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Abstract: This paper predicts the acoustic properties of the porous sound 

absorbing material in a box cavity by conducting a FEM (Finite Element 
Method) analysis, and it verifies the estimated acoustic properties using an 

appropriate experimental method. The cavity is a rectangular box with five 

rigid walls and one flexible wall which is an aluminium plate. The porous 

sound absorbing material is attached to the inner surface of the plate, in order 

to modify the coupling between the plate inner surface and the air inside the 
box. The plate is mechanically excited by using an electromagnetic shaker, 

which is imitating structure-borne noise. The generated noise is recorded by 

using pressure microphones at the different locations inside the box. The 

results show that there is good agreement between the FEM prediction and the 

measurement for the acoustic response at different locations inside the 
rectangular box. Sound pressure peaks due to cavity modes are effectively 

reduced by adding porous sound absorbing material.  Furthermore, sound level 

in the cavity is reduced by a similar amount in both the numerical simulation 

and the measurement, when a porous sound absorbing material is added. The 

developed FEM model is used to characterize the effects of porous sound 
absorbing material in reducing the structure-borne radiated noise. 
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1 Introduction 

Porous sound absorbing materials are used extensively in  the design of vehicle 

compartments to provide sound absorption and to improve sound transmission losses 

through vehicle body panels. They are capable of reducing the noise reflections and 

improving the speech intelligib ility in the passenger compartments. In other words, they 

reduce the standing waves to enhance the cabin sound quality. Pred icting the effect of 

porous sound absorbing materials on the control of structure-borne radiated noise into a 

vehicle compartment is still challenging. Th is is mainly due to the fact that most of the 

porous sound absorbing materials are composites, and they are heterogeneous with a 

random fibrous skeleton. Hence, understanding the influence of the porous sound 

absorbing material in a v ibro-acoustic coupling system by using an appropriate simple 

acoustic model is desirable in  designing, analysing and refining the acoustic behaviour of 

the vehicle interior trims. 

The structure-borne noise radiated from a vibrat ing vehicle body into the passenger 

compartments is usually simplified and modelled by  using a coupled plate cavity system. 

The vibro-acoustic response of a cavity-backed p late system has been studied for the past 

few decades, through various analytical and experimental methods. Among early  works 

of the vibro-acoustic response of a coupled plate cav ity system are those reported by 

Dowell and Voss (1963), Pret love (1965a, 1965b), Guy and Bhattacharya (1973), 

Pretlove and Craggs (1970), Dowell et al. (1977), Guy (1979), and Qaisi (1988). They 

have presented full theoretical solutions for the free and forced response of a vibro -

acoustic coupled system. The fundamental theories and experimental validations of the 

noise propagation from the vib rating plate into a cavity have been well reviewed and 

presented by Pan and Bies (1990a, 1990b). They have pointed out that the earlier 

approach was only suitable for weak coupling; the velocity continuity on the coupling 

interface cannot be satisfied by the Modal Coupling Theory (Pope, 1971; Keltie and 

Peng, 1987). Moreover, the interaction between the plate and the air cavity, and the 

vibro-acoustic analysis of the coupled system have been further investigated (Lee, 2002; 



   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

Citarella et al., 2007; Seifzadeh et al., 2014). The early research aimed at progressively 

improving the theoretical knowledge of and the physical insight into the vibro -acoustic 

coupling problems (Li and Cheng, 2006; Du et al., 2011, 2012; Tanaka et al., 2012). 

The acoustic design of vehicle interio r trims requires a good understanding of the 

mechanis ms governing the vibrational and acoustical behaviour of a coupled plate cavity 

system, together with an acoustic characterization of porous sound absorbing materials. 

