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ABSTRACT 

 

 

 

 

Railway signaling systems on conventional lines of Malaysian railway companies 

have been damaged from lightning, especially in 2010. Therefore, effective and 

economical lightning protection measures are necessary for railway signaling systems 

because suspended operation or train delays due to lightning damage may cause social 

disruption. For analyzing lightning risk and making study for countermeasures against 

lightning damage, must measure the lightning overvoltage on railway signaling 

cables, which were laid at the ground surface and overhead, and rails in the field to 

enable quantitative analysis of the frequency of lightning overvoltage occurrence. 

Moreover, we investigated the correlation of lightning overvoltage (V) on signaling 

cables and rails with lightning conditions, such as the strike current (I) and the strike 

position ( distance from the measuring position). From this we deduced the correlation 

between the lightning overvoltage (V) and (I), expressed as a linear expression. From 

this correlation, the lightning risk for railway signaling systems against lightning 

conditions can be estimated. In addition, it is possible to calculate the possibility of 

lightning damage to railway signaling equipment. 
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ABSTRAK 

 

 

 

 

Railway sistem pada talian konvensional syarikat keretapi di Malaysia isyarat telah 

rosak dari kilat, terutamanya pada tahun 2010. Oleh itu, langkah-langkah 

perlindungan kilat berkesan dan ekonomi yang perlu untuk sistem isyarat kereta api 

kerana operasi atau kereta api digantung kelewatan akibat kerosakan kilat boleh 

menyebabkan gangguan sosial. Untuk menganalisis risiko kilat dan membuat kajian 

untuk langkah balas terhadap kerosakan kilat, mesti mengukur voltan lampau kilat di 

kereta api isyarat kabel, yang telah dibentangkan di permukaan tanah dan overhed, 

dan landasan keretapi di lapangan untuk membolehkan analisis kuantitatif kekerapan 

berlakunya kilat voltan. Selain itu, kami mengkaji korelasi voltan lampau kilat (V) 

pada isyarat kabel dan landasan dengan keadaan kilat, seperti mogok semasa (I) dan 

kedudukan mogok (jarak dari kedudukan pengukur). Dari sini kita disimpulkan 

hubungan antara voltan lampau kilat (V) dan (I), dinyatakan sebagai ungkapan linear. 

Dari korelasi ini, risiko kilat untuk sistem isyarat kereta api terhadap keadaan kilat 

boleh dianggarkan. Di samping itu, ia adalah mungkin untuk mengira kemungkinan 

kerosakan kilat untuk peralatan kereta api isyarat.  
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 CHAPTER 1 
 

 

 

 

INTRODUCTION 
 

 

 

1.1   Project Background 

 

 

 

Lightning is an important meteorological process, it is a dangerous natural 

phenomenon which causes disturbances in our life, and it has a bad effect on mankind. 

So a great attention has been taken towards this phenomenon. From railway point of 

view, these rails should be protected against this phenomenon, where large parts of 

the railway exposed to lightning. System components can be exposed to lightning-

induced overvoltage's; this overvoltage have high magnitude comparing with any 

voltage level of the distribution network, so flashover is generated causing damage to 

the equipment when insufficient protection against this phenomenon is used. This 

directly effects on system reliability for railways. Of all lightning discharges only 

around 25% of the lightning bolt reaches the ground. Lightning being an intense 

power source (although of short duration), has the potential to cause significant 

damage to life and property [1].  

 Attempts to understand the phenomena (being most spectacular in nature but 

destructive), has been a great challenge and forms one of the well-researched area. In 

spite of enormous research efforts, when it comes to the question of “how likely is it 

that lightning will strike an object and cause damage?” deterministic answers are not 

possible yet [2].  For such questions one needs to heavily depend upon the lightning 

statistics. The other variables on which the CG discharges depend are terrain, tall 

structures & trees, their relative spatial spread, shape and composition of the 

structures, and soil resistivity (which has bearing on dampness and its type), to name 

a few important ones [3]. Lightning CG discharges have many destructive effects, as 

is widely known. The more damaging effects have come to the fore due to its indirect 
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effects on modern electronic gadgets, which are susceptible to surge voltages and 

currents. The effort here is to bring out the salient features of lightning with specific 

reference to indirect effects. The lightning is the main cause of problems in railway 

in the world [4] [5]. 

