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Abstract. We present experimental and numerical results of the effect that a partial discharge has on the
morphological and micro-mechanical properties of non-spherical, convex particles in a silo. The comparison
of the particle orientation after filling the silo and its subsequent partial discharge reveals important shear-
induced orientation, which affects stress propagation. For elongated particles, the flow induces an increase
in the packing disorder which leads to a reduction of the vertical stress propagation developed during the
deposit generated prior to the partial discharge. For square particles, the flow favors particle alignment
with the lateral walls promoting a behavior opposite to the one of the elongated particles: vertical force
transmission, parallel to gravity, is induced. Hence, for elongated particles the flow developed during the
partial discharge of the silo leads to force saturation with depth whereas for squares the flow induces
hindering of the force saturation observed during the silo filling.

1 Introduction

Granular materials are ubiquitous in nature and are one
of the most manipulated materials in industry. They are
very important in applications as diverse as pharmaceuti-
cal industry, agriculture, and energy production. Hence,
research on these materials is very significant to engi-
neering and physics [1–3]. Despite the relevance of shape
in granular materials because of their pervasive nature,
most of the theoretical and experimental analysis carried
out so far focus on spherical grains. A number of studies
performed in recent years have highlighted the qualita-
tively new features induced by particle shape [4–15] and
the new physical scenarios that grain shape gives rise to.
These include effects in the packing fraction of granular
piles [9, 10], the pressure in the lateral walls of a silo dur-
ing its discharge [11], the mean coordination number [12],
the jamming [13] and the stress propagation in granular
piles [14,15]. Moreover, there is currently increasing inter-
est on the effect that faceted particles have in the global
behavior of granular materials [16–24]. Those systems are
common in geomaterials and with high relevance in civil
engineering applications [25,26].
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The design and exploitation of granular silos benefits
from a detailed knowledge of the mechanical properties
of particle storages. In fact, a poor understanding of the
impact that the grain properties has on granular deposits
necessary leads to a poor performance of the silo, both
in terms of its storage capabilities as well as its overall
structural stability. Since the collective behavior of such
systems is not always easy to measure and control experi-
mentally, numerical modeling usually provides a very use-
ful complementary approach for understanding very com-
plex processes like silo filling and discharging [5,11,27–29].

In previous works we have clarified the remarkable role
that flat faces play in the stress propagation of granular
deposits [22,23]. Elongation favors rods’ alignment trans-
verse to gravity, hindering stress transmission to the lat-
eral walls of the container. Then, as the particles increase
their length, force saturation becomes strongly reduced.
On the contrary, squares tend to orient with a diagonal
parallel to gravity, transmitting the stress at π/4 with re-
spect to the gravity. This results in a clear saturation of
the pressure with depth, similar to what is observed in
granular silos and known as Janssen’s effect.

In this work, we present a systematic theoretical and
experimental study of the structural and mechanical prop-
erties of packings of faceted particles after their partial
discharge from a silo. We show that particle shape and
elongation has a profound effect on the process of silo
discharge and consequently, on the stress profiles devel-
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oped. Hence, grain aspect ratio becomes a key parameter
which controls the properties of packings of faceted parti-
cles within a silo.

2 Experiment

The experimental setup consists on a smooth, two-
dimensional silo filled either with rods or square nuts
(fig. 1). Two types of rods of 1.0 mm diameter have been
used in this work. Both are monodisperse stainless steel
rods with different lengths: 2.4 and 5.4 mm. Hence, the
aspect ratio of the rods is d = 2.4 and d = 5.4. It is im-
portant to note that the borders of the rods are truncated
cones as explained in [23]. The square particles, d = 1, are
DIN 557 nuts 3.16 mm wide and 6.9 mm side.

The container is built with two glass plates separated
by two stainless-steel strips 0.1 mm thicker than the par-
ticles so that the granular material is confined in a mono-
layer between the plates. The bottom of the silo is flat
and formed by two facing metal pieces whose edges touch
each other. Since rods and squares have different sizes,
we have modified the container dimensions correspond-
ingly to generate analogous deposits. For rods (squares)
the silo is 180 mm (260 mm) wide and 790 mm (950 mm)
high. The number of rods necessary to fill the silo is larger
than 5 × 104 and 2 × 104 for d = 2.4 and d = 5.4 mm, re-
spectively; while the number of required squares is around
5 × 103.