The major theoretical achievement in the history of vibro-acoustical behaviour of porous 

sound absorbing material was established by Biot (1956a, 1956b , 1962). The FE 

formulat ion regarding the displacement of the solid-phase (fibrous skeleton) and the air-

phase (fluid  in  the pore) for a porous sound absorbing material was done by Zienkiewicz 

and Shiomi (1984), Kang and Bolton (1995), Easwaran et  al. (1996). The model was also 

modified and developed by Johnson et al. (1987), and further extended by Champoux and 

Allard (1991, 1992, 2009), Lafarge et al. (1997). The so-called Johnson-Champoux-

Lafarge-Allard (JCLA) model uses the equivalent fluid approaches with the complex 

effective density, speed of sound, characteristic impedance, and propagation constant to 

describe the porous sound absorbing material. The equivalent flu id approaches were 

frequently conducted in FEM analysis (Craggs, 1978; Panneton et al., 1995).  Moreover, 

the analytical study of the role of porous sound absorbing material on the noise control 

inside a cavity backed  plate was presented by Atalla et  al. (2003), and Bécot et al. (2006, 

2011). They aimed  to investigate the validity of the v ibro-acoustic model in  the case of a 

plate coated with a porous sound absorbing material and coupled to a rigid-walled  cavity 

for the pred iction of the low-frequency acoustic sound pressure response. The coupling 

between the plate structure, sound absorbing material and the air cav ity was presented by 

Atalla and Panneton (1996). 

The literature mentioned above provided several methods to predict the acoustic 

response of a coupled plate cavity system and used a general method to model the 

acoustic properties of sound absorbing materials . However, the effect of a porous sound 

absorbing material inside a coupled plate and cavity system has not been well presented , 

and not well validated by using the experimental method (Liu et al., 2015a; 2016a). The 

literature lacks the modelling of the acoustic properties of a coupled plate cavity system 

containing porous sound absorbing material due to structure-borne radiated noise. Hence, 

it is necessary to develop an acoustic model containing porous sound absorbing material 

to predict the acoustic properties of interior trim materials during the early design phase. 

The primary  objective of this paper is  to study the acous tic performance of porous sound 

absorbing material on the noise level inside an enclosed rectangular box cavity, by using 

a numerical simulation and validating it by an appropriate experimental method. 

 

2 Experiment 

A rectangular box cavity was designed to investigate the effect of the porous sound 

absorbing material on the noise level in a coupled plate cavity system. Figure 1 (a) shows 

a well-sealed rectangular box cavity that was developed in the laboratory. The inner air 

cavity volume has the size of Lx = 450 mm, Ly = 300 mm and Lz = 400 mm. The box has 

five rig id walls and one flexible aluminium plate on the end wall. The rigid walls were 

made of 25 mm Tempered Perspex, and the flexible aluminium plate was carefully bolted 

to the box all around the edges of the plate. The size of the alumin ium plate was Lx = 450 

mm, Ly = 300 mm and the thickness was 5 mm. These relat ive dimensions were chosen in 
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order to make sure that the ratio of any two lengths was not a small integer ratio. The 

overall size was chosen in order to to keep the box structurally rigid with the materials 

available. The rectangular shape was chosen so that the modes of the air cavity and of the 

aluminium plate could be analytically calculated. Because of the difference in thickness, 

the bending stiffness of the 5 mm alumin ium plate will be about one quarter of the 

bending stiffness of the 25 mm Perspex walls. 

The plate was mechanically excited by using a miniature electrodynamic shaker 

(Model 2007E, The Modal Shop Inc.) and a stringer that was carefully glued to the center 

of the aluminum plate. The shaker was generating a random signal with a point force equal 

to 1.0 N rms value. In this experiment, pressure field microphones (Array microphone type 

4957, Brüel & Kjær) for random incidence, and B&K Pulse LabShop were used to 

measure the SPL in a small rigid walled box cavity. The SPL in the cavity was measured 

at two different locations; one (Mic#1) at location of x = 170 mm, y = 125 mm, z = 150 

mm, and the other (Mic#2) at location of x  = 375 mm, y  = 110 mm, z = 165. The location 

of the microphones were randomly selected, and the acoustic sound pressure response was 

analysed up to 500 Hz. 

 

 
 

Figure 1 (a) acoustic rectangular box cavity experiment setup in the laboratory; (b) a 5 mm 
nonwoven porous sound absorbing material sample, the size is Lx = 450 mm, and Ly = 300 

mm. 

