in the activities of ALT and AST enzymes in the liver. LDH enzyme is known to be active when there is an
xygen debt in the tissue, causing pyruvate to be converted to lactate in anaerobic glycolysis (Murray et al., 2000). Increased
issue level activity of this terminal enzyme was reported as the characteristic features of lactic acidosis resulting from
he inhibitory effect of cyanide on aerobic metabolism (Speijers, 1993; Okolie and Osagie, 1999), thus, producing a state of
istotoxic anoxia. This effects were evidence in cyanide-exposed rabbits and common carp (Okolie and Osagie, 1999; Sadati
t al., 2013). Shamna et al. (2015) also observed an increased level activity of LDH enzymes in Labeo rohita fingerlings fed
horbol esters-containing jatropha protein concentrate. Nevertheless, such effects were not seen in the present study where
DH activity in both the muscle and liver were found to decrease with increasing RPI levels, suggesting that there is no shift
n aerobic metabolism and the fish were not under hypoxic condition.

Plant products have been reported to have a hypocholesteromic effect in human, terrestrial animal, and fish (Lees et al.,
977; De Schrijver, 1990; Kaushik et al., 1995). The present study clearly showed that dietary RPI inclusion gradually reduce
erum cholesterol levels in L. rohita fingerlings. The decreasing trend in cholesterol level with the increasing dietary RPI
evels showed a second order polynomial relationship (y = 0.0016 x2−0.3299x + 92.047, r2 = 0.92). Several authors have also
eported the hypocholesteromic effects of plant-based protein in fish and attributed it to the presence of compound that
auses increased excretion of bile salts or impede intestinal absorption of cholesterol (Kaushik et al., 2004; Lim and Lee, 2009;
eng et al., 2010; Akinleye et al., 2012). The decreased serum cholesterol level in RPI-fed groups compared to the control
ypothetically suggest that rubber seeds may  contain some secondary metabolites with hypocholesteromic properties than
oybean. The reduction in serum triglyceride levels recorded in RPI fed groups were similar to the findings of Lim and Lee
2009) and Slawski et al. (2012). In contrast, Kumar et al. (2010) and Akinleye et al. (2012) observed increased triglyceride
evels in fish fed plant protein based diets against fish meal (control), hence, the variation observed in comparison with
ur findings may  be due to the differences in the major protein source used as control. Elevated blood glucose level has

een reported in many fish species fed plant protein based diets due to the higher contents of carbohydrates, and the
esult obtained in the present study is in accord with other findings (Kikuchi, 1999; Kumar et al., 2010; Akinleye et al.,
012). Conversely, Slawski et al. (2012) detected no significant differences in the plasma glucose levels in rainbow trout fed
apeseed protein concentrate.
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5. Conclusion

In conclusion, based on the results obtained in the present study rubber protein isolate could serve as a potential replacer
for soybean protein isolate without any detrimental effects on feed palatability, acceptability, growth performance and
nutrient utilization. However, it is important to state that this study is a preliminary investigation on the possibility of
utilizing RPI as an alternative protein source in the diets of Labeo rohita.  Hence, further study is recommended to understand
its effect on haemato-immunological response of the fish before its inclusion in aquafeeds.
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