The granular sample is introduced through a hopper
at the top of the silo by pouring the grains homogeneously
along the whole silo width. The feed rate is measured to be
around 200 particles per second for 2.4 mm rods, around
80 particles per second for 5.4 mm rods, and 70 parti-
cles per second for squares. Once the deposit is generated,
an orifice is opened at the silo bottom by separating the
two metal pieces that conform it. After a layer of rods
(squares) of around 250 mm (300 mm) has flowed out of
the silo, the outlet is closed and the flow is arrested. Then,
the silo is completely emptied before a new realization is
performed. The outlet size is chosen to be small enough
to stay away from the silo lateral walls but big enough
in order to guarantee the particle flow. At this point, we
remark that the flat faces of the particles provoke jams
much more frequently than in the case of the spheres [30].
Hence, the outlet sizes selected have been 80 mm, 30 mm
and 80 mm for square nuts, d = 2.4 rods and d = 5.4
rods, respectively. In any case, it should be noted that,
although these dimensions may slightly affect some of the
quantitative values obtained in this work, the qualitative
behavior remains unaltered.

A standard 10.2 megapixel camera is used to take pic-
tures of the grains inside the silo both after the filling and
after the partial discharge. The region recorded covers the
whole width of the silo and a height going from 290 mm
to 410 mm for the case of the rods. For the case of the
squares, the height covered goes from 270 mm to 440 mm.
In both cases we make sure that this region is high enough
to avoid the influence of the silo bottom. From the images,
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Fig. 1. Photograph of the experimental setup of the two-
dimensional silo. On the right, as example, there is a zoom
of the d = 5.4 rods deposited in the bulk of the granular layer.

the particles are detected and their position and orienta-
tion determined. In order to obtain good statistics we have
performed 100 realizations for each sample.

3 Model

We have performed a Molecular Dynamics simulation
of a two-dimensional granular system composed of non-
deformable dissipative particles, confined within a rectan-
gular box of width W . We have simulated 2 × 104 rods
of d = 2.4 and d = 5.4, even so 4 × 103 squares. In order
to generate deposits analogous to the experimental ones,
the system width is set to W = 180 mm (W = 172.8 mm)
for d = 2.4 (d = 5.4) and W = 276 mm for d = 1. The
container boundaries are composed of rigid particles, us-
ing one layer for each lateral wall, and two particle layers
at the bottom.

The particles are continuously added at the top of the
box with a low feed rate with random initial velocity and
orientation. The granular media is deposited under the ef-
fect of gravity and it is let cool down until the particles’
mean kinetic energy is several orders of magnitude smaller
than its initial value. At this point, a hole of 80 mm,
36 mm and 80 mm for d = 1, d = 2.4 and d = 5.4,
respectively, is opened at the middle-bottom of the con-
tainer. The orifice is closed when a grain located at the
top-middle position of the hill, marked as a reference, de-
scends a prescribed vertical distance, s. The distance s
takes the value of 300 mm for d = 1, 150 mm for d = 2.4,
and 250 mm for d = 5.4. After closing the container we let
the system to cool down again and the simulation finishes.
To get good statistics, the results presented constitute av-
erages over at least twenty-four different repetitions for
each case.

In the simulation, each particle i (i = 1...N) has three
degrees of freedom, two for the translational motion and
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one for the rotational one. The particles’ motion is gov-
erned by Newton’s equations of motion

mr̈i =

c∑
j

Fij − mg êy, Iθ̈i =

c∑
j

(lij × Fij) · êz, (1)

where m is the mass of particle i, I its momentum of iner-
tia. ri its position and ϕi its rotation angle. g is the mag-
nitude of the gravitational field and êy is the unit vector
along the vertical direction. In eq. (1) Fij accounts for the
force exerted by particle j on i and it can be decomposed
as Fij = FN

ij ·n̂+FT
ij · t̂, where FN

ij is the component on the
normal direction of the contacting surface n̂ (see fig. 1).
Complementary, FT

ij is the component acting on the tan-

gential direction t̂. For calculating the particles interaction
Fij we use a very efficient algorithm proposed recently by
Alonso-Marroqúın et al. [6, 7], allowing for simulating a
large number of particles. This numerical method is based
on the concept of spheropolygons, where the interaction
between two contacting particles only is governed by the
overlap distance between them (see details in [6, 7]). For
defining the normal interaction FN

ij , we use a nonlinear
Hertzian elastic force [31], proportional to the overlap dis-
tance of the particles. Moreover, to introduce dissipation,
a velocity dependent viscous damping is assumed. Hence,
the total normal force reads as

