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Abstract

In this Thesis an efficient and robust numerical model for the analysis of fluid
dynamic problems has been developed, validated and applied to two novel fluid flow
configurations: (1) the waves generated by a submerged foil and (2) the dynamics of
microcapsules in pulsating shear flows. The model is based on the Boundary Element
Method (BEM). The fluid equations are formulated in a boundary integral form and,
therefore, the model is completely defined by the boundary surfaces that enclose
the fluid domain. Unlike numerical domain methods, as Finite Element Method,
only the boundary surfaces need to be discretized and this reduces significantly the
complexity of the model and the computational requirements. The Non Uniform
Rational B-splines (NURBS) and the T-spline frameworks are used to represent both,
the geometry and the physical variables. This technique is known as Isogeometrical
Analysis (IGA) and it offers several advantages. The most attractive is that it allows
a direct integration between modern Computer Aid Design geometric systems and
numerical engineering analysis tools. This technique removes intermediate steps,
as the generation of the mesh, and it allows the analysis of the exact geometry. In
addition, the high order and smoothness of the basis functions make the NURBS and
the T-spline to be suitable to deal with complex non-linear dynamic problems. This
Thesis is divided into two blocks in which different applications of the IGA-BEM are
analyzed.

The first block deals with the simulation of the propagation of non-linear gravity
waves and of the wave-structure interactions. Wave propagation is a topic of great
interest in the coastal and marine engineering. The analysis of this phenomenon is
useful to predict the generation and propagation of tsunamis and it is indispensable for
the design of breakwaters and floating structures. The flow is assumed to be inviscid
and irrotational and the resulting Laplace’s equation is solved using BEM. A mixed

UNIVERSITAT ROVIRA I VIRGILI 
TOWARDS THE APPLICATION OF THE ISOGEOMETRIC BOUNDARY ELEMENT ANALYSIS TO FLUID MECHANICS: 
NON-LINEAR GRAVITY WAVES AND DYNAMICS OF DEFORMABLE CAPSULES IN SHEAR FLOWS 
Jorge Maestre Heredia 
 



xiv Abstract

Eulerian-Lagrangian technique in combination with a 4th-order explicit integration
scheme is used to update the free surface and the hydrodynamic force is efficiently
computed using an auxiliary boundary equation. Some benchmark examples are
considered to show the accuracy and stability of the method. In addition, simulations
of the waves generated by submerged foils are reported and analyzed. This system has
important implications in some wave generator mechanisms installed in surf parks.

In the second block of this Thesis the IGA is applied to analyze the behavior
of deformable microcapsules in shear flows. The dynamics of deformable capsules,
which are constituted by a liquid enclosed by a deformable membrane, have important
implications in a wide range of biological and industrial applications. For instance,
capsules are being used for sophisticated therapeutic treatments and many cells, as red
blood cells, can be modelled as capsules. In microcirculation problems the Reynolds
number is very low and the flow can be modelled with the Stokes equation. For the
simulations, the IGA-BEM is used to solve the flow equation and an IGA-FEM is
developed for the analysis of the capsule mechanics. Both formulations are coupled
in the time domain using a 2nd-order implicit integration scheme. Some benchmark
examples are solved to demonstrate the accuracy and stability of the approach, even
for large deformations of the capsule. This is achieved thanks to the suitable properties
of the basis functions and to the ability to dynamically adapt the mesh according to the
needs of the problem. Finally, the dynamics of a capsule in a tube under a pulsatile
flow is analyzed with focus on the determination of the influence of capillarity number
and frequency of the pulse in the deformation of the capsule.
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Resumen

En esta tesis se desarrolla un modelo numérico eficiente y robusto para el análisis de
problemas fluido-dinámicos, que posteriormente se valida y se aplica a dos nuevas
configuraciones: (1) la generación de ondas de gravedad mediante una hidroala
sumergida y (2) la dinámica de una microcápsula en un flujo cortante pulsátil. El
modelo se basa en el Método de los Elementos de Contorno (MEC). La ecuación que
gobierna el fluido se formula en una forma de integral de contorno, por tanto el modelo
numérico queda completamente definido por las superficies de contorno que encierran
el volumen fluı́dico. A diferencia de los métodos basados en el dominio, como por
ejemplo el Método de los Elementos Finitos (MEF), solamente las superficies de
contorno necesitan ser discretizadas, lo que reduce significativamente la complejidad
del modelo y el coste computacional. La tecnologı́a basada en NURBS and T-spline
se use para discretizar tanto la geometrı́a como las variables fı́sicas del problema. Esta
técnica es conocida como Análisis Isogeométrico (AIG) y tiene ciertas ventajas. La
más atractiva es que permite una directa integración entre modernos programas de
diseño grafico (CAD) y herramientas de análisis numérico. Esta técnica elimina ası́
laboriosos pasos intermedios, como la generación de la malla, y permite realizar un
análisis sobre la geometrı́a exacta del modelo. Además, el alto orden y suavidad de las
funciones bases hacen que la tecnologı́a basada en NURBS and T-spline sea idónea
para tratar con problemas dinámicos complejos. Esta tesis se divide en dos bloques en
los cuales se describen diferentes aplicaciones del método AIG-MEC.

El primer bloque trata sobre la simulación de propagación de ondas de gravedad
(olas) e interacción olas-estructuras. La propagación de ondas de gravedad es un tema
de gran interés en el campo de la ingenierı́a de costas e industria marı́tima. El análisis
de este fenómeno es útil para predecir la generación y propagación de tsunamis ası́
como también es indispensable para el diseño de rompeolas o sistemas flotantes. Se

UNIVERSITAT ROVIRA I VIRGILI 
TOWARDS THE APPLICATION OF THE ISOGEOMETRIC BOUNDARY ELEMENT ANALYSIS TO FLUID MECHANICS: 
NON-LINEAR GRAVITY WAVES AND DYNAMICS OF DEFORMABLE CAPSULES IN SHEAR FLOWS 
Jorge Maestre Heredia 
 



xvi Resumen

asume que el fluido es inviscido e irrotacional, resultando una ecuación de Laplace que
se resuelve mediante el MEC. Se usa una fomulación mixta Euleriana-Lagrangiana
en combinación con un esquema de integración explicito de 4o orden para actualizar
la superficie libre, mientras que las fuerzas hidrodinámicas se calculan eficientemente
mediante una ecuación auxiliar de contorno. Se resuelven varios ejemplos en los que se
demuestra la precisión y estabilidad temporal del modelo numérico. Adicionalmente
se simula el frente de olas generados por una hidrala sumergida. Este sistema tiene
importantes implicaciones en el diseño del mecanismo generador de olas en parques
de surf.

En el segundo bloque el AIG se aplica al estudio del comportamiento de
microcápsulas deformables suspendidas en flujos cortantes. La dinámica de
microcápsules deformables, las cuales están constituidas por un liquido encerrado por
una deformable membrana, conlleva importantes implicaciones en un amplio rango de
aplicaciones biológicas e industriales. Por ejemplo, las cápsulas están siendo usadas
en avanzadas tratamientos farmacológicos y muchas células, como los glóbulos rojos,
pueden ser modelados como cápsulas. En el campo de la micro-fluı́dica el número
de Reynold suele ser muy bajo y el flujo puede ser simplificado a la ecuación de
Stokes. Para las simulaciones, el AIG-MEC se usa para resolver la ecuación del fluido
mientras que se desarrolla una formulación basada en el AIG-MEF para el análisis
de la mecánica de la membrana. Ambas formulaciones se acoplan en el dominio del
tiempo usando un esquema de integración implı́cito de 2o orden. Se resuelven varios
ejemplos en los que se demuestran la estabilidad y precisión del método, incluso para
largas deformaciones de la cápsula. Esto se debe en parte a las inherentes propiedades
del las funciones de forma, y en otra parte a la capacidad adaptativa de la malla de
acuerdo con las necesidades del problema. Finalmente, se estudia la dinámica de
una capsule encerrada en un tubo e implusada por un flujo pulsátil, con el interés de
determinar la influencia de la capilaridad y frecuencia del pulso en el comportamiento
de la cápsula.
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A subdivision operation is previosly applied that is informed by the
matrix operation CD. The matrix CQQ condenses the two cited
operations to convert it to non degenerated Bézier elements. The
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elements along the azimuthal direction. . . . . . . . . . . . . . . . . 70

4.2 Average and maximum volumetric error of the capsule in shear flow
for the structured mesh and various capillarity numbers (Ca =

0.3, 0.45 and 0.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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1

Chapter 1

Introduction

1.1 Isogeometric analysis applied to the fluid dynamics

In the last decades the use of the Isogeometric Analysis (IGA) has experienced a fast
grown in the engineering analysis field. The concept of IGA was originally introduced
by Hughes et al. [7, 8] and Cottrell et al. [9, 10] in the Finite Element Method (FEM)
context. Initially based on the Non-Uniform Rational B-spline (NURBS), the idea
consists in using the same class of functions for the discretization of the geometry and
the physical variables of the numerical model. This establishes a tight link between
the Computer Aided Design (CAD) geometry and the engineering analysis tools. This
technique presents multiple advantages. The most promising one is related to the fact
that the geometry is directly embedded in the numerical analysis. This is, the geometry
is preserved and no additional steps are needed to translate the CAD geometry to
the numerical analysis. Other advantages emanate from the NURBS, such as: (1)
quadratic and cubic surfaces can be represented exactly; (2) advanced construction
techniques and shape modification tools are available; (3) the high continuity and
smoothness of the basis can be managed via knot vector (4) h, p and k-refinement
can be applied without modifying the geometry. These characteristics, in combination
with other mathematical properties, give to NURBS the ability to handle complex
geometries and provide suitable basis for numerical analysis.

While the research community has paid much attention to the IGA based on the
FEM, few works based on the IGA-Boundary Element Method (BEM) has been

UNIVERSITAT ROVIRA I VIRGILI 
TOWARDS THE APPLICATION OF THE ISOGEOMETRIC BOUNDARY ELEMENT ANALYSIS TO FLUID MECHANICS: 
NON-LINEAR GRAVITY WAVES AND DYNAMICS OF DEFORMABLE CAPSULES IN SHEAR FLOWS 
Jorge Maestre Heredia 
 



2 1 Introduction

reported in the literature. The BEM is an elegant alternative to solve partial differential
equations (PDE). The key of the BEM is that only the boundary surfaces enclosing the
domain of the problem have to be discretized. This feature has important implications
in the engineering analysis as: (1) the dimensionality of the model is reduced and the
computational requirement is considerably lower than the FEM; (2) the complexity
of the geometric model is simplified to the boundary surfaces which are precisely
the data imported from the CAD systems; (3) refinements and modifications of the
mesh can be applied without excessive computational cost; (4) 3D dynamic meshes
can be easily managed; and (5) the Sommerfeld condition is implicitly satisfied in
the formulation that simplifies the applications of the boundary conditions in external
problems with infinite phsysical domain. In Fig. 1.1 it is shown a typical mesh for
a generic solid using the BEM. These features make the IGA-BEM analysis to be
especially attractive in the engineering analysis. The extension of the NURBS-based
IGA to the BEM was introduced by Politis et al.[11] and Simpson et al. [12], who
applied the technique to the 2D potential flow and elastostatic field, respectively.
Recent advances of the IGA-BEM analysis have appeared in the literature applied
to acoustics [13, 14], Laplace’s equation [15, 16], elastostatic [12], wave resistance
[17, 18] and fluid-structure interaction [19]. These studies have demonstrated the
higher accuracy of the IGA-BEM in comparison with the traditional formulation of
the BEM based on the Lagrange polynomials. This advantage is based on the superior
geometric approximation and high order of continuity of the basis functions .

Figure 1.1: Mesh of a solid connecting rod for the BEM. The view represents a horizontal cut
of the solid. Note that only the boundary surfaces have to be discretized.

Although the NURBS is widely used by the CAD industry, it has some limitations
associated with the fact that only surfaces with four edges can be represented. This
causes that the representation of complicated geometries may require many NURBS
patches and the smoothness between patches can be lost. The T-spline technology has
been introduced to overcome these limitations [20]. T-splines are a generalization of
the NURBS, in which several NURBS patches can be integrated into a unique T-spline.
Moreover, unlike the NURBS, T-splines allow local refinements and unstructured
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1.1 Isogeometric analysis applied to the fluid dynamics 3

meshes. In Fig. 1.2 a example of mesh on an air-foil is shown. The mesh is
unstructured and a local refinement has been applied to the trailing edge where the
curvature is very high and complex phenomenons are expected to happen.

(a) (b)

Figure 1.2: (a) Asymmetric foil modeled with a T-spline surface. (b) Detail of refinement on
the trailing edge

The implementation of T-spline in the IGA requires a more advanced development.
Scott et al. [21] and Li et al. [22] formulated the analysis-suitable T-spline in which
the necessary mathematical properties of the basis (as the linear independence) are
guaranteed. Adopting the idea of the Bézier extraction operation, presented by Borden
et al. [23] and Scott et al. [24], the T-spline and NURBS can be incorporated efficiently
via modifying the shape functions in the classical BEM and FEM. Thomas et al. [25]
developed a generalization of this technique. In recent years, the application of the
T-spline in the IGA framework to different areas has been developed [26–30]. In
the context of IGA-BEM analysis, Scott et al. [24] extended the analysis-suitable
T-spline to unstructured meshes for elastostatic problems and developed a collocation
procedure based on a generalization of the Grenville abscissae. Simpson et al.[31]
applied this method to acoustic problems and demonstrated the higher accuracy in
comparison with the conventional Lagrange discretization. Ginnis et al. [32] used an
IGA-BEM analysis, based on the T-spline, to analyse the ship wave resistance problem
and Kostas et al. [33] used this method to optimize the hull shape.

Other alternatives to the analysis-suitable T-spline are appearing in the literature.
These alternatives include hierarchical spline (B-splines, NURBS and T-spline),
PHT-splines and LR-splines. In addition to the limited works cited above, the
interested reader can be found an overview of the IGA in [34].

The link between the T-spline and the BEM form has several advantages for
the numerical analysis. Very complex geometric models can be constructed using
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4 1 Introduction

T-splines. The geometry can be directly imported from CAD systems and few degrees
of freedom (DoF) are needed due to the high geometric approximation of the T-spline
basis. On the other hand, the BEM has been demonstrated to be a very accurate
numerical method when it is suitable formulated and implemented. Nevertheless, the
formulation of the BEM has to be well understood. The accuracy of the method is
very sensitive to small numerical errors in the implementation of the code. It should
be noted that the method involves the computation of singular integrals. A suitable
treatment should be applied in order to obtain accurate results. An other important
aspect is related to the corners produced by the intersection of several surface because
in this locations the normal is not uniquely defined and it can lead to numerical
problems. A detailed study of the BEM in the context of IGA is addressed in this
document.

An additional advantage is found when the IGA-BEM approach is used in dynamic
problems with large distortions and displacements of the mesh. In this case, the mesh
is more simple in comparison with the domain methods (as the FEM, Volume Finite
Method (VFM), Finite Difference Method (FDM), etc.) and the geometric model is
more easily managed, especially in 3D problems. Several studies of dynamic problems
using the conventional BEM based on Lagrange elements [35–38] have revealed
instabilities associated to the lack of continuity between elements and saw-tooth effects
have been observed between elements (see Fig. 1.3). The control of the error during
the simulation is an important issue because it is stored along the time and it can lead to
instabilities or inaccurate results. Artificial techniques have been proposed to alleviate
these instabilities but they involve the modification of the geometry and they are made
ad-hoc. Although based on the FEM, Lipton et al. [39] demonstrated the robustness
and accuracy of the IGA approach under severe distortions of the mesh thanks to the
high continuity of the Splines basis functions. Recently, Abbasniaa and Ghiasia [40]
developed a 2D NURBS-based BEM approach in the time domain for the analysis of
non linear wave-structure interaction and they showed stability of the approach for long
time simulations. These studies demonstrate the potential of the IGA to be applied to
dynamic problems with large distortions of the mesh.

The literature review shows that the IGA–BEM based on the NURBS and T-spline
is a very recent topic. This Thesis is focused on the study of selected fluid mechanics
problems using the IGA-BEM based on the NURBS and T-spline framework in the
time domain. The method is developed for two different applications where the fluid
equation can be expressed in a boundary integral form. The first application consists
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1.1 Isogeometric analysis applied to the fluid dynamics 5

Figure 1.3: Typical instability of dynamic problems with large distortion of the mesh when
C0 picewise continuous elements are used.

in the study of the propagation of gravity waves and wave-structure interactions.
Nowadays, this field is very active due to the increasing interest on the ocean renovable
energy in which the generation systems are installed near-shore or off-shore. A suitable
design of the floating and anchorage systems has to consider the wave-structure
interaction. Different numerical models have been presented, most of them are based
on the potential flow theory (see for example [41–48]). In this line, the fluid is assumed
to be incompressible, inviscid and irrotational. In spite of these simplifications,
experiments have demonstrated agreement with the numerical predictions [49–51].
The simplicity and low computational cost make this model to be ideal in the first
phases of the design process. Moreover, invoking the IGA paradigm complex 3D
geometric models can be simulated with reduced effort due to the integration with
CAD systems. Fig. 1.4 shows the typical waves radiated from a moving submerged
sphere. The figure represents a vertical section of the model. Note that only the
boundary surfaces are discretized.

Submerged body

Free surface

Figure 1.4: Waves generated by a submerged sphere with a sinusoidal vertical movement

As a second application, the hydrodynamic movement of a deformable
micro-capsule in shear flows is analysed. A microcapsule consist in a very thin
deformable membrane enclosing an internal liquid (see Fig. 1.5). Capsules are present
in nature and in the industrial applications. Red blood cells (or erythrocytes) (RBC)
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6 1 Introduction

are a example of a biological capsule. The membrane is a complex structure that
usually is simplified as a thin elastic shell. This membrane separates and protects
the internal hemoglobin from the external plasma. The main function of the RBC
is the transportation of the respiratory gases (oxygen and carbon dioxide) to the cells
through the circulatory system. In this way, RBCs can passes through micro-capillaries
of small diameters involving large deformation. This deformability is essential for the
correct function of RBCs. Some types of bacteria and other micro-organisms can be
also modelled as biological capsules. In the industry, the micro-encapsulation is a very
common technique. Artificial capsules are made to isolate and protect the internal
active substance from the external ambient. As pharmacologic treatments, these
capsules are used for the transportation of therapeutic substances and the sustained
release to targeted areas. The capsule membrane protects from the attack of the
immune system and it reduces possible secondary effects. This technique has been
extended to other industrial areas as the cosmetics or food industry. Therefore,
the understanding of the dynamic of deformable capsules is fundamental for the
development of these applications.

Internal liquid

Membrane

Figure 1.5: Schematic illustration of the section of a capsule

1.2 Objectives

The main objective of this thesis is the development and implementation of an efficient
and robust IGA-BEM model, based on the analysis suitable T-spline and NURBS
framework and formulated in the context of the Bézier extraction operation, to analyse
two fluid mechanics problems:

• The propagation of gravity waves and wave-structure interaction.

• The Dynamics of deformable capsules in shear flows

A detailed study is carried out in this document and various aspects are treated to check
the ability and accuracy of T-spline and NURBS-based IGA-BEM approach:
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1.3 Structure of the document 7

• Study of the spatial converge for different mesh configuration (structured and
unstructured mesh) and order of the basis.

• Analysis of the temporal stability and accuracy under large movements and
distortions of the mesh.

• Comparison with the standard formulation based on the Lagrange elements

• Application to several examples of engineering and biomedical interest.

Fig. 1.6 synthesize the basic ideas of the T-spline-based IGA-BEM. The example
consists on the flowing of a initial capsules through a cylindrical micro-channel. For
clarity purposes, a vertical section of the pipe is shown. Note that only the boundary
surfaces are discretized, this is, the pipe and the membrane. This reduces considerably
the complexity and size of the mesh. An unstructured mesh is used to represent the
membrane whereas the pipe is built with a structured mesh. The geometry of the
pipe is exact thanks to the ability of the T-spline to represent quadratic surfaces and a
refinement is applied in the central region where the capsule is placed. The geometry
is generated using the commercial CAD software Rhinoceros [52] and it is imported
directly to the numerical analysis code. Fig 1.6b shows the deformation of the capsule
at a specific instant when the capsule acquires the typical asymmetrical parachute
shape. Despite the large deformation of the capsule, no signs of instability are observed
and the membrane surface remains smooth during the simulation. This example
demonstrates the potential of the T-spline-based IGA-BEM approach to simulate
dynamic problems with large deformations of the mesh as well as its versatility due to
the integration with modern CAD software.

1.3 Structure of the document

The organization of this thesis is as follows:

• Chapter 1: It contains an introduction and the main objectives of this thesis.

• Chapter 2: It includes a brief overview of the NURBS and T-spline formulation.

• Chapter 3: It describes the formulation of the IGA-BEM based on the
T-spline and NURBS framework applied to the analysis of wave propagation
and wave-structure interaction. Simulations of the waves generated by the
movement of submerged foils is reported which have implications in some wave
generator systems installed in surf parks. The chapter contains a more specific
introduction and conclusion relative to this field.
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8 1 Introduction

(a)

(b)

Figure 1.6: Movement of a deformable capsule in a cylindrical tube due to a pressure-driven
flow: (a) Initial state and (b) deformation at the dimensionless time t = 7.15 when the capsule
acquires the typical asymmetrical parachute shape.

• Chapter 4: The T-spline-based IGA-BEM approach is applied to microfluics. A
IGA-FEM formulation is developed for the analysis of the membrane mechanics
and it is coupled with the IGA-BEM fluid model. The approach is applied to
simulate the behaviour of a deformable capsule in a confining pulsating shear
flow. A specific short introduction and conclusions are included.

• Chapter 5: The main conclusions are drawn and potential directions for the
future research are outlined.
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9

Chapter 2

Geometric fundamentals

In this chapter we present briefly the basic concepts of the NURBS and T-spline in the
context of IGA. For more details, the reader is refereed to [20, 53–56]

Considering that the formulation shown in this thesis is developed for 3D geometric
models, we focus on 3D surfaces. In this case, the physical space is defined by Γ ∈ <ds
with ds = 3 and the parameter space is reduced to Γ̂ ∈ <dp with dp = 2.