 

The porous sound absorbing material (5 mm Nonwoven Fabrics Linen) was cut down 

to 450 mm by 300 mm to fit the size of the aluminum plate as shown in Figure 1 (b). It has 

an average density of 140.10 kg/m
3
, flow resistivity   = 181000 N.s/m

4
, tortuosity    = 

2.9, porosity   = 0.98, v iscous characteristic lengths   = 0.000112 m, and thermal 

characteristic lengths    = 0.000224 m. These acoustic material properties were well 

studied by Liu et al. (2015b, 2016b). 

The measurement was carried out in two conditions: one with the porous sound 

absorbing material attached to the inner surface of the plate and one without it. The porous 

sound absorbing material was carefully glued on the inner surface of the aluminum p late, 

and the aluminum plate-backed porous sound absorbing material was then carefully bolted 

to the box all around the edges of the plate. It should be noted that the sound pressure was 



   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

measured at the same microphone locations (Mic#1 and Mic#2) with and without the 

porous sound absorbing material. 

 

3 Theoretical formulation 

The analytical model is composed of a coupled plate and cavity system, in which a porous 

sound absorbing material covers the inner surface of the plate. Figure 2 shows the 

schematic of a coupling system that consists of three different domains. They are the 

elastic domain (Ωe) for a rectangular flexib le plate, the porous domain (Ωp) for a porous 

sound absorbing material, and the acoustic domain (Ωa) for the air inside the box cavity. In 

this study, the edges all around the flexib le plate are assumed to be a simply supported 

boundary conditions. Simply supported boundary conditions are assumed because 

experimentally  it is difficult to achieve clamped boundary conditions. The experimental 

boundary conditions are likely to  be closer to  s imply  supported boundary conditions than 

to clamped boundary conditions. The plate is excited by a point force, F normal to the 

plate as shown in Figure 2. The vibrat ing plate will generate sound waves and radiate into 

the box cavity through the porous sound absorbing material. 

 

 
 

Figure 2 Schematic of a coupled plate cavity system with a porous sound absorbing material. 

 

In this section, the formulations of the coupling system are presented. The model of 

the coupling system is  performed using the FEM, in which the elastic domain and 

acoustic domain use the classical formulat ions (Dowell and Voss, 1963;  Pretlove, 1965a, 

1965b; Guy and Bhattacharya, 1973; Pretlove and Craggs, 1970), and the porous sound 

absorbing material is using the equivalent fluid formulations (Johnson et al. 1987; 

Champoux and Allard, 1991, 1992, 2009; Lafarge et al., 1997; Panneton, 2007). 

 

3.1.     Vibro-acoustic coupling model 
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The plate is assumed to satisfy the classical small deflection theory, and the following 

equation gives the differential equation of motion governing the transverse displacement 

response of a thin rectangular plate (Cremer and Heckl, 1988): 

 
2

4

2

( , , )
( , , ) ( , , , )

w x y t
D w x y t h p x y z t F

t



   


 (1) 

where D is bending stiffness, which is related to Young’s modulus E and Poisson’s ratio 

υ of the material for elastic plate, and it can be calculated by D = Eh
3
/12(1– υ

2
). ▽4 

is the 

Biharmonic differential operator, ρ and h indicate the density and thickness of the elastic 

plate, w(x,y,t) denotes the displacement of the flexible portion for the plate in the outward 

normal d irection  ⃗⃗  of the air cavity surface, p(x,y,z,t) is the acoustic sound pressure 

fluctuation inside the air cavity at any time t. On the other hand, the simply supported 

boundary conditions can be presented by (Oldham and Hillarby, 1990): 
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where w(x, y) denotes the displacement on the plate. Lx  and Ly are, respectively, the length 

and width of the flexible plate. 

It is well known that for a simple supported thin rectangular plate, the resonances (fm,n) 

and mode shapes (ϕm,n) are given by (Cremer and Heckl, 1988): 
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where Am,n is an arbitrary constant determined by the initial conditions, m is the modal 

index along the x-axis, and n is the modal index along the y-axis. 