FN
ij = −kN · δ3/2 − γN · vN

rel, (2)

where kN is the spring constant in the normal direc-
tion, γN is the damping coefficient in the normal direc-
tion and vN

rel is the normal relative velocity between i and
j. The tangential force FT

ij also contains an elastic term
and the tangential frictional term. Taking into account the
Coulomb’s constraint, it reads as

FT
ij = min{−kT · ξ − γT · |vT

rel|, µFN
ij }, (3)

where γT is the damping coefficient on the tangential
direction, vT

rel is the tangential component of the rela-
tive contact velocity of the overlapping pair. ξ represents
the elastic elongation of an imaginary spring at the con-
tact [32], which increases as dξ(t)/dt = vT

rel as long as there
is an overlap between the interacting particles [32, 33]. µ
accounts for the statical friction coefficient of the particles.

The equations of motion are integrated using a fifth or-
der predictor-corrector algorithm with a numerical error
proportional to (∆t)6 [34], while the kinematic tangential
displacement, is updated using an Euler’s method. In or-
der to model hard particles, the maximum overlap must
always be much smaller than the particle size. This is en-
sured by introducing appropriate values for the normal
and tangential elastic constants, which are set to kt

kn

= 0.1,

kn = 106 N/m3/2, together with the gravitational acceler-
ation 10 m/s2. For these parameters, the time step should
be around ∆t = 5 × 10−5s. Although the results we will
describe are generic for hard particles, to achieve quanti-
tative comparison with experimental data we have carried
out numerical simulations in which we change both t he

normal damping coefficient and the static friction coeffi-
cient, choosing the best fitting parameters. The damping
coefficients are taken as νn

νt

= 3, νt = 1 × 102 s−1 and
µ = 0.5. Thus, we have ensured that the kinetic energy
loss and the dynamics of sediment formation are analo-
gous to those observed experimentally. It is important to
remark that in all the simulations reported below we do
not change the particle’s material properties; only the par-
ticle aspect ratio has been varied.

4 Results

4.1 Packing morphology

In [22,23] we studied systematically the influence that the
particle aspect ratio has on the micro-mechanical prop-
erties of granular packing. Figure 2 shows the packings
obtained for square particles, d = 1, both experimentally
and numerically. The granular columns resulting from the
silo filling process are presented in fig. 2a (exp) and fig. 2c
(simul). Figure 2a confirms experimentally the tendency
of square particles to align one of their diagonals with
gravity, as it was numerically predicted earlier [22].

We also describe in details the morphological and
micro-mechanical changes, which are induced by partial
discharges in granular columns. The packing morphology
that results at the end of the partial discharge of the silo is
illustrated in fig. 2b (exp) and fig. 2d (simul). It is notice-
able that during the discharge, the shear between grains
induces their rotation and their settlement in more stable
mechanical states. Hence, the discharge induces an align-
ment of the squares sides with gravity which minimizes
the friction and favors their vertical displacement.

The distributions, f(θ), of the particle orientation with
respect to the direction transverse to gravity are analyzed.
Figure 3 shows the particle distributions obtained exper-
imentally and numerically at the end of the silo filling
and after the silo partial discharge for three aspect ratios,
d = 5.4, 2.4, and 1 (squares). The good agreement between
the experimental and numerical results demonstrates the
accuracy of our numerical simulation scheme. At the end
of the silo filling, elongated particles have a strong prefer-
ence to align horizontally (fig. 3a), in good agreement with
previous results [35]. As the rods become less asymmet-
ric, particles develop a most probable orientation which
decreases towards π/4 for the limiting case of squares. In
this case, it also becomes evident an important effect of
the lateral walls which compete with gravity and lead to a
strong preference for parallel ordering of squares in their
vicinity. As a result, a distinct peak around θ = 0 and
θ = π/2 can be also identified in fig. 3c. In sphere pack-
ings an analogous wall-induced particle ordering, which
can be significant in stress transmission, has been previ-
ously reported [36,37].