2.1 NURBS and T-Spline surfaces

A NURBS surface is described in terms of a control mesh and a valid pair of knot
vectors. A valid knot vector is a non-decreasing sequence of real numbers that
parametrizes the surface in each topological direction. A knot vector is denoted by
Ξi = {ξi1, ξi2, ..., ξi1+mi+pi

}, where ξik ∈ < is the kth knot value, and mi is the
number of B-spline basis functions of degree pi in the i direction. Hereinafter, we
denote the multi-index p = {p1, p2}, m = {m1,m2} and the parametric coordinate
ξ = {ξ1, ξ2}. The control mesh is a set of vertices that forms a structured set of
quadrilateral elements. Each vertex has associated a control point PA ∈ <ds and a
weight wA ∈ <, where A = 1, 2, ...,mcp is the global index that denotes all vertices
mcp =

∏dp
i=1mi (see Fig. 2.1a).
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2.1 NURBS and T-Spline surfaces 11

If we define the parametric space by Γ̂ = [ξ1
1 , ξ

1
1+m1+p1

]×[ξ2
1 , ξ

2
1+m2+p2

] (as shown
in Fig. 2.1a), the NURBS surface that maps the parametric space to the physical space
x : Γ̂→ Γ can be expressed as:

x(ξ) =

∑mcp
A=1 PAwANA,p(ξ)∑mcp
A=1wANA,p(ξ)

=

mcp∑
A=1

PARA(ξ) ξ ∈ Γ̂ (2.1)

whereNA,p(ξ) is the bivariate B-spline basis functions of p degree associated with the
global vertex A and RA,p(ξ) denotes the rational basis functions construct with the
weights and the B-spline basis functions. The bivariate B-spline basis functions are
built by forming a tensor product of univariate basis functions (N i

A,pi
(ξi)) as:

NA,p(ξ) =

dp∏
i=1

N i
A,pi(ξ

i) (2.2)

The univariate B-spline basis function is inferred uniquely from the corresponding
knot vector. Using the following recurrence relation, the kth univariate B-spline basis
is defined as:

N i
k,0(ξi) =

{
1 if ξik ≤ ξi < ξik+1

0 otherwise

N i
k,pi

(ξi) =
ξi − ξik

ξik+pi
− ξik

N i
k,pi−1(ξi) +

ξik+pi+1 − ξi

ξik+pi+1 − ξik+1

N i
k,pi−1(ξi)

(2.3)

Hereinafter we drop the sub-index p from the basis functions.

Note that the NURBS is limited to surfaces defined by four edges. To represent
more complex geometries it is necessary to divide the models in different rectangular
patches. In the context of the BEM, a C0 continuity is required across the patch. This
is not guaranteed in all the cases and in this work we satisfy this condition by choosing
the same knot vector, weight and control points along the shared edge between adjacent
patches. In this case, if a refinement is performed in a patch, it affects globally to the
rest of the patches.

This limitation can be overcome naturally using the T-spline framework which
allows the existence of hanging and extraordinary points within the control mesh. For
a cubic T-spline, the mapping is expressed in a similar way as in Eq. 2.1. However,
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12 2 Geometric fundamentals

unlike NURBS, the surface is locally parametrized by defining of a local pair of
knot interval vectors ∆Ξi

A = {∆ξiA,1,∆ξiA,2, ...,∆ξiA,1+pi
} with ∆ξi = ξi+1 − ξi,

associated to each vertex A where the T-spline basis functions is restricted to be
non-null. This provides the capacity of making unstructured meshes and local
refinements. An example is shown in Fig. 2.2. A simple geometry is represent
using a T-spline and a NURBS surface. Despite the simplicity, three NURBS patches
are required whereas the T-spline surface is reduced to an unique patch. Moreover a
refinement is made to both geometric model. While a local refinement can be applied
to the T-spline surface, the NURBS refinement is globally extended throughout the
entire domain and patches.

(a) Local refinement (b) Global refinement

Figure 2.2: Representation of the half of a smooth cube using (a) a T-spline and (b) a NURBS
surface. A refinenent is applied at the right corner.

Some important properties of the T-spline and NURBS basis functions are:

• Partition unity:
∑mcp

A=1RA(ξ) = 1 for all ξ.

• Pointwise nonegativity: RA(ξ) ≥ 0 for all A and ξ.

• Compact support: RA(ξ) > 0 for all ξ ∈ [0,
∑p1+1

i=1 ∆ξ1
A,i]× [0,

∑p2+1
i=1 ∆ξ2

A,i]

and A.

• Linear independence:
∑mcp

A=1 cARA(ξ) = 0 if cA = 0 for all A and ξ.

• Control of continuity: the basis are C(p−k) continuous with k being the
multiplicity of a knot.
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2.2 A finite element structure 13

2.2 A finite element structure

The idea is to discretize the physical domain with a series of independent elements
xe(ξ̃) (T-spline element) defined over a parent domain ξ̃ ∈ Γ̃ [23]. Considering
the compact support property of the basis functions, there exists a number of them,
me, which are non-null over each element e. Then, we can construct a matrix
A = IEN(e, a), that maps the local basis functions number a in the element e to
the global function A.

The local geometry, restricted to each element domain, is defined as:

xe(ξ̃) =

∑me
a=1 PeaweaN e

a(ξ̃)∑me
a=1w

e
aN

e
a(ξ̃)

ξ̃ ∈ Γ̃ (2.4)

and in compact form it can be rewritten as:

xe(ξ̃) =
(Pe)TWeNe(ξ̃)

(we)TNe(ξ̃)
ξ̃ ∈ Γ̃ (2.5)

where Pe = {Pea}
me
a=1 is a set of the control points, we = {W e

a}
me
a=1 is a vector of

weights, We = diag(we) is a diagonal matrix and Ne(ξ̃) = {N e
a(ξ̃)}mea=1 is a vector

of the basis functions relative to the element e.

Fig. 2.1 shows the comparison between a quadratic NURBS and a quadratic
Lagrange representation. In the context of NURBS, the image of the parametric
space to the physical space defines a physical mesh. This entails that each physical
element e can be described over a parent element domain by defining a mapping from
the parent domain to the parametric space Φ̂e : Γ̃ → Γ̂. This description can be
considered analogous to the traditional FEA, but with some differences. The control
points do not have to lie on the physical space, unlike the nodes defined in the Lagrange
model. The geometry is continuous even across elements, and this continuity can be
managed using the knot vectors. Moreover, natural global h, p and k refinement can
be performed without modifying the geometry.

Fig. 2.3 we show a example of the construction of the IEN array. This
figure represents the T-spline elements of a generic plane surface. The highlighted
quadrilateral denoted the T-spline element number 1 which is supported by the
highlighted control points. The control points are in one-to-one correspondence
with the basis functions, therefore they denote the non-zero basis functions over the
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14 2 Geometric fundamentals

element. The Table 2.2 contains the IEN matrix relative to this example. Each row
reveals the actives basis function over the corresponding element and maps the local
index to the global index.

Figure 2.3: T-spline elements in the T-spline control mesh. The sublayer corresponds to
the physical space. The dark highlighted quadrilateral denotes the T-mesh element number
1 which is maped over the physical space (soft highlighted quadrilateral). The highlighted
circles correspond to the basis functions non-zero over the T-spline element 1. Note that there
exist a one-to-one correspondence between control points and basis functions.

It should be noted that the number of T-spline basis functions contained in each
element can be different, while in the case of NURBS are exactly equal to

∏dp
i=1(pi +

1). Furthermore, the T-spline and NURBS basis functions affect to different elements
and their definition depends on the topology. As proposed by Scott et al. [57], we draw
on the Bézier extraction concept as an elegant method to standardize the T-spline and
NURBS framework in isogeometric analysis.

The Bézier extraction is a linear operator that maps the NURBS or T-spline basis
functions over each element to a same set of Bernstein polynomials. Let us define a
set of bivarite Bernstein basis B(ξ̃) = {Ba,p(ξ̃)}mba=1 withmb =

∏dp
i=1(pi+1) (in case

of cubic T-spline mb = 16 ). The NURBS or T-spline basis can be expressed as,

Ne = CeB (2.6)
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2.2 A finite element structure 15

A=IEN(e,a)
e \a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 1 2 3 4 9 10 11 12 17 18 19 20 25 26 27 28
2 2 3 4 5 10 11 12 13 18 19 20 21 26 27 29 28
3 2 3 4 5 10 11 12 13 18 19 20 21 27 29 30 28
4 3 4 5 6 11 12 13 14 19 20 21 22 29 30 31 28
5 4 5 6 7 12 13 14 15 20 21 22 23 29 30 31 32
6 5 6 7 8 13 14 15 16 21 22 23 24 30 31 32 33
7 9 10 11 12 17 18 19 20 25 26 27 34 35 36 28 37
8 10 11 12 13 18 19 20 21 26 27 29 43 35 36 38 28 37
9 10 11 12 13 18 19 20 21 27 29 30 43 36 38 28 37
10 11 12 13 14 19 20 21 22 29 30 31 43 44 38 28 37
11 12 13 14 15 20 21 22 23 29 30 31 32 43 44 45 38
12 13 14 15 16 21 22 23 24 30 31 32 33 43 44 45 46
13 17 18 19 20 25 26 27 39 40 41 42 34 35 36 28 37
14 18 19 20 21 26 27 29 40 41 42 43 51 35 36 38 28 37
15 18 19 20 21 27 29 30 40 41 42 43 51 36 38 28 37
16 19 20 21 22 29 30 31 41 42 43 44 51 52 38 28 37
17 20 21 22 23 29 30 31 32 42 43 44 45 51 52 53 38
18 21 22 23 24 30 31 32 33 43 44 45 46 51 52 53 54
19 25 26 27 39 40 41 42 47 48 49 50 34 35 36 28 37
20 21 26 27 29 40 41 42 43 48 49 50 51 35 36 38 28 37
21 21 27 29 30 40 41 42 43 48 49 50 51 36 38 28 37
22 21 22 29 30 31 41 42 43 44 49 50 51 52 38 28 37
23 21 22 23 29 30 31 32 42 43 44 45 50 51 52 53 38
24 39 40 41 42 47 48 49 50 55 56 57 58 34 35 36 37
25 40 41 42 43 48 49 50 51 56 57 58 59 35 36 38 37
26 30 40 41 42 43 48 49 50 51 56 57 58 59 36 38 37
27 30 31 41 42 43 44 49 50 51 52 57 58 59 60 38 37
28 30 31 32 42 43 44 45 50 51 52 53 58 59 60 61 38
29 30 31 32 33 43 44 45 46 51 52 53 54 59 60 61 62

Table 2.1: IEN array constructed for the example 2.3. The IEN array maps the local basis
function a relative to the element e to the global basis function A.

in which Ce ∈ <me×mb is the matrix extraction operator corresponding to the element
e.

Introducing the Eq. 2.6 in the Eq. 2.5 each element can be written in terms of an
independent Bézier patch as follows,

xe(ξ̃) =
(Pe)TWeCeB(ξ̃)

(we)TCeB(ξ̃)
=

(Qe)TWb,eB(ξ̃)

(wb,e)TB(ξ̃)
ξ̃ ∈ Γ̃ (2.7)

where Qe = {Qe
b}
mb
b=1 is the vector of Bézier control points and wb,e = {W e

b }
mb
b=1 is

the vector of Bézier weights, which can be expressed as,

Qe = (Wb,e)−1(Ce)TWePe (2.8)

wb,e = (Ce)Twe (2.9)
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16 2 Geometric fundamentals

Alternatively, Eq. 2.7 can be expressed in reduced form as,

xe(ξ̃) = (Pe)TRe(ξ̃) = (Re)T (ξ̃)Pe ξ̃ ∈ Γ̃ (2.10)

being Re(ξ̃) = {Rea}
me
a=1 a vector of local rational basis function.

Fig. 2.2 shows a schematic illustration of the Bézier extraction operation applied
to a NURBS curve. For details about the construction of Bézier operators see [23, 57].
In Appendix A we shown briefly the concepts of the Bézier elements.

2.3 Extraordinary points and degenerate elements

In this thesis we deal with surfaces that require extraordinary points and degenerated
elements (see Fig. 2.5). In both cases the continuity of the geometry is locally
reduced. An extraordinary point is a vertex which shares a number of edges
different to four. In the present work, we employ the constrained Bézier framework
reported in [24] that forces the G1 continuity in the one-ring neighbourhood elements
adjacent to extraordinary points. The continuity is increased across the succeeding
rings neighbourhood elements to reach the desirable C2 continuity in the third-ring
neighbourhood.

In degenerated elements, one of the edges of the quadrilateral element collapses
in a point forming a triangular element. Usually, there are several elements that
collapse in the same point (as in the typical case of a sphere). This point is called pole.
The continuity across poles can be chosen to be C0 if a continuous basis function is
constructed as the sum of all the coincident basis functions. It should be consider that
these elements become singular since the differentiability of the geometry vanishes
when approaching to the degeneration. Therefore, it is not possible to compute the
surface normal and the curvature in the poles. In computational analyses although
these particular elements are admisibles, they are not desirable because they can affect
to the accuracy of the results as well as they are sources of numerical problems
[31, 58, 59]. Regarding that issue, we suggest to carry out a simple transformation
to obtain non-singular elements. The procedure is as follows:

1. Given a degenerated cubic quadrilateral Bézier element defined by the
homogeneous coordinates Qw = {wbiQi, w

b
i}
mb
i=1, the element is approximated
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18 2 Geometric fundamentals

(a)

G
1

C
1

C
2

(b)

Figure 2.5: Representation of (a) a structured mesh with degenerated elements and (b) a
unstructured mesh. The pole is marked with a red circle and the start point with a red triangle.
Each color strip corresponds to one ring of neighbour elements.

to a triangular cubic Bézier element Tw. This operation can be expressed in a
matrix form as,

Tw = CQTQw (2.11)

In Eq. 2.11 CQT ∈ <mT×mb is the matrix conversion from quadrilateral
to triangular patch and mT = 9 is the number of control points of the
cubic triangular Bézier element. The triangular Bézier patch is not singular
but its formulation and properties are different with respect to the standard
quadrilateral Bézier patch. Therefore, that patch is not appropriated for the
T-spline framework.

2. Then, the cubic triangular Bézier element is divided into three cubic non
degenerated quadrilateral Bézier elements (Q̂

w

1 , Q̂
w

2 , Q̂
w

3 ) as follows,

Q̂
w

i = CTQ
i Tw i = 1, 2, 3 (2.12)

where CTQ
i ∈ <mb×mT are the conversion matrices from triangular Bézier

patches to quadrilateral Bézier patches.

See Appendix B for a complete expansion of these matrix operations.

The original idea was developed for CAD systems in order to homogenize and
unify the use of different Bézier formulations towards regular quadrilateral patches
[60]. We extend that idea to the isogeometric analysis to avoid the presence
of singular elements. Note that the first step produces an approximation of the
original degenerated quadrilateral Bézier element since the number of control points
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2.3 Extraordinary points and degenerate elements 19

is reduced to a triangular Bézier element. To improve the geometrical approximation,
a subdivision scheme can previously be applied to the first step and the discrepance
can be controlled under a tolerance as shown in [60]. The second step generates a
geometrically exact surface representation [61]. After this transformation, the one-ring
neighbourhood Bézier elements around the poles are modified such that are C0 with
each other as well as with the adjoining two-ring neighbourhood elements. Although
the continuity is locally reduced, it is enough to be used in the isogeometric analysis
while the under-laying T-spline that supports them retains the continuity properties.
Moreover, in the context of the Bézier-extraction, the above procedure is relatively
easy to implement in the T-spline framework by a simple matrix multiplication of
the matrix extraction operator with the transformation matrices. An schematic of the
transformation process to non-degenerated Bézier elements is shown in Fig. 2.6.

Figure 2.6: Schematic illustration of the transformation process from a cubic degenerated
Bézier element to non degenerated cubic Bézier elements. A subdivision operation is previosly
applied that is informed by the matrix operation CD. The matrix CQQ condenses the two cited
operations to convert it to non degenerated Bézier elements. The matrices corresponding to
this example are found in the Appendix C.
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Chapter 3

Wave propagation and
wave-structure interaction

3.1 Introduction

In the last decades, numerical models have been developed for the prediction of
the propagation of gravity waves in the time domain. These models have been
applied to simulate tsunami generation and [62] overturning waves [1, 42, 43], to
design breakwaters [63, 64], to predict the wave pressure impact on structures [65],
or to study radiation and diffraction waves produced by a wave-maker [44, 66–68].
Nowadays, because of the increasing interest on the ocean renewable energy, in which
the generation systems are installed near-shore or off-shore, new applications of such
models are being used to study the fluid-structure interaction considering the effect of
the waves [69–73].

Early numerical studies on the non-linear wave propagation appeared in 1976 when
Longuet-Higguin and Cokelet [74] presented their bi-dimensional (2D) approach to
simulate the transient surface waves. Their approach was based on the potential flow
theory and used the BEM to solve the Laplace’s equation in conjunction with a Mixed
Eulerian-Lagrange (MEL) technique to update the free surface. Similar models were
used to study a wide variety of non-linear water waves problems [75–79], but it was
the study of Dommermuth et al. [49] that demonstrated the validity of the potential
flow theory applied to the unsteady gravity wave propagation. These authors presented
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22 3 Wave propagation and wave-structure interaction

a successful comparison between the numerical results obtained by a 2D-BEM model
and experimental results obtained in a water tank. It is worth to mention the studies
reported by Grilli et al. [1, 80, 81] who developed an advanced approach using 2D high
order BEM. Later, Grilli et al. [42] and Guyenne and Grilli [43] extended the model
to three-dimensional (3D) geometries to analyse overturning waves over an arbitrary
bottom.

Some full non-linear high-order 3D BEM models have been proposed to simulate
the unsteady interaction of the wave with a rigid body. An overview of such works
can be found in Tanizawa [82]. Among them, Lee et al. [41] studied the non-linear
waves and the hydrodynamic force generated by the movement of a submerged
sphere. Bai and Taylor [44] investigated the wave radiation produced by a moving
submerged truncated cylinder and the wave diffraction around a vertical cylinder [83].
They used an unstructured triangular mesh constructed with second order Lagrange
elements in order to obtain a good approximation of the geometry. Later, these authors
extended the model to flared floating structures [45]. Sung and Grilli [84] analysed the
waves generated by an advancing surface disturbance. Following the Grilli’s works,
these authors used a structured mesh formed by isoparametric bi-cubic piecewise
overlapping elements that provided a local smoothness of the geometry and of the
physical variables. More recently, Hannan et al. [47, 85] studied the interactions
between water waves and fully submerged fixed or moving structures. In the same
line, but limited to 2D, Dombre et al. [48] extended the early work presented in [46]
to study the dynamics of free fully submerged structures.

In addition, other models have been proposed to analyse more specific problems
such as the post-breaking phenomenon, the violent wave impact against structures, the
large fluid movement in a confined space with steep non-linear waves or the viscous
and the vortex force in the context of floating structures. In such cases, the potential
flow theory is not valid and other tools based on CFD solvers, to resolve the full
Navier-Stokes equations, or the Lattice Boltzmann method (LBM) have been used
[86–91]. Most of these problems have been formulated in 2D, and despite the increase
of computational power, the full 3D models require a considerable computational
cost. Therefore, unless in such specific cases, the potential theory together with
BEM provides good results for non-linear gravity waves problems with a reduced
computational time.

In this chapter we develop a 3D formulation of the the IGA-BEM based on
the NURBS and T-spline framework to solve non-linear unsteady gravity wave
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3.2 Formulation of the problem 23

propagation problems and wave-structure interaction problems in the time domain.
We consider the full non-linear potential flow theory in combination with the MEL
procedure. We exploit the advantages of the IGA-BEM based on T-spline and NURBS
basis in the context of the Bézier extraction procedure. The high continuity of the basis
functions allows to deal with large mesh distortions [39] in the Lagrange formulation
as well as it prevents numerical instabilities, as the saw-tooth effect that occurs when
classical C0 piecewise basis are used. In addition, we employ direct integration with
CAD software [52] to make and handle 3D geometrical models in a easy way.

3.2 Formulation of the problem

We consider a fluid volume Ω(t) defined by an arbitrary lateral boundary ΓW (t),
composed by one or several surfaces, a bottom surface ΓS(t) and a free surface ΓF (t)

located at the top. The fluid can move freely with the time (t) by the action of a
submerged moving rigid body ΓB(t) or by imposing a specific initial condition. In
Fig. 3.1 we show a sketch of the domain and the Cartesian coordinate adopted. The
plane z = 0 corresponds to the free surface at rest.

Figure 3.1: Sketch of the problem

The flow is assumed to be incompressible, inviscid and irrotational. Under these
hypotheses, the movement of a fluid particle x(t) can be described in terms of a
velocity potential (φ(x, y, z, t)), such that the velocity of a fluid particle can be
expressed as:

v = ∇φ (3.1)
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24 3 Wave propagation and wave-structure interaction

The continuity equation in the a fluid domain Ω(t) can be reduced to a Laplace
equation:

∇2φ = 0 in Ω(t) (3.2)

that is subjected to different boundary conditions on the surfaces Γ(t) that define the
domain.

On the free surface ΓF (t), the kinematic and dynamic conditions in the Lagrangian
description are expressed as:

Dx
Dt

= ∇φ on ΓF (t) (3.3)

Dφ

Dt
= −gz +

1

2
∇φ ·∇φ− pa

ρ
on ΓF (t) (3.4)

respectively. In Eqs. (3.3-3.4) D/Dt denotes the material derivative, g is the gravity
acceleration, pa is the atmospheric pressure and ρ is the density of the fluid.

The instantaneous kinematic conditions on the lateral boundaries ΓW (t), the
bottom ΓS(t) and wetted body surfaces ΓB(t) are:

∂φ

∂n
= 0 on ΓW (t) and ΓS(t) (3.5)

∂φ

∂n
= vB · n on ΓB(t) (3.6)

with n the normal pointing out of fluid and vB the velocity vector of the rigid body.
In the case of a free floating body, the velocity should be computed using the second
Newton’s law. Here we consider the rigid body motion given by vB = ẋG + θ̇G × rB
, where ẋG and θ̇G are the velocity and rotation vectors referred to the center of mass,
and rB = xB − xG is the location of a body particle with respect to the center of mass.

As it can be noted in the formulation expressed above, the lateral boundaries are
considered solid and impermeable. This means that waves are reflected and kept into
the domain as it would occur in a tank. In some cases treated in this study, we are
interested in the simulation of infinite domains. For these cases, an artificial damping
method is used to absorb the wave energy near the boundaries [44, 92]. This is done
by modifying the kinematic and dynamic boundary conditions over a finite zone of the
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3.3 Formulation of the method 25

free surface, known as damping zone, located near the boundaries as follows:

Dx
Dt

= ∇φ− ς(x)(x− x0) on ΓF (t) (3.7)

Dφ

Dt
= −gz +

1

2
∇φ ·∇φ− pa

ρ
− ς(x)(φ− φ0) on ΓF (t) (3.8)

where x0 and φ0 are reference values at the rest state, and ς(x) is the damping factor,
which is gradually increasing along the damping zone as:

ς(x) =

 α
(
lD(x)
LD

)2
in the damping zone

0 otherwise
(3.9)

In Eq. 3.9, α ∈ <≥0 is the maximum damping factor, LD is the length of the zone
and lD(x) is the distance between xD and the specific location considered in vertical
projection (see Fig. 3.1).