On the other hand, the air flu id in  the acoustic cavity is considered to be compressible, 

irrotational and inviscid, and the sound pressure inside the cavity satisfies the classical 

wave equation, and it is given by (Hopkins, 2007): 
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where ▽2
 is the Laplacian operator, c0 is the speed of sound in the air. The associated 

boundary conditions on the rigid cavity walls are given by ∂P/∂ ⃗⃗  = 0, and by ∂P/∂ ⃗⃗  = –

ρ0∂
2
w(x,y,t)/∂t

2
 on the flexible aluminum plate, ρ0 is the desity of the air inside the box 

cavity. The natural frequencies (fi,j,k) and mode shapes (ψi,j,k) of a rigid walled rectangular 

acoustic cavity are given by (Elwali et al., 2012): 
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 (8) 

where Ai,j,k is an arbitrary constant determined by initial conditions, i, j, k are the modal 

indices along the x, y, z-axis of the rectangular acoustic cavity, respectively. 

 

3.2.     Porous sound absorbing material model 

The porous sound absorbing material is treated as a equivalent fluid model with acoustic 

material properties given by Liu et al. (2015b). The propagation of noise in a porous sound 

absorbing material is fully described by wave impedance and wave number. For the noise 

propagating in the air without dissipation, these quantities are independent of the 

frequency of excitation. The complex effective density and sound velocity is used to 

describe the viscosity effects as well as the thermal exchanges with the connecting solid 

skeleton. The governing equation then can be re-written as (Panneton, 2007): 

 
   2

1 1
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where pp is the complex pressure amplitude,      and  ̃    are the bulk modulus and 

complex effective density for the porous sound absorbing material, respectively. These can 

be obtained from the following equations (Johnson et al., 1987; Champoux and Allard, 

1991, 1992, 2009; Lafarge et al., 1997; Liu et al., 2016): 
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where γ0 is the specific heat ratio, p0 is the ambient fluid pressure, Pr is the Prandtl 

number for the ambient flu id, η is the ambient fluid viscosity, and ρf is the mass density 

of the fluid inside the porous sound absorbing material. G(ω) is a complex function that 

depends on the geometry of the pores. The acoustic properties for a porous sound 

absorbing material are the airflow resistivity (σ), tortuosity (α∞), porosity (ϕ), v iscous 

characteristic length (Λ), and thermal characteristic length (Λ'). 

 

3.3.     Coupling conditions 

In this case, the porous sound absorbing material is attached to the inner surface of the 

alumin ium plate and there is continuity between the normal displacement of the 

alumin ium plate and the porous sound absorbing material. The description and the 

interface between each two domains are presented in Figure 3. The coupling conditions 

between the flexible plate and the porous sound absorbing material is given by 

(Yamamoto et al., 2009; Actran 13, user’s guide): 

 e e p pu un n    and   e e p p n n   (13) 

where ue and up represent the displacement vector of the elastic p late and porous sound 

absorbing material, respectively, σe and σp are the stress tensor of the elastic p late and the 

porous sound absorbing material, and n is either the normal pointing outward from the 

elastic domain, porous domain or acoustic domain. 

On the other hand, the average normal displacement continuity  and pressure 

continuity, for the interface between the porous sound absorbing material and acoustic 

cavity are given by (Yamamoto et al., 2009; Actran 13, user’s guide): 

 p p a au un n    and   p ap p   (14) 

where ua, pp and pa are, respectively, the displacement vector of the acoustic domain, the 

acoustic pressure fluctuation of the porous sound absorbing material, and the air flu id 

acoustic pressure inside the acoustic domain. 



   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

 
 

Figure 3 Schematic of the interfaces between (a) flexible aluminium plate and porous sound 
absorbing material; (b) porous sound absorbing material and acoustic cavity. 

3.4.     Finite element model  

The weak integral form in each  domain is discretized by using the FE method. The detail 

method can be found in Rumpler et al. (2012, 2013). The coupled system equation in the 

matrix form then may be derived as (Yamamoto, et al., 2009; Liu et al., 2015): 
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                                (15) 

where M  and K  are the equivalent mass and stiffness matrices fo r each domain. C are the 

coupling matrices between each of the two domains. The sound pressure level then can be 

calculated from the acoustic pressure given by the FE model. 