The packing morphology drastically changes at the
end of the partial discharge of the silo. For the case
of rods (fig. 3a-b) the discharge induces a decrease of
the number of particles oriented horizontally and an
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Fig. 2. Packings of square nuts and simulated particles with d = 1. Pictures of the experiment (a) after the silo filling and
(c) after the partial discharge. Numerical graphs (b) and (d) on the same order.
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Fig. 3. (Color online) Experimental and numerical orientation distributions of particles, obtained at the end of the silo filling
and after its partial discharge. We illustrate results for different aspect ratios: a) d = 5.4, b) d = 2.4 and c) d = 1.

increase of the number of particles oriented vertically.
This result may be a consequence of the alignment
of elongated particles with the flow streamlines. The
case of squares is completely different as it has been
observed that they flow more easily when one of their
sides is aligned with gravity. This change in the squares
orientation, favored due to shearing forces with grains at
rest, leads to a distribution where a single peak is clearly
observed at θ = 0 and θ = π/2 (fig. 3c). We clarify below
that this configuration minimizes the friction with the
lateral neighboring particles and, consequently, the stress
transmission on the up-down direction is favored.

Although in the previous paragraphs we have analyzed
the particle orientation distribution by considering all the
particles along the whole silo width, it should be remarked

that the partial silo discharge induces a spatial inhomo-
geneity in the horizontal direction. This effect is observed
for all the aspect ratios but it is specially dramatic for the
case of squares. In fig. 4 we quantify the internal structure
analyzing the fraction of square particles which align their
side (diagonal) with gravity, at angles 0 < θ < π/8 and
θ > π − π/8 (π/4 − π/8 < θ < π/4 + π/8), as a function
to the distance to the left parallel wall of the silo, Pπ

2
(x)

(Pπ

4
(x)). At the end of the filling process, most particles

align their diagonals with gravity, except for a narrow re-
gion close to the walls. After the partial discharge, it is ev-
ident that the fraction of squares with a diagonal parallel
to gravity is strongly depleted from the wall region, while
in the center, both groups of orientations are present with
similar probability. This result reflects what is observed
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Fig. 4. Experimental and numerical orientation of the squares
for different sectors of the silo a) at the end of the silo fill-
ing and b) after the silo partial discharge. P π

2
(x) accounts for

the fraction of particles aligned mostly transversally to grav-
ity, while P π

4
(x) accounts for the fraction of particles mostly

aligned with gravity.

by visual inspection of the discharge process: a column of
particles, limited by the orifice size, flows out the central
part of the silo. In the regions closer to the lateral walls
the strong friction between the moving particles and those
at rest favors the growth of clusters of squares with their
sides aligned with the walls. This kind of flow is known
as ratholing, a characteristic and undesirable effect in silo
discharge, where stagnant zones are developed near the
walls as only the particles above the silo outlet are able to
flow out [38].

4.2 Micromechanics

The study of the micromechanical properties of the gran-
ular packings will provide more insight in the correlation
between the deposit microstructure and stress transmis-
sion. We can define the stress acting on a single particle i
in terms of F c

i , the force it experiences due to its contact
c. The local stress tensor can be calculated as

σi
αβ =

Ci∑
c=1

lci,αF c
i,β , (4)

where lci is the branch vector related to the contact c. The
sum runs over all contacts of particle i.

Figure 5 displays polar distributions of the stress ten-
sor principal directions obtained for single particles (see
eq. (4)). We present results corresponding to columns of
rods with d = 5.4 (a and b), and squares (c and d), after
loading (a and c) and after partial discharging (b and c).
The data shown correspond to an area of 100 mm wide
at the center of the silo. In each plot, the discontinuous
arrows represent the largest (σ11) and smallest (σ22) eigen-
value of the mean stress tensor, within the whole studied
area. The size of the arrows is normalized with the size
of the smallest eigenvalue. Note that at the end of the
silo filling process, the polar distribution for rods d = 5.4
displays a strong preference for the transmission parallel
to gravity (fig. 5a). On the contrary, for squares, a clear
symmetry is found in the distributions of the two stress
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Fig. 5. (Color online) Polar distribution of the principal di-
rections of the local stress for elongated particles with aspect
ratio d = 5.4 (a) after the silo load and (b) after the partial
discharge. The same results for squares (c) after the load and
(d) after the partial discharge.