3.3 Formulation of the method

3.3.1 Isogeometric Boundary Element Method

Given the domain Ω(t) delimited for a piecewise smooth boundary Γ(t), the external
Boundary Integral Equation (BIE) applied to the potential problem can be written as:

C(x0)φ(x0, t) =

∫
Γ(t)

[
G(x, x0)

∂φ(x, t)
∂n

]
dΓ

−−
∫

Γ(t)

[
φ(x, t)

∂G(x, x0)

∂n

]
dΓ (3.10)

The symbol −
∫

denotes that the integral is evaluated in the Cauchy Principal Value
sense (CPV), C(x0) is the solid angle defined at the source point x0 ∈ Γ, that can
be calculated directly with the expression proposed by Mantic [93] or indirectly as
described in Section 3.3.2, and G(x, x0) is the fundamental solution of the Laplace’s
problem. In the examples treated here, we consider three possible orthogonal
symmetric planes parallel to the Cartesian planes, such that the geometric complexity
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26 3 Wave propagation and wave-structure interaction

and computational costs can be reduced. Using the method of the images, the Green
function can be expressed as:

G(x, x0) =
−1

4π

8∑
i=1

[
1

‖x− x′i‖

]
(3.11)

where: 

x′1 = x0

x′2 = {x0, y0, 2zsym − z0}
x′3 = {x0, 2ysym − y0, z0}
x′4 = {x0, 2ysym − y0, 2zsym − z0}
x′5 = {2xsym − x0, y0, z0}
x′6 = {2xsym − x0, y0, 2zsym − z0}
x′7 = {2xsym − x0, 2ysym − y0, z0}
x′8 = {2xsym − x0, 2ysym − y0, 2zsym − z0}

(3.12)

with x = xsym, y = ysym and z = zsym being the location of the symmetric planes.
Considering an Isogeometric Analysis (IGA), the variables introduced in the BIE

(i.e. the potential and the flux) are defined in a finite dimensional space given by
the same basis functions than the geometry. This provides the BIE variables and the
geometry the intrinsic properties of the T-spline (or NURBS) as demonstrated in the
previous chapter. The BIE variables can be written as:

φe(ξ̃, t) = Re(ξ̃)Tφe(t) (3.13)
∂φe

∂n
(ξ̃, t) = qe(ξ̃, t) = Re(ξ̃)Tqe(t) (3.14)

where φe(t) = {φea(t)}mea=1 and qe(t) = {qea(t)}mea=1 are the temporal potential
and temporal flux vector corresponding to the local basis functions of each element,
respectively.

Introducing Eqs. 3.13 and 2.7 into Eq. 3.10, and applying the result on a particular
source point xeii = Rei

i (ξ̃
ei
i )TPei contained in the element ei, we obtain the discrete

IGA BIE:

C(xeii )(Rei
i )Tφei =

N∑
e=1

[∫
Γe(t)

[
G(xe, xeii )(Re)Tqe

] ∣∣∣∣∂xe

∂ξ̃

∣∣∣∣ dΓ(ξ̃)

−−
∫

Γe(t)

[
(Re)Tφe

∂G(xe, xeii )

∂n

] ∣∣∣∣∂xe

∂ξ̃

∣∣∣∣ dΓ(ξ̃)

]
(3.15)
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3.3 Formulation of the method 27

In Eq. 3.15
∣∣∣∂xe
∂ξ̃

∣∣∣ is the Jacobian determinant of the geometrical mapping, N is the
number of elements. For more details about the calculation of the Jacobian and the
tangential derivatives, the reader is referred to [23, 57]. Hereinafter, we drop the upper
index ei and for convenience we keep the subindex i to refer to the source point.

In this study we employ a collocational method, such that the BIE must be satisfied
for a set of i = 1, 2, ...,mcp specific source points known as collocation points.
Particularly, we use a generalization of the Greville abscissae as presented in Scott
et al. [24], since it provides accurate results in the context of the IGA BEM. However,
we relax the continuity condition for the position of control points such as these are
allowed to lie in sharp edges and corners. As demonstrated in [31], this relaxation
does not reduce the accuracy of the results and it facilitates the special treatment of the
velocity in these locations, as shown in Section 3.3.4.

3.3.2 Numerical integration

It is well known that the first and second kernel of the BIE (see Eq. 3.10) contain a
weak and a strong singularity, respectively, when the point of evaluation approaches to
the collocation point. The integrals are defined, but they have to be suitably evaluated
to avoid numerical problems. This topic has been studied intensively and an overview
of the available techniques can be found in [94–104].

In this study we regularize the second kernel using the rigid body method [94, 104],
that provides an indirect way to calculate the jump term as:

C(x0) = −−
∫

Γ(t)

∂G(x, x0)

∂n
dΓ (3.16)

Introducing Eq. 3.16 in Eq. 3.10 gives:∫
Γ(t)

[
(φ(x, t)− φ(x0, t))

∂G(x, x0)

∂n

]
dΓ =

∫
Γ(t)

[
G(x, x0)

∂φ(x, t)
∂n

]
dΓ (3.17)

Note that this regularization technique avoids the computation of the CPV and the
jump term in Eq. 3.15, and both integrals are weakly singular. The weak singularity
is solved using a local change of variables over the element containing the collocation
point, as proposed by Lachat and Watson [95]. Once regularized, these kernels can be
numerically evaluated by applying the quadrature rule to each element in the parent
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28 3 Wave propagation and wave-structure interaction

domain. We use the standard Gauss-Legendre quadrature. Recently, new specific
quadrature rules for NURBS have been proposed to take into account the continuity
of the basis functions [96]. In addition, if the collocation point is not located on
the element but very close, the integrals become nearly singular and their calculation
can exhibit numerical instability. In these cases, we use an adaptive regular element
subdivision on the parent domain.

3.3.3 System of equations

The discretization of the BIE in all collocation points leads to a set of mcp equations
with 2mcp variables corresponding to the potential and the flux at the control points.
This set of equations can be written compactly as,

Ĥφ = Gq (3.18)

in which, using the global notation, φ = {φ}mcpA=1 is the potential vector, q = {q}mcpA=1

is the flux vector, and the matrices Ĥ and G ∈ <mcp×mcp are given by:

ĤiA =

∫
Γ(t)

∂G(x, xi)
∂n

(RA(x)−RA(xi)) dΓ (3.19)

GiA =

∫
Γ(t)

G(x, xi)RA(x)dΓ (3.20)

As it has been shown in Section 3.2, the problem under consideration consists in
a mixed boundary problem in which the potential, once integrated in time, is known
on the free surface and its flux on the rest of the boundaries. The discretization of the
boundary conditions on the set of collocation points yields,

R(xi)Tφ = φ̄(xi) ∀xi ∈ ΓF (t) (3.21)

R(xi)Tq = q̄(xi) ∀xi ∈ ΓW (t) ∪ ΓS(t) ∪ ΓB(t) (3.22)

We reorder the system of equations (3.18), (3.21) and (3.22) to obtain a linear system
that can be written as Ka = b, where a ∈ <2mcp is a vector containing the control
variables, b ∈ <2mcp is a vector with the boundary conditions at the collocation points
and K ∈ <2mcp×2mcp is in general a dense non-symmetric matrix. The minimum
residual method (GMRES) has been found to be efficient and suitable for solving the
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3.3 Formulation of the method 29

system of equations [44, 105]. In the present study the tolerance has been set to 10−12.
Moreover, to correctly model the physical variables at the sharp edges and corners,
we use the semi-discontinuous basis technique, as presented in [24], such that the flux
is allowed to be discontinuous while the potential is continuous. Fig3.2 shown an
example of the collocation points strategy used in the present work.

semi-discontinuous basis

(a)

multiplicity of collocation points

(b)

Figure 3.2: T-spline model for a cylindrical tank: (a) control point positions and (b)
collocation points positions. In both cases the Bézier elements are represented. On sharp
edges the semi-discontinuous basis technique is used (highlight circles). The potential is
continuous whereas the flux is allowed to be discontinuous across the edges that requires
adding collocations points on the edges (highlight quadrilateral). This technique is known
as multiplicity of control points.

3.3.4 Velocity field

Following the idea of the IGA, we use the same set of T-spline (or NURBS) basis
functions to approximate the velocity field, which is expressed as,

v(ξ̃, t) = R(ξ)T v(t) (3.23)

where v(t) = {vA(t)}mcpA=1 is the global velocity vector.

The global velocity vector has not a real physical meaning and it represents a
fictitious velocity which is used to calculate the real velocity field. Using a collocation
method this global velocity vector can be computed as:

v(t) = T −1V (3.24)
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30 3 Wave propagation and wave-structure interaction

In Eq. 3.24 V = {vi(ξi, t)}
mcp
i=1 is the velocity vector at the collocation points and

T iA = RA(xi) is the invertible and well conditioned interpolation matrix.

An ambiguous definition of the local velocity can be found in the collocation
points located in sharp edges or corners due to the discontinuity of the derivatives.
This ambiguity is a source of numerical instabilities and it should be solved to
obtain a continuous velocity field. An usual procedure to overcome this problem is
the calculation of an average velocity [44]. In this work we employ an alternative
procedure that consists in the determination of a unique velocity, which is compatible
with the normal velocity of each concurrent surface. We consider two possible cases as
shown in Fig. 3.3. The first one (Fig. 3.3a) corresponds to a corner at the intersection
of three surfaces. In this case, the velocity can be determined using the following
equation:

(a) (b)

Figure 3.3: (a) Corner at the intersection of three surfaces and (b) edge defined by the
intersection two surfaces. vx

vy

vz

 =

 n1
x n1

y n1
z

n2
x n2

y n2
z

n3
x n3

y n3
z


−1 

∂φ
∂n1

∂φ
∂n2

∂φ
∂n3

 (3.25)

where ni are the normals corresponding to each surface.

The second case (Fig. 3.3b) is found in the edge defined by the intersection of two
surfaces. The velocity can be computed as, vx

vy

vz

 =

 n1
x n1

y n1
z

n2
x n2

y n2
z

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ


−1 

∂φ
∂n1

∂φ
∂n2

∂φ
∂ξ

 (3.26)
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3.3 Formulation of the method 31

In Eq. (3.26) ξ represents the common axis along the direction of the edge. Note that,
since φ is continuous, its derivative along the edge is unique.

3.3.5 Hydrodynamic pressure

The pressure force, f̂ = [fx, fy, fz,mx,my,mz], exerted by the fluid on the surface of
a body can be computed as,

f̂ =

∫
ΓB(t)

pn̂dΓ (3.27)

where n̂ = [n, rB × n] is a six-component vector. The pressure field at any point can
be calculated using the Bernoulli equation:

p = −ρ
(
∂φ

∂t
+ gz +

1

2
∇φ ·∇φ

)
(3.28)

The term ∂φ
∂t can be approximated by using temporal integration schemes.

However, this can produce numerical instabilities. Dombre et al. [42, 48] proposed
a method to compute directly this term using an auxiliary BIE. This method requires
the calculation of second derivatives of the potential and the geometry variables that
leads to complex formulations. Here we use the method proposed by Wu and Taylor
[106] in which the ∂φ

∂t is calculated indirectly such as the pressure force vector is given
as:

f̂i/ρ = −
∫

ΓB(t)∪ΓF (t)

∂ψi
∂n

(
gz +

1

2
∇φ ·∇φ

)
dΓ−

∫
ΓB(t)

ψi (âb · n) dΓ

+

∫
ΓB(t)

∇ψi (vB · n) · (∇φ− vB) dΓ (3.29)

In Eq. 3.29 vB is the velocity of the body, as defined in Section 3.2, âB = ẍG + θ̈G ×
rB−θ̇G× ẋG and ψi are six auxiliary functions (i = 1, 2, ..., 6) that satisfy the Laplace
equation. These new variables can be computed using an auxiliary BIE as following:

∇2ψi = 0 in Ω(t)

ψi = 0 on ΓF (t)
∂ψi
∂n = 0 on ΓW (t) and ΓS(t)
∂ψ
∂n = n̂i on ΓB(t)

(3.30)
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32 3 Wave propagation and wave-structure interaction

3.3.6 Time marching

As shown in the formulation of the problem, the position of the fluid particles and the
physical variables, Eq. 3.3 and Eq. 3.4, depend on time. Therefore, to obtain the
temporal evolution of the free surface, a temporal integration scheme is needed. In
the context of strong non-linear gravity waves, several schemes have been proposed
[42, 45, 92, 107]. In this study, we use the standard 4th order Runge Kutta method
(RK4), which has been shown to be numerically stable and accurate.

An important aspect of the temporal integration is the adequate selection of
the time step to provide an accurate and stable temporal resolution. This depends
on the integration scheme, physical discretization and the particular problem under
consideration. For periodic wave problems the time step is usually chosen as a fraction
of the wave period such that the physical phenomenon is represented accurately [92].
For a solitary wave, Grilli et al. [42] proposed an adaptive time steeping method
as a function of the spatial discretization and the Courant number, C (Eq. 3.31).
They demonstrated that there exists an optimal Courant number such that the error
is minimum. We use this method, adapted to the IGA-BEM, and investigate about the
optimal value of the Courant number.

∆t = CLemin/
√
gh (3.31)

In Eq 3.31 Lemin is the minimum characteristic element size defined as the square root
of its surface and h is the depth of the bottom surface.

The steps for the time marching procedure are:

1. The initial geometrical model is defined and an initial boundary condition for
the potential (φ̄0) and the flux (q̄0) are specified on the free surface and on the
rest of the surfaces, respectively.

2. A time step (∆ti) is selected. This can be set dynamically at each step depending
on the type of problem.

3. The time integration is carried out to update the position of the fluid particles
and potential ( φi+1, xi+1) from the actual time (ti) to the next time step (ti+1 =

ti + ∆ti). Due to the non-linear behaviour, several sub-steps are required.

3.1. The BIE equation (3.18) is calculated, and the boundary conditions (Eq.
3.21 and Eq. 3.22) are applied at the each sub-step (k). A linear system of
equations is obtained and solved by using the GMRES.
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3.3 Formulation of the method 33

3.2. The velocity is computed using Eq. 3.23.

3.3. The potential is updated to the next sub-step (φk+1
i+1 ) by applying the

integration scheme to the kinematic relation for the free surface (Eq. 3.3
or Eq. 3.8).

3.4. The positions of the fluid particles are updated to the next sub-step (xk+1
i+1 )

using the known velocity field. If fluid particles are separated from the
walls or body surface, these are relocated back to the boundaries using a
normal projection as proposed by Bai and Taylor [44].

3.5. The flux is computed in the next sub-step (qk+1
i+1 ) using the kinematic

equations for the walls, bottom surface, and body surface.

3.6. For the RK4 scheme, this process is repeated four times (k = 1 to k = 4).

4. The fluid forces on the body are computed (Eq. 3.28 and Eq. 3.27).

5. The volume and total energy is calculated in order to monitor their temporal
evolution as,

v(t) =

∫
Γ(t)

z(λzn)dΓ (3.32)

e(t) =
ρg

2

∫
Γ(t)

z2(λzn) + φqdΓ (3.33)

where λz is the unit vertical vector.

6. Steps 2 to 5 are carried out iteratively until the maximum time is reached.

It should be noted that we are employing a collocational method and all variables
are evaluated at the collocations points. The values of the variables on the control
points can be obtained using the interpolation matrix.

UNIVERSITAT ROVIRA I VIRGILI 
TOWARDS THE APPLICATION OF THE ISOGEOMETRIC BOUNDARY ELEMENT ANALYSIS TO FLUID MECHANICS: 
NON-LINEAR GRAVITY WAVES AND DYNAMICS OF DEFORMABLE CAPSULES IN SHEAR FLOWS 
Jorge Maestre Heredia 
 



34 3 Wave propagation and wave-structure interaction

3.4 Numerical Results

In this section we show some numerical examples to validate the present IGA-BEM
formulation. Each example is focused on a particular computational aspect of the
method. The first example is a train of small amplitude waves and we analyse the
spatial convergence of the IGA-BEM solution. In the next example we simulate a
solitary wave to evaluate the temporal stability and the accuracy of the method. In the
third example we check the ability of the method to handle wave-structure problems by
simulating the waves generated in a tank. Finally, we simulated the waves generated
by moving submerged foils. This configuration has technological implications such as
is the generation of waves in surf parks.

All T-spline models were constructed using the T-spline plugin of Rhino [52]. In
the first three examples, the free surface is specified by a known function and the
approximation using NURBS surfaces is not straightforward. In order to obtain the
optimal approximation, a L2-projection method is used. It consists in the minimization
of the L2-error between the given function f and its projections in a discrete space of
spline basis functions (Λ). This is:

min‖f −Π[Λ](f)‖L2 (3.34)

in which the projection Π[Λ](f) is given by:

Π[Λ](f) = RT
Aα(f) (3.35)

and α(f) are the functionals to be found such that the L2-error is minimized.

In all the examples considered the body is rigid. Symmetric boundary conditions
are imposed at the symmetric planes of the problems. These planes have the zero flux
condition and they are not discretized because symmetric conditions are implicitly
incorporated in the Green function. Moreover, unless otherwise is specified, the time
is made dimensionless using the time scale

√
h/g with h being the depth of the water.

The dimensionless variables are denoted with ∗.

3.4.1 Periodic wave: convergence of the spatial discretization

The objective of this example is to analyse the convergence of the IGA-BEM method
presented in this study. The test consists in the simulation of a steadily propagation of a
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3.4 Numerical Results 35

periodic train of non-linear waves over a horizontal bottom surface. This problem has
been studied by some authors [108–111]. Fenton proposed an approximation based
on fifth-order Stokes theory, which assumes that all variations along the propagation
direction can be represented by Fourier series. For more details see [110].

This is a 2D periodic problem where the gravity waves propagate along the
x-direction and they are invariant along y-direction. Since the presented method
is formulated in 3D, we study a representative domain (Ω) defined by its length
x = [−λ/2, λ/2], depth z = [0, η] and width y = [0, h], where λ is the wavelength
and η is the elevation of the wave. The problem is closed setting the wave-number
Kh = 2πh/λ = π/2, the wave height A/h = 0.2 and wave velocity c = Q/h, where
Q is the vertical volume rate of flow that can be calculated by the fifth-order Stokes
theory.

Considering three symmetry planes; located at x = λ/2, y = h and z = 0; the
geometry is discretized with three NURBS surfaces. Note that these surfaces can be
converted into a unique T-spline patch. We set a number of regular Bézier elements
that varies between 12 to 24 with an increment of 4 elements per wavelength along the
three spatial directions. All weights are set to unity. Moreover, three different degrees
for the basis ( p = 2, 3, 4) are selected.

It should be noted that sinusoidal functions cannot be represented exactly by a
rational spline, and numerical errors are expected to occur on the geometry and
boundary conditions. To minimize these errors we use a L2-projection method as
explained above. Fig. 3.4a shows the L2-error on the free surface. It can be seen that
the model shows an optimal convergence (i.e. convergence rate ≥ p+ 1).

In Fig. 3.5 we show the point-wise error, between the analytical and numerical
IGA-BEM solution (‖w−wh‖ with wh being the flux or potential), on the free surface
for the more refined model using quartic basis. The error on the Neumann boundaries
is considerable lower (one order of magnitude smaller) than on the Dirichlet boundary
(free surface). Moreover, small fluctuations are detected near the intersections of the
free surface due to lateral boundary effects. The convergence study is given in Fig. 3.6
where an optimal ratio is shown for all the polynomial degrees.
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36 3 Wave propagation and wave-structure interaction
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Figure 3.4: (a) L2-Error between the analytical elevation function and the NURBS surface
that represents the free surface. (b) L2-Error between the analytical potential function and the
boundary conditions applied on the free surface.

3.4.2 Solitary wave: temporal accuracy

Our next benchmark example consists in a solitary wave propagating over constant
depth. This example has been studied by Tanaka [112], who obtained a 2D full
non-linear numerical solution, and used by other authors for validation purposes
[42, 81, 113]. In this subsection we analyse the temporal stability and accuracy of
the present method by computing the numerical errors along the time with respect to
the steady solution presented by Dutykh and Clamond [113].
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3.4 Numerical Results 37

Figure 3.5: Point-wise error between the analytical and numerical (IGA-BEM) solutions on
the free surface using quartic basis functions and 24 elements/λ.
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Figure 3.6: L2-Error between the analytical and numerical (IGA-BEM) solutions on the free
surface.

We consider a wave of amplitudeA = 0.6h, where h is the depth of the free surface
at the rest. The domain is given by a length x = [0, 20h], width y = [0, 2h] and depth
z = [0,−h]. The wave is propagated along the longitudinal direction (x-direction) and
at the initial stage the crest is located at x = 7.5h.

As in the previous example, we set three symmetric planes at x = 20h, y = 2h and
z = −h and the model is represented by three NURBS surfaces with weight unity. The
free surface elevation and the potential are established with the L2-projection method
applied over the solution proposed by Dutykh and Clamond [113]. We consider
two longitudinal discretizations with element lengths of 0.25 and 0.5. The element
length along y-direction is 0.5 and 0.25 along z-direction. We use quadratic and cubic
NURBS basis functions. Moreover, simulations with an equivalent model using the
standard quadratic Lagrangian basis functions has been performed for comparison.

We carried out some simulations for different Courant numbers (calculated based
on the length of the elements of the free surface along x-direction, given the invariance
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38 3 Wave propagation and wave-structure interaction
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Figure 3.7: Time evolution of the wave shape. The translucent surface correpond to he initial
condition and the solid surface to t∗ = 4. Simulation with the fine mesh using cubic NURBS
basis functions.

along y-direction) in the range of 0.3 ≤ C ≤ 1.0. The instantaneous shape, energy
and volume of the wave have been monitored during a period of ∆t∗ = 4. We found
that the wave is kept stable during the simulation for all cases and the elements are
concentrated around the crest, as it can be seen in Fig.3.7. Moreover, the average errors
are mostly constant for the complete range of Courant numbers considered (Fig.3.8).
This demonstrates the robustness and stability of the scheme of integration.
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Figure 3.8: Relative energy (triangle), volumen (circle) and shape (square) errors for a cubic
NURBS (continuouos line), quadratic NURBS (dash line) and cuadratic Lagrangian (dotted
line) model, for (a) the case of a coarse mesh and (b) the fine mesh .

We have also analysed the numerical stability of the same solitary wave
propagating over a 1:15 slope that starts at the initial position of the crest (x = 7.5h).
This configuration, that produces the overturn of the wave, was studied in detail by
Grilli et al. [1] using a 2D BEM mode. Later these results were used to validate a 3D
BEM formulation [42].

Here we consider the numerical model described above for the fine mesh and a
Courant number of 0.5. Additionally, we discretize the bottom surface with the same
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3.4 Numerical Results 39

number of uniform elements as the free surface and we extend the length of domain
up to x = 22h. The simulation is carried out until the wave reaches the breaking
point (at t∗BP = 7.78). At larger times the lateral mesh becomes very distorted and
the numerical errors increase very fast. In fact, for the quadratic Lagrange model,
numerical instabilities appear before (at t∗ = 7.11), as it can be observed in Fig.
3.9a, and the simulation stops. This problem is associated with the lack of smoothness
across the elements that produces a sawtooth effect near the crest. The calculation of
the dynamic and kinematic conditions depends on the gradient of the potential, that is
not unique in shared nodes between neighbour elements. An average of the gradient is
taken in these nodes. This introduces numerical errors which increase with time. These
errors are more important in regions with a large variation of the potential, as well as,
in elements considerably distorted. Eventually, the growth of these errors cause a
premature stop of the simulation. These instabilities have been also reported by some
authors [38, 44, 114] and some stabilization techniques have been proposed. However,
the models using NURBS are stable for larger time, t∗ <= 7.78, and the free surface
remains smooth without any additional stabilization technique (see Fig. 3.9a and b).
For the cubic NURBS model the wave reaches a maximum height of 6.85 · 10−1h,
which is very close to the reported in [1] (6.89 · 10−1h). For the quadratic NURBS
model the height is slightly lower (6.81 · 10−1h) due to the lower degree of accuracy.
In Fig. 3.10 we compare the central section of the cubic NURBS model and the results
presented by Grilli et al. [1] at the breaking time. The relative errors for volume and
energy are εv = 1.21 ·10−4 and εe = 7.62 ·10−5, respectively, and the shape is in very
good agreement with the data reported in [1].