Figure 4 shows the Finite Element (FE) model of the coupled system that was 

developed in this study. The FE model shows that the noise is generated from an 

equivalent 1.0 N rms point load input applied  to the alumin ium p late at the same location 

as in the experiment. Simply supported boundary conditions are used for all the plate 

edges. The output acoustic sound pressure responses are those at nodal#5 and nodal#8 in 

the FE model. They are the same locations as Mic#1 and Mic#2 in the experiment. The 

interface between each two domains are defined, and the weak coupling has been 

assumed, in which the energy involved in  the interaction is much s maller than the energy 

in each domain. Incompatib le meshes are used due to the facts that, the mesh of the p late 

is guided by the bending wavelength, but the cavity mesh is ruled by  the acoustic 

wavelength (Actran 13, user’s guide). 
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Figure 4  FE model of the coupling system, including a flexible aluminum plate (2-D shell 

elements), porous sound absorbing material (3-D solid elements), and acoustic air-cavity 
(3-D solid elements), showing the point load excitation and simply supported edges all 

around the flexible aluminum plate. 

 

For modelling the thin  flexib le aluminium plate, two-d imensional shell elements are 

used. The material properties of the alumin ium p late are Young’s modulus E = 72 Gpa, 

Poisson’s ratio υ = 0.35, and density ρ = 2700 kg/m
3
. Three-dimensional solid elements 

are used for modelling both the porous sound absorbing material and the acoustic air-

cavity. The air-fluid properties are the density ρ0 = 1.18 kg/m
3
, and the speed of sound c0 

= 346.13 m/s, which is calcu lated from the room temperature of 24.9 C
o
 (the temperature 

is measured inside the box of the experimental environment). It should be noted that a 

constant damping equal to 3% for the alumin ium plate and a constant damping of 1% for 

the air in  the box are used. These values were chosen based on a comparison of the 

numerical results with measurements. 

 

4 Results and discussion 

4.1.     The effect of porous sound absorbing material on a coupled system 

In this section, the measured acoustic sound pressure response functions between the 

excit ing force and the SPL inside the acoustic box cav ity are obtained, and the effect of 

the porous sound absorbing material on the coupled plate and cavity system is obtained. 

Figure 5 shows the measurement results of the effect of the porous sound absorbing 

material on the sound pressure level of a coupled p late cavity system for Mic#1 and 

Mic#2, respectively. The peaks indicate that the sound energy transfer from the vib rating 

plate into the acoustic cavity mainly  depends upon the resonant frequencies of the modes 

of the plate and the acoustic cavity. 

 



   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

 
 

 
 

Figure 5 The effect of the porous sound absorbing material on the coupled plate and cavity system: 

(a) the sound pressure response of Mic#1 without and with the porous sound absorbing 
material; (b) the sound pressure response of Mic#2 without and with the porous sound 

absorbing material. The results are obtained from the measurement data. 

 

The obtained results from the two different microphone locations show that the 

peaks observed at 220.23 Hz and 424.09 Hz are due to the plate modes, the peaks at 
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382.48 Hz, and 433.83 Hz are due to the acoustic cavity modes . It should be noted that 

the plate and cavity resonant frequencies are obtained from equations (4) and (7). For a 

weak coupling condition, the differences between the resonant frequencies of the coupled 

system and the corresponding uncoupled rig id-walled cavity and plate are very s mall. 

This is due to the fact that the air-fluid density is very low, and the plate stiffness is 

relatively high. Thus the radiated sound energy from the vibrating plate is much smaller 

than the energy in the acoustic cavity. Therefore, the motions of the coupled plate and 

cavity system are not essentially different from the system that is uncoupled. This 

confirmed by the experimental results which show that the resonant frequencies of the 

coupled system with the porous sound absorbing material are  only slightly d isturbed. 

This is because of the motion of the plate and porous sound absorbing material normal to 

their surfaces is very small, and thus the resonant frequencies of the acoustic cavity are 

not strongly affected. 