eigenvalues, evidencing that forces are mainly transmitted
along the π/4 and 3π/4 directions (fig. 5c). At the end of
the partial discharge, elongated rods keep the preference
for vertical stress transmission, although the stronger dis-
order in rod alignment favors a more isotropic stress distri-
bution, leading to broader distributions of the stress eigen-
values (fig. 5b). For the case of the squares, the changes
in the stress transmission induced by the particle flow are
more important. Indeed, after the partial discharge, the
stress changes dramatically and becomes mainly transmit-
ted vertically (fig. 5d). This effect correlates with the for-
mation of big clusters of square particles aligned with the
walls. Hence, changes in the particle orientation induced
by the shear affect the microstructure and determine the
stress transmission among the faceted particles.

The notable changes in the local stress produced by the
partial discharge of the silo necessary lead to significant
variations in the pressure profiles obtained as a function of
the silo depth (h). To properly describe these variations,
we examined the mean local stress tensor through the
granular column. Professor Isaac Goldhirsch and cowork-
ers [39,40] have recently introduced a very elaborated def-
inition of mean stress field σ̄αβ . Following their approach
the stress σαβ(r) at point r, is given by the expression

σ̄αβ(r) =
1

2

∑
i,j;i�=j

fijαrijβ

∫ 1

0

ds φ[r − ri + srij ], (5)

where the sum runs over all the contacting particles i, j,
whose center of mass are at ri and rj , respectively. More-
over, fij accounts for the force exerted by particle j on
particle i and rij ≡ ri−rj . The coarse-grained (CG) func-
tion, φ(R), is positive semidefinite normalized function,
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results have been obtained using a Gaussian coarse-grained

function, φ(r) = 1
πw2 e−(|r|/w)2 and several values of w. In

all cases the depth h is expressed in units of the silo width.
We also show the Janssen-type fitting to the equation σ =
σm(1 − exp(−x/hs)), we have used (σm = −0.06 × 106 N m;
hs = 1.0).

with a single maximum at R = 0. In our case, we used a

Gaussian coarse function, φ(r) = 1
πw2 e−(|r|/w)2 , where the

sign convention is that compressive stress is negative. The
value of w defines the coarse-grained scale. We note that
the data was also evaluated using less sophisticated mean
stress definitions [41,42] and very similar results came out
(data not shown).

To clarify the effect of the CG scale w on the results,
we evaluate the numerical data for several values of w.
The stress tensor components —defined by eq. (5)— were
calculated within specific areas and the contribution of the
contacts within the selected area is weighted by the func-
tion φ(r). Hence, the size of the working area is controlled
by the size of the CG scale w. Specifically, the trace of
stress tensor (pressure) obtained for a silo of squares was
examined in fig. 6. Note that the depth of the silo has been
normalized with the width of the deposit x = h/W . More-
over, for comparison, the numerical fit using a Janssen-

type formula σ = σm(1−exp(−x/hs)), are also shown [43].

Here, the magnitude of σm represents the saturation
stress and hs indicates the characteristic value of depth
at which the pressure on the column surface stabilizes.
The pressure profiles were calculated fixing the horizon-
tal coordinate and varying the vertical one (up-down) in
units of w. The results reveal that stress fluctuations at
fixed depth vanish when increasing the value of w. This
indicates the existence of a CG scale for which the stress
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Fig. 7. Profiles of the trace of the mean stress tensor (pressure)
after the load a) and the partial discharge b) for rods with
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tensor field is resolution independent [39, 40]. The data
presented below have been carefully evaluated for differ-
ent values of w. Provided that the stress profiles are not
homogeneous due to the action of the gravity field, we
have carefully chosen the value of w to accurately capture
the spatial stress variation.

