
UNIVERSITY OF TARTU

Institute of Computer Science

Information Technology curriculum

Hillar Petersen

From Static and Dynamic Websites to Static
Site Generators

Bachelor’s thesis (6 ECTS)

Supervisors: Karl Blum, MSc

 Tõnu Tamme, MSc

Tartu 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

From Static and Dynamic Websites to Static Site Generators

Abstract:

Dynamic Content Management Systems like WordPress are used on almost half of the

world’s active websites. As many of these sites are content-driven, like blogs, news sites,

personal, company and organisation websites, rendering them dynamically does not offer

any value compared to if they were static.

Paradigmatic differences between static and dynamic websites are analysed and the bene-

fits of each described. It is found that for static-by-nature websites, static approach has

core benefits such as security and end-user performance, as benefits of dynamic platforms

come mainly from the more mature toolset.

Features and usability of three popular Static Site Generators – Jekyll, Hexo and Hugo are

analysed. It is found that Jekyll and Hugo are more suitable for universal websites, as

Hexo is oriented for blogging. Hugo should be preferred for a large website, as its site

generation speed is significantly faster than Jekyll’s. However, the extensibility of Hugo is

more complicated.

Additional tools in the growing static websites ecosystem are pointed out. Some ways of

combining these to create a complete toolset are given and ideas for future development

proposed.

Keywords:

Web development, Content Management System, Static Site Generator, Jekyll, Hexo, Hu-

go

CERCS:

P170 Computer science, numerical analysis, systems, control

3

Staatilistest ja dünaamilistest veebilehtedest staatiliste veebigener-

aatoriteni

Lühikokkuvõte:

Dünaamilised sisuhaldustarkvara paketid, näiteks WordPress, on kasutusel peaaegu

pooltel maailma aktiivsetest veebilehtedest. Paljudel neist lehtedest on peamiselt eel-

loodud sisu – näiteks blogiartiklid, uudised ja isiklikud või ettevõtete veebilehed. Sellise

iseloomuga veebilehtede esitamine läbi igakordse dünaamilise genereerimise ei lisa mingit

väärtust võrreldes sellega, kui lehed oleksid eelgenereeritud ehk staatilised.

Käesolevas töös on analüüsitud staatiliste ja dünaamiliste veebilehtede põhimõttelisi

erinevusi. On leitud, et staatilised lehed omavad sisulisi eeliseid dünaamiliste ees – näiteks

turvalisus ja kiirus – kuid dünaamiliste veebilehtede eelised seisnevad peamiselt küpse-

mate tööriistade olemasolus.

Töös on võrreldud kolme populaarseimat staatilise veebilehe generaatorit – Jekyll’i,

Hexo’t ja Hugo’t. On leitud, et Hexo sobib hästi blogimiseks, kuid Jekyll ja Hugo ka uni-

versaalsete veebilehtede loomiseks. Hugo’t tasub eelistada suurte veebilehtede puhul tänu

selle oluliselt suuremale genereerimiskiirusele, kuid peab arvestama selle keerulisema

laiendatavusega.

Staatiliste veebilehtede ökosüsteemi on põgusalt tutvustatud ning toodud välja vahendeid

lehtede majutamiseks, graafilisi kasutajaliideseid jmt. On pakutud ideid, mida tasuks

staatiliste veebilehtede tööriistades edasi arendada.

Võtmesõnad:

Veebiarendus, sisuhaldustarkvara, staatiline veebigeneraator, Jekyll, Hexo, Hugo

CERCS:

P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteooria)

4

Contents

Introduction ... 6

1. Background ... 7

1.1 Types of websites ... 7

Static .. 7

Dynamic .. 8

1.2 Website components and lifecycle ... 8

Basic components .. 8

Lifecycle .. 9

1.3 Main technologies and tools ... 10

HTTP servers .. 10

Clients ... 10

Static solutions .. 10

Dynamic solutions ... 11

Hosting providers and platforms ... 12

CDN providers .. 12

Examples of websites and used technologies .. 12

Web applications ... 13

1.4 The problem .. 14

2. Comparison of static and dynamic approaches and tools ... 15

2.1 End-user experience ... 15

Benefits of static solutions .. 15

Benefits of dynamic solutions ... 16

2.2 Site owner’s experience .. 17

3. Comparison of tools for creating and editing static websites 19

3.1 Static Site Generators ... 19

Comparison of the most popular SSGs – Jekyll, Hexo and Hugo 20

Some SSGs with alternative content editing and publishing methods 24

3.2 Combining existing static site tools to support full process 24

An example ... 24

4. New trends and ideas for further development of static website tools 25

4.1 Upcoming and trending tools ... 25

4.2 Author’s ideas of an “ideal” platform .. 25

Deployment model to support full process ... 27

5

5. Conclusion ... 28

5.1 Future work .. 29

6. References ... 30

6

Introduction

In the world there are more than billion websites. These sites are served by more than six

million computers. Tens of millions new websites are added each year. These are large

numbers so it matters to do it right.

Why? By choosing the optimal approach and tools we can save energy to host these sites –

thus reduce the cost of hosting and make our contribution to slow down global warming.

By using the right tools to develop sites, web developers and companies can save time and

effort – thus reduce the cost of development which will hand them a competitive edge.

Needless to say, website owners would win from higher productivity as that means they

can get their sites launched faster (or get a superior site in the same time) and could mean

less development costs.

In general, there are two types of websites – static and dynamic ones. Static is the “good

old” that has made a comeback thanks to static site generators. New tools are created eve-

ry day that make the static approach continuously more attractive. At the same time dy-

namic sites still have their advantages and many dynamic website tools are also improv-

ing.

In this quickly evolving web world and with a plethora of tools available it is tough to un-

derstand the situation and make educated decisions which approach to take or which tools

to use. Performance, easy scalability, less vulnerabilities and lower cost of hosting are key

factors why static is gaining ground.

The main goal of this thesis is to analyse the current situation and tools for creating, man-

aging and hosting static websites, and propose ideas for moving forward.

This study is divided into four main parts. The first part describes the basic terms, back-

ground information and defines the problem in current situation. The second part of this

thesis further compares the differences between static and dynamic approaches and current

state-of-the-art tools. The third part gives a deeper overview of currently available static

site generators and how they can be coupled with other currently available tools to support

the whole website development and management lifecycle. The fourth part looks into the

near future where the best parts of static and dynamic approaches could be combined and

the author of this thesis proposes key points for the development of a potential next gener-

ation static solution with some modern extras.

7

1. Background

Websites are something we use every day when we read news, search for information,

watch videos, pay our bills and follow our favourite bloggers. Websites present infor-

mation and offer services. Technically, a website is accessed over HTTP or HTTPS proto-

cols, identified by a URL (often with a “www” in its address) and consists of a set of

linked documents which a web browser presents to the user [1].

As of July 2016 there were [2] [3]:

 over 325 million registered domains

 provided by more than 6 million computers

 serving over 1 billion websites

However, Netcraft estimates that less than 20% of these sites are active or real sites – the

other 80% are computer-generated sites not offering unique content, such as parked do-

main websites displaying ads1. This makes the current number of active websites around

170 million.

These numbers indicate publicly (Internet) accessible websites – as there is no data about

the number of websites accessible in private networks only (such as organization intranets)

but we can assume there are many of these as well.

1.1 Types of websites

Static

The original website type [4]. In the current study an expanded definition is used – a static

site consists of HTML pages, documents and media which can be read by the server from

persistent storage and served to the client (usually a web browser) without further custom-

ization, as is illustrated by Figure 1. No runtime changes or other operations are done to

the stored page by the server. Static website can include HTML, CSS, multimedia content

and possibly client-side scripts/programs written in Javascript or other programming lan-

guages that the browser is able to run. These sites are usually content-driven (read only),

but can be interactive like a game or a tool (e.g. a calculator2).

Figure 1. An example how browser requests and server responds with a static page. [5]

1 https://en.wikipedia.org/wiki/Domain_parking
2 http://www.a-calculator.com/basic/embed.html

8

Dynamic

Websites that are stored in a format which is not directly renderable by the web browser,

are called dynamic sites. The server takes client request and generates a response that is

renderable by the browser after performing some actions in between. Meanwhile opera-

tions are defined in a scripting or programming language (some of the most common for

that being PHP, Python, Perl, Ruby, Java, C#, JavaScript via Node.js) and often include

database requests, as illustrated by Figure 2. Site can be naturally dynamic, providing in-

teractive client-server functionality or it can also simply convert statically stored infor-

mation to a HTML page.

Figure 2. Server gets HTML through PHP interpreter which uses MySQL database [6].