The results show that the porous sound absorbing material reduces the sound 

transmission into the acoustic cavity, and it provides a significant reduction of the 

radiated sound energy compared to when the system is not treated. The peaks of the SPL 

caused by the plate vibration and cavity modes are reduced by adding porous sound 

absorbing material. This is due to the fact that, the porous sound absorbing material has a 

damping effect on the plate displacement, in which the plate vibration energy is 

dissipated in the form of heat and absorbed by the solid skeleton of the porous sound 

absorbing material. The noise in  the cavity is also reduced by the porous sound absorbing 

material due to the thermal and viscous effects. It can be concluded that the porous sound 

absorbing material plays a very important ro le in the control of the acoustic sound 

pressure response, especially for the noise reduction in a coupled plate and cavity system. 

It is difficult to change the sound pressure response characteristics in the low frequency 

range when the design of the vehicle structure and compartment is fixed. The results 

obtained from the simple acoustic box experiments and calculations showed that adding 

sound absorbing material can  improve the acoustic performance of the vehicle cabin  in 

the low frequency range.  

 

4.2.     Comparison of results 

To further consolidate the above analyses, comparisons between the experiment data and 

the results from the FE model are presented. The validation is first performed without 

porous sound absorbing material to prov ide a benchmark for further evaluations. Figure 6 

shows the comparison of results between the experimental method and fin ite element 

model fo r the acoustic sound pressure responses at Mic#1 (x  = 170 mm, y = 125 mm, z = 

150 mm) and Mic#2 (x = 375 mm, y = 110 mm, z = 165 mm). The results in the figure 

represent the acoustic sound pressure response in the coupled plate cavity model without 

the porous sound absorbing material.  

The numerical simulat ion results show good agreement with the corresponding 

experiment data. The predicted resonant frequencies and their corresponding peak values 

agree well with the experiment results. The sound pressure response of the experiment 

data is higher than the FE model in some frequency ranges, but the general trend of the 

data is still qualitat ively predicted. The differences may be because of the influence of 

environment noise or vibration. It is impossible to make a rigid walled box and vibration 

isolate it completely from its environment. 



   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

 

 
 

 
 

Figure 6 Comparison of the sound pressure response of the experimental method and the finite 

element model, for the coupled plate cavity system without porous sound absorbing 
material: (a) sound pressure response of Mic#1 to a point force excitation; (b) sound 

pressure response of Mic#2 to a point force excitation. 
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The experiment results showed that the acoustic sound pressure responses of the 

coupled plate cavity system are also well pred icted in the frequency range from 50 to 500 

Hz when porous sound absorbing material is present. Figure 7 shows the comparison 

between the experiment results and the numerical simulation when the porous sound 

absorbing material is attached to the plate.  

 

 
 

 
Figure 7 Comparison of the sound pressure response of the experimental method and the finite 

element model, for the coupled plate cavity system with porous sound absorbing material: 



   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

(a) sound pressure response of Mic#1 to a point force excitation; (b) sound pressure 

response of Mic#2 to a point force excitation. 

 

The results obtained indicate reasonable agreement between the experiment and the 

FE model. The cavity interior Sound Pressure Level (SPL) is reduced by appending 

porous sound absorbing material by a similar amount in both the experiment and the FE 

model. 

5 Conclusions 

An appropriate simple coupled acoustic model is developed for studying the effect of the 

porous sound absorbing material on the noise propagation into a rectangular box cav ity. 

In this paper, it is experimentally and numerically confirmed that the resonance peaks 

caused by the vibrating plate modes and the cavity modes can be reduced by applying 

porous sound absorbing material. The cavity sound pressure level is reduced by a similar 

amount in both the experiments and the simulations.  
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Figure 6 (a) 

 

 
 

Figure 6 (b) 

 

 
 

 



   

 

   

   

 

   

   

 

   

   Int. J. Vehicle Noise and Vibration, Vol. x, No. x, 2016 22    
 

    

 

 

   

   

 

   

   

 

   

       
 

Figure 7 (a) 

 

 
 

Figure 7 (b) 

 
 