In fig. 7 and fig. 8, we display the trace of the mean
stress tensor for rods d = 5.4 and squares, respectively. In
all cases, a coarse-grained distance of w = 40mm was used
for the calculation of the mean stress tensor. This value is
approximately six and seven times larger than particle size
of the squares and the rods of d = 5.4, respectively. As we
pointed out earlier, after the silo loading with elongated
particles, the stress is transmitted preferentially parallel to
gravity. As a result, the weak stress transmission on the
horizontal direction hinders pressure saturation, which is
not completely reached for the system sizes studied here
(fig. 7a). The pressure profiles are very similar both in the
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Fig. 8. Profiles of the trace of the mean stress tensor (pressure)
after the load a) and the partial discharge b) for squares. In
all cases the depth h is expressed in units of the silo width.

center of the column and in the region close to the walls.
After the partial discharge (fig. 7b), notable modifications
are induced on the trace of the mean stress tensor. On
the center of the silo, the larger disorder in particle orien-
tation enhances the stress transmission in the horizontal
direction which is typically associated to pressure satu-
ration. Effectively, when we approach to the bottom of
the silo the pressure first reaches a maximum and then,
it decreases at the very bottom. This pressure reduction
denotes arch formation in the region near the outlet. In
the region close to the walls the pressure increases with
h until the bottom of the silo, probably due to horizontal
rod alignment induced by the bottom.

For squares (fig. 8a), the opposite scenario holds true.
After filling the silo, in the central part of the column
the force is transmitted preferentially at π/4 with respect
to gravity, providing an efficient mechanism to channel
stresses towards the lateral walls. Accordingly, a satura-
tion in the pressure profile seems to be observed. How-

ever, close to the walls the strong face-to-face interaction
induces the particle alignment and, consequently, a linear
pressure profile is developed. The scenario is altered by
the discharge of the square nuts which become preferen-
tially aligned with the silo walls even in the center part
of the column. This vertical alignment results in a stress
transfer to the bottom of the silo which makes pressure
saturation hardly visible.

Conclusions

In this work we have shown that the partial discharge of
a silo filled with faceted grains has a profound effect on
the deposit morphology and its stress distribution. Dur-
ing the discharge, the shear between grains induces their
rotation and their settlement in more disordered arrange-
ments. For elongated particles, the preferred horizontal
orientation displayed after the silo filling disappears. For
square particles, the discharge provokes an alignment of
their sides with gravity which minimizes the friction and
favors their vertical displacement. Such a structure leads
to ratholing, a flow pattern which is typically associated
to cohesive effects, but that here, we show that it can also
be induced by the geometrical properties of the particles.

As a result of the changes in particle orientation,
the pressure distribution in the silo changes qualitatively;
while for elongated rods lateral stress transmission is pro-
moted by the enhanced disorder leading to a faster pres-
sure saturation, the opposite holds for squares. In this
latter case the alignment of squares induced by the flow
destroys the initial force chain network which is replaced
by a mainly vertical stress transmission. As a consequence,
a significant reduction of the pressure saturation effect is
observed.

With the results reported here, we attempt to clar-
ify the performance and stability of silos, which need to
support high stresses that become very sensitive to grain
shapes and the silo steering history. If we increase the
amount of material flowing out of the silo, or induce a
second discharge, we expect that the observed effect will
be enhanced. Although we have focused on weakly disor-
dered initial deposits, due to the low feeding rates used to
fill the silo, the main features discussed here are expected
for other silo filling procedures. Perhaps, increasing the
disorder of the initial packing will generically decrease the
relative magnitude of the changes discussed.
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en Physique (Dunod, Paris, 1972).
34. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids

(Clarendon Press, Oxford, 1987).
35. K. Stokely, A. Diacou, S.V. Franklin, Phys. Rev. E. 67,

051302 (2003).
36. I. Bartos, I.M. Janosi, Granular Matter 9, 81 (2007).
37. I. Zuriguel, T. Mullin, A. Arevalo, Phys. Rev. E. 77,

061307 (2008).
38. D. Schulze, Powders and Bulk Solids. Behaviour, Charac-

terization, Storage and Flow (Springer-Verlag, Berlin, Hei-
delberg, 2008).

39. B.J. Glasser, I. Goldhirsch, Phys. Fluids 13, 407 (2001).
40. I. Goldhirsch, C. Goldenberg, Eur. Phys. J. E 9, 245

(2002).
41. M. Lätzel, S. Luding, H.J. Herrmann, Granular Matter 2,

123 (2000).
42. M. Madadi, O. Tsoungui, M. Lätzel, S. Luding, Int. J.

Solid Struct. 41, 2563 (2004).
43. H. A. Janssen, Z. Vereines Deutsch. Ingen. 39, 1045 (1895).