1.2 Website components and lifecycle

Here website means a website accessible via Internet unless specified otherwise.

Basic components

The main components for websites are:

 The site itself. Either static HTML documents or a dynamic

script/application/CMS site, with possible assets (mostly CSS, Javascript files, im-

ages and other multimedia content).

 HTTP server3. Takes the client’s request, processes it (in case of a dynamic site

proxies the request on to a script/application or an application server) and returns

the HTML page with its assets. The HTTP server returns the site from a specific

URL – an address where the site can be requested from. URL usually includes a

human-friendly domain name which is resolved to the HTTP server’s IP address

by the Domain Name System4.

Dynamic sites can include:

 Database. Used to store most of the dynamic website data (most of the configura-

tion and content of a site and can include user-specific data). Usually a relational

open-source database like MySQL, MariaDB or PostgreSQL is used. As possible

future technologies of dynamic CMSs, alternatives could be explored – like docu-

ment-based MongoDB which might be well-suited for storing web content, as

websites consist of documents.

3 https://en.wikipedia.org/wiki/Web_server
4 https://en.wikipedia.org/wiki/Domain_Name_System

9

 Template engine. Parses web templates to output a HTML webpage, possibly in-

jecting data bits read from database and combining template partials (often reusa-

ble/common parts of pages like a header, menu or footer). A dynamic site utilizes a

template engine runtime (might use preprocessors to boost performance), or in case

of a static site, a template engine5 might be used during site generation process.

 Themes. Theme is a package containing graphical appearance details. In case of a

webpage it is made of templates that define layout (HTML, CSS) and stylesheets

(CSS) along with the graphical assets6.

 Plugins. Extensions to the core dynamic platform. On open source or open plugin

architectures plugins can be developed by anyone. For instance WordPress has

more than 45 000 plugins [7].

Both static and dynamic sites can utilise:

 Admin portal (Content Management System – CMS)7. In dynamic solutions

CMS usually refers to both admin portal and core in a single package. An integral

part of dynamic websites – is used to manage the structure of the site, page layouts,

themes, plugins, content, metadata and other details, configure settings, users, pub-

lishing workflow etc. For dynamic sites the data is kept in storage as partials which

mostly persist in database and several files in the filesystem. However, as a newer

trend, there are also admin portals which generate static output – this will be

opened later in this study.

 Hosting platform. A platform with server resources and a set of tools to build, de-

ploy, and host a site. Possibly can provide a hosted version of a dynamic CMS.

 Content Delivery Network (CDN). CDN in the context of websites is a globally

distributed network of reverse proxy servers deployed in multiple data centres [8].

A CDN stores whole static sites (HTML pages with their assets) concurrently in

many places of the world and with the help of DNS serves the site from the “best”

server (generally speaking from the server closest to the client). On dynamic sites

CDN can cache static assets (files like .css, .js, images, videos) even if the page

generation is dynamic.

Static sites can be generated via a Static Site Generator (SSG). A static site generator is a

template engine that outputs static assets — HTML, CSS, and JavaScript. It takes the con-

tent, typically stored in flat files rather than databases, applies it against layouts or tem-

plates and generates a structure of purely static HTML files that are ready to be delivered

to the users [9].

Lifecycle

By the author’s experience with web-based software development projects, at least three

skillsets are needed for professional web sites: web designer, web developer and content

editor (for web developers, content editor can usually be named “the client”). Some usual

technical outputs of each role are:

- Web designer works with themes and basic templates

- Web developer creates a repository, creates the site core, installs server and devel-

opment environments, creates build procedure, includes plugins/external modules,

creates custom frontend and backend code as needed, possibly creates site structure

5 https://en.wikipedia.org/wiki/Web_template_system
6 https://en.wikipedia.org/wiki/Theme_(computing)
7 https://en.wikipedia.org/wiki/Web_content_management_system

10

- Content editor creates content pages and adds content along the lifecycle

Lifecycle of a website might go like this

1. A website is first developed in a local development environment. (At the same

time content editors might create content with alternative tools like a word proces-

sor – as the web environment is not yet available.)

2. The designer creates templates, stylesheets etc.

3. At some point the site core and basic structure elements have been created by the

developer and at least some of the designer’s templates included. Then either a

server-side content creation environment is established (with an admin interface

and possibly password-protected before an official launch) or an alternative is pro-

vided to content editors for editing and reviewing the content (like a local option

with git integration as with SSGs).

4. As the site and content is evolving, at some point it will all be reviewed and

launched to production environment (usually via a continuous deployment process,

but can be manual copying, e.g. via FTP). For a smaller website and when using a

dynamic platform, from there on production will be the only environment for both

content editing and for the end-users, possibly with a content preview in admin in-

terface (or there can be a local editing possibility like with a SSG or even via a

mobile app).

5. From there on, content editor occasionally adds new content or modifies the exist-

ing one. On content-driven sites the content editor usually adds also new pages and

subpages which can be launched independently of the code. The developer might

continue to develop code and occasionally launch.

1.3 Main technologies and tools

HTTP servers

The main servers used to host active websites are Apache Web Server with 46%, Nginx

with 22%, Microsoft IIS with 10% and Google Web Server with 9% of sites. Nginx is the

only one of the top servers that is constantly gaining market share [3]. There are good rea-

sons why Nginx is getting more popular, among these the ability to serve static content

more efficiently than Apache [10].

HTTPS is now going mainstream, as free (and automated) SSL certification is possible via

Let’s Encrypt.

Clients

Humans access websites from their computers (desktops/laptops) and mobile devices (tab-

let/smartphone) via a browser. Global statistics according to StatCounter as of July 2016

[11] state that of all page views about 50% were made from computers and 50% from mo-

bile devices (mostly smartphones) with the trend insisting that by the time when the cur-

rent study is published mobile has already overtaken desktop. The most popular browser is

Chrome with about 50% market share, followed by Safari (the browser on Apple devices)

with 18%.

Static solutions

Some stats will be presented as found on staticsitegenerators.net, staticgen.com and

W3Techs.com CMS popularity rankings [12].

11

There are 437 static site generators at the time of writing (with the count steadily rising),

with Jekyll8, Hexo9, Hugo10 and Octopress as the most popular ones based on the number

of stars in GitHub11. According to W3Techs, static tools GitHub Pages12, Jekyll and Hugo

have also been listed as CMSs, with GitHub Pages having 0.3% market share (26th place)

among known CMSs and the rest less than 0.01%. That would mean GitHub Pages is used

as CMS for over 200 000 sites. For the rest, it must be stated that as the static templates

are fully under developer’s control there might not be information in page HTML source

to correctly identify whether and which SSG was used to generate a page – as such

W3Techs numbers about SSGs might be smaller than actual.

Today, static site generators are the new standard for creating static web sites even though

in the most basic case any text editor like Sublime Text would do (a text editor is needed

for using SSGs as well – likewise for creating customized dynamic sites). In fact even rich

text processing software like Microsoft Word can be used to output HTML. However, we

will concentrate on SSGs as these are the new tools that could compete with more mature

dynamic site creation tools.

Static site hosting: any regular web hosting provider or your own web server will do, but

API-accessible smart hosting provider is the new trend – for instance GitHub Pages and

Netlify13. A number of sites hosted on GitHub Pages have also been created by a SSG like

Jekyll and not by the Automatic Site Generator14 and as such the number of sites hosted on

GitHub Pages should be larger than the number of sites using GitHub Pages as a CMS.

Dynamic solutions

Dynamic websites are based mostly on one of the popular CMSs – or can be built on a

custom CMS. The latter might be reasonable for large sites needing lots of custom func-

tionality – which might be more productive to be built not having to depend on an existing

platform and not having to maintain compatibility with the original platform for future

version upgrades or security patches.

According to W3Techs.com the most popular CMS is WordPress (WP)15 running 26% of

all active websites (59% of all sites built with an identified CMS). WP is followed by

Joomla and Drupal which have ten times less market share – 2.7% and 2.2% respectively.