3.4.3 Wave in a cylindrical tank: Fluid-structure interaction

The objective of this section is to demonstrate the ability of the present formulation to
reproduce fluid-structure phenomenon considering the effect of the waves propagating
on the free surface of a tank. Here we test two different cases, one in which the body
is stationary and another in which the body is in motion and generates the wave field.

In the first example we consider a cylindrical water tank with a solid cylindrical
bar located at the center. The radius of the tank is rT = 10h and the radius of the
bar is rB = 1h with h being the depth of the tank. Initially a wave is established in
the middle point between the bar and the external wall of the tank. The elevation of
the wave is given by the Gaussian pulse z = Aexp[−(x − (rB + rT )/2)2 − y2] with
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Figure 3.9: Wave shape for (a) the Lagrangian model at t∗ = 7.11, when numerical
instabilities appear, and for (b) the quadratic and c) cubic NURBS models at the breaking
time (at t∗ = 7.78.)
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Figure 3.10: Wave shape of the central section (at y = 1h) for the present cubic NURBS model
(circles) and for the results presented by Grilli et al. [1] using a 2D BEM model (continuous
line) at the breaking time (t∗ = 7.78).

A = 0.1h being the amplitude of the wave. This problem has been solved by Chern
et al. [2] using a Pseudo-Spectral Matrix Element Method and then used by Bai and
Taylor [44] to validate their BEM formulation. More details about the problem can be
found in [2, 44].

The geometry is discretized using three regular cubic NURBS surfaces that
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3.4 Numerical Results 41

represent the free surface, the bar and the external wall. Two symmetry planes are
considered at y = 0 and z = −h. We set 26 × 25 Bézier elements (radial ×
circumferential) for the free surface, and 6 × 25 (vertical × circumferential) for the
body and external wall. There are a total of 1316 control points.

A comparison of the surface elevation adjacent to the body ([x = rB, y = 0]) and
horizontal force as a function of the time between the present results and those reported
by Chern et al. [2] is shown in Fig. 3.11. The simulation is run until t∗ = 30 with a
time step ∆t∗ = 0.1. As it can be seen, the present results are in good agreement with
those in [2] where we have used less DoF than the required by [44] to obtain a close
approximation (this is, 1316 vs 4208 DoF of the mesh b in Fig. 3a).
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Figure 3.11: Time evolution of (a) surface elevation adjacent to the body ([x = rB , y = 0])
and (b) horizontal force (Fx/(ρghr2)). Present results: continuous line and results in [2]:
dashed line.

We have also simulated the wave field radiated by a submerged sphere of radius rB
that moves vertically with an harmonic movement zB = z0 + A cos(ωt) with z0 =

−2rB being the mean depth, A the amplitude and ω the frequency. This problem has
been analysed by Ferrant [3] for a combination of several fundamental wave-numbers
and two different amplitudes using a semi non-linear BEM. This example was also
used by Hannan et al. [47] to validate a full non-linear BEM. For sake of brevity, we
check the present formulation for a wave-number of KrB = ω2rB/g = 2 and two
amplitudes of A/rB = 0.5 and 0.7.

The problem is modelled by placing a sphere in a cylindrical water domain of radius
R = 9rB and depth h = 15rB . It is an axisymmetric problem and only a quarter of
the model is considered. A structured axisymmetric mesh for the free surface would
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42 3 Wave propagation and wave-structure interaction

have degenerate elements at the center, where the quadrilateral converge to triangular
elements. In this case, the smoothness of the basis would be lost and numerical errors
would appear reducing the accuracy. Alternatively, we use an unstructured T-spline
surface with two levels of refinement as shown in Fig. 3.12. This mesh provides an
adequate smoothness, regularity of the elements and accuracy around the center of the
free surface where the sphere is located. The sphere is modelled using a cubic NURBS
surface. It should be noted that the geometry is exact but there are degenerate elements
around the poles. The accurate treatment of this specific case is detailed in [31]. The
number of Bézier elements used for the free surface, sphere and external boundary
are 350, 64 and 40, respectively and there are 640 control points with 1 extraordinary
point.

Figure 3.12: T-spline model of the cylindrical water domain with a submerged sphere.

In this example, the potential of the T-spline is shown. For that purpose, we study
the vertical force on the sphere in the time domain. The time step used is ∆t = T/40,
with T = 2π/ω being the characterisic period. During the first two periods a cosine
ramp function with shape fr = 0.5[1−cos(πt/2T )] has been applied to the movement
of the sphere to avoid an abrupt condition. Also, to minimize the wave reflections, a
damping zone around the external boundary has been introduced.

First, we investigate the effect of the damping layer. Fig. 3.13 shows the wave
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3.4 Numerical Results 43

profiles along the radial direction produced by the amplitude A/rB = 0.7 at the time
t = 7.5T for different parameters, this is, varying the damping length (LD = λ

and 2λ) and the strength (α = ω and ω/2). For all the cases, reflective waves are
not detected on the free surface. Moreover, the wave height decays along the radial
direction due to the energy dispersion and the effect of the damping layer. This decay
is more evident for higher values of α and the waves are absorbed at smaller radial
positions for larger values of LD.
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Figure 3.13: Wave profiles along radial direction for the amplitude A/rB = 0.7 at the time
t = 7.5T considering three different absorbing layer paramenters: α = ω and LD = 2λ
(Continuous line), α = ω and LD = λ (dashed line) and α = ω/2 and LD = 2λ (dotted line).

In Fig. 3.14 the vertical force on the sphere, considering the damping parameters
LD = λ and α = ω, is shown . The results obtained by [47] are also included for
comparison. It can be observed that both numerical results become coincident once the
permanent state is reached, being the different transient behaviour due to the different
ramp functions applied.

3.4.4 Wave-generator

In this section we show the application of the IGA-BEM to the simulation of the
generation of artificial waves in a surf park. The model consists in a shallow water
channel with a foil which is moved parallel to the free surface. The objective is to
illustrate the ability of the method to analyse the wave field in the time domain and the
forces on a complex profile.

The shape of the wave front depends on multiple parameters as the shape and the
velocity of the foil, and the depth of the channel. In fact, the maximum height of
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Figure 3.14: Time evolution of the vertical force (without considering hydrostatic pressure) on
the sphere (Fz/(ρgr3)) for amplitudes (a) A/RB = 0.5 and (b) A/rB = 0.7. Present results:
continuous line and reported in [3]: dashed line.

the wave front (H) can be roughly estimated with the relative thickness of the foil
(hB) asH/h ≈ hB/h. In addition, optimally the celerity and height of artificial waves
generated should be close to those of the real waves (solitary wave). Here, we consider
a rectangular cross-section channel with dimensions [15× 6× 1]h (length, width and
height) with h being the height. Two aerodynamic airfoils have been used, a symmetric
NACA0015 and an asymmetric NACA6415 with a span of 4h and a chord of 3h, in
order to reduce the wave resistance. The foil is located 0.5h under the free surface
and centered with respect to width of the channel. The estimated height of the wave
front is about 0.45h, then we set a maximum velocity (vB) corresponding to a Froude
number equal to Fr = vB/

√
gh = 1.2.

In Fig. 3.15 we show the geometric discretization of the problem. The channel is
modelled with three orthogonal cubic NURBS surfaces with regular elements, this is,
88 × 16 Bézier elements for the free surface, and 88 × 4 and 16 × 4 for the lateral
walls (the other boundaries are considered implicitly in the Green function). Each foil
consists in a smooth T-spline surface with 3144 elements. A local refinement is made
around the trailing edge to capture with accuracy the large gradient of velocity in that
location. There are a total of 5567 control points with 4 extraordinary points. It should
be noted that the grid size for the free surface is finer than the used for the solitary
wave. Moreover, the Courant Number is set to C = 0.4 to obtain adequate accuracy
and stability of the results.

The simulation starts from the rest and the foil is accelerated, with a sinusoidal
ramp function ab/g = sin(2t∗/Fr), until the maximum velocity is reached (at t∗ =
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(a)

(b) (c)

Figure 3.15: (a) Geometrical model of the full wavemaker and (b) and (c) details of the
symmetric and asymmetric foils.

Frπ/2). This velocity is kept constant during the rest of the simulation. The free
surfaces at t∗ = 7.56 for both models are shown in Fig. 3.16. It can be seen that
a wave front at a position slightly behind of the leading edge is formed. Moreover
an overturning wave appears at the back of the symmetric foil. This is not observed
for the asymmetric foil in which the wake is kept less perturbed and free of breaking.
Precisely this last case is preferred in a surf park in order to generate periodically
waves more regular and homogeneous. The transient process of the generation of the
waves can be seen in Fig. 3.17, where three central vertical sections of the free surface
are shown. The elevation of the wave front increases with time reaching a height of
4.41 · 10−1h for the symmetric and 4.25 · 10−1h for the asymmetric foil at t∗ = 7.56,
which are close to the estimated one of H/h = 0.45. At that time the calculated
resistance coefficients are CD = Fx/(0.5ρv

2
BAB) = 4.66 · 10−2 and 5.07 · 10−2 for

the symmetric and asymmetric foil, respectively, with AB being the plan area of foil
(span × chord) and F the force. The lift coefficient is CL = Fz/(0.5ρv

2
BAB) =

3.99 · 10−1 for the symmetric foil and 2.29 · 10−1 for the asymmetric foil. Note that
these coefficients are calculated assuming the validity of the potential theory and the
effects of viscosity, possible cavitation and vortex shedding are not taken into account.
Although this approach, based on the potential theory, has been used extensively in
wave-resistance problems [17, 18, 33, 114–116], these effects should be considered
for a more accurate calculation [117, 118].
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Figure 3.16: Free surface elevation (H/h) calculated at t∗ = 7.56 for (a) the symmetric foil
and (b) asymmetric foil.
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Figure 3.17: Central vertical section (y = 0) of the free surface (a) for the symmetric foil at
t∗ = 2.52 (dotted line), 5.00 (dashed line) and 7.56 (continuous line), and b) for the asymmeric
foil at t∗ = 2.49 (dotted line), 5.01 (dashed line) and 7.56 (continuous line)

3.5 Conclusions

In this chapter a 3D IGA-BEM formulation using T-spline and NURBS basis to study
fully non-linear gravity wave propagation in the time domain has been presented.
The use of splines basis provides a high geometrical approximation and it can be
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3.5 Conclusions 47

directly integrated with computer aided geometrical design tools. The properties of
these basis within the BEM have been analysed using numerical examples. First, an
optimal spatial convergence of the method has been demonstrated in the simulation
of a periodic train of waves. Following, the temporal stability and accuracy have
been analysed simulating the propagation of a solitary gravity wave. The numerical
errors are kept practically constant to a low order over a wide range of time steps
demonstrating the robustness of the time marching scheme. Moreover, the smoothness
of the basis functions provides stability to the method without the need of artificial
smooth techniques, and it allows relatively large distortion of elements. In addition,
the ability of the method to simulate the fluid-structure interaction with fixed or
moving bodies has been shown with simulations of the waves generated in a tank.
An unstructured mesh with some local levels of refinement has been used to show the
potential and the efficiency of the T-spline in the simulation of the waves generated
by a submerged sphere in a tank. Finally, the application of the method to simulate
the wave field generated by submerged foils has been used to show the ability of the
method to analyse complex models.
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Chapter 4

Dynamics of deformable capsules

4.1 Introduction

In the last decades, the hydrodynamic movement of suspended capsules in a flowing
fluid has captured the attention of many research due to their multiple implications
in industrial and biological applications. In the biomedical area, the study of the
dynamic behaviour of deformable vesicles and Red Blood Cells (RBC) helps to a
better understanding of some phenomenon as the thrombosis, the thalassemia or other
microcirculatory diseases [119]. As pharmacologic treatments, artificial capsules are
being used as an effective technique to deliver some substances or drugs through the
biological system and in a sustained way. Nowadays, the micro-capsules are being
applied to a wide range of areas as cosmetics, agriculture or food industry [120]. The
characterization and the study of these deformable capsules can be important aspects
for the suitable design and optimization of different processes connected with the
capsule dynamics. Regarding this issue, experiments are indispensable but because
of the small length scale, they are difficult and costly. Thanks to the rapid increase of
the computational capacity, the numerical models have opened new perspectives and
they offer a powerful tool to analyse the capsule deformation.

The capsules consist on a viscous internal fluid enclosed and protected by a flexible
membrane. The interaction between the capsules and the external flowing fluid is a
complex process. Analytical solutions have been proposed for deformable capsules
in a simple shear flow [121, 122], nevertheless the application is limited to small
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50 4 Dynamics of deformable capsules

deformations. The capsule usually experiences large deformations changing the shape
and modifying the whole behaviour of the flowing fluid. In these cases the only
option is the use of numerical models. Different models have been successfully
used to solve the fluid-structure interaction. Many of these models are based on
CFD solvers [123, 124], FEM [125, 126], FDM [127], Immersed Boundary Methods
(IBM) [128–131] and LBM [132–134]. These approaches have the advantage that are
applicable to a wide range of problems (for different geometries, Reynolds numbers
and fluid properties), the formulation is well mature and even there are some available
in commercial software. However the whole fluid domain has to be discretized and it
involves a large number of elements, a difficult management of the mesh and a high
computational cost. In many microfluidics applications the Reynolds number is very
low and the inertial effects are negligible. Assuming Newtonian or nearly-Newtonian
fluid, the flow is governed by the Stokes equation. In such cases, the BEM is as
a favourable alternative for different reasons as it has been introduced in previous
chapter.

Several models for deformable capsules using the BEM have been reported
in the literature. Pozrikidis [35] studied the transient large deformation of a
three-dimensional spherical isoviscous capsule in a shear using a global geometric
representation of the membrane based on quadrilateral elements. Ramanujan and
Pozrikidis [36] extended the formulation for an unstructured mesh built with quadratic
triangular elements and investigated the large deformation of various capsule shapes
considering the effect of different fluid viscosities. Leyrat-Maurin and Barthès-Biesel
[135] and Quéguiner and Barthès-Biesel [136] developed an axisymmetric BEM for
the analysis of deformable capsules through pores, tubes and constrictions. Diaz et al.
[137], Diaz and Barthè-Biesel [138] and Lefebvre and Barthès-Biesel [6] improved the
previous formulation using cubic B-splines functions and they analysed the influence
of various parameter in the deformation of the capsules (such as membrane properties
and shapes, and fluid viscosity, or membrane pre-stress). Lac et al. [4] and Lac and
Barthès-Biesel [139] presented a three dimensional formulation based on a bicubic
B-spline basis functions for deformable capsules in a planar shear and an hiperbolic
flow. This method offers a high order of approximation and continuity of the physical
variables providing accurate results. Deformable capsules in moderate and high shear
flow were also tackled by Dodson and Dimitrakopoulos [140, 141] who developed
a spectral BEM. More recently, via accelerated BEM Zhu et al. [142] studied the
motion of a capsule in a wall-bounded oscillating shear flow and Touchard et al. [143]
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4.1 Introduction 51

studied the deformation of a capsule flowing through a micro-channel with a localized
constrain.

Following the pioneer works of Zarda et al. [144] and Skalat et al. [145, 146], the
majority studios consider the membrane to be a thin hyper-elastic shell with neglected
bending resistance. This model is applicable to a wide range of artificial capsules
and biological cells and it is in agreement with experimental findings that reveal the
relatively low bending resistance of the membrane [147–149]. It is worth to mention
that other more detailed models have been developed and take into account the bending
resistance, the surface incompressibility, membrane viscosity and rheology (see for
example [150–154]), although they are computationally intensive. A complete review
of the mechanical properties of deformable capsules can be found in [155].

The accuracy of the BEM depends on the computation of the hydrodynamic
load over the membrane. Using the local equilibrium equation, a high order
differentiation of the geometry is required. In the traditional BEM the basis
are C0 piecewise continuous, thus the spatial derivatives between elements are
discontinuous. Pozrikisdis [35] and Ramanujan and Pozrikidis [36] found some
instabilities associated with the lack of continuity on the bases. They applied a
smoothing scheme to relocate the nodes and an ad-hoc average technique of the
membrane stress to alleviate these numerical instabilities. A smooth technique was
also employed by Dodson and Dimitrakopoulos [141] to force the continuity of the
first derivatives between spectral elements. Lac et al. [4] reported some instabilities
near the poles despite of the high order continuity of the B-spline functions. Regarding
this issue, Walter et al. [5] formulated a coupled BEM-FEM model for deformable
capsules. The loads are computed via variational principle and this reduces the
continuity requirements of the basis functions and it produce more stables results.
This formulation has been recently used to study the dynamics of deformable capsules
[156–160].

In this chapter a formulation of the IGA based on the analysis suitable T-spline
is presented for the study the dynamics of deformable capsules in suspended flows.
The BEM is used to solve the fluid dynamics that is coupled with FEM to compute
the membrane load. The membrane is considered to be a thin elastic shell, thus the
discretization of the interface is shared for both methods. The smoothness of the bases
makes the method to be stable for large deformations of the capsule. In addition,
invoking the local refinability of the T-spline, the mesh can be suitable managed during

UNIVERSITAT ROVIRA I VIRGILI 
TOWARDS THE APPLICATION OF THE ISOGEOMETRIC BOUNDARY ELEMENT ANALYSIS TO FLUID MECHANICS: 
NON-LINEAR GRAVITY WAVES AND DYNAMICS OF DEFORMABLE CAPSULES IN SHEAR FLOWS 
Jorge Maestre Heredia 
 



52 4 Dynamics of deformable capsules

the simulation to dynamically adapt it to the specific need of the problem. These
properties give the analysis suitable T-spline-based IGA the potential to be an efficient,
accurate and robust tool for the analysis of deformable capsules as well as it is versatile
due to the tight link with the CAD technologies.

4.2 Formulation of the problem

4.2.1 Hydrodynamic

We consider a capsule defined by the boundary ΓC and confined in a tube ΓT =

ΓI ∪ΓW ∪ΓO. The tube is filled with an external fluid Ω1. The capsule is formed by a
thin deformable membrane that contains an internal fluid Ω2. The capsule moves freely
by the action of the external flow in the tube, while the internal fluid is moved due to
the deformation of the membrane. Both fluids are assumed to be incompressible and
Newtonian, with the same density ρ and different viscosities, µ1 = µ and µ2 = κµ,
being κ the viscosity ratio. A sketch of the problem is shown in Fig. 4.1.

Figure 4.1: Sketch of the problem

In microcirculation problems the Reynolds number is considerably small, Re <<
1, and the viscous effects are assumed to be dominant compared with the inertial
effects. In these cases, the internal and external fluids can be described by the Stokes
flow, ∇ · vi = 0

∇ · σi = −∇pi + µi∇2vi = 0
in Ωi and i = 1, 2 (4.1)

where σi is the fluid stress tensor given in terms of the velocity vi and pressure pi in
the fluid domain Ωi.

In this work we consider non slip conditions. This ensures the continuity of the
velocity across the membrane. Whereas the stress on both sides of the membrane is
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4.2 Formulation of the problem 53

allowed to be discontinuous. The difference on the membrane, known as stress jump
∆f = (σ1 − σ2)n, with n being the unit normal vector pointing outwards of the
capsule, depends on the mechanical properties of membrane as it is discussed in the
next section.

4.2.2 Mechanical properties of the membrane

The dynamical and mechanical behaviours of capsules are governed by the
micro-mechanical properties of the membrane and the properties of the external and
internal fluids. The biological membranes are complex systems that can experiment
large deformations changing the shape and the mechanical characteristics of the
capsule. Various models at different scales and levels of detail have been proposed
depending on the type of biological capsule and the application [153, 161–168]. In this
study we employ a general continuous elastic model. As proposed by several authors,
we consider that the membrane is extremely thin and the strain and stress are constant
across the membrane. Therefore, the membrane is assumed to be a bi-dimensional
elastic sheet and the bending resistance is neglected.

Figure 4.2: Curvilinear system

Let us describe the membrane by a curvilinear system defined by two parametric
coordinates ξ = (ξ1, ξ2) (see Fig. 4.2). Thus, the reference position (t = 0) of
any point of the membrane is given by X(ξ). Assuming that the membrane moves,
any material point at the current state is represented by x(ξ, t). The uppercase and
lowercase letters correspond to the reference and the current state, respectively.

The local covariant bases are constructed as follows:

g1 = x,1, g1 = x,2, g3 = n =
g1 × g2

|g1 × g2|
(4.2)

where the sub-index ·,α = ∂·
∂ξα denotes the partial derivative with respect to the

parametric coordinates.
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54 4 Dynamics of deformable capsules

The local contravariant bases (g1, g2, g3) are defined such that gα · gβ = δαβ , where
δαβ is the mixed Kronecker delta, and g3 = n. The metric tensors associated to each
basis are gij = gi · gj and gij = gi · gj . Unless otherwise specified, the Greek indices
α and β go from 1 to 2, and Latin indices i and j go from 1 to 3. On the other hand, the
local covariant, contravariant and metric tensor at the reference state are analogously
defined and represented by uppercase letters.

The local equilibrium equation of the membrane at the current state is given by

∇s · τ + t = 0 (4.3)

In Eq. 4.3 we assume that the inertia of the membrane is negligible, which is
reasonable in the case of thin membranes. The first term, τ , is the in-plane Cauchy
stress tensor that corresponds to the force per unit arc length of the membrane, ∇s is
the surface divergence and the second term ,t = ∆f, is the traction on the membrane
that is equal to the jump stress.

In this work, we consider that the membrane is a hyper-elastic isotropic material.
This material is a subclass of the elastic material in which the constitutive equation can
be described in terms of a scalar strain energy function Ψ(F ):

τ =
∂Ψ(F )

∂F

F T

Js
(4.4)

In Eq. 4.4 the tensor F = dx/dX = gi⊗Gi is the deformation gradient and Js = |F |
is the surface dilatation. In the case of isotropic bi-dimensional models the tensor
gradient and the energy function only depend on two strain invariants:

I1 = Gαβgαβ, I2 = |Gαβ||gαβ| − 1 = J2
s − 1 (4.5)

and the Cauchy tensor in the contravariant form can be written as,

ταβ = 2J−1
s

∂Ψ(I1, I2)

∂I1
Gαβ + 2Js

∂Ψ(I1, I2)

∂I2
gαβ (4.6)

In the literature, several constitutive laws have been proposed to take into account
the mechanical properties of biological membranes [169]. In this work, two common
models are adopted: the Neo-Hookean model and the model for red blood cells (RBC)
proposed by Skalat et al. [145]. The bi-dimensional Neo-Hookean model is usually
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4.3 Formulation of the method 55

used to describe behaviour of proteinreticulated membranes. The energy function is
given by:

ΨNH =
GNHs

2

(
I1 +

1

I2 + 1
− 1

)
(4.7)

whereGNHs is the shear modulus. The area dilatation coefficient is defined asKNH
s =

3GNHs .