 

1.2    Problem Statement 

 

Lightning strikes are atmospheric phenomena which have adverse effects on railway. 

Lightning strikes damaged rail infrastructure an average of 192 times each year 

between 2010 and 2013, with each strike leading to 361 minutes of delays. In addition, 

58 trains schedules a year were cancelled due to lightning related faults. Predicting 

the geographical and temporal distribution of the lightning strike densities through 

modeling can help railway designers to improve the protection of the existing and new 

railway. When lightning strikes a rail, the high voltage can damage this sensitive 

electronic signaling equipment. As our signaling system fails safe, when a component 

is damaged all signals in the area turn red and trains must stop. In order to compare 

the results of the model simulations to the physical data, characterization is required. 

The distribution of the lightning strike densities generates patterns which are highly 

nonlinear and no stationary. Nowadays simulation technique is implemented to 

improve traditional techniques, where the results can be obtained instantaneously after 

it analyzes the input data of the railway such as currents (i) and voltages (v). In this 

project MATLAB SIMULINK is used to simulate railway system and analyze the 

result. 

 

1.3    Project Objectives 

 

This project proposes the analysis simulation of lightning strike in railway   using 

MATLAB program, the objectives of the work are:    

i) To design railway model through direct and indirect lightning strike using 

MATLAB tools and analyze the step by step the voltage and current 

curves. 

ii) To analyze the scenario of propagation currents and voltages and the 

travel waves that cause the system instability in railway according to 

Bewley Lattice diagram after the lightning stroke. 
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iii) To test of railway track model with a single lightning impulse voltage and 

AC voltage in the laboratory. 

1.4   Project Scope 

 

The project primarily concerned with lightning ground flashes interaction with 

railway lines .the scope of this project are: 

(i) The Malaysian railway transport system will be studied and the case study 

is based on Kluang railway station. 

(ii) Simulation of the lightning-induced surge propagation along the railway 

lines will be done using Bewley Lattice method of analysis.  

(iii) Modeling and simulation analysis study will be also involve with the use 

of MATLAB software and laboratory test. 

(iv) In the project simulation execution ,the flashing lightning strike modes be 

focused : 

a) Single lightning stroke. 

b) Multiple lightning stroke (multiplicity level up to 2). 

c) Multiple and Simultaneous lightning stroke (multiplicity level up to 

2).  

(v)  In the laboratory test the lightning impulse voltage is more than 2 kV. 

 

1.5    Thesis Outline 

 

This thesis is separated into 5 chapters. In the first chapter focuses on outlines the 

main idea of this project. The would explained about lightning phenomenon, 

motivation methods and principals locating of lightning strikes, and literature reviews 

of previous researchers this in the second chapter. The following describe the 

methodology of the project, including the tools and equipment's, procedure and 

processes involved for the hardware and software development of the entire project. 

And in forth chapter discussed on the results obtained from the lightning detection 

system. Finally in chapter 5 is about conclusion and recommendations that can be 

used for further research related to this topic in future would be included. 
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CHAPTER 2 

 

 

 

           LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

Lightning is a sudden high-voltage discharge of electricity that occurs within a cloud, 

between clouds, or between a cloud and the ground and external of the cloud. Globally, 

there are about 40 to 50 flashes of lightning every second or nearly 1.4 billion flashes 

per year. These electrical discharges are extreme deadly and devastative. Lightning is 

a giant spark of electricity in the atmosphere between clouds, the air, or the ground. In 

the early stages of development, air acts as an insulator between the positive and 

negative charges in the cloud and between the cloud and the ground. When the 

opposite charges builds up enough, this insulating capacity of the air breaks down and 

there is a rapid discharge of electricity that we know as lightning. The flash of lightning 

temporarily equalizes the charged regions in the atmosphere until the opposite charges 