A note about accuracy of W3Techs’s static vs. dynamic CMS stats. Around 55% of active

websites are listed as not being based on a known CMS [12]. One can roughly assume

most of these sites are hosted statically. Although W3Techs includes some static tools in

their content management systems list, like HTML editors Adobe Dreamweaver and Mi-

crosoft FrontPage, static CMSs GitHub Pages and Movable Type16, their market shares are

less than 1%. At the same time some of the dynamic CMSs are not identified by W3Techs

statistics, like an Estonian CMS Voog (previously known as Edicy), which claims to host

“hundreds of thousands of websites”17. As such, Voog and possible other unlisted dynamic

8 https://jekyllrb.com
9 https://hexo.io
10 https://gohugo.io
11 https://github.com
12 https://help.github.com/articles/what-is-github-pages/
13 https://netlify.com
14 https://help.github.com/articles/creating-pages-with-the-automatic-generator/
15 http://wordpress.org
16 https://en.wikipedia.org/wiki/Movable_Type
17 http://www.voog.com/about (8th Aug 2016)

12

tools (like custom CMSs – which mostly power larger sites and thus there are not too

many of these) can equal out the share of some static tools listed.

Hosting providers and platforms

According to Netcraft among the world’s most popular hosting providers are GoDaddy18,

DigitalOcean19 and OVH20, while Amazon has the most servers and IP addresses.

GoDaddy offers limited CDN support for serving static assets (for US-based sites only,

and with other limitations). DigitalOcean does not offer a CDN by default, so a custom

configuration must be used to enable it21 and an external CDN provider will cost some

extra. Similar configuration would work with GoDaddy.

OVH provides different levels of their own CDN support as part of their hosting packages,

WordPress and Joomla are preinstalled.

WordPress.com, the hosted version of WordPress, hosts over 100 million blogs and can be

considered the largest WordPress blog hosting site [13] [14].

Large hosting providers usually focus on VPS or shared hosting packages for websites,

with domain name registration, website hosting, data storage and e-mail. WordPress is

usually installable in one click, WordPress instances can be cloned etc. These packages

usually cost only a couple of euros per month (standard packages vary from €0.99 to about

€10/month). Better providers also offer API support to utilize the services automatically

via scripts.

Some alternative smart static hosting platforms are: GitHub Pages, Netlify, Aerobatic22.

There are also modern cloud-based services (e.g. Amazon AWS) which also allow hosting

of websites through a custom build process, provide APIs to work with them automatical-

ly, and many provide a CDN as well.

CDN providers

W3Techs statistics show that a CDN is used on less than 7% of websites [15]. Cloud-

Flare23 powers 70% of the CDN-using sites (5% of all websites), followed by Akamai24

with 12% and Incapsula25 with less than 6%.

GitHub Pages uses Fastly CDN26 as a reverse proxy for all of their incoming traffic.

Netlify uses their own CDN for HTML pages and Akamai CDN for assets [16].

Behind the scenes, reverse proxy servers Apache Traffic Server, Nginx, and Varnish pow-

er many CDNs [17][[18]] and can be used to build a custom CDN as well.

Examples of websites and used technologies

Landing pages for many popular sites are static, like apple.com, healthcare.gov,

github.com and mailchimp.com. These sites are using API-based JavaScript calls to

18 https://godaddy.com
19 https://digitalocean.com
20 https://www.ovh.ie/
21 https://www.keycdn.com/support/digitalocean-cdn-integration/
22 https://aerobatic.com
23 https://en.wikipedia.org/wiki/CloudFlare
24 https://en.wikipedia.org/wiki/Akamai_Technologies
25 https://en.wikipedia.org/wiki/Incapsula
26 https://www.fastly.com/customers/github

13

backend services when navigating deeper or calling functions like search from the homep-

age. GitHub.com is hosted on static hosting service GitHub Pages. Mailchimp.com, which

is 369th of the world’s most visited websites, uses Akamai CDN and Nginx web server and

according to middlemanapp.com, is built using Middleman SSG.

Many well-known sites run on dynamic CMSs – some examples include nytimes.com,

newyorker.com, fortune.com and nationalgeographic.nl running on WordPress. It can be

seen that all those sites are mainly content-driven – and could run on a static platform with

some non-static additions. The same goes with University of Tartu website ut.ee which is

running on Drupal27.

Some websites generated by a SSG are: mpc-hc.org (Jekyll, Apache) and gohugo.io (Hu-

go, Nginx web server, CloudFlare CDN).

The busiest sites28 use a CDN regardless of whether they are on static or dynamic plat-

forms, like can be seen through W3Techs Site Info tool29, Intricately30 or looking at the

pages’ HTML sources. For instance, google.com uses Google CDN, youtube.com com-

bines Akamai and Google CDN and facebook.com uses Akamai CDN.

Web applications

There is a specific subset of dynamic websites which we will not analyse in the current

study – these are functionality-driven web applications whose main purpose is to interact

and behave based on user-specific data31. These applications often include significant cus-

tom development on server side, require user authentication and do numerous read-write

operations on datastore. Examples of web applications are all kinds of custom functional

solutions, non-trivial e-shops, self-services, social networks – like facebook.com, ama-

zon.com or energia.ee after logging in. These are not in our scope as these would be quite

difficult to build using SSGs. Although as a sidenote Single-Page Applications32 are be-

coming the best practice architecture of web applications which have API-based backends

and separate frontends thick on client-side code – thus have some similarities to modern

static solutions that might have a few “dynamic” extras and are making API calls via Ja-

vaScript. Modern web apps built with Ember, AngularJS, React or Aurelia can be de-

ployed as static websites and served directly from a CDN with API backend shared, for

instance, between the website’s UI and the mobile client. However as these apps are not

normally generated with a SSG and they contain a principal amount of custom logic, their

qualities depend very much on the specific implementation – as such they are not relevant

in this study’s more general static-dynamic discussion and static tools comparison. Here

they are called web applications, not websites.

A sidenote. More detailed reading on core web technologies can be found via Cody Lind-

ley’s Front-end Handbook33. That book is created with a popular Static Site Generator

optimized for generating documentation sites and e-books, GitBook34.

27 https://w3techs.com/sites/info/ut.ee
28 http://www.alexa.com/topsites
29 https://w3techs.com/sites
30 http://my.intricately.com/
31 https://en.wikipedia.org/wiki/Web_application
32 https://en.wikipedia.org/wiki/Single-page_application
33 http://www.frontendhandbook.com/practice/tech-employed-by-fd.html
34 https://gitbook.com

14

1.4 The problem

There are billions of blog posts [19], news articles, institutional/company and personal

webpages – and other content which is hosted dynamically. Yet these content-driven sites

do not actually offer any (significant) dynamic functionality to the visitor. In this study

these sites will be referred to as “static-by-nature websites”. These sites mainly present

content, but may include minor dynamic features like form submission (e.g. comments or

a contact/registration form). The author’s opinion is that these sites have been created dy-

namically for the reason that for years there have been convenient dynamic site tools

around (dominantly: WordPress) but not static site ones. The browsers now support run-

ning thick JavaScript applications and HTML5, offering many possibilities which were

previously reasonable to be implemented only on server side. All kinds of API-based Ja-

vaScript widgets are available – things like commenting, posting to social media, search,

real-time data updates and even simple e-shops are possible to add to a static website.

A hypothesis is that static-by-nature sites would benefit if they actually were static. It will

be analyzed in this study (see “Comparison of static and dynamic approaches”).

Both static and dynamic tools have their advantages and disadvantages. For instance, stat-

ic-by-nature sites which are hosted on dynamic platforms are technically more complex,

consume more computing resources and are unnecessarily costly – compared to if they

were hosted statically. Static sites have limited functionality. As the modern static ap-

proach has potential to replace many currently dynamically solved use cases (i.e., static-

by-nature websites), but the toolset is relatively new, some most popular existing static

tools will be looked into in this study. SSGs will be compared, some new tools identified

and potential overall solutions studied.

As basis for this study no suitable academic resources were found. There are several blog

posts discussing static vs dynamic approaches – for instance, M. Biilmann’s post “Why

Static Website Generators Are The Next Big Thing”, in Smashing Magazine [20]. Like-

wise, there are posts where static site generators are compared, for instance, M. Biilmann’s

post “Static Website Generators Reviewed: Jekyll, Middleman, Roots, Hugo” in Smashing

Magazine [21].

Results of the study will hopefully be useful for web developers and website owners

choosing their next website platform – and propose ideas for future static platform devel-

opers.

15

2. Comparison of static and dynamic approaches and tools

Comparison will be broken down into two categories – one from end-user’s perspective

and the other from site administrator’s perspective.

2.1 End-user experience

Benefits of static solutions

Though developers give many reasons why they prefer static sites (some of which will be

referenced to in the current study) most of them can be summarized as the holy grail of

end-user solutions: better user experience (UX)35. Parts of user experience are specific

non-functional requirements (NFRs)36 which describe the expected system quality.

While end-user experience consists of a myriad of components and due to psychological,

cultural and other quite ambiguous factors there can be no single and straightforward defi-

nition for all of UX, we can point out some NFRs giving a relevant contribution:

- Page load time. There are many good reasons why fast page load time is important

– better user experience and impact on search engine rankings among them [22].