Although, the model reported by Skalat et al. was originally developed for RBCs,
it also is appropriated and extensible for other biological cells. The energy function is
defined as:

ΨSk =
GSks

4

(
I2

1 + 2I1 − 2I2 + CI2
2

)
(4.8)

In Eq. 4.8 GSks is the shear modulus and C > −1/2 is a parameter that indicates
the ratio between the area dilatation and the shear modulus such that KSk

s =

GSks (1+2C). In contrast to the softening Neo-Hookean model, the Skalat law shows a
strain-hardening behaviour and for C >> 1 the model is almost area-incompressible,
as observed in RBCs.

4.3 Formulation of the method

4.3.1 Isogeometric Boundary Element Method

The application of the boundary integral formulation to Stokes flows is mature and well
known [170]. In this section we expose this formulation focusing on those aspects
related to the isogeometric paradigm and our algorithm. In this context, the field
velocity and the fluid stress are discretizated in a finite space Vh defined by the same
set of basis functions as the geometry. Thus, using the global notation, both vectorial
field can be expressed as,

v(x) =

mcp∑
A=1

RA(x)vA

f(x) =

mcp∑
A=1

RA(x)fA

(4.9)

where {vA}
mcp
A=1 and {fA}

mcp
A=1 are the velocity and fluid stress control vector

corresponding to the global basis {R}mcpA=1.
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56 4 Dynamics of deformable capsules

Given a continuous surface Γ, the single-layer and double-layer potential operators
applied to the collocation point x0 are defined as,

(GΓf)(x0) =
1

8πµ

∫
Γ
Gij(x, x0)fj(x)dΓ and (HΓv)(x0) =

1

8π
−
∫

Γ
Tij(x, x0)vj(x)dΓ

(4.10)

respectively. In discrete form these operators can be written as,

(GΓf)h(x0) =
1

8πµ

mcp∑
A=1

∫
Γ
G(x, x0)R(x)AfAdΓ

(HΓv)h(x0) =
1

8π

mcp∑
A=1

−
∫

Γ
T(x, x0)RA(x)vAdΓ

(4.11)

Although both integrals are well defined, we indicate with the symbol −
∫

that the
double-layer integral is evaluated in the Cauchy Principal Value sense (CPV) when the
collocation point lies on the integration domain Γ. The tensors G(x, x0) and T(x, x0)

are the free-space Green’s functions of the Stokes flow. For a three dimensional space
these tensors are given by:

Gij(x, x0) =
rirj
|r|3

+
δij
|r|

Tij(x, x0) = −6
rirjrknk
|r|5

i, j and k = 1, 2, 3 (4.12)

where δij is the Kronecker’s delta and r = x− x0.

As usual, we consider the Stokes problem as a superposition of two flows, this is,
the total fluid velocity and fluid traction vectors can be expressed as v = v∞ + vD

and f = f∞ + fD, respectively. The unperturbed flow, denoted with the super-index
·∞, corresponds to known pipe flow without the capsule (see Fig. 4.1). Whereas the
disturbed flow (super-index ·D ) is caused only by the presence of the capsule. The
boundary integral equation (BIE) applied to the capsule can be expressed as,

[I− (1− κ)C(x0)] v(x0) = (1− κ)(HΓCv)(x0)− (GΓC∆f)(x0) (4.13)

− (GΓT fD)(x0) + v∞(x0) x0 ∈ ΓC
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4.3 Formulation of the method 57

and in the tube,

0 = (1− κ)(HΓCv)(x0)− (GΓC∆f)(x0)− (GΓT fD)(x0) x0 ∈ ΓT (4.14)

where I ∈ <3×3 is the identity matrix and the term C(x0) ∈ <3×3 is the solid
angle, that can be computed directly using the formulation proposed by Mantic [93]
or indirectly appealing to the ”rigid body motion” method [94]. We employ this last
technique since it provides a regularization of the second-layer integral avoiding the
computation of the integral in the CPV sense. Thus, the second-layer potential term
on the capsule is modified as,

(ĤΓCv)(x0) = C(x0)v(x0) + (HΓCv)(x0) =
1

8π

∫
ΓC

T(x, x0)(v(x)− v(x0))dΓ

(4.15)
which in discrete form can be written as,

(ĤΓCv)h(x0) =
1

8π

mcp∑
A=1

∫
Γ
T(x, x0) (RA(x)−RA(x0)) vAdΓ x0 ∈ ΓC (4.16)

In Eqs. (4.13) and (4.14) we assume the inlet ΓI and outlet ΓO boundaries (see
Fig. 4.1) are sufficiently far from the capsule such that the perturbed velocity flow is
practically negligible. The disturbed fluid stress on the inlet and outlet can be retained
as unknown variables in the BIE or explicitly computed by an auxiliary equation as
proposed by Pozrikidis[164]. This last alternative reduces the number of degrees of
freedom (DoF) of the BIE and it is used in this work. Approximating the disturbed
fluid stress at the inlet as fDΓI ' −∆PDn and setting fDΓO = 0 at the outlet, the
disturbed pressure drop ∆PD can be calculated as:

∆PD =
1

Q∞

∫
ΓC

∆f(x) · v∞(x) + (1− κ)f∞(x) · v(x)dΓ (4.17)

in which Q∞ ' Q is the total instantaneous flow rate.

We use generalized Greville abcisae as the collocation points of the BIE [24]. This
strategy manages robustly extraordinary points and hanging-nodes and it has been
shown that provides suitable results in the context of isogeometric analysis. Thus,
the BIE (Eq. 4.13 and Eq. 4.14) must be satisfied in a set of mcp specific points
{xα}

mcp
α=1. The particularization of the discrete BIE to those points generates a system
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58 4 Dynamics of deformable capsules

of equations that can be written in matrix form as,[
(1− κ)ĤCC − RT (xC) 0

(1− κ)HWC 0

][
vC
0

]
=

[
GCC GCW

GWC GWW

][
∆f
fDW

]

−∆pD

[
GnC
GnW

]
−

[
v∞(xC)

v∞(xW )

] (4.18)

In Eq. 4.18 H and G denote the single-layer and double-layer global matrices where
the first sub-index makes reference to the localization of the collocation points (on the
capsule or on the tube wall) and the second one is referred to the integration domain.
Gn is a global vector that corresponds to the single-layer operator applied on the inlet
cap assuming the approximation of constant fluid stress vector in the normal direction.
R is the global rational basis functions in matrix form evaluated at the collocation
points xC . v∞ is the unperturbed velocity vector evaluated at the collocation points.
Note that the jump stress vector on the capsule ∆f is known at any time by applying
the membrane equilibrium equation (Eq. 4.3). The computation of the membrane
stress will be explained in more detail in the next section. Whereas, the velocity vector
of the capsule vC , the disturbed fluid stress vector of the tube wall fDW and disturbed
pressure drop ∆pD are unknown variables. The problem is completely defined adding
the pressure drop equation (Eq. 4.17).

Following the standard FE formulation, the global matrix and vectors can be
constructed by parts performing an integration over each Bézier element and then
assembling in the global system [57]. The single-layer and regularized double-layer
potential operator are weakly singular. As proposed by Lachat and Watson [95], this
singularity is addressed by making a local change of variable in the element that
contains the collocation point. The numerical evaluation of the integrals is performed
by a Gauss-Legendre quadrature with eight quadrature-points on each element in the
parent domain.

4.3.2 Isogeometric Finite Element Method

Known the unstressed state of the membrane and for a given current configuration at
any time, the internal stress and tractions on the membrane can be computed making
use of the local equilibrium equation (Eq. 4.3) in the strong form. Regarding the BIE,
the stress jump on the membrane can be directly introduced evaluating the tractions at
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4.3 Formulation of the method 59

a series of specific points as the quadrature-points are. This method requires to rely
on the differentiability of the stress in the membrane as well as on the differentiability
of the geometry since it is necessary to compute the divergence of the stress tensor
and the curvilinear system is used. Even using cubic T-splines that offer a high order
of approximation and smoothness, there are local regions of the membrane (as those
around poles or extraordinary points) where the continuity is reduced. In the proximity
of such regions, the evaluation of high order derivatives can introduce errors leading
to numerical problems. In the literature, numerical instabilities associated to that
issue have been reported when B-spline discretizations have been employed [4], that
establishes the need to develop some additional techniques to alleviate such problems.
As proposed by Walter et al. [5], in this work we use a weak formulation of the
membrane mechanics. This technique relaxes the continuity requirement of the basis
functions allowing the first derivatives to be discontinuous between elements C0. It
gives accurate and stable results without the need to implement smoothing techniques.
Following we expose this formulation in the context of isoperimetrical analysis.

In virtue of the principle of virtual works (PVW) in the spatial description, the
balance equation on the membrane can expressed in a variational form as,∫

ΓC

δu(x) · t(x)dΓ︸ ︷︷ ︸
δW ext

=

∫
ΓC

δe(x) : τ (x)dΓ︸ ︷︷ ︸
δW int

(4.19)

The left and right side terms of Eq. 4.19 represent the work by the external force
and internal stress, respectively. δu(x) is the virtual displacement vector and δe(x)

is the virtual Euler-Almansi strain tensor. The displacement vector is defined as
the difference between the current and reference state u(x) = x(t) − X and the
virtual displacement is assumed to be an arbitrary and infinitesimal variation of the
displacements. The virtual Euler-Almansi strain tensor compatible with the virtual
displacements is given by,

δe(x) =
1

2

(
∇sδu(x) +∇Ts δu(x)

)
(4.20)

Using a curvilinear coordinate system it can be rewritten in covariant form as,

δeαβ(x) =
1

2

(
δuα,β(x) + δuβ,α(x)− 2Γiαβ(x)δui(x)

)
(4.21)

where Γiαβ = gi·gα,β is the Cristoffel symbol and bαβ = Γ3
αβ is known as the curvature
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60 4 Dynamics of deformable capsules

tensor.

Under the isoparametric concept, the virtual displacement and traction on the
membrane are discretized in a finite space defined by the T-spline basis functions Vh.
These are written as,

δu(x) =

mC∑
A=1

R(x)AδuA

t(x) =

mC∑
A=1

R(x)AtA

(4.22)

where mC is the number of global basis function in the capsule and {δuA}mCA=1 and
{tA}mCA=1 are the virtual displacement and traction control vector corresponding to the
global basis {R}mCA=1.

Introducing Eq. 4.22 in the PVW (Eq. 4.19), we obtain the equation in the discrete
form. After some operations the left and right hand side terms of Eq. 4.19 can be
expressed as,

δW ext =

mC∑
A=1

mC∑
B=1

[
δuTAtB

∫
Γ
RA(x)RB(x)

]
dΓ (4.23)

δW int =

mC∑
A=1

[
δuTA

∫
Γ
ταβ(x)

(
1

2
RA,β(x)gα +

1

2
RA,α(x)gβ

+RA(x)gα,β − ΓiαβRA(x)
)
dΓ
] (4.24)

Note that for a given current state the Cauchy tensor τ (x) can be evaluated directly
using the constitutive equation (Eq. 4.6). In matrix form the PVW can be written as,

Mt = d (4.25)

where M ∈ <3mC×3mC is the global matrix of the system, t ∈ <3mC is the global
traction vector on the membrane and d ∈ <3mC is the known right hand side term of
Eq. 4.24. As in the preceding boundary integral formulation, the global system can
be constructed by parts using an integration over each Bézier element. The numerical
evaluation of the integrals are computed by a Gauss-Legendre quadrature with eight
quadrature points.
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4.3 Formulation of the method 61

4.3.3 Dynamic refinement

In dynamic problems with large deformation, the accuracy of results is very sensitive to
numerical errors in each time step, thus the discretization plays a very important role.
As the capsule is moved and deformed as the time evolves, the geometry and the other
physical variables change. In some cases the discretization can not be appropriated in
regions with relatively high gradients of the variables at a certain time. To address this
issue, we exploit the T-spline properties and apply a dynamic analysis-suitable local
h-refinement (element-subdivision) to the capsule. It should be note that, alike the
traditional FE Analysis, the T-spline refinement process does not necessarily change
the physical space, this is, the original physical space is nested in the new physical
space. This feature is very atractive and it represents an accurate tool. The details of
the Tspline h-refinement can be found in [21, 56].

The aim of the dynamic refinement is to construct a reasonable discretization of the
capsule during the all simulation. For this, the quality of the T-spline mesh is evaluated
as a function of the discretized variables and it is modified if required. Thus, a set of
parameters is defined to measure the suitability of the T-spline mesh. In this work, we
select the size and the variation of the tractions, the velocity and the mean curvature
(χ = 1/2∇ · n) along the two centred parametric directions of the T-spline element.
These are given by, 

Lα =

∫
lα

dl

T̂α =
1

Lα

∣∣∣∣∫
lα

dt
∣∣∣∣ =
|∆t|lα |
Lα

V̂α =
1

Lα

∣∣∣∣∫
lα

dv
∣∣∣∣ =
|∆v|lα |
Lα

χ̂α =
1

Lα

∣∣∣∣∫
lα

dχ

∣∣∣∣ =
|∆χ|lα |
Lα

(4.26)

respectively, where lα is the centred arclength of the element. Then, the elements are
susceptible to be divided if the parameters exceed the following set of limits:

Lα > min

{
Lref , Lref

(
T̂ref

T̂α

)pref
, Lref

(
V̂ref

V̂α

)pref
, Lref

(
χ̂ref
χ̂α

)pref}
or

Dref >
Lα
Lβ

(4.27)
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62 4 Dynamics of deformable capsules

in which the sub-index ·ref denotes the reference limits, Dref is the aspect ratio and
pref is the reference order.

As it can be observed, the algorithm is based on the management of the aspect
ratio and the two central arclengths of the element. The discrepancy between the
variation of the physical variables with respect to the reference values acts as a
penalty factor reducing the maximum size of the element in areas with high gradients.
Moreover, the element can be divided independently in each direction producing two
or four subelements. To avoid an excessive refinement, a minimal length (Lmin) is set
additionally. Once the elements are selected, they are divided by edge insertion under
the analysis-suitable T-spline context and the nestedness requirements [56].

For deformable capsules, two geometrical maps need to be constructed: one
corresponds to the reference configuration (or unstressed state), and other to the
current configuration. The evaluation of the mesh quality is developed in the current
configuration and the refinement process is carried out identically on both T-spline
maps. In this way, both meshes preserve the same topology and parametrization that
is convenient for the evaluation of the membrane stress. This strategy is general, and
not all quality parameters have to be used. The selection of the appropriated parameter
depends on the needs of the specific problem considered. A illustrative example of a
local refinement process applied to a static mesh is shown in Fig 4.3. In Section 4.4
we will show the ability of this strategy for complex models with dynamic meshes.

4.3.4 Numerical procedure

To update the position of the capsule alongthe time and the value of the rest of physical
variables (as the stress and strain of the membrane, velocity, pressure drop, etc.) a time
integration scheme is needed. In the literature various schemes have been proposed to
simulate deformable capsules in Stokes flows, and most of them are explicit methods
[4, 5, 141, 167, 171–173]. These algorithms are conditionally stable. Note that
the problem considered is strongly non-linear because the membrane can have large
displacements and deformations and the constitutive law is non-linear. This fact linked
to the high distortions that the mesh usually experience, can induce the instability of
the explicit methods for a fixed time step. Our experience is that this instability is
especially important when degenerated elements are present in the mesh as well as
when the capsule is very stiff or the membrane undergoes a buckling process. In these
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4.3 Formulation of the method 63

Step 1: Lref = 1.5 Step 2: Dref = 1.9

(a) The initial mesh has 9 physical elements with different sizes. A maximum size is set in the first
step, resulting a finer mesh but with a variable aspect ratio of the elements. A maximum aspect ratio
is fixed in the second step providing a more regular element size (50 physical elements at the end of
the refinement process).

Step 1
Lref = 1.5

Dref = 1.9
Step 2: ref = 0.75

(b) The initial mesh contains 48 physical elements. In the first step a maximum size and maximum
aspect ratio are selected, which lead to a finer mesh of regular elements. Then, a reference value of
variation of mean curvature is set. This criterion produces a local refinement on the central region
(720 physical elements at the end of the refinement process).

Figure 4.3: Local refinement applied on a static mesh for the case of (a) a ractangular plane
with dimension 10 × 5 and (b) for the case of a spheroid with major and minor semi-axes
4 and 1, respectively. The refinement process is divided in two subsequently steps and only
geometric aspects are considered.

situations a very small time step has to be set. This issue has motived us to use an
implicit second-order scheme with a adaptive time step.

The Crack-Nicolson scheme is:

xk+1(tn+1) = x(tn) +
∆tn

2

(
v(tn) + vk(tn+1)

)
k = 1, 2, ... (4.28)

in which the tn denotes the actual time and k is the sub-iteration number. To update
the position of the membrane to the next time step tn+1 an iterative process is carried
out until the normalized L2-error of the control points satisfies a tolerance error
‖xk+1(tn+1)− xk(tn+1)‖L2/(RC

√
mC) ≤ ε, with RC being the characteristic radius

of the capsule (i.e the radius of the equivalent sphere with the same volume). The time
step is modified in each iteration ∆tn , if it is necessary, until the integration scheme
suitably converges to the imposed tolerance. This is, if the number of sub-iterations
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64 4 Dynamics of deformable capsules

k exceeds a maximum number (Imax) without reaching the tolerance, the time step
is reduced by a factor. Whereas if the number sub-iterations needed is smaller than
a defined number (Imin), the time step is increased by the same proportion. This
strategy allows us to keep a suitable equilibrium between accuracy and computational
cost as well as it improves the stability of the method. In fact, the time step is naturally
adapted to the requirements of a dynamic adaptive mesh.

For second-order integration schemes, the convergence is expected when [5],

Q∆tn
πR3

T

< O(
hCa

RT
) (4.29)

where RT is the radius of the tube, h is the representative minimum element size of
the capsule (defined as the square root of the element surface) and Ca is the capillarity
number. Eq. 4.29 gives the order of magnitude of the time step needed and it can
be used to select the value of the initial time step. In our simulations we set the
tolerance error to ε = 10−7 and the maximum and minimum numbers of sub-iterations
to Imax = 8 and Imin = 4, respectively, otherwise the time step is modified by a
25%. This election is made in base of experimental criteria and provides accuracy and
suitable results as it will show in the numerical examples (Section 4.4).

The capillarity number and the ratio between radius of the capsule and the radius of
the tube (δ = RC/RT ) are important parameters because they determine the motion
and deformation of the capsule. The capillarity number relates the fluid stress on the
membrane with the elastic stress. In the case of a capsule in a pulsatile flow it is defined
as:

Ca =
µQ

πR2
TGs

(4.30)

with Q being the temporal average ratio flow in a pulse.

It is convenient to remember that the T-spline basis functions are not interpolatory
and the control values have not a physical meaning. In fact, the control points do
not lie on the surface. Consequently, not any transformation of the surface can be
directly applied to the control points (only linear transformations and translations: x→
Ax + b). However, when an isogeometrical analysis is used, the basis functions are
common for all physical variables and the updated process (Eq. 4.28) can be applied
directly to the control points.
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4.3 Formulation of the method 65

Although the BIE satisfies implicitly the null divergence of the velocity field
through the fundamental solution, the volume of the capsule can experiece slightly
changes. Three factors are mainly responsible for this: one comes from the
discretization of the surface and velocity field; the second is related to the numerical
integration of the kernels which introduces errors; and the time integration scheme is
not conservative. These errors are usually relatively small but they are stored along
the whole simulation. As proposed by [173] and to reduce this volumetric change, we
slightly transform the fluid system to a minimization problem and constrain it to satisfy
the net normal flux across the membrane to be null in each iteration. The constrained
equation is written as, ∫

ΓC

v(x) · n(x)dΓ = 0 (4.31)

Assuming negligible inertial effects, we can observe that the fluid solver and the
mechanical solver are uncoupled. In our numerical procedure we know the unstressed
state and the shape of the membrane, and the current configuration at any time step.
Thus, by applying the PVW equation (Eq. 4.19) we can compute the traction on the
capsule. Then, introducing the jump stress into the fluid solver system (Eqs. 4.18,
4.17 and 4.31) we can obtain the velocity of the capsule. As pointed out by Pozrikidis
[164], the fluid solver is considerably simplified when the internal and external fluids
are isoviscous, such that the BIE on the capsule and on the tube are uncoupled and
only it is necessary to compute the single layer operator. Once the velocity in the
interface is computed, the shape is updated using the integration scheme (Eq. 4.28). To
avoid constructing an unnecessarily large tube, we relocate the capsule in the middle
of the tube at each iteration. After updating the capsule, we compute the variation of
centroid of the capsule along the longitudinal direction ∆xvc1 = xvc1 (tn+1) − xvc1 (tn)

and subtract this value from the actual position (here we have supposed the tube is
extended in the x1-direction ). This procedure is repeated until the final time is reached
(see Fig. 4.4).

For completeness, the position of the centroid of the capsule at any time in
boundary integral form is computed as,

xvc =
1

2v

∫
ΓC

x2
ini(x)λidΓ (4.32)

where λi is the unit Cartesian vector in the i-direction and v is the actual volume of
the capsule (note that we will use the upper-case to refer to the volume in the reference
or unstressed configuration).

UNIVERSITAT ROVIRA I VIRGILI 
TOWARDS THE APPLICATION OF THE ISOGEOMETRIC BOUNDARY ELEMENT ANALYSIS TO FLUID MECHANICS: 
NON-LINEAR GRAVITY WAVES AND DYNAMICS OF DEFORMABLE CAPSULES IN SHEAR FLOWS 
Jorge Maestre Heredia 
 



66 4 Dynamics of deformable capsules

Figure 4.4: Schematic illustration of the numerical procedure

Additionally we also compute the average volumetric velocity (vvc) to follow the
motion of whole capsule. This parameter can be expressed as,

vvc =
1

v

∫
ΓC

v(x)x3n3(x)dΓ (4.33)

It is defined the pressure drop coefficient in the tube as the ratio between the perturbed
pressure drop due to the presence of the capsule and the unperturbed pressure drop in
the tube,

P = ∆pd/∆p∞ (4.34)

This coefficient is related with the theoretical apparent viscosity by the expression,

µapp = µ(1 + P) (4.35)

and with apparent intrinsic viscosity by the equation,

kT = P/HT (4.36)

whereHT is the volume fraction tube hematocrit defined as the ratio of capsule volume
to tube volume.