build up again [6].Lightning can occur between opposite charges within the 

thunderstorm cloud (intra-cloud lightning) or between opposite charges in the cloud 

and on the ground (cloud-to-ground lightning).Lightning is one of the oldest observed 

natural phenomena on earth. It can be seen in volcanic eruptions, extremely intense 

forest fires, surface nuclear detonations, heavy snow storms, in large hurricanes, and 

obviously, thunderstorms. Lightning strike comes about every day in the world. The 

lightning strike towards the surface on earth has been estimated at 100 times every 

second. Thus, almost every governments suffer major loses because of this 

phenomenon every year. It also would cause horrific injury and fatality to humans and 
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animals. The lightning may affect almost every organ system as the current passes 

through the human body taking the shortest pathways between the contact points. 

There are 25.9% of lightning strike occurrences for victims who took sheltered under 

trees or shades, whereas 37% at open space area. Head and neck injury are two 

common areas which have an effect on the lightning strike victims with 77.78% and 

74% respectively. Only 29.63% of the cases presented with ear bleeding [7].United 

State National Lightning Safety Institution reported that Malaysia has highest 

lightning activities in the world whilst the average-thunder day level for Malaysia’s 

capital Kuala Lumpur within 180 - 260 days per annum [8, 9]. The isokeraunic level 

is approximately 200 thunderstorm days a year. The lightning ground flash density is  

 

2.2 Mechanism of Lightning to railway. 

 

Lightning is an electric discharge in the form of a spark or flash originating in a 

charged cloud. It has now been known for a long time that thunder clouds are charged, 

and that the negative charge center is located in the lower part of the cloud where the 

temperature is about - 50 C, and that the main positive charge center is located several 

kilometers  higher up, where the temperature is usually below - 200 C. In the majority 

of storm clouds, there is also a localized positively charged region near the base of 

the cloud where the temperature is 00 C. Figure 2.1 shows such a cloud located above 

an overhead transmission line. 

 

Figure 2.1: Induced charges on railway.  

Fields of about 1000 V/m exist near the Centre of a single bipolar cloud in 

which charges of about 20 C are separated by distances of about 3 km, and indicate 

the total potential difference between the main charge centres to be between 100 and 
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1000 MV. The energy dissipated in a lightning flash is therefore of the order of 1000 

to 10,000 MJ, much of which is spent in heating up a narrow air column surrounding 

the discharge, the temperature rising to about 15,000 0 C in a few tens of 

microseconds. Vertical separation of the positive and negative charge centres is about 

2 - 5 km, and the charges involved are 10 - 30 C [10]. The average current dissipated 

by lightning is of the order of kilo-amperes. During an average lightning storm, a total 

of the order of kilo-coulombs of charge would be generated, between the 00 C and 

the -40 0 C levels, in a volume of about 50 km3 [11]. 

 

2.3     Effects of lightning discharges in the railway.  

 

The physics of lightning is still a mystery. CG discharges can be quite destructive, 

particularly when grounded objects are not protected. The number of lightning related 

deaths in humans is small when compared to other causes of accidents. Livestock on 

the farms is most susceptible, particularly four legged animals with large spans 

between legs; e.g. cattle’s. Lightning plays an important role in forest fires and 

associated damages. Interaction of CG discharges with railway can disrupt power 

lines can causing power failures [12]. The effects of CG discharges can be broadly 

classified into two categories, namely: (i) direct (direct strokes), and (ii) indirect 

(indirect strokes). Indirect effects can be further viewed as those due to: (a) 

conductive, inductive and capacitive coupling, and (b) radioactive coupling [13]. 

 

 

 

Figure 2.2: Categories of Lightning discharges. 
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2.3.1      Direct strokes. 

 

A lightning CG discharge, strikes an object directly, such as power-line or building, 

and it can result in significant damage. Direct effects generally result in physical 

damage and have associated fire hazards. In the case of buildings it can result in cracks 

in the masonry work. The injected voltages and currents associated with direct strokes 

being much higher compared to indirect strokes, will have the ability even to damage 

power and distribution equipment and cut railway [14]. Most often the electrical 

motor insulations associated with the irrigation pump becomes the victim of a direct 

stroke. Other common examples are welding of contactors of the motors starters and 

explosion of power distribution transformers. The protections in the form of lightning 

rods and ground overhead wires can significantly reduce the chances of direct strokes. 