The importance of fast load time is enormous – 40% of users abandon a website if

it loads longer than 3 seconds [23]. During a single page load quite a lot happens in

a dynamic site (for instance in WordPress37 38) while in a static case the HTTP

server will return the stored page from disk or cache without any additional over-

head. If a site would be hosted dynamically and statically with similar infrastruc-

ture and HTTP server configuration then in the best case load time of a page in the

dynamic version can be close to the static one, but never better – as part of the

components are the same for both solutions plus a dynamic site has additional

components (e.g. a scripting language interpreter and a relational database). For

performing close to static solutions dynamic ones need quite a bit of configuration

work and additional components or plugins (for instance, see WordPress optimiza-

tion guide39 and how WP Super Cache plugin works – making pages as static as

possible40).

- Efficient scalability. Simply this means cost-effective readiness for serving more

and more visitors as the website gets more popular, without compromising page

load speed. Scaling dynamic sites can be a quite complex task as there more under-

lying components (e.g. CMS and database) which need to be scaled. Especially

complex when you need to scale in short time – like during a quickly peaking load.

Even the simplest setup for scaling a dynamic CMS easily is far from simple and

low-cost41. Scaling a static site via a CDN is already there and the whole site can

be cached, not just static assets. Even if a CDN is not used, simply adding web

servers and using a suitable load balancing method42 will be sufficient for most

static sites.

35 https://en.wikipedia.org/wiki/User_experience
36 https://en.wikipedia.org/wiki/Non-functional_requirement
37 https://www.rarst.net/wordpress/wordpress-core-load/
38 https://codex.wordpress.org/Plugin_API/Action_Reference
39 https://codex.wordpress.org/WordPress_Optimization/Caching
40 http://nilclass.com/courses/what-is-a-static-website/#13
41 https://cloudonaut.io/wordpress-on-aws-you-are-holding-it-wrong/
42 https://www.nginx.com/blog/scaling-web-applications-nginx-part-load-balancing/

16

- Availability and security of the service, meaning, for instance, that the service is

not unresponsive, does not have its content modified by hostile hacking and does

not allow users’ data to be accessed by unauthorized parties. Although lots of

plugins to choose from allow to boost productivity of dynamic site development,

probably most of WordPress’s 45 000 plugins have vulnerabilities [24] (which do

not impact their popularity numbers [25]). Millions of WP sites can already be

compromised. In the worst case, the dynamic site owner could suffer a major data

breach, like Mossack Fonseca earlier this year43. And dynamic sites which are not

patched regularly risk to help spread malware acting as bots, like happened with

Drupal 7 in 201444 and is probably the case with millions of WP sites as well,

without the administrator even knowing it. Static sites are not affected by the same

problem, as their server-side security is much easier to maintain thanks to using

only client-side technologies and not opening possibly vulnerable server-side ser-

vices.

CDN brings additional benefits:

- Lower latency of sites with an international user base (hosting close to users’

physical location). In a test by Mathias Biilmann [21], Smashing Magazine web-

site45 (running on WP in a single data center) was fetched and deployed statically

to Netlify (cached in CDN). Single-user tests to compare page load time from dif-

ferent locations of the world with Sucuri46 were made. On average, static version in

CDN returned pages 6 times faster. As another example, ut.ee which is hosted in

Tartu, has a reasonable page load time from Europe, but quite poor for visitors

from US, Asia or Australia47.

- World-wide replication and failover mechanisms provide availability – e.g., if

a CDN server in Stockholm is “closest” to the client, content will be served from

there. But if the Stockholm server has availability issues requests can be automati-

cally redirected to a server in Warsaw48. CDNs are reported to have stopped large

DDoS attacks successfully [26]. CDNs, like Google Cloud CDN can interconnect49

with each other with CDNI50, emphasizing on their benefits even more.

Other factors:

- Consuming less computing resources means less power consumption (means less

cost for hosting and less negative impact on the environment). Even if many data

centres might use only half of their energy consumption on actual server resources

[27] saving an order of magnitude computing time could make an important im-

pact. (Exactly how much energy could static sites save compared to dynamic ones

will need to be studied separately.)

Benefits of dynamic solutions

Natural benefit of dynamic solutions is write time, i.e. if any changes are done to the page

(like new content added or site structure changed) then with dynamic solutions the new

43 https://www.wordfence.com/blog/2016/04/mossack-fonseca-breach-vulnerable-slider-revolution/
44 https://nakedsecurity.sophos.com/2014/10/30/millions-of-drupal-websites-at-risk-from-failure-to-patch/
45 https://www.smashingmagazine.com
46 https://performance.sucuri.net/
47 https://performance.sucuri.net/domain/ut.ee (10th Aug 2016, rating: F)
48 https://www.cloudflare.com/features-cdn/].
49 https://cloud.google.com/interconnect/cdn-interconnect
50 https://en.wikipedia.org/wiki/Content_delivery_network_interconnection

https://performance.sucuri.net/domain/ut.ee

17

live page can be seen by users almost immediately (maybe a couple of seconds are needed

for writing changes into database). Only the changed part is written into database and can

be seen by a user accessing the site immediately after that. For static solutions, larger sites

can be generated for tens of seconds, plus they must be uploaded to the hosting provider.

If a CDN used, long cache invalidation time of HTML files might mean an additional de-

lay for updating static sites or seeing an impartially updated state of the site [16].

Real-time or personalized content is native as each page is rendered based on the current

data exactly when requested. With static sites, features must be added via JavaScript and

likely a CORS-supporting API based on an external backend.

2.2 Site owner’s experience

From site owner’s perspective, the first and most important is end-user’s experience, de-

scribed in the previous chapter.

Principal actions for creating and maintaining websites are creation of the site core, struc-

ture, look & feel, create/add/edit content, review and publish to live site.

Main roles included are web developer, web designer and content editor – differentiated

by the according skillsets. Possibly, a person (like a personal site owner) could fill all of

these roles with a suitable match of tools and skills, and in a large project there may be

several people or even teams of each.

Necessary skills for creating a website with a SSG and with a Dynamic CMS can be illus-

trated by Table 1.

Table 1. SSG vs. dynamic CMS – actions and roles

Role Legend

Dev – developer Without () – the most natural role and action fit

Designer – web designer () – can be done by in some cases or help needed from

CE – content editor (()) – can be done by in rare cases or very little help needed from

 Create site

core

Create look &

feel

Create & update

site structure

Create & up-

date content,

review, publish

SSG Dev Designer

((Dev))

Dev ((CE)) CE + Dev

Dynamic

CMS

Dev (CE) Designer

(Dev) (CE)

CE CE

Create site core. With a hosted dynamic CMS, a non-technical content admin could do

everything to set up a simple site themselves, via a graphical admin interface. Static tools

are not quite there yet.

Create and update look and feel. The process for professional websites includes having

a web designer first design the page in a graphic design software like Adobe Photoshop or

Illustrator. Then the graphical presentation needs to be implemented in HTML, CSS and

18

images – meaning the creation of layout templates, styles and graphical assets. SSG tem-

plates are often simpler than dynamic CMS templates as they do not include back-end

calls written in a scripting language. As such, when creating SSG templates, designer’s

need for developer’s help is smaller – if at all. However, the most popular dynamic CMSs

can currently benefit from a large template and theme base which can be used by content

editors directly and somewhat customized via a graphical user interface (e.g. in Word-

Press). In dynamic content management systems theme selection or theme change of the

website often takes just a few clicks and the admin can choose between many pre-defined

themes in order to easily change the look and feel.

Create and update site structure. This means creating and updating site navigation hier-

archy (pages, subpages etc.). With a SSG this logic is created and updated via not-so-easy

to understand plain text files which is good for developers, but not that good for content

editors.

Create and update content, review, publish. Adding blog/news posts and working with

other content pages, testing/reviewing the results and updating production site. With SSGs

pre-defined types of content can be created by content editors in a reasonable way. Con-

venient means are provided for the editor to review the changes in a local environments

(on editor’s computer via a browser), but it is more difficult for a collaborative process as

at least a git pull request would be needed and there is no central staging environment.

Production update (publishing) mostly needs some technical skills. Later in this study will

be presented more details on differences between SSGs and possible new additions.

All in all, looking at the table, SSGs are quite developer-centric. “Developer skills” are

needed in order to work with SSG-based sites and the “normal” site owner or content edi-

tor cannot conveniently manage the website on their own. However – developers with a

suitable custom toolset will likely be able to pull off a more efficient process with static

tools, as git, build tools incl. asset pipelines etc. are used by default.