4.4 Numerical Examples

4.4.1 Uniform flow past a spheroid

In this section we validate the formulation of the IGA-BEM presented in the thesis
and we check the spatial convergence of the method. The first example consists on a
constant flow passing a fixed spheroid. We chose this problem because it has known
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analytical solution (see [174] ), the geometry is similar to a deformed capsule and it
allows us to reveal some geometrical aspects that can impact in the accuracy of the
method. Moreover, in contrast with the sphere, it represents a more general case since
the curvature is variable. The particular BIE for the present problem is reduced to,

v(x0) = (ĤΓv)(x0)− (GΓ∆f)(x0) + v∞(x0) (4.37)

Although, physically it can be indistinctly considered that either the fluid is moved
respect to the fixed spheroid (v = 0, v∞ 6= 0) or the sphere is moved respect to the
fluid (v 6= 0, v∞ = 0), the change of the observer leads to a numerically different
formulation. In order to check the suitable formulation of single and double layer
kernels we assume the last option.

In this example, we define the spheroid through its volume V = 4/3πa2b = 1 and
the relation between the semi-major axes and the semi-minor axes b/a = 1.5 (see Fig.
4.5), such that the semi-mayor axes is oriented vertically (x3-direction). The incidental
angle of the flow is set to θ = π/4 with respect to the horizontal plane (x1x2-plane),
thus the velocity of the body is given by v = −(cosθλ1 + sinθλ3).

We study two different topological representations of the spheroid (Fig. 4.5).
One type corresponds to a structured mesh (Fig. 4.5a). The geometry is made
from a regular sphere with unity radius that is appropriately transformed by two
scale operations and where the poles are placed on the semi-major axis. The second
representation (Fig. 4.5b) uses an unstructured mesh. The model is constructed by
the projection from a regular cube to a spheroid. In both cases we set the weight to
be unity and we chose continuous and smooth basis functions (expect in the poles
that are C0), because in dynamic problems the smoothness plays an important role in
the stability of the results. Note that these models do not represent a geometrically
perfect spheroid. A perfect spheroid could be constructed selecting the appropriate
basis functions, but these would be piece-wise smooth. Moreover, in order to check
the numerical convergence of the method, four different discretizatons of each model
are selected. Particularly, for the structured mesh we set a number of 42, 146, 546

and 2114 control points and 56, 218, 866 and 3458 control points for the unstructured
mesh. The coarsest mesh is shown in Fig. 4.5. For each level of refinement each
Bézier element is divided into four elements.

An important aspect to take into account in the accuracy and convergence of the
method comes from the accurate discretizacion of the normal field. The traction field
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x

y
z

(a) (b)

Figure 4.5: a) Structured mesh and b) unstructured mesh of a spheroid. In (a) the red spherical
control points denote the poles and in (b) the red triangular points are extraordinary points.

depends on the normal field as it is defined as f = τn. In the context of isogeometric
analysis, the analytical normal field can not be included into the finite space defined
by the T-spline basis functions, and a geometric error is introduced in the numerical
method. Consequently, the error of the discretized traction vector in this finite space,
without considering other numerical aspects, is expected to be governed by the error
of the discretized normal vector. Regarding this, in Fig. 4.6 we show the L2-error
between the analytical normal field and the discretized normal field for the structured
and unstructured mesh as a function of the number of control points. The errors
converge almost linearly when a logarithm scale is used. The average convergence
ratio, defined as the logarithm slope, is 2.03 for the structured mesh and 1.62 for the
unstructured mesh.

Note that the structured mesh implies the presence of degenerated elements.
This fact can bring also negative consequences in the accuracy of the results, as
it will be shown, if the singular elements are not suitablement addressed. Taus et
al. [58] proposed to carry out a reparametrization of such elements based on the
singular-value descomposition theorem accompanied of a global increasing of the
number of quadrature points to improve the numerical integration of the kernels. On
the other hand, Heltai et al. [19] implemented a non-singular BIE providing optimum
results. The approach is based on the desingularization of the single and double layer
operator forming a system of equation well conditioned. This technique requires to
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Figure 4.6: L2-Error of the discretized normal field for the structured mesh (continuous line)
and the unstructured mesh (dashed line).

rely on the differentiability of the geometry and it assumes that the normal is unique
at the collocation points. This can not be guaranteed for all cases because when
the Greville abcisae is used, the collocation points are placed at the poles where the
continuity of the surface is locally C0. A priori, for a fixed spheroid the normal is
unique at these points though it can not be directly computed. However, in deformable
capsules the normal can become not unique and the method is not applicable.

Fig.4.7 shows the results obtained with the standard BIE for the structured and
the unstructured mesh, and those obtained by the desingularization of the kernels and
by the Bézier transformation to non degenerated elements (explained in the Section
2.3) for the structured mesh. Regarding this last technique, the original degenerated
elements have been subdivided in eight Bézier elements in the azimuthal direction
to provide an accurate approximation of the original Bézier elements (in Table 4.1
we summarise the results for various subdivision levels). Fig. 4.7(a) depicts the
L2-error of the normal pressure on the spheroid. The error obtained with the standard
formulation for the structured mesh practically is kept constant for all discretizations.
This is attributed to the L2-error is dominated by the error produced in the singular
elements. However, for the rest of cases the error rapidly converges with a similar
way, being the results obtained with the desingularizated technique and with Bézier
transformation technique very similar. The average convergence ratios are 1.61 for
the structured mesh (applying the Bézier trasnsformation technique) and 1.64 for the
unstructured mesh.

Additionally, the total drag error on the spheroid with respect to the analytical
solution is shown in Fig. 4.7(b). It is detected a erratic behaviour of the results
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70 4 Dynamics of deformable capsules

Subdivision level 0 Level 1 Level 2 Level 3

Normal vector (L2-error) 1.332 · 10−3 3.494 · 10−4 8.947 · 10−5 8.947 · 10−5

Pressure (L2-error) 6.499 · 10−4 2.362 · 10−4 1.825 · 10−4 1.781 · 10−4

Drag (%Error) 1.735 · 10−6 1.682 · 10−6 1.679 · 10−6 1.679 · 10−6

Table 4.1: Errors of the normal vector, pressure and drag force on the spheroid for the
structured mesh discreitized with 546 control points using the Bézier transformation technique.
For each subdivision level the original degenerated Bézier element is subdivided in 2level

Bézier elements along the azimuthal direction.

computed with the standard formulation for the structured mesh, whereas for the others
cases the error converge almost linearly (in a logarithm scale). The convergence ratio
are 2.21 for the structured mesh and 2.28 for the unstructured mesh. These errors
reveal that, in general, the structured mesh exhibit smaller errors than the unstructured
mesh when the singular elements are suitable treated, but the converge ratios are
similar and they are the same order than the converge ratios of the normal vectors.
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Figure 4.7: (a) L2-error between the analytical and numerical normal force on the spheroid
and b) percentage error of the drag force on the spheroid. Standard BIE for structured mesh:
continuous line with circles; standard BIE for unstructured mesh: dashed line with crosses;
desingularized BIE for structured mesh: continuous line with triangles and BIE with Bézier
transformation technique for structured mesh: continuous line with squares.

Fig. 4.8 shows the point-wise error of the normal pressure on the spheroid surface
with respect to the analytical solution. It is observed that the error is concentrated
around the poles when not specific treatment is applied on singular elements. The
error is reduced and more uniformly distributed after applying a Bézier transformation
technique to the degenerated elements. For the unstructured mesh, although the error
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is also distributed along all the surface of the spheroid, is found to be higher around
the extraordinary points.

(a) (b) (c)

Figure 4.8: Point-wise error of the normal pressure on the spheroid for the structured mesh
discretized by 546 control points (a) without using any treatment on degenerated elements and
(b) using the Bézier transformation technique, and (c) for the unstructured mesh discretized by
866 control points.

4.4.2 Capsule in shear flow

The objective of this section is to analyse the temporal stability and accuracy of
the coupled IGA BEM-FEM formulation. To check this feature, we simulate the
deformation of a capsule immersed in a shear flow. Although this problem has
not known analytical solution, several authors have extensively studied it, reporting
numerical results for a wide range of different problem parameters [4, 5]. We focus on
the case of an initial spherical isoviscous (κ = 1) capsule with a Neo-Hookean law for
the membrane. The BIE for this problem is reduced to,

v(x0) = −(GΓ∆f)(x0) + v∞(x0) (4.38)

where the unperturbed flow is given by v∞ = γ̇x3λ1 and γ̇ is the shear rate.

By the action of this flow, the capsule is deformed until reaching a steady shape.
Even in this steadiness of the shape, the membrane moves and rotates with respect to
the internal fluid. This phenomenon is known as tank-treading. In this state the capsule
acquires a shape similar to an ellipsoid with the major-axis contained in the shear
plane. Consequently, it is usual to quantify the deformation of the capsule through the
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72 4 Dynamics of deformable capsules

Taylor parameter:

D12 =
L1 − L2

L1 + L2
(4.39)

where L1 and L2 are the largest and shortest semi-axes measured from the centroid to
the surface, respectively. This parameter provides a measure of the change of shape.

The motion and deformation of the capsule is characterized by the capillarity
number, that for this particular case is defined as Ca = µγ̇RC/Gs. In fact, there
are a low and a high critical capillarity number from which the capsule does not reach
a stable equilibrium. In what follows we compare the temporal deformation of the
capsule obtained by the present formulation with those presented by Lac et al. [4] for
various stables values of capillarity Ca = 0.3, 0.45 and 0.6 and different meshes.

Without loss of generality, we consider an initial sphere with radius unity. As
in the previous example, we consider two topological representations of the capsule.
One made by a regular structured mesh and the other with an unstructured mesh. The
structured mesh has 842 control points, whereas the unstructured mesh is constructed
by a cube projection with 866 control points. The Bézier transformation technique is
used to avoid the presence of degenerated elements. The initial dimensionless time
step is set to γ̇∆t0 = 0.01Ca. The simulation is stopped at the dimensionless time
γ̇tend = 25Ca to guarantee that the steady state is reached.

In Fig. 4.9a we show the time evolution of the Taylor parameter for the unstructured
mesh and three different capillarity numbers. It is observed that the present results are
very close to those reported in the literature [4] for all capillarity numbers considered.
The angles of the principal direction of capsule with respect to the flow at the steady
state (Fig. 4.9b) were also measured and are in agreement with those obtained by
[4]. We also studied the influence of the time step. We ran simulations with a
fixed time step and with an adaptive scheme for the case of the unstructured mesh
and Ca = 0.45. The relative difference of the deformation parameter in the steady
state for both simulations is practically negligible (5.7 · 10−5%). However, using the
adaptive model the time step increases during the simulation reaching a maximum
value ∆t = 5.619∆t0 and the average value is ∆t = 4.327∆t0. Another illustrative
indicator to verify the accuracy of the method is the time evolution of the volumetric
change of the capsule (Ev(t) = ∆v/V). We analysed the effect of the volumetric
constrain Eq.4.31. The results are summarized in Table 4.2 for the unstructured mesh.
It is observed that the volumetric error remains low for all cases (Ev ≤ O(10−3)%)
and it increases with the capillarity, as it is expected because the capsule suffers
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larger deformations. Moreover, the volumetric error significantly decreases when the
volumetric constrain equation is used.
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Figure 4.9: (a) Evolution of the Taylor deformation parameter of the capsule (Neo-Hookean
membrane) in a shear flow for the unstructured mesh and three capillarity numbers (Ca =
0.3, 0.45 and 0.6). Continuous line: present results and dashed line: results obtained by Lac
et al. [4]. (b) Steady shape of the capsule in the shear plane for the unstructured mesh for
Ca = 0.30 (solid line), Ca = 0.45 (dashed line) and Ca = 0.60 (dot and dash line). The
inserted table contains the angles between the principal axis of the deformed capsule and the
flow direction computed by the present method and reported by [4].

A special attention should be paid in the case of the structured mesh. The mesh is
heterogeneous and the aspect ratio of the elements (ratio between length and width)
is very variable. In fact, the elements around the poles show an aspect ratio far from
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74 4 Dynamics of deformable capsules

Ev(t) = ∆v
V

%

Ca = 0.3 Ca = 0.45 Ca = 0.6

Avg(EV ) max(EV ) Avg(EV ) Max(EV ) Avg(EV ) Max(EV )

Volume constrain 3.378 · 10−5 4.511 · 10−5 6.159 · 10−5 9.325 · 10−5 2.065 · 10−4 1.173 · 10−3

Non volume constrain 4.449 · 10−4 9.892 · 10−4 1.434 · 10−3 3.322 · 10−3 2.957 · 10−3 5.841 · 10−3

Table 4.2: Average and maximum volumetric error of the capsule in shear flow for the
structured mesh and various capillarity numbers (Ca = 0.3, 0.45 and 0.6).

the ideal unit value. That linked with the loss of continuity and the sigularity of the
degenerated elements, produces an important source of numerical problems. Joneidi
et al. [173] found numerical instabilities around the poles for a deformable capsule
discretized with a NURBS. Similar finding were reported by Lac et al. [4] using
bi-cubic B-spline functions. In this last work the authors analysed the influence of
the initial position of the poles and found that the simulations were unstable when
they were placed in axes out of the shear plane (x1x3−plane) where the membrane is
compressed. In the present work, we find that these instabilities can be avoided making
a suitable numerical integration of the degenerated elements, this is, by applying
the Bézier transformation technique or the technique proposed by Taus et al.[58],
and using an adaptive implicit temporal integration scheme. We carried out some
simulations with the poles contained in the x2-axis and for Ca = 0.45. Using a fixed
time step (∆tn = ∆t0 = 0.01Ca), the temporal integration scheme does not converge
at the early stages and it must be reduced at least a 25% to provide stable results.
This can be naturally overcome using a adaptive scheme. Another important aspect
regarding the stability is the method chosen for the computation of the load on the
membrane. Our simulations reveal that the instabilities appear when the equilibrium
equation in strong form is used instead of the variational principle, even with the
utilization of an adaptive integration scheme. Nevertheless, the variational principle
provides stable results independently of the position of the poles. Fig. 4.10 shows
the typical instability produced around the poles and the steady stated when a suitable
method is applied. The relative discrepancy of the deformation parameter between the
unstructured and the structured mesh in the steady state is 4.4 · 10−5% for Ca = 0.30,
3.4 · 10−3% for Ca = 0.45 and 1.2 · 10−3% for Ca = 0.6.

4.4.3 Dynamic mesh

In this section we show the ability of the present approach to adapt dynamically the
mesh to the needs of the problem. Two examples are shown. The first example consists
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Figure 4.10: (a) Instability of the capsule around the poles when these are located in the
x2-axis and the equilibrium equation in strong form on the membrane is used (at γ̇t = 0.664)
and (b) steady state of the capsule using the variational principle for the Capilarity number
Ca = 0.45. The transparent sphere corresponds to the initial state and the solid surface to the
deformed state.

on the movement of a micro-drop immersed in a four-roll flow. Although is not a
capsule, this example is significant becasue the error is very sensitive to the quality of
the mesh. For comparability purposes, we analised a particular case for which results
have be previosly reported numerically and experimentally in the literature [37, 175].
Taking the notation from [37] the unperturbed flow can be expressed as:

v1 =
γ̇

2
((1 + af )x1 + (1− af )x3)

v2 = 0

v3 =
γ̇

2
((−1 + af )x1 − (1 + af )x3)

(4.40)

where af is set to 0.6. The viscosity ratio is κ = 0.118 and the capillarity number is
given by Ca = γ̇µRC

σ = 0.196 being σ the superficial tension and RC the radius of
the drop (see Fig 4.11).

The computation of the jump stress on the drop surface depends purely on
geometric aspects (∆f = (∇ · n)n). Consequently, the motion of the interface is
described solely by the BIE:

v(x0) = (1− κ)(ĤΓv)(x0)− (GΓ∆f)(x0) + v∞(x0) (4.41)

By the action of flow, the drop is deformed and it adopts a shape similar to an
ellipsoid in the steady regime. Note that the fluid particles on the interface are not
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Figure 4.11: Umperturbed velocity field for a four-roll flow with af = 0.6

bounded. This is, the particles can move freely over the interface due to the net fluid
stress on both sides. Usually, this produces a migration of the particles to preferential
zones of the interface, leaving other areas with low concentrations. This linked to the
large deformation of the drop can lead to unsuitable large distortion of the mesh. In
such a case it is especially important the use of a dynamic local refinement to provide
accurate results. Additionally, since the tangential motion of the interface does not
affect to the dynamic of the drop [37, 173], it can be omitted in the update process of
the interface which helps to manage the distortion of the mesh.

As in the previous example, the simulation starts from a sphere with unit radius.
A regular structured mesh with 222 control point is used. This discretization is not
fine enough to capture accurately the large deformation of the drop, as it will be
shown in what follows. Given the characteristics of this problem, the suitability of
the mesh is evaluated as a function of the variation of the curvature and the aspect
ratio of the elements. It should be noted that the tractions are proportional to the
mean curvature, thus this parameter is representative of the geometry discretization,
as well as, the discretization of the physical variables (traction and velocity). In this
case, the reference parameters are set to: Lref = 0.32RC , χ̂ref = 2/R2

C , Dref = 2,
pref = 2 and Lmin = 0.05RC . In the degenerated elements, the aspect ratio criteria
unnecessarily generates a dense refinement due to its inherent distortion, thus the
refinement is not applied. The initial time step is γ̇∆t = 0.005. The simulation
finalize once the steady shape is reached at γ̇tend = 10.

Fig. 4.12 shows the time evolution of the Taylor parameter. It can be observed
that the present results are very close to the numerical results reported by Wang and
Dimitrakopoulos [172]. Moreover, the deformation of the drop in the steady state
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(D∞12 = 0.381) is in good agreement with the experimental findings of Bentley and
Leal [175] (D∞12 = 0.381). However, if a scheme without refinement is applied, the
accuracy of the results is considerably reduced (relative discrepancy 8.312%). This
reveals the importance of a suitable discretization of the drop. Various refinements
are carried out during the simulation. In Fig 4.13 the discretization of the drop is
represented at three different stages, this is, at the beginning, at an intermediate state
and at the steady state. As the drop is deformed, the variation of the curvature increases
rapidly around the two endpoints corresponding to the principal inertia axis of the drop
and various local refinements are performed. At the end of the simulation the drop
contains a total of 844 control points.
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Figure 4.12: Time evolution of the Taylor parameter of a drop in a four-roll flow for the
capillarity number Ca = 0.196 and viscosity ratio κ = 0.118. Continuous line: present results
appliying a dynamic refinement; dot dash line: present results without refinement; and dashed
line: numerical result reported by Wang and Dimitrakopoulos [172]. The circles reveal the
times at which a refinement is applied to the drop. The dash marker ’-’ on the left corresponds
to the Taylor deformation experimentally found by Bentley and Leal [175] at the steady state.
The inset (a) is the experimental shape reported in [175] 1and (b) shows the shape of the drop
obtained by the present approach in the steady state.

Secondly, we studied the movement of an isoviscous capsule in a hyperbolic flow
following a Sakalt law with C = 1. The unperturbed flow can be expressed as Eq. 4.40
with af = 1. As in the previous case, the capsule evolves into a shape similar to an
ellipsoid. This problem has been analysed by several authors using a BEM approach
[4, 5, 141]. Lac et al. [4] found numerical instabilities when the capillarity number

1Used with permission
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(a) D12 = 0

(b) D12 = 0.273 (c) D12 = 0.381
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Figure 4.13: Discretization of the drop in a four-roller flow applying a dynamic refinement (a)
at the beginning γ̇t = 0, (b) in an intermediate state γ̇t = 0.509 and (c) in the steady state γ̇t =
10. (d) and (f) variation of the mean curvature of the vertical section of the drop (x1x3−plane)
represented in a polar coordinate system at γ̇t = 0.509 and γ̇t = 10, respectively. Dashed line:
scale representation of the section of the drop (E = 3 : 1); solid line: variation of the curvature
(dχdl ); and dotted line: limit value of the variation of the curvature (χ̂).

is larger than the value 0.7. Dodson and Dimitrakopoulus [141] found stable results
for higher values of capillarity number (Ca > 0.7) as well as Walter et al. [5]. They
observed that the capsule acquires very high values of the mean curvature during the
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4.4 Numerical Examples 79

transitory phase and that can lead to numerical problems. Given these findings, we
check the ability of the present approach to simulate such a problem for capillarity
numbers Ca = 0.45, 0.60 and 0.8. The use of a dynamic local refinement scheme
is needed, otherwise an excessive fine discretization should be carried out during the
whole simulation.

The simulation is initialized using an unit radius sphere. In this case, the sphere is
discretized with an unstructured mesh with 218 control points and constructed using a
regular cubic projection (Fig. 4.15a). The suitability of the mesh is managed through
the variation of the traction on the membrane. Thus, the reference values are set to:
Lref = 0.35RC , T̂ref = 8Gs/RC Dref = 2.5, pref = 1 and Lmin = 0.035RC .
These rules were established experimentally and based on the deformation of the
capsule at the steady state.

0 2 4 6 8 10 12 14 16

γ̇Time [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
1
2
 [
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Figure 4.14: Time evolution of the Taylor parameter of a capsule in a four-roll flow for the
capillarity Ca = 0.45, 0.60 and 0.80. The circles reveal the times at which a refinement is
applied. The dash marker ’-’ on the right corresponds to the Taylor parameter found by Walter
et al. [5] at the steady state.

The simulations for the different capillarity numbers were carried out subsequently
from the deformation of the capsule of the previous capillarity numbers. In all case
stable results were found after a transient. The obtained Taylor parameters at the steady
state are D∞12 = 0.548, 0.595 and 0.640 for Ca = 0.45, 0.06 and 0.80, respectively,
which are in good agreement with those reported by Dodson and Dimitrakopoulos
[141] (D12 = 0.548 and 0.595 for Ca = 0.45 and 0.6) and Walter et al. [5] (D12 =

0.55, 0.60 and 0.64 for Ca = 0.45, 0.6 and 0.8) (see Fig. 4.14). The discretization of
the capsule in the steady state as well as the variation of the tractions are illustrated in
Fig. 4.15. The capsule suffers very large deformations (larger for higher values of Ca)
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80 4 Dynamics of deformable capsules

and the variation of tractions are very high around the tips of the capsule that requires
a fine mesh in theses areas. The total number of control points at the steady state is
706 for Ca = 0.45, 906 for Ca = 0.6 and 1478 for Ca = 0.8. The volumetric error
remains in the order of O(10−3%) for all simulations.

In Fig. 4.16 is shown a comparative of the capsule shape for the capillarity Ca =

0.80 at the steady state between a fixed mesh and a dynamic mesh. Despite that the
fixed mesh has a low number of elements, the capsule shapes for both discretization
are surprising close. It is around the tips where the maximum discrepancy appears
due to the high variation of the curvature and tractions which can not be accurately
captured with the coarse mesh. In fact, the traction discrepancy is considerable high
(17.32%) as it can be seen in Fig. 4.17.

4.4.4 Capsule in a pulsatile tube flow

In this section we analyse the motion of a deformable capsule in a micro-channel with
a pulsating flow. According to our knowledge, this problem has not been reported in
the literature and it has important implications in biological flows. Nevertheless, far
to elaborate a parametric studio, we focus the discussion in the ability of the present
approach to simulate the behaviour of deformable capsules in a confined channel with
pulsatile flow.

We consider an initial spherical isoviscous capsule following a Skalat law with
C = 1. The channel is a long cylindrical tube of constant section. The ratio between
the capsule radius and tube radius is set to δ = RC/RT = 0.5. The tube has a length
of LT = 2πRT which is enough to assume the contribution of the disturbed flow at the
inlet and at the outlet as it was assumed in Section 4.3.1 [164]. Initially the centre of
capsule is placed in middle of the tube and at a radial distance rC = 0.25RT under the
centreline (See Fig. 4.18). This configuration makes the problem non axisymmetric.
The capsule is discretized using an unstructured mesh with 602 control points and it
is constructed with a regular cube projection. The tube is modelled with a structured
mesh with 19 × 24 control points. The tube is construct by applying a revolution
operation around the central axis providing a perfect geometrical representation. Three
levels of refinement are imposed along the tube, concentrating the mesh around the
capsule (Fig. 4.18).

The unperturbed flow inside the tube is governed by the Womersley solution for
a pulsatile flow [176]. In the Stokes regime the inertia effects are negligible and the
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Figure 4.16: Capsule shape in a four-roll flow with Ca = 0.8 at the steady state. Solid line:
after applying a dynamic refinement; dashed line: without remeshing.
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Figure 4.17: Tractions on the membrane for a capsule in a four-roll flow with Ca = 0.8 at the
steady state (a) after applying a dynamic refinement and (b) without remeshing.

x
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z

Figure 4.18: T-spline model for the non-axisymmetric problem of a capsule flowing in a
cylindrical tube. For clarity, only the half of the model is represented.

solution can be simplified to a periodic Poiseuille flow. Consequently the unperturbed
flow can be expressed as:

v∞(r, t) = [∆v(r)cos(ωt) + v0(r)]λ1 (4.42)

where r is the radial distance from the axis of the tube, ω is the frequency of the
pulse, ∆v(r) is the temporal amplitude of the pulse and v0(r) is a constant velocity.
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4.4 Numerical Examples 83

These last two terms obey to the parabolic profile of Poiseuille flow, this is, f(r) =

2fm(1− (r/RT )2) with fm being the mean velocity in the section. Thus, the flow rate
is give by:

Q∞(t) =
∆P∞(t)πR4

T

8µL
= [∆v∞m cos(ωt) + v∞0m]πR2

T (4.43)

in which ∆P∞(t) is the unsteady pressure drop along the tube length.

Additionally we assume a positive difference of pressure (pos) between the
interior and exterior of the capsule. This situation appears naturally in capsules
with semi-permeable membrane because of different concentration of any substance
between both side of the membrane (i.e. osmotic pressure). For a spherical isotropic
capsule, this pressure jump can be taken into account by a pre-inflation of the capsule
from a radius RC.pi to a radius of RC = (1 + α)RC.pi, causing an isotropic internal
stress τiso = 1/2posRC . Among other effects, the pre-inflation of the capsule helps
to prevent the buckling of the membrane. This phenomenon can not be managed by
the present approach due to the lack of bending stiffness in the membrane, and it can
lead to the instability of the model. Some authors studied with more details the effect
of pre-stressed capsules for different flows [4, 6, 139]. In this case we assume a low
expansion coefficient α = 0.025.

We considered a representative value of the shear modulus of a biological capsule
Gs = 6 · 10−6N/m, the fluid viscosity µ = 1.2 · 10−3Ns/m2 and the average
flow velocity within the range v∞0m = [0.375 − 1.500]mm/s. Continuing with
a non-dimensionless analysis, we carried out some simulations for the capillarity
mumbers Ca = [0.075, 0.15, 0.30] (Eq. 4.30), amplitude of the pulse ∆v∞m /v

∞
0m =

[0, 1/3, 2/3] and angular velocity ω′ = ωRT /v
∞
0m = [2/3π, 2π, 6π].

First, we checked the validity of the present model simulating a non-pulsating flow
(∆v∞m = 0) with the capsule placed in the axis of the tube (rC = 0) and we compared
our results with that reported by Lefebvre and Barthès-Biesel [6] for an axisymmetric
model with capillarity number Ca = 0.06, δ = 0.8, 0.9 and α = 0.025. I can be seen
in Fig. 4.19 that the agreement between both predictions of the shape of the capsules
at the steady state is very good.

Fig. 4.20a and 4.20b represent the time evolution of the capsule shape initially
placed at rC = 0.25RC for a steady (Ca = 0.15) and pulsatile (Ca = 0.15,
∆v∞m /v

∞
0m = 2/3 and ω′ = 2π) flow, respectively. The frame of reference is jointly

UNIVERSITAT ROVIRA I VIRGILI 
TOWARDS THE APPLICATION OF THE ISOGEOMETRIC BOUNDARY ELEMENT ANALYSIS TO FLUID MECHANICS: 
NON-LINEAR GRAVITY WAVES AND DYNAMICS OF DEFORMABLE CAPSULES IN SHEAR FLOWS 
Jorge Maestre Heredia 
 



84 4 Dynamics of deformable capsules

-1 -0.5 0 0.5 1 1.5

x/R
T

 [-]

0

0.2

0.4

0.6

0.8

1

z
/R

T
 [

-] δ=0.9

δ=0.8

Figure 4.19: Profile of a Skalat deformable Capsule (C = 1) flowing in a cylindrical tube by
the action of constant flow for Ca = 0.06, δ = 0.8 and 0.9, rC = 0 and α = 0.025. Only a
half of the profile is represented given the axisymmetry of the problem. Pressent result for a
three dimensional model: continuous line; relults reported by Lefebvre and Barthès-Biesel [6]
for a axisymmetric model: dashed line; and original pre-inflated capsule: dotted line.

moved with the centroid of the capsule along the axial direction. It can be seen in
Fig. 4.20a that during a first transient period, the capsule is rapidly deformed adopting
a non-symmetric shape. The front increases the concavity whereas the rear becomes
nearly flat. Then, the capsule is slowly deformed as it asymptotically migrates to the
centreline of the tube. In this way, the rear acquires a convex shape and tends to
have a symmetric parachute shape. This shape is the typical deformation for initial
spherical capsules in axisymmetric problems [6, 177]. Similarly, for a pulsatile flow
(4.20b) we find a transient period of fast deformation followed by the slow migration
to the centreline. The characteristic shape of the capsule is similar to the previous case,
however the capsule evolves in a quasi-periodic way due to the pulsating character of
the flow. Fig 4.20b shows the typical oscillations of the capsule corresponding to the
maximum, medium and minimum surface deformation in a cycle. A 3D view of the
capsule at different times is represented in Fig. 4.20c.

We select the surface area variation of the capsule as a representative parameter of
the surface deformation. This quantity measures the change of the surface area from
the initial (after the pre-inflation) to the actual configuration (∆s/s0 = (s(t)− s0(t =

0))/s0(t = 0) with s being the total surface area) and it is related to the strain on
the membrane. Fig. 4.21a shows the time evolution of ∆s/s0 for a pulsatile flow
with Ca = 0.15, ω′ = 2/3π and three different amplitudes. The zero amplitude
corresponds to a non-pulsatile flow. In this case it is observed clearly the initial
transient period until reaching a maximum area change and then the slow evolution
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Figure 4.20: (a) Time evolution of the capsule shape in a constant flow with Ca = 0.15 and
rC = 0.25RT at the times tv∞0m/RT = 0.000 (solid line) 1.185 (circles), 3.754 (squares),
11.249 (triangles) and 37.500 (crosses). (b) Evolving shape for a pulsatile flow with Ca =
0.15, rC = 0.25RT , ∆v∞m /v

∞
0m = 2/3 and ω′ = 2π at the times tv∞0m/RT = 0.000 (solid

line), 2.414 (circles), 2.666 (squares), and 2.928 (triangles) corresponding to the maximum,
medium and minimum surface deformation in a cycle. The meridian plane is represented and
the frame follows the volume centre of the capsule in the x1-direction. (c) Three-dimensional
representation of the capsule for the pulsatile flow (b) at different times.
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86 4 Dynamics of deformable capsules

of the capsule while moving way to the centreline of the tube. For amplitudes of
the pulsatile flow larger than zero, the surface deformation acquires a quasi-periodic
behaviour that oscillates about the response to the constant flow and with the same
frequency as the imposed pulsatile flow. The area variation of the capsule in a pulsatile
flow with the same capillarity number (Ca = 0.15), amplitude ∆v∞m /v

∞
0m = 1/3

and various frequencies is shown in Fig. 4.21b. We observe the amplitude of the
oscillations decay with the frequency because the capsule has less time to deform
in each cycle. The surface deformation also depends on the relative stiffness of the
capsule. That is illustrated in Fig. 4.21c where the surface deformations for three
different capillarity number are depicted. The amplitude of the oscillation as well
as the average value of ∆s/s0 increases with the capillarity. The capsule becomes
relatively softer, it suffers a large elongation in the flow direction and a slightly
reduction in the width direction (Fig 4.22). Moreover, a time delay between the surface
deformation and the pulsatile flow is detected. This delay slightly increases for higher
values capillarity number and the frequency. Hereinafter, we refer to the average value
as the temporal moving average with a span of a cycle and it is useful to analyse the
trend of the capsule.

Following, we analyse the motion of the capsule along the tube. The time evotuion
of the radial trajectory of the centroid of the capsule is depicted in Fig. 4.23a. It is
observed that the capsule asymptotically migrates to the centreline with oscillatory
movement. It should be noted that this phenomenon does not happen in the case
of a neutral buoyant solid sphere where the particle moves parallel to the tube-axis.
The migration towards the centreline of the tube is due to the deformability of the
capsule. This phenomenon has been numerically and experimentally reported by some
authors [142, 164, 178–183]. Fig 4.23b shows the time evolution of the migration
velocity of the capsule (defined as vCR = vvc3 = −drC

dt ) in a pulsatile flow for
three different amplitudes. After a short transient period, the migration velocity
harmonically oscillates reducing monotonically the amplitude and the average value
as the time evolves. Doddi and Bagchi [181] reported a quilitative similar behaviour
for capsule in a constant Poiseuille flow. Zhu et al. [142] studied the motion of a
deformable capsule in a sinusoidal shear flow near a wall. They found a quasi-periodic
behaviour, but with a constant migration velocity in average term from the wall. The
influence of the frequency of the pulse and the capillarity is illustrated in Figs. 4.23c
and 4.23d, respectively. It can see that the softer the membrane is, the more the capsule
is deformed and it rapidly migrates to the centreline. Furthermore, the amplitude of
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Figure 4.21: (a) Time evolution of the area variation of the capsule in pulsatile flow with
Ca = 0.15, ω′ = 2/3π and three different amplitudes; (b) in a pulsatile flow with amplitude
∆v∞m /v

∞
0m = 1/3, Ca = 0.15, and various frequecies (top: as a function of the dimensionless

time tv∞0m/RT ; and bottom: as function of the dimensionless time t/T and substracting the
average term); and (c) in a pulsatile flow with amplitude ∆v∞m /v

∞
0m = 1/3, ω′ = 2π and

different capillarities (top: as a function of the dimensionless time tv∞0m/RT ; and bottom: as a
function of the dimensionless time t/T and substracting the average term). The vertical marks
along the x-axis denote the maximum peaks of the pulsatile flow. The averaged is computed
as a moving average with a span of a cycle.
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Figure 4.22: Surface dilation (Js0 = ds
ds0

) of a capsule in a pulsatile flow with amplitude
∆v∞m /v

∞
0m = 1/3, frequency ω′ = 2π and capilarity Ca = 0.15 (solid line) and Ca = 0.30

(dashed line) at the time tv∞0m/RT = 3.750. The circle and cross markers denote the centroid
for Ca = 0.15 and Ca = 0.30,respectively.

the oscillations is slightly reduced with the frequency. The decay of the amplitude
per cycle is more pronounced for lower frequencies because the migration velocity
depends on the proximity to the centreline.

Fig. 4.24a shows the time evolution of the translational velocity (vCH = vvc1 ) of the
whole capsule in a pulsatile flow for various values of frequency and capillarity. On
the right of the plot we have marked the theoretical value of the translational velocity
for a neutral buoyant solid sphere in a Poiseuille flow placed at the centreline of the
tube by the method of asymptotic expansion [184, 185]. The translation velocity starts
from a non null velocity and its trend slowly increases in average term getting closer to
the theoretical value as the capsule approximates to the centreline. We observe that the
translational velocity is lower sensitive to the variation of the frequency and capillarity
than the migration velocity. The influence of these parameter can be appreciated more
clearly by the slip velocity defined as the difference of the horizontal velocity of the
umperturbed flow at the position of the centroid of the capsule and the horizontal
velocity of the capsule (vCS = (v∞1 (r = xvc3 ) − vvc1 )/v∞0m) (Fig. 4.24b). The slip
velocity is always positive, that indicates the capsule moves behind the flow, and it
trends to slowly decrease as the capsule approximates to the centreline. Moreover we
observe a slight reduction of the slip velocity for higher values of the capillarity as it
was also found by Doddi and Bagchi [181].

We observe that the membrane suffers a tank-treading effect due to the torque
exercised by the flow on capsule. Fig. 4.25a depicts the distribution of the tangential
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Figure 4.23: (a) Time evolution of the radial distance from the centreline of the tube to
the centroid of the capsule (rC/RT ) for a pulsatile flow with Ca = 0.15, ω′ = 2/3π and
∆v∞m /v

∞
0m = 2/3. (b) time evolution of the migration velocity of a capsule (defined as

vCR = −drCdt ) in pulsatile flow with Ca = 0.15, ω′ = 2/3π and three different amplitudes;
(c) in a pulsatile flow with amplitude ∆v∞m /v

∞
0m = 1/3, capillarity Ca = 0.15 and three

values of the frequency (top: as a function of the dimensionless time tv∞0m/RT ; and bottom:
as a function of the dimensionless time t/T and substracting the average term); and (c) in a
pulsatile flow with amplitude ∆v∞m /v

∞
0m = 1/3, frequency ω′ = 2π and different capillarities

(top: as a function of the dimensionless time tv∞0m/RT ; and bottom: as a function of the
dimensionless time t/T and substracting the average term). The vertical marks in the x-axis
denote the maximum peaks of the pulsatile flow.
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Figure 4.24: Time evolution of (a) the horizontal velocity and (b) the slip velocity of a capsule
in a pulsating flow with a amplitude ∆v∞m /v

∞
0m = 1/3, different frecuencies and capillarity

numbers (top: as function of the dimensionless time tv∞0m/RT ; and bottom: as fuction of
the dimensionless time t/T and substracting the average term). The right mark on the y-axis
denotes the theoretical translation of a neutral buoyant sphere placed in the centreline of a tube
computed with a constant flow.

velocity (vt) in the meridian plane of the membrane after subtracting the radial a
horizontal velocity of the whole capsule. The membrane has a net tangential velocity
in the clockwise direction that makes it rotate, although the direction is determined by
the position of the capsule in the tube, this is, under the centreline or over it. Given
the pulsatile character of the flow, the rotation exhibits also an oscillatory behaviour.
This is illustrated in Fig. 4.25b where the mean tangential velocity on the membrane
(vCT ) is shown. Initially, the mean tangential velocity is close to the theoretical value
computed for a neutral buoyant solid sphere placed to a distance rC = 0.25RT from
the centreline. The temporal average term asymptotically tends to decay with time
as well as the oscillations. This is attributed to the migration of the capsule to the
centreline. In fact, for softer capsules we find a larger reduction of the tank-treading
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effect due to the faster migration process. In the limit case when the capsule reaches
the centreline of the tube, the capsule will becomes axisymmetric and the tank-treading
phenomenon will disappear.
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Figure 4.25: (a) Tangential velocity distribution on the meridian plane of a capsule (vt) in a
pulsatile flow with Ca = 0.15, ∆v∞m /v

∞
0m = 1/3 and ω′ = 2π at time tv∞0m/RT = 2.002.

(b) Time evolution of the mean tangential velocity on the meridian plane of a capsule (vCT )
in a pulsating flow for different frecuencies and capillarities. The left mark on the y-axis
denotes the theoretical tangential velocity of a neutral buoyant sphere placed to a distance
rC = 0.25RT from the centreline of a tube.

As it is known, the presence of the capsule in the tube causes an increase of the
flow resistance that results in an additional pressure drop give by ∆pD. Note that this
pressure drop is intimately related to the apparent viscosity through the Eq. 4.35.
Lefebre and Barthès-Biesel [6] found that for an axisymmetric configuration with
a constant flow, the additional pressure drop is influenced by the relative size and
deformability of the capsule. They explained that the capsule is mainly elongated in
the flow direction, which increases the surrounding viscosity film and consequently the
additional pressure drop. In Fig. 4.26a we show the time evolution of the pressure drop
for a pulsatile flow with different amplitudes. Similarly to the surface deformation, we
observe an initial transient period with a fast increase of the additional pressure drop
followed by quasi-periodic behaviour whose average term asymptotically evolves to
a constant value as the capsule approaches the centreline. The time evolution of the
additional pressure drop in a pulsating flow for different frequencies and capillarity
is illustrated in Fig. 4.26b . The amplitude of the oscillations decreases with the
frequency because the membrane has less time to deform in each cycle. Whereas for
softer membranes a lower level of the additional pressure drop is observed. In this
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92 4 Dynamics of deformable capsules

case, the migration process is dominant. The capsule suffers a larger deformation and
consequently migrates more rapidly to the centreline reducing the additional pressure
drop as it is predicted by the theory of solid spheres in a tube. This effect is in
consonance with the findings reported by Doddi and Bagchi [181] for deformable
capsule in a Poiseuille flow.
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Figure 4.26: (a) Time evolution of the disturbed pressure drop due to the presence of a capsule
in a pulsatile flow with Ca = 0.15, ω′ = 2/3π and three different amplitudes and (b) in a
pulsatile flow with amplitude ∆v∞m /v

∞
0m = 1/3, differente frequencies and capillarities. The

right mark on the y-axis corresponds to the theoretical pressure drop for a neutral buoyant solid
sphere placed in the centreline of the tube.

4.5 Conclusions

In this work we have presented a three dimensional isogeometric coupled BEM-FEM
analysis in the time domain for the study of deformable capsules. The approach
has been developed using the analysis suitable T-spline basis function. The T-spline
bases provide a high order of approximation and continuity for both the geometry
and physical variables. This continuity and smoothness of the bases are an important
property since it confers stability and robustness to the method. Moreover, the high
order of the bases provide a high differentiability needed for the accurate compute of
the jump stress.

In the numerical examples we checked the spatial accuracy of the present approach
analysing a constant flow passing a spheroid. We studied two different topological
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discretizations: a structured mesh and an unstructured mesh. The structured mesh
contains degenerated elements that are a source of numerical problems. We showed
that applying a suitable treatment of degenerated elements both meshes properly
converge with nearly the same order of accuracy. We also evaluated the temporal
stability and accuracy of the method by simulating a deformable capsule in a shear
flow. It was shown that numerical instabilities can appear in the capsule when
degenerated elements are present and the membrane equilibrium is applied in strong
form. The use of the variational principle helps to stabilize the method as well
as reduces the continuity requirement of the basis functions. This linked with the
application of an adaptive implicit temporal integration algorithm conforms a more
robust approach. We compared our results with the literature and we found a good
agreement for both the structured and unstructured mesh. However, this last mesh is
advantageous since it does not contain degenerated elements and the aspect ratio of the
elements is more homogeneous. In addition, exploiting the local h-refinement property
of the T-spline, we showed the ability of the method to adapt dynamically the mesh of
the capsule to the need of the specific problem. This technique is especially important
for cases in which the membrane suffers large deformations along the time.

Finally we applied the method to the simulation of a deformable capsule in a tube
with a pulsatile flow to show its potential use in complex biological flows. We showed
the influence of the frequency of the pulse and the capillarity number in the evolution
of the capsule and in consequence in the whole behaviour of the flow. We detect a
tank treading effect of the membrane that decreases with the capillarity. Moreover,
a migration of the capsule to the centreline of the tube is observed. This migration
depends on the deformation of the capsule, so that the migration velocity increases
with the capillarity whereas it is reduced slightly with the frequency. As the capsule
tends to the centreline the additional flow resistance caused by the capsule decreases.
This decrement in average term is more accused for higher values of the capillarity
and amplitude of oscillations is slightly reduced with frequency.
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Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis an IGA-BEM analysis based on the NURBS and T-spline framework in
the context of the Bézier extraction operation has been developed and implemented.
Firstly, this approach was applied to the study of the propagation of non-linear gravity
waves and the wave-structure interaction in the time domain. Then, the approach was
extended for the analysis of deformable micro-capsules in shear flows considering
the elastic properties of the membrane. The main conclusions can be summarized as
follows:

• The T-spline and the NURBS technologies offer high level capabilities for
complex geometric models that can be easily constructed with the aid of CAD
systems. Invoking the IGA concept, these models can be imported directly into
the engineering analysis softwares avoiding intermediate steps and preserving
the exact geometry.

• The Bézier extraction operation provides a unified framework to incorporate the
NURBS and T-spline discretization in the IGA, in a way similar to the standard
finite element via modifying the basis functions.

• A spatial spectral convergence of the method has been demonstrated.
Nevertheless, the presence of degenerated elements can affect to the
convergence and a suitable treatment should be applied, as the Bézier
transformation technique from degenerated to non-degenerated elements.
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• The hight continuity of the basis functions gives stable and accurate results for
large simulation times and under large movements and severe distortions of the
mesh without the need of applying artificial smooth techniques, which typically
are used in the standard formulation based on the Lagrange elements.

• The ability of the T-spline framework to manage unstructured meshes makes
the approach robust because an homogeneous distribution of elements can be
generated and the presence of degenerated elements can be avoided.

• Exploiting the local h-refinement of the T-spline framework, the quality of the
mesh can be dynamically managed adapting efficiently to the requirements of
the problem and keeping the accuracy during the simulation.

• The potential of the IGA has been revealed through the application of the present
approach to solve problems of engineering interest as the generation of waves by
a submerged moving foil and the dynamic movement of a deformable capsule
in a pipe under a pulsating flow.

5.2 Future work

In this thesis we have shown the potential of the IGA-BEM based on the T-spline
and NURBS for the study of two fluid dynamics problems, in which the boundary
integral formulation can be applied. Since the introduction of the IGA, a great
effort of the research community to develop more sophisticated geometric design
techniques integrated with the engineering analysis tools has been carried out. In this
direction, a recent line of investigation has appeared related with the formulation of
the hierarchical spline family, this is, hierarchical B-splines, NURBS and T-splines
[186–188]. This technology is based on a multilevel discretization of the physical
space. Each level supposes an additional enrichment of the basis functions increasing
the level of detail of the numerical analysis on the foundation of a fixed control mesh.
This hierarchical technique allows the applications of high local refinements keeping
the exact geometry and the smoothness. In addition, local coarsing processes can be
applied by removing the levels of refinements and without the need of costly mesh
operations. Therefore, the implementation of this technology can be seen as the next
step to make a more advanced approach.