In dynamic CMSs, basic dynamic user-input features are available out-of-the-box and

configurable even by non-technical staff, like commenting and form submission. Howev-

er, there are already easy-to-integrate tools to achieve similar functionalities with static

sites [9] and likely many new coming.

Another benefit of dynamic CMSs is that the existing toolset is richer, with many CMSs

supporting:

- full process from development to content editing to publishing

- graphical admin user interfaces (translated to many languages)

- lots of features and plugins

- abundance of ready-made templates/themes

- large number of developers

- abundant support from both community and hosting providers

- multi-site support for managing many sites from a single interface

19

3. Comparison of tools for creating and editing static websites

A comparison of the features of the most popular static and dynamic website creation and

management tools (SSGs) will be given. Some possible interesting alternatives will be

pointed out. A few possibilities to combine different tools will be described.

3.1 Static Site Generators

In short – during 26 years static site generation tools have evolved from Tim Berners-

Lee’s first web browser, then text editors, then HTML editors, then a few dynamic CMSs

capable of producing static output (e.g. Movable Type51), and now to SSGs.

Concentrating on SSGs, there are hundreds of them, all vying for adoption, written in Ru-

by, Node, Go, Python, JavaScript and other languages. Most of them share similar traits

[21]:

- Templating. Allowing a website to be split into layouts and includes to get rid of

repetition is one of the basics of static website generators. This means a page is

based on a reusable layout which includes reusable partials (e.g. page metadata, a

menu, header, footer, sidebar, content items, also local variables), content is kept in

separate files. Different templating languages/engines are supported by different

SSGs – for instance Liquid, Swig, EJS, Haml, Jade.

- Markdown support (or some other markup language). Markdown52 is easy to

work with, and several Markdown editors are available, like StackEdit53. Mark-

down is supported by programmer-oriented text editors as well. Alternatives in-

clude reStructuredText, Textile and others54 – as supported by different SSGs. In

general, they all allow content developers to write content in a structured format

plain-text files.

- Front matter is the bit of meta data, typically in YAML format, at the very top of

a document, e.g.:

title: Title of the document

tags: [tag 0, tag 1, tag 2]

Actual content

Here starts the content.

The example front matter data would be shown as post title and tags on the pub-

lished post. This makes annotation of single-file documents with metadata straight-

forward and have data in a human-readable text format rather than stored in a

much more opaque format in a database.

51 https://movabletype.org/documentation/administrator/publishing/static-and-dynamic-publishing.html
52 https://en.wikipedia.org/wiki/Markdown
53 http//stackedit.io
54 https://en.wikipedia.org/wiki/Comparison_of_document_markup_languages

20

- Asset pipeline. Front-end development today involves several build tools and

compilers. Before going to production it is useful to minify and bundle assets. CSS

preprocessors like Sass, SCSS, Less and Stylus are mainstream tools. CoffeeScript,

TypeScript and ECMAScript 6 transpiling have made JS compilers a part of pro-

gramming for the browser. Browserify allows developers to focus on building

structured JavaScript without worrying about bundling. Developers might want to

lint their code with ES6Lint. Most modern static website generators include an as-

set pipeline that handles asset compilation, transpiling, minification and bundling.

Some SSGs are based on build tools such as Grunt, Gulp and Broccoli, and let site

generation hook into a larger ecosystem of tasks and build steps, allowing web de-

velopers to use any pipeline. Immediate browser refreshing when a file is saved

has also become standard for many generators.

- Output is a complete static website which can be hosted independently of the

SSG in any static hosting solution.

Content publishing process. A typical use case of changing content with SSG is writing a

blog post or adding a news item, which could go like that:

1. New post is composed in a text editor and formatted in Markdown – and commit-

ted to git repository.

2. Page is regenerated – most SSGs have a watch functionality to detect file changes

and regenerate the site automatically.

3. Site is previewed locally – many static generators provide their own local server to

add some development features like automatic page reloading upon file save.

4. Changes are pushed, site is regenerated (built) for production and deployed to a

live server (regular hosting or CDN) – either via custom scripts (e.g., as a task in

Grunt), automatically by a smart hosting service watching Git repository, like

GitHub Pages or Netlify [28], or by copying files to a hosting location manually.

Comparison of the most popular SSGs – Jekyll, Hexo and Hugo

Jekyll, Hexo, Hugo are in active development – at the time of writing all have been updat-

ed just a few hours ago. They are are open-source, with MIT and Apache 2.0 licenses, as

listed by staticsitegenerators.net. In this study a high-level comparison will be done – this

is reasonable as SSGs are in constant change and this study is not focusing on specific use

cases, but rather on principles.

Hexo calls itself blog-oriented, as Jekyll and especially Hugo are more general SSGs.

Comparison details can be found in Table 2.

Table 2. Comparison of Jekyll, Hexo and Hugo

 Jekyll Hexo Hugo

Programming lan-

guage

Ruby JavaScript (Node.js) Go

Templating languages Liquid EJS, Swig55 Go Templates

Content markups Markdown or HTML

(Textile, Slim, Jade,

Pug, HAML, reStruc-

Markdown (pandoc,

Textile, reStruc-

Markdown (AsciiDoc,

reStructuredText via

55 more are supported via plugins

21

turedText, AsciiDoc via

plugins)

turedText via plugins) external helpers)

Admin or editing in-

terface with a GUI

No (supporting packag-

es for text editors, e.g.

sublime-jekyll)5657

Hexo-admin plugin

(blog-oriented Mark-

down editor)

Rango and Hugopit as

Tools), supporting

package for Sublime

Text

Preview mechanism Local server, auto re-

generation (live reload

via generator-

jekyllized/Browsersync

server or Haw-

kins/LiveReload brows-

er extension)

Local server, auto re-

generation (live reload

possible via hexo-

livereload and hexo-

browsersync plugins)

Local server, auto

regeneration, live re-

load

Custom content types,

data-driven content

Yes (collections) No Yes

Custom sections, cus-

tom includes

No No Yes

i18n support* Yes (via i18n filter or

jekyll-i18n_tags plugin)

Yes Yes

Built-in asset pipeline Yes Yes No

Atomic regeneration Yes (--incremental flag,

stated as experimental)

No No

Site generation time Slow (fast with --

incremental)

Fast Very Fast

Deployment support Git58, S3, Rsync, possi-

bly more

Git, Heroku, OpenShift,

Rsync, FTP, S3, Cloud-

Front via plugins

Manual configuration

(via Wercker59)

Amazon Lambda sup-

port and SFTP (via

tools)

Migration tools >=20 platforms60 From RSS, Jekyll, Oc-

topress, WordPress,

Joomla

From Jekyll, Word-

Press, Ghost, Octo-

Press, Tumblr, Drupal,

Blogger, Contentful

(via tools)

Number of plugins61 >=177 >=141 >=24

56 Graphical admin interface (jekyll-admin plugin) (https://github.com/jekyll/jekyll-admin) is in development

and scheduled to be released after 23th August 2016
57 WordPress2Jekyll plugin exists which allows to export from WP to Jekyll
58 Smart hosting services like GitHub Pages and Netlify are able to deploy to production directly from git
59 https://gohugo.io/tutorials/automated-deployments/
60 https://import.jekyllrb.com/docs/home/
61 “Tools“ in case of Hugo

22

Number of themes >=236 62 >=65 63 >=97 64

Programming language. Jekyll is built on Ruby, which is well known to many develop-

ers – and it quite easy to write plugins for missing features. At the same time, the solution

lacks performance and relies on the ecosystem dependencies. Hexo is built on Node.js,

which is good news for JavaScript developers. However, Node is a remarkable dependen-

cy. Hugo is written in static, compiled Go language and distributed as a binary. It has no

plugin system and should be plugged into developer’s own build flow to add an asset pipe-

line. Also there are not that many Go-experienced developers which means Hugo is not

that easy to extend. At the same time Hugo offers superior performance compared to other

solutions.

Templating languages. Liquid and Go templates do not have that many dynamic features

and thus adding dynamics should be done via extending. In this sense, Hexo offers most

flexibility out-of-the-box with EJS.

Content markups. Markdown is the standard and all support it. Jekyll and Hexo support

many more, while Hugo offers a limited choice.

Admin or editing interface with a GUI. Jekyll-admin is in the works for Jekyll. Hexo is

oriented for blogging, and blog post creation/editing is possible via plugins. Although it is

oriented for a single blog and local development environment as from GUI there is no easy

way to launch to production. Hugopit offers more powerful CMS-like functionality for

Hugo, but it is still a local environment tool, not for production deployments. Graphical

user interface for content editors on an admin server looks to be possible, but needs a cus-

tom setup.

Preview mechanism. All provide their local server and watch filesystem for changes, of-

fering auto-regeneration. Live browser reload (after regeneration seeing changes in brows-

er without having to manually refresh the page) is native in Hugo, others have it through

plugins. In the sense of a quick turnaround time the smoothest is to work with Hugo as site

regeneration is fast.

Custom content types, data-driven content. Hexo offers a clearly blog oriented post-

based approach and no data-driven content (i.e. displaying data from a YML, CSV or

JSON file). Jekyll and Hugo are more general and flexible, especially Hugo as it offers a

completely flexible layout and sections as well.

Custom sections, custom includes. Here Hugo and Jekyll offer flexibility, not limiting

the sections to header-footer-content style breakdown. If going to details, Hugo is built

from ground with a flexible layout approach and has the smoothest mechanism.

i18n support. Localization and multi-language support (translations support) of the gener-

ated site exists in all of the systems, but Hugo’s system is the most advanced and has tuto-

rials to support it.

Built-in asset pipeline. Here in basic case Jekyll and Hexo support running preprocessors

etc. natively or via plugins and thus could be built without external build tools. Hugo of-

fers just plain static output out-of-the-box, meaning developers must create Grunt, Gulp or

62 http://jekyllthemes.org/
63 https://hexo.io/themes
64 https://github.com/spf13/hugoThemes

23

other build scripts around Hugo if they want to use preprocessors, compilers, minifiers etc.

Large sites would use custom scripts anyway, so it should not be considered a huge issue –

though for small sites a built-in asset pipeline would be convenient.

Atomic regeneration (incremental regeneration – regeneration of changed parts of the site

only, not full site each time, to reduce turnaround time) and regeneration speed. Jekyll

has an experimental support suitable for development environment. Hexo and Hugo do not

have such capability. Hexo offers some alternative ways to speed up rebuilding, like cach-

ing [29]. One can argue Hugo does not desperately need atomic regeneration as it is al-

ready order(s) of magnitude faster than the others [30].

Deployment support. Production deployment is meant to be done via CLI (command line

interface). If the development flow is from local to production then it would be convenient

to configure production target and launch. For this purpose Jekyll and Hexo support many

deployment targets (hosting providers). Hugo has only SFTP and AWS Lambda targets

(naturally meant to build locally). However, more advanced approach would be to deploy

to production via webhooks watching Git repository (configurable locally or in Git hosting

platforms, e.g. GitHub, GitLab, BitBucket). This approach can be used independently of

the SSG as it sits on Git repository and works with any solution.

Migration tools. The possibility to migrate a WordPress or Drupal site to a SSG is im-

portant for easy adoption of SSGs. Jekyll supports tens of different imports via plugins,

and the rest support also some (all including at least WordPress). One of the ideas behind

Jekyll is that it lets any normal static website be a valid Jekyll project. A site could be

converted to a Jekyll with the following steps [20]:

1. Take a plain HTML mockup of a blog.

2. Get rid of repeating headers, menus, footers and so on by working with layouts and

includes.

3. Turn pages and blog posts into Markdown, and pull the content into the templates.

Number of plugins. The plugin ecosystem is native for Jekyll and Hexo, as Hugo sup-

ports independent external tools, not plugins – thus has less to choose from. The quality of

plugins however would need to be analysed separately and likely many are already out of

date. Plugin sorting/filtering is not that easy on SSG websites and plugins get easily out-

dated as with WordPress.

Number of themes. Theme ecosystem is important for general adoption of SSGs. For

starters, there seems to be enough to choose from.

Summary

As a conclusion, all these SSGs have their specialties – Jekyll for its most evolved ecosys-

tem, Hexo for its blogging capabilities and Hugo for its performance and universal ap-

proach. At the same time, all are focused to what a SSG does – taking plain-text based

templates, content and configuration and building these to a static site. It means that to

support a full process (and other types of people in addition to developers) from develop-

ment to content editing to production deployment SSG have to be combined with other

tools in a custom way – and even then, convenient GUIs for content admins are still far

off.

Out-of-the-box SSGs are suitable for technically-savvy site owners (mainly, modern blog-

gers) and have convenient support for maintaining a single website.

24

Some SSGs with alternative content editing and publishing methods

There are platforms that provide a web interface for creating, editing and deleting files

directly on a GitHub repository, offering a WYSIWYG editor for Markdown to create a

friendly composition interface. Examples are Prose, a free and open source solution, or the

more advanced CloudCannon, a commercial product that allows users to edit entire sec-

tions of a static site and see a live preview of the changes. Lektor is a new SSG with a GUI

editor.

There are also mobile apps, available for both iOS and Android. These are a viable option

for people interested in writing and publishing content on the move. The apps connect

with GitHub and the changes are instantly pushed to the repository.

Another option is to set up a service that allows users to post to a static blog by email,

which can be a viable solution for those that need to constantly write on the move. It

works by listening for emails on a certain address and picking up the post metadata from

the subject line, the images from the attachments and the post body from the message it-

self [9].

3.2 Combining existing static site tools to support full process

Tools such as Contentful, Prismic.io, GatherContent and Webhook.com decouple the

CMS layer from the actual website builder. This makes them suitable tools for multi-

channel content management, where you’re writing content not just for a particular web-

site, but also for a mobile app, a Facebook page or a white paper. Publishing new content

triggers a webhook in a build system; then, a static website generator runs the build and

fetches data from the content API; and the result is pushed straight to a CDN [21].

Smart static hosting platform Netlify with its fast CDN cache invalidation for HTML and

features like 301 redirects, headers, basic authentication etc. has lots of promising features

for hosting a website. It can also trigger build and deploy if a change in Git repository

happens and has an admin interface for hosting (but not yet for content – though experi-

mental Netlify CMS can be tested on their website). Combining Netlify via a custom pro-

cess and build configuration with a SSG and/or possibly a graphical interface like Content-

ful could make single site administration convenient.

Adding dynamic features. Commenting can be done via external APIs and JS widgets [like

Disqus]. For form submission no plugins were found for the listed SSGs. Manually call-

ing, for instance, a slack webhook as form action is possible and paid options like

FormKeep or Netlify (with Netlify paid hosting) are possible.

Multi-site can be achieved with some configuration for instance in Hugo65.

An example

A good example how static tools have been combined to support full process is Carrot.is

combining Contentful with Netlify66. They achieved a process where content editing is

done via Contenful static CMS (with a GUI) and site core is being built by developers on

Roots static site generator. Both keep their files in Git repositories and change in master

triggers Netlify which automatically triggers build and subsequently deploy to CDN.

65 https://discuss.gohugo.io/t/hugo-multisite-workflow/103
66 https://carrot.is/coding/static_cms.html

25

4. New trends and ideas for further development of static website
tools

In this chapter will be discussed:

1. New trends (known fresh, beta or in-development tools)

2. Author’s own ideas

4.1 Upcoming and trending tools

As mentioned in the previous chapter graphical CMSs that generate static output are com-

ing up. A list of tools to look at are: Webhook, Contentful, Prismic.io, Netlify CMS (ex-

perimental), Lektor, jekyll-admin.

For reusability, templating and convenient publishing of new content based on existing

content templates/custom types – for instance charts, quizzes, image galleries etc. one

could use Autotune67. Autotune sits on top of a SSG generator, but adds a GUI with reusa-

bility and publishing logic.

Trends indicate that combining different tools for a full process with static sites is pretty

much possible now and looks even better soon with different new tools coming up. But the

setups for combining these are still quite custom to build and require some development.

The problem with that is – developing and maintaining custom solutions takes time and is

costly. Thus a ready set of tools to support full process would be desirable.

4.2 Author’s ideas of an “ideal” platform

What developers like about SSGs and all of the modern static toolset is that they are de-

veloper-friendly, have APIs, do not need constant security patching etc. But for non-

developers the appeal is not obvious yet. Perfect would be to combine these two and take

an approach of a “developer-friendly CMS”. It would be simple but powerful with cover-

ing most basic use cases and at the same time benefit from static’s potential low-cost. So

ideally, it could offer, compared to current dynamic solutions, a better quality hosting with

a lower cost for all the millions of microsites out there.