In the field of the wave-structure interaction, the formulation has been focused on
the generation gravity waves by moving solid bodies and the propagation phenomenon.
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However, some engineering applications are more aware on the structural design and
integrity under hydrodynamic forces produced by the waves on the body. In this
line, the present approach can be extended to take into account the deformability
of the structure using a IGA-FEM model and coupling it with the IGA-BEM in a
similar way as for the case of deformable capsules. Respect to this last application
for deformable capsules, the membrane was considered to be a hyperelastic thin shell
with negligible bending resistance. Although this model is in good agreement with
the experiments, some processes as the buckling of the membrane cannot be properly
reproduced. An example of the buckling is shown in the Fig. 5.1. The central region
of the capsule is in compression and it generates the formation of folds. In this case,
the length of folds depends on the mesh discretization and it does not inform about the
bending rigidity of the membrane. Despite this unstable phenomenon, it is interesting
note that the approach remains stable thanks to the smoothness of the basis functions
and the inherent numerical bending resistance introduced by the FEM. A natural and
straightforward extension of the present model can incorporate the effect of the small
bending resistance of the membrane.

Figure 5.1: Steady shape of an initially spherical capsule of equivalent radius RC = 1RT
flowing in a cylindrical tube under a Poiseuille flow.
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Appendix A

Bézier surface

In this Appendix we introduce briefly the concepts of the Bézier surfaces since they
are used in the formulation of the FE view of the T-spline and NURBS surfaces. For
more details the reader is referred to [53].

A Bézier surface is a special case of a B-spline surface in which there is only one
non-null knot span in each parametric directions, ξ̃ = (ξ̃1, ξ̃2). The Bézier surface is
defined by a set of control points, Qij , with the corresponding weights, wbij , and the
bivariate Bernstein polynomials (or functions) Bij,p(ξ̃) of degree p = (p1, p2), with
i = 1, 2, ...mb

1 = p1 + 1 and j = 1, 2, ...mb
2 = p2 + 1. Then, the Bézier quadrilateral

patch is represented as,

x(ξ̃) =

m1∑
i=1

m2∑
j=1

wbijQijBij,p(ξ̃)∑m1
i=1

∑m2
j=1w

b
ijBij,p(ξ̃)

ξ̃i ∈ [−1, 1] (A.1)

The Bivariate Bernstein function are formed by a tensor product of univariate
Bernstein functions, Bi

k,pi
(ξ̃i), as,

Bij,p(ξ̃) = B1
i,p1(ξ̃1)B2

j,p2(ξ̃2) (A.2)

in which the univariate Bernstein functions are defined as follows:

Bi
k,pi

(ξ̃i) =
1

2pi

(
pi

k − 1

)
(1 + ξ̃i)k−1(1− ξ̃i)p+1−k (A.3)

The univariate Bernstein functions, and by extension the bivariate basis, have
several mathematical properties, the more important are:
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100 A Bézier surface

• Partition unity:
∑mi

k=1B
i
k,pi

(ξ̃i) = 1 for ξi ∈ [−1, 1].

• Linear independence:
∑mi

k=1 ckB
i
k,pi

(ξ̃i) = 0 if ck = 0 for ξi ∈ [−1, 1].

• Point-wise non-negativity: Bi
k,pi

(ξ̃i) ≥ 0 for ξi ∈ [−1, 1].

• Symmetry: Bi
k,pi

(ξ̃i) = Bi
k,pi

(−ξ̃i) for ξi ∈ [−1, 1].

• Endpoint interpolation: Bi
k,pi

(−1) = 1

Fig A.1 shows an example of a cubic Bézier patch. Note that we have used a local
index notation for each parametric direction, (i, j), however the above formulation
can be expressed in global index by the mapping A(i, j) = m1(j − 1) + i.
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Figure A.1: Schematic illustration of a reactangular cubic Bézier patch.

An alternative way to express the Bézier patch is using the homogeneous
coordinates. The advantage of this formulation is that allows applying the geometrical
operations for non-rational bases to rational bases (wb 6= 1). The idea consists in
extend the Euclidean space, Q(x, y, x), to four dimensional space, Qw = (wbQ, wb).
Then, the non-rational surface in four dimension is given by,

xw = (x,y, z,w) =

m1,m2∑
i,j=1

Qw
ij,pBij,p(ξ̃) (A.4)

While, the mapping to the Euclidean space is reverted as follows,

x = (x, y, z) =
( x
w
,
y

w
,
z

w

)
(A.5)
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Although the triangular Bézier patch is not very common, it is also used in this
thesis. The formulation is similar to the standard quadrilateral patch and it can be
expressed as,

x(ξ̃1, ξ̃2, ξ̃3) =
∑

i+j+k=p+3

TijkBijk,p(ξ̃) (A.6)

In Eq. A.6 the sub-indexes are defined by {i, j, k = 1, 2, ..., p+1 | i+ j+k = p+3},
the parametric domain by {(ξ1, ξ̃2, ξ̃3) ∈ [0, 1] | ξ̃1 + ξ̃2 + ξ̃3 = 1} and the triangular
Bernstein functions are given by,

Bijk,p(ξ̃) =

(
p

i, j, k

)
(ξ̃1)i−1(ξ̃2)j−1(ξ̃3)k−1 (A.7)

UNIVERSITAT ROVIRA I VIRGILI 
TOWARDS THE APPLICATION OF THE ISOGEOMETRIC BOUNDARY ELEMENT ANALYSIS TO FLUID MECHANICS: 
NON-LINEAR GRAVITY WAVES AND DYNAMICS OF DEFORMABLE CAPSULES IN SHEAR FLOWS 
Jorge Maestre Heredia 
 



UNIVERSITAT ROVIRA I VIRGILI 
TOWARDS THE APPLICATION OF THE ISOGEOMETRIC BOUNDARY ELEMENT ANALYSIS TO FLUID MECHANICS: 
NON-LINEAR GRAVITY WAVES AND DYNAMICS OF DEFORMABLE CAPSULES IN SHEAR FLOWS 
Jorge Maestre Heredia 
 



103

Appendix B

Transformation from degenerated
Bézier element to non-degenerated
elements

In Fig. B.1 a schematic illustration of the transformation process from the degenerated
cubic quadrilateral Bézier patch to three non-degenerated cubic Bézier patches is
shown.

Using the homogeneous coordinates representation, the transformation from the
original degenerated quadrilateral Bézier patch to the triangular Bézier patch is given
by,
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Qw
12

Qw
22

Qw
32

Qw
42

Qw
13

Qw
23

Qw
33

Qw
43

Qw
14

Qw
24

Qw
34

Qw
44



(B.1)

In Eq. B.1 we have been assumed the degeneration is located in the right side of the
quadrilateral Bézier patch. The transformation for other localization of the degenerated
side is straightforward by applying a rotation to the conversion matrix.

The subdivision of the triangular Bézier patch in three quadrilateral patches
depends on the choice of the points {D0,D1,D2,D3} that define the domain of each
quadrilateral patch (see Fig. B.1). In this work we locate the points {D1,D2,D3}
in the centre of each side of the triangular Bézier domain, and the internal point D0

in the barycentre. This usual configuration provides a well-balanced partition of the
triangular Bézier patch. The computation of each quadrilateral partition is as follows
[189]:
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

Q̂
w

1,11

Q̂
w

1,21

Q̂
w

1,31

Q̂
w

1,41

Q̂
w

1,12

Q̂
w

1,22

Q̂
w

1,32

Q̂
w

1,42

Q̂
w

1,13

Q̂
w

1,23

Q̂
w

1,33

Q̂
w

1,43

Q̂
w

1,14

Q̂
w

1,24

Q̂
w

1,34

Q̂
w

1,44



=



1 0 0 0 0 0

1/2 1/2 0 0 0 0

1/4 1/2 1/4 0 0 0

1/8 3/8 3/8 1/8 0 0

1/2 0 0 0 1/2 0

5/18 5/18 0 0 5/18 3/18

11/72 22/72 11/72 0 11/72 14/72

1/12 3/12 3/12 1/12 1/12 2/12

1/4 0 0 0 2/4 0

11/72 11/72 0 0 22/72 14/72

5/54 10/54 5/54 0 10/54 13/54

1/18 3/18 3/18 1/18 2/18 4/18

1/8 0 0 0 3/8 0

1/12 1/12 0 0 3/12 2/12

1/18 2/18 1/18 0 3/18 4/18

1/27 3/27 3/27 1/27 3/27 6/27

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3/72 0 0 0

1/12 0 0 0

0 1/4 0 0

0 11/72 3/72 0

3/54 5/54 3/54 0

2/18 1/18 1/18 0

0 3/8 0 1/8

0 3/12 1/12 1/12

1/18 3/18 2/18 1/18

3/27 3/27 3/27 1/27





Tw114
Tw213
Tw312
Tw411
Tw123
Tw222
Tw321
Tw132
Tw231
Tw141



(B.2)

and by permuting the indices Twijk to Twkij and Twjki, the homogeneous coordinates for

the two other Bézier patches Q̂
w

2 and Q̂
w

3 can be obtained, respectively.
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106 B Transformation from degenerated Bézier element to non-degenerated elements

Q11 Q21 Q31 Q41

Q12

Q22

Q32

Q13

Q23

Q33

=Q42=Q43=Q44

Q14

Q24

Q34

(a)

T114 T213 T312 T411

T123

T132

T141

T321

T231

T222

(b)

Q1,11 Q1,21 Q1,31 Q1,41

Q1,

Q

D2D1

D3

(c)

Figure B.1: (a) Degenerated cubic quadrilateral Bézier patch, (b) cubic triangular Bézier patch
and (c) set of non-degenerated cubic quadrilateral Bézier patches.
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Appendix C

Degenerated Bézier element
transformation example data

Bézier control points
Table C.1 lists the Bézier control points of the example 2.6.

Control points
x y z w

1 0 0 0 1

2 1/3 0 0 1

3 2/3 0 0 1

4 1 0 0 1

5 1/6
√

3/6 0 1

6 7/18
√

3/6 0 1

7 11/18
√

3/6 0 1

8 5/6
√

3/6 0 1

9 2/6
√

3/3 0 1

10 8/18
√

3/3 0 1

11 10/18
√

3/3 0 1

12 4/6
√

3/3 0 1

13 1/2
√

3/2 0 1

14 1/2
√

3/2 0 1

15 1/2
√

3/2 0 1

16 1/2
√

3/2 0 1

Table C.1: Bézier control points relative to example 2.6
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108 C Degenerated Bézier element transformation example data

Subdivision operator
The subdivision matrices from the original Bézier element to three sub-elements,
relative to the example 2.6, are as follows:

CD1 =



1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2500 0.5000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000

0.1250 0.3750 0.3750 0.1250 0.0000 0.0000 0.0000 0.0000

0.5000 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000

0.2500 0.2500 0.0000 0.0000 0.2500 0.2500 0.0000 0.0000

0.1250 0.2500 0.1250 0.0000 0.1250 0.2500 0.1250 0.0000

0.0625 0.1875 0.1875 0.0625 0.0625 0.1875 0.1875 0.0625

0.2500 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000

0.1250 0.1250 0.0000 0.0000 0.2500 0.2500 0.0000 0.0000

0.0625 0.1250 0.0625 0.0000 0.1250 0.2500 0.1250 0.0000

0.0312 0.0938 0.0938 0.0312 0.0625 0.1875 0.1875 0.0625

0.1250 0.0000 0.0000 0.0000 0.3750 0.0000 0.0000 0.0000

0.0625 0.0625 0.0000 0.0000 0.1875 0.1875 0.0000 0.0000

0.0312 0.0625 0.0312 0.0000 0.0938 0.1875 0.0938 0.0000

0.0156 0.0469 0.0469 0.0156 0.0469 0.1406 0.1406 0.0469

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.1250 0.1250 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0625 0.1250 0.0625 0.0000 0.0000 0.0000 0.0000 0.0000

0.0312 0.0938 0.0938 0.0312 0.0000 0.0000 0.0000 0.0000

0.3750 0.0000 0.0000 0.0000 0.1250 0.0000 0.0000 0.0000

0.1875 0.1875 0.0000 0.0000 0.0625 0.0625 0.0000 0.0000

0.0938 0.1875 0.0938 0.0000 0.0312 0.0625 0.0312 0.0000

0.0469 0.1406 0.1406 0.0469 0.0156 0.0469 0.0469 0.0156



(C.1)
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CD2 =



0.1250 0.3750 0.3750 0.1250 0.0000 0.0000 0.0000 0.0000

0.0000 0.2500 0.5000 0.2500 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

0.0625 0.1875 0.1875 0.0625 0.0625 0.1875 0.1875 0.0625

0.0000 0.1250 0.2500 0.1250 0.0000 0.1250 0.2500 0.1250

0.0000 0.0000 0.2500 0.2500 0.0000 0.0000 0.2500 0.2500

0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.5000

0.0312 0.0938 0.0938 0.0312 0.0625 0.1875 0.1875 0.0625

0.0000 0.0625 0.1250 0.0625 0.0000 0.1250 0.2500 0.1250

0.0000 0.0000 0.1250 0.1250 0.0000 0.0000 0.2500 0.2500

0.0000 0.0000 0.0000 0.2500 0.0000 0.0000 0.0000 0.5000

0.0156 0.0469 0.0469 0.0156 0.0469 0.1406 0.1406 0.0469

0.0000 0.0312 0.0625 0.0312 0.0000 0.0938 0.1875 0.0938

0.0000 0.0000 0.0625 0.0625 0.0000 0.0000 0.1875 0.1875

0.0000 0.0000 0.0000 0.1250 0.0000 0.0000 0.0000 0.3750

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0312 0.0938 0.0938 0.0312 0.0000 0.0000 0.0000 0.0000

0.0000 0.0625 0.1250 0.0625 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.1250 0.1250 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.2500 0.0000 0.0000 0.0000 0.0000

0.0469 0.1406 0.1406 0.0469 0.0156 0.0469 0.0469 0.0156

0.0000 0.0938 0.1875 0.0938 0.0000 0.0312 0.0625 0.0312

0.0000 0.0000 0.1875 0.1875 0.0000 0.0000 0.0625 0.0625

0.0000 0.0000 0.0000 0.3750 0.0000 0.0000 0.0000 0.1250



(C.2)
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110 C Degenerated Bézier element transformation example data

CD3 =



0.1250 0.0000 0.0000 0.0000 0.3750 0.0000 0.0000 0.0000

0.0000 0.1250 0.0000 0.0000 0.0000 0.3750 0.0000 0.0000

0.0000 0.0000 0.1250 0.0000 0.0000 0.0000 0.3750 0.0000

0.0000 0.0000 0.0000 0.1250 0.0000 0.0000 0.0000 0.3750

0.0000 0.0000 0.0000 0.0000 0.2500 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.2500 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2500 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2500

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.3750 0.0000 0.0000 0.0000 0.1250 0.0000 0.0000 0.0000

0.0000 0.3750 0.0000 0.0000 0.0000 0.1250 0.0000 0.0000

0.0000 0.0000 0.3750 0.0000 0.0000 0.0000 0.1250 0.0000

0.0000 0.0000 0.0000 0.3750 0.0000 0.0000 0.0000 0.1250

0.5000 0.0000 0.0000 0.0000 0.2500 0.0000 0.0000 0.0000

0.0000 0.5000 0.0000 0.0000 0.0000 0.2500 0.0000 0.0000

0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.2500 0.0000

0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.2500

0.5000 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000

0.0000 0.5000 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000

0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.5000 0.0000

0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.5000

0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000



(C.3)

Transformation operator to non-degenerated elements
The transformation matrices from the degenerated Bézier element to three
non-degenerated elements, relative to the example 2.6, are as follows:
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CQQ1 =



0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.5000

0.0000 0.0000 0.0000 0.2500 0.0000 0.0000 0.0000 0.5000

0.0000 0.0000 0.0000 0.1250 0.0000 0.0000 0.0000 0.3750

0.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.2778 0.2778 −0.0417 0.1250 0.1250 0.2361

0.0000 0.0000 0.1528 0.1528 −0.0486 0.1458 0.1458 0.2569

0.0000 0.0000 0.0833 0.0833 −0.0417 0.1250 0.1250 0.2083

0.0000 0.2500 0.5000 0.2500 0.0000 0.0000 0.0000 0.0000

0.0000 0.1528 0.3056 0.1528 −0.0069 0.1458 0.1458 0.1042

0.0000 0.0926 0.1852 0.0926 −0.0046 0.1806 0.1806 0.1250

0.0000 0.0556 0.1111 0.0556 0.0000 0.1667 0.1667 0.1111

0.1250 0.3750 0.3750 0.1250 0.0000 0.0000 0.0000 0.0000

0.0833 0.2500 0.2500 0.0833 0.0417 0.1250 0.1250 0.0417

0.0556 0.1667 0.1667 0.0556 0.0556 0.1667 0.1667 0.0556

0.0370 0.1111 0.1111 0.0370 0.0556 0.1667 0.1667 0.0556

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.2500 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.3750 0.0000 0.0000 0.0000 0.1250

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0417 0.0000 0.0000 0.1528 0.0000 0.0000 0.0000 0.0000

0.0833 0.0000 0.0000 0.2500 0.0000 0.0000 0.0000 0.0833

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0556 0.0000 0.0000 0.0926 0.0000 0.0000 0.0000 0.0000

0.1111 0.0000 0.0000 0.1667 0.0000 0.0000 0.0000 0.0556

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0556 0.0000 0.0000 0.0556 0.0000 0.0000 0.0000 0.0000

0.1111 0.0000 0.0000 0.1111 0.0000 0.0000 0.0000 0.0370



(C.4)
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112 C Degenerated Bézier element transformation example data

CQQ2 =



0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.2500 0.0000 0.0000 0.0000

0.1250 0.0000 0.0000 0.0000 0.3750 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 −0.0417 0.1250 0.1250 −0.0417

0.0000 0.0417 0.0000 0.0000 0.1042 0.1458 0.1458 −0.0486

0.0833 0.0833 0.0000 0.0000 0.2083 0.1250 0.1250 −0.0417

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2500

0.0000 0.0000 0.0417 0.0000 −0.0486 0.1458 0.1458 0.1042

0.0000 0.0556 0.0556 0.0000 0.0324 0.1806 0.1806 0.0324

0.0556 0.1111 0.0556 0.0000 0.1111 0.1667 0.1667 0.0000

0.0000 0.0000 0.0000 0.1250 0.0000 0.0000 0.0000 0.3750

0.0000 0.0000 0.0833 0.0833 −0.0417 0.1250 0.1250 0.2083

0.0000 0.0556 0.1111 0.0556 0.0000 0.1667 0.1667 0.1111

0.0370 0.1111 0.1111 0.0370 0.0556 0.1667 0.1667 0.0556

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000

0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2500

0.3750 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1250

0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.5000

0.2778 0.0000 0.0000 0.2778 0.0000 0.0000 0.0000 0.2778

0.3056 0.0000 0.0000 0.1528 0.0000 0.0000 0.0000 0.1528

0.2500 0.0000 0.0000 0.0833 0.0000 0.0000 0.0000 0.0833

0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.2500

0.1528 0.0000 0.0000 0.3056 0.0000 0.0000 0.0000 0.1528

0.1852 0.0000 0.0000 0.1852 0.0000 0.0000 0.0000 0.0926

0.1667 0.0000 0.0000 0.1111 0.0000 0.0000 0.0000 0.0556

0.0000 0.0000 0.0000 0.3750 0.0000 0.0000 0.0000 0.1250

0.0833 0.0000 0.0000 0.2500 0.0000 0.0000 0.0000 0.0833

0.1111 0.0000 0.0000 0.1667 0.0000 0.0000 0.0000 0.0556

0.1111 0.0000 0.0000 0.1111 0.0000 0.0000 0.0000 0.0370



(C.5)
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CQQ3 =



1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2500 0.5000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000

0.1250 0.3750 0.3750 0.1250 0.0000 0.0000 0.0000 0.0000

0.5000 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000

0.2778 0.2778 0.0000 0.0000 0.2361 0.1250 0.1250 −0.0417

0.1528 0.3056 0.1528 0.0000 0.1042 0.1458 0.1458 −0.0069

0.0833 0.2500 0.2500 0.0833 0.0417 0.1250 0.1250 0.0417

0.2500 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000

0.1528 0.1528 0.0000 0.0000 0.2569 0.1458 0.1458 −0.0486

0.0926 0.1852 0.0926 0.0000 0.1250 0.1806 0.1806 −0.0046

0.0556 0.1667 0.1667 0.0556 0.0556 0.1667 0.1667 0.0556

0.1250 0.0000 0.0000 0.0000 0.3750 0.0000 0.0000 0.0000

0.0833 0.0833 0.0000 0.0000 0.2083 0.1250 0.1250 −0.0417

0.0556 0.1111 0.0556 0.0000 0.1111 0.1667 0.1667 0.0000

0.0370 0.1111 0.1111 0.0370 0.0556 0.1667 0.1667 0.0556

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.1528 0.0000 0.0000 0.0417 0.0000 0.0000 0.0000 0.0000

0.0926 0.0000 0.0000 0.0556 0.0000 0.0000 0.0000 0.0000

0.0556 0.0000 0.0000 0.0556 0.0000 0.0000 0.0000 0.0000

0.3750 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1250

0.2500 0.0000 0.0000 0.0833 0.0000 0.0000 0.0000 0.0833

0.1667 0.0000 0.0000 0.1111 0.0000 0.0000 0.0000 0.0556

0.1111 0.0000 0.0000 0.1111 0.0000 0.0000 0.0000 0.0370



(C.6)
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1 (5) (1982) 859–880.

[180] G. Coupier, B. Kaoui, T. Podgorski, C. Misbah, Noninertial lateral migration
of vesicles in bounded Poiseuille flow, Physics of Fluids (1994-present) 20 (11)
(2008) 111702.

[181] S. K. Doddi, P. Bagchi, Lateral migration of a capsule in a plane Poiseuille flow
in a channel, International Journal of Multiphase Flow 34 (10) (2008) 966–986.

[182] L. Shi, T.-W. Pan, R. Glowinski, Numerical simulation of lateral migration of
red blood cells in Poiseuille flows, International Journal for Numerical Methods
in Fluids 68 (11) (2012) 1393–1408.

[183] R. K. Singh, X. Li, K. Sarkar, Lateral migration of a capsule in plane shear near
a wall, Journal of Fluid Mechanics 739 (2014) 421–443.

[184] T. Greenstein, J. Happel, Theoretical study of the slow motion of a sphere and a
fluid in a cylindrical tube, Journal of Fluid Mechanics 34 (04) (1968) 705–710.

[185] H. Brenner, Pressure drop due to the motion of neutrally buoyant particles in
duct flows, Journal of Fluid Mechanics 43 (04) (1970) 641–660.

[186] D. R. Forsey, R. H. Bartels, Hierarchical B-spline refinement, Computer
Graphics (ACM) 22 (4) (1988) 205–212.
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