In order to target the current benefits of dynamic CMSs and move significantly more of

the web to static some mostly unsolved issues need to be targeted:

- Proper web-based GUI for full content (and preferably site structure and page

metadata) administration is a must, including publishing content changes to pro-

duction without having to use a CLI tool (editor should support different content

types incl. WYSIWYG without having to write Markdown)

- A hosted simple all-in-one blogging and landing page solution is needed to appeal

the hundreds millions of blog or personal site owners

- Native or plugin support (and at least configuring of existing components from

GUI) for basic user-input functionalities (e.g., contact/registration forms, search,

comments)

- Multi-site administration (at least dashboard for quick access – needed for free-

lancers building a large number of small pages, web development agencies and

multiple-site owners)

67 http://product.voxmedia.com/2015/7/8/8907841/introducing-autotune

26

- Support for a web-based staging environment (to conveniently support more than

one content editor and without having to set up a local environment for content ed-

iting), timed publishing, users and roles, content versions comparison and rollback

etc.

- Native support from existing hosting providers

Additional ideas include:

- Support for i18n of the site (localization and translations from GUI, with spread-

sheet export-import capabilities in order to support translation companies)

- Support for i18n of the admin portal itself (for instance, WordPress admin is avail-

able in tens of languages)

- Support for editable div (on-site content editing)

- Full-text search in admin portal (to quickly find the component that needs to be

changed)

- Support for automatic generation and handling of responsive images

- Cloning and copies of sites, templates, content directly from admin GUI, kickstart-

ing new projects

- 1-click theme change (for instance, on WordPress.com, themes are changed several

million times a year [14])

- Image gallery via a native plugin for many sites publishing image content

- A simple online store

- Data-driven content type to support partial / lazy loading, infinite scroll

- Plugin support with an advanced UI to search and filter plugins

- Possibly domain registration and nameservers (can be a built-in tool via external

APIs)

Of course the hosting and content admin interface should include most of what is included

in Netlify and Webhook, and supported by SSGs.

How to reach this ideal? As Hugo is the most universal and fastest among popular SSGs

(suitable for developing different types of websites and offering a faster write time than

others), possibly a richer toolset could be built around it. Maybe a hosted solution for both

content administration and hosting (incl. an interface with a GUI) could be developed – to

be easily adopted by a general audience and offer good support for content editors. At

least out-of-the-box support for basic dynamic functionalities should be added as well.

Webhook looks like is a simple and powerful drag & drop CMS tool for basic use cases

and webhook.com offers a hosted version of it. As it is open source, it could be forked to

add new stuff – as, for instance, it does not natively support any dynamic/user-input com-

ponents.

Thoughts about hosting. Even if Netlify is a smart solution, it is also more oriented for

“premium” websites. For micro-site developers who need a password-protected

test/staging site, the plan including password protection is starting from $9/month68 –

which is about double the price a simple WordPress hosting would cost. Netlify’s free plan

can be appealing to blog and small/personal site owners by its cost – but what is then lack-

ing is that general small and blog site owners are either relying on WordPress developers

or create and manage their site themselves which both require a significant learning curve

with Netlify. Yet – as Netlify’s free plan includes the possibility to use a custom domain

(i.e., your own domain like something.com, not something.netlify.com), the free plan is

actually usable. Webhook.com is not that brilliant on hosting capabilities, its free plan

68 https://www.netlify.com/pricing (11th Aug 2016)

https://www.netlify.com/pricing

27

does not include a custom domain and it works based on zip files, not direct Git connec-

tion. For $9/month, a custom domain is possible.

Deployment model to support full process

What would be the work process with the “ideal” tool? Figure 3 proposes a deployment

model with user roles, code and content flows.

Figure 3. A possible deployment diagram to support full website lifecycle with develop-

ment, staging and live (CDN) environments.

This kind of model supports flow from development to staging to live – with the possibil-

ity for content editors to work only in staging admin environment. Imagine this as a web-

based multi-user multi-site admin portal. Content and site code would, of course, be kept

in Git repositories. The solution would allow developers to technically manage multiple

sites and content admins to manage content of multiple sites.

28

5. Conclusion

The goals of this study were to give an overview of the current tools available for develop-

ing, managing and hosting websites, to analyse the differences between dynamic and static

websites – and to dig deeper into static website development tools.

Website types – static and dynamic – were introduced and their differences explained. For

a memorable summary, static websites are like compiled programming languages – they

will need time for compilation but will run fast afterwards. Dynamic sites are like inter-

preted languages – no compilation is needed and some flexibility is added, but perfor-

mance-related and other problems might occur runtime.

Current trends of the main involved technologies and service providers were overviewed –

HTTP servers, clients (browsers), static solutions, dynamic solutions, hosting providers

and platforms and CDN providers. Examples which technologies are used on some web-

sites were given.

With HTTP servers, it was found that even as Apache Web Server is the most popular, the

growing trend is to use Nginx. An important benefit of Nginx is its faster static asset serv-

ing capability.

With clients and browsers, it was found that mobile devices are now as popular means of

browsing websites as PCs. So no future public website can get by without proper respon-

sive support, working well on both mobile and desktop.

Looking at static solutions and static hosting platforms, the emergence of SSGs like Jekyll,

Hexo and Hugo, and smart static hosting services like GitHub Pages and Netlify was

pointed out.

Dynamic websites are mostly built on PHP and WordPress is the dominant platform run-

ning 26% of world’s active websites. Pretty much all of the world’s popular “classic” host-

ing providers support WordPress out-of-the-box.

CDN providers like CloudFlare and Akamai serve the assets of the world’s busiest web-

sites. Smart static hosting services GitHub Pages, Netlify, Aerobatic use a global CDN by

default (as opposed to “classic” hosting providers which usually do not). Using a CDN for

any relevant website is recommended by the author.

Analysing the benefits of static and dynamic website technologies, we described the core

advantages of static websites – performance, efficiency and security.

We found that static tools are modern, but developer-centric. Easy-to-use graphical user

interfaces for website content editors, bloggers etc. are still limited and one would need

custom setups to combine different tools.

The most popular Static Site Generators (SSGs) Jekyll, Hexo and Hugo were compared.

They all do quite the same thing – generate static websites as files and directories. Which

is just one of the steps in a website’s lifecycle. As the main difference, Hexo is oriented on

blogging and does it well – while Jekyll and Hugo have the potential for generating all

kinds of websites. Jekyll is written in Ruby and has a usable plugin system. Hugo is writ-

ten in Go and can only support external helpers. At the same time, Hugo has superior per-

formance which would is suitable for larger websites and is a pleasure to work with.

SSGs are a part of an emerging static websites ecosystem which is looking to be expand-

ing and growing into wow-effect generating toolsets. Some ways to combine existing tools

29

are pointed out. Some tools which are already meant for more than working with websites

locally are mentioned – and some ideas where to evolve with the “ideal” tool are stated.

The leading dynamic CMS WordPress has had many interesting developments in the past

couple of years as well. There are plugins that support converting WordPress site to static

keeping the original admin interface (e.g. Static HTML Output Plugin and Word-

Press2Jekyll plugin). WordPress.com has created a new admin interface Calypso which is

implemented in JavaScript frameworks and runs mainly on client-side, connecting with

the PHP backend via a REST API69. Calypso is usable from build tools via an API like

modern static tools.

However, even if WordPress is advancing, for most use cases the author suggests using a

static approach and adding dynamic features as needed, not vice versa – making a dynamic

site and trying to cache it with heavy machinery. Static site can save time and money, as it

requires less maintenance and less server resources. Static sites are fast, scalable, can han-

dle high volumes of traffic and are more secure against hacking.

The author’s view is that the future of most websites will be static. The benefits of static

are clear and as the toolset is maturing the shortcomings will be solved. Ongoing static

shift offers possibilities for platform developers to develop more complete and hosted stat-

ic platforms – and for “dynamic” plugin/services developers to enable support for dynamic

functions in static websites.

Wider adoption of static technologies for static-by-nature websites would simply make the

Internet a better place – reduce the possibilities of cybercrimes due to less compromised

servers, provide better user experience and generate less negative impact on the environ-

ment.

5.1 Future work

Static tools are in constant development and new parts of the toolset could be reviewed in

more detail. Webhook, Prismic.io, Contentful and others provide graphical user interfaces.

Jekyll-admin and Netlify CMS are in development. Out-of-the-box static toolsets combin-

ing different services could be created.

The workflow and technologies used by popular SSGs differ somewhat from what PHP

developers (e.g. WordPress developers) are used to. An experienced WordPress developer

who has migrated to a static solution could think about what can be done to support wider

migration.

More detailed experiments and analysis could be done about the performance and scalabil-

ity of static vs dynamic sites. Total Cost of Ownership (TCO) analysis could be done

about developing, hosting/administrating and scaling static vs dynamic solutions, with

taking security risks into account.

As dynamic CMSs are also under development and are likely to maintain the advantages

for a few use cases, a comparison of the new capabilities and analysis of recommended

use cases for static and dynamic could be done in some time from now.

69 http://ma.tt/2015/11/dance-to-calypso/

30

6. References

[1] Wikimedia Foundation. Website. [Online]. https://en.wikipedia.org/wiki/Website

[2] Verisign, Inc. (2016, July) Internet Grows to 326.4 Million Domain Names in the

First Quarter of 2016. [Online].

https://investor.verisign.com/releasedetail.cfm?ReleaseID=980215

[3] Netcraft Ltd. (2016, July) July 2016 Web Server Survey. [Online].

http://news.netcraft.com/archives/2016/07/19/july-2016-web-server-survey.html

[4] Wikimedia Foundation. World Wide Web. [Online].

https://en.wikipedia.org/wiki/World_Wide_Web

[5] Wikimedia Foundation. Static web page. [Online].

https://en.wikipedia.org/wiki/Static_web_page

[6] Wikimedia Foundation. Dynamic web page. [Online].

https://en.wikipedia.org/wiki/Dynamic_web_page

[7] WordPress.org. WordPress Plugins. [Online]. https://wordpress.org/plugins/

[8] Wikimedia Foundation. Content delivery network. [Online].

https://en.wikipedia.org/wiki/Content_delivery_network

[9] Eduardo Bouças. (2015, May) An Introduction to Static Site Generators. [Online].

https://davidwalsh.name/introduction-static-site-generators

[10] Justin Ellingwood. (2015, January) Apache vs Nginx: Practical Considerations.

[Online]. https://www.digitalocean.com/community/tutorials/apache-vs-nginx-

practical-considerations

[11] StatCounter. (2016, August) Comparison from July 2015 to July 2016. [Online].

http://gs.statcounter.com/#all-comparison-ww-monthly-201507-201607

[12] W3Techs. (2016, August) Usage Statistics and Market Share of Content Management

Systems for Websites, August 2016. [Online].

https://w3techs.com/technologies/overview/content_management/all

[13] Karol K. (2016, March) Writing About WordPress? Here’s Where to Get Your

Statistics From. [Online]. http://www.codeinwp.com/blog/wordpress-statistics/

[14] Michelle W. (2015, January) Im(Press)ive! Your Year in Review. [Online].

https://en.blog.wordpress.com/2015/01/06/2014-in-review/

[15] W3Techs. Usage of reverse proxy services for websites. [Online].

https://w3techs.com/technologies/overview/proxy/all

[16] Chris Bach. (2015, September) Instant Cache Invalidation. [Online].

https://www.netlify.com/blog/2015/09/11/instant-cache-invalidation

[17] Tony Mauro. (2015, March) Why Netflix Chose NGINX as the Heart of Its CDN.

[Online]. https://www.nginx.com/blog/why-netflix-chose-nginx-as-the-heart-of-its-

cdn/

[18] Michael C. (2016, January) Nginx Vs Varnish Vs Apache Traffic Server – High

Level Comparison. [Online]. https://www.bizety.com/2016/01/07/nginx-vs-varnish-

vs-apache-traffic-server-high-level-comparison/

[19] WordPress.com. Posting Activity. [Online]. https://wordpress.com/activity/posting/

[20] Mathias Biilmann Christensen. (2015, November) Why Static Website Generators

Are The Next Big Thing. [Online].

https://www.smashingmagazine.com/2015/11/modern-static-website-generators-next-

https://en.wikipedia.org/wiki/Website
https://investor.verisign.com/releasedetail.cfm?ReleaseID=980215
http://news.netcraft.com/archives/2016/07/19/july-2016-web-server-survey.html
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Static_web_page
https://en.wikipedia.org/wiki/Dynamic_web_page
https://wordpress.org/plugins/
https://en.wikipedia.org/wiki/Content_delivery_network
https://davidwalsh.name/introduction-static-site-generators
https://www.digitalocean.com/community/tutorials/apache-vs-nginx-practical-considerations
https://www.digitalocean.com/community/tutorials/apache-vs-nginx-practical-considerations
http://gs.statcounter.com/#all-comparison-ww-monthly-201507-201607
https://w3techs.com/technologies/overview/content_management/all
http://www.codeinwp.com/blog/wordpress-statistics/
https://en.blog.wordpress.com/2015/01/06/2014-in-review/
https://w3techs.com/technologies/overview/proxy/all
https://www.netlify.com/blog/2015/09/11/instant-cache-invalidation
https://www.nginx.com/blog/why-netflix-chose-nginx-as-the-heart-of-its-cdn/
https://www.nginx.com/blog/why-netflix-chose-nginx-as-the-heart-of-its-cdn/
https://www.bizety.com/2016/01/07/nginx-vs-varnish-vs-apache-traffic-server-high-level-comparison/
https://www.bizety.com/2016/01/07/nginx-vs-varnish-vs-apache-traffic-server-high-level-comparison/
https://wordpress.com/activity/posting/
https://www.smashingmagazine.com/2015/11/modern-static-website-generators-next-big-thing

31

big-thing

[21] Mathias Biilmann Christensen. (2015, November) Static Website Generators

Reviewed: Jekyll, Middleman, Roots, Hugo. [Online].

https://www.smashingmagazine.com/2015/11/static-website-generators-jekyll-

middleman-roots-hugo-review/

[22] moz.com. Page Speed. [Online]. https://moz.com/learn/seo/page-speed

[23] Sean Work. (2011) How Loading Time Affects Your Bottom Line. [Online].

https://blog.kissmetrics.com/loading-time/

[24] Alan Shimel. (2013, June) 7 of 10 leading WordPress plugins are vulnerable.

[Online]. http://www.networkworld.com/article/2224843/opensource-subnet/7-of-10-

leading-wordpress-plugins-are-vulnerable.html

[25] Teemu Koskinen, Petri Ihantola, and Ville Karavirta, "Quality Of WordPress Plug-

Ins: An Overview of Security and User Ratings ," in ASE/IEEE International

Conference on Social Computing and 2012 ASE/IEEE International Conference on

Privacy, Security, Risk and Trust, 2012, pp. 834-837.

[26] Matthew Prince. (2014, February) Technical Details Behind a 400Gbps NTP

Amplification DDoS Attack. [Online]. https://blog.cloudflare.com/technical-details-

behind-a-400gbps-ntp-amplification-ddos-attack/

[27] Albert Ahdoot. (2014, September) Are The United States’ Data Centers Wasting

Energy? [Online]. http://www.colocationamerica.com/blog/energy-wasting-data-

centers

[28] Chris Bach. (2015, September) Continuous Deployment. [Online].

https://www.netlify.com/blog/2015/09/17/continuous-deployment

[29] Hexo. (2016, February) Hexo 3.2 Released. [Online].

https://hexo.io/news/2016/02/28/hexo-3-2-released/

[30] Ludovic Chabant. (2015, July) Multi-core PieCrust 2. [Online]. Multi-core PieCrust 2

https://www.smashingmagazine.com/2015/11/modern-static-website-generators-next-big-thing
https://www.smashingmagazine.com/2015/11/static-website-generators-jekyll-middleman-roots-hugo-review/
https://www.smashingmagazine.com/2015/11/static-website-generators-jekyll-middleman-roots-hugo-review/
https://moz.com/learn/seo/page-speed
https://blog.kissmetrics.com/loading-time/
http://www.networkworld.com/article/2224843/opensource-subnet/7-of-10-leading-wordpress-plugins-are-vulnerable.html
http://www.networkworld.com/article/2224843/opensource-subnet/7-of-10-leading-wordpress-plugins-are-vulnerable.html
https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack/
https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack/
http://www.colocationamerica.com/blog/energy-wasting-data-centers
http://www.colocationamerica.com/blog/energy-wasting-data-centers
https://www.netlify.com/blog/2015/09/17/continuous-deployment
https://hexo.io/news/2016/02/28/hexo-3-2-released/
Multi-core%20PieCrust%202

32

Non-exclusive licence to reproduce thesis and make thesis public

I, Hillar Petersen,

herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public, includ-

ing for addition to the DSpace digital archives until expiry of the term of validity of the

copyright, and

1.2. make available to the public via the web environment of the University of Tartu, in-

cluding via the DSpace digital archives until expiry of the term of validity of the copy-

right,

From Static and Dynamic websites to Static Site Generators,

supervised by Karl Blum and Tõnu Tamme.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual proper-

ty rights or rights arising from the Personal Data Protection Act.

Tartu, 12/08/2016