Having averted the direct strokes if one has to successfully reduce the probable 

secondary effects an appropriate grounding and bonding system is a must [15]. 

 

2.3.2      Indirect effects. 

Even if the lightning rods and ground overhead wires effectively shield the buildings, 

power lines, railways, and other objects, Once the lightning CG discharges are to the 

ground rod and railway lines, the charges tend to flow to the ground through the 

associated grounding system., the system needs grounding with zero ground 

impedance, ideally. In actuality the ground impedances are neither zero nor stable due 

to many of the soil properties and its associated parameters. There are guidelines 

related to the threshold permissible values of earth resistances depending on the 

criticality of the system being protected [16].  

 

2.4     Railway system. 

 

As show the figure 2.3 Rail composed of a set of sections connected by junctions long 

the   section about 100m. 

 

 

 

Figure 2.3: Railway track joint.  
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The line profile of the rail track at the test section is shown in Figure. 2.13 a 

rail track consists of rails, cross ties, a rail bed, and a track bed. 

 

Figure 2.4: Profile of the railway track. 

2.4.1      Lightning surge parameters of railway track [17]. 

The surge impedance and the surge propagation velocity are important parameters as 

the surge characteristics of a rail. We investigated the surge impedance and the surge 

propagation velocity between the rail and the ground due to measuring the injection 

current to the rail and the induced voltage on the rail when the steep-front current was 

injected into the rail. The outline of measuring method is shown in Figure2.5. 

 

Figure 2.5: Outline of measuring surge parameters of railway track. 

 

2.4.2     Surge attenuation ratio in the railway track. 

 

The surge attenuation caused by traveling along the rail is important parameters as the 

surge characteristics of a rail. We investigated the lightning surge attenuation ratio 

due to measure the voltage waveforms between the rail and the ground at the Sending 

end and the receiving end Surge.  
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2.4.3     Electric circuit for the railway. 

 

The electric circuit, which is formed between sending end and receiving end of rail 

showing in Figure 2.6 can be considered a two-port circuit composed from the 

distributed-parameter line such as rails. We investigated the frequency-dependent 

four-terminal parameters (resistance R, inductance L, conductance G and capacitance 

C) of the rails to estimate the distributed parameter adopted in the calculation model 

due to measure the open circuit impedance and the short circuit impedance by non-

grounding or grounding at the receiving end of rail, respectively. In the same way, 

open/short circuit impedance between rails [18]. 

  

 

Figure 2.6: Railway tracks electric model propagation of surges. 

2.5    Kluang single-track railway. 
 

 

A photograph of the railway line in Kluang station is shown in Figure 2.7 it shows the 

distribution of MRLs. Both the tracks and ground conductors are considered as MRLs 

under the ground and are assumed to be infinite in either direction, which makes the 

problem two-dimensional. The schematic of MRLs model for double -track electrified 

railway system commonly found in Kluang is shown in Figure 2.15, the associated 

conductor systems are described in Table 2.1. The different mediums that would be 

of interest for the wave propagation studies are shown in Table 2.2. The typical values 

shown in Table 2.2 are taken; further, they are nominal and do not correspond to some 

extreme conditions of climate or temperature. 

 

(2.6) 
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Figure 2.7: Railway tracks in Kluang station. 
 

 
 

Figure 2.8: Schematic of double-track railway system (axes are in metres). 

 

Table 2.1: Conductor nomenclature of Kluang tracks. 

Conductor nomenclature Conductor with bundle 

S1-rail Z1 

R1-rail Z2 

S2-rail Z3 

R2-rail Z4 

Cable  Z5 

 

Rail and ballast .include the conductor’s Z1 and Z2 are the rail1. Z3and Z4 are 

the rail2. Z1 and Z3 are called the S-rail and is continuous and forms one of the 

reference/return conductors.Z2 and Z4 are the I-rail, which is broken every 1.02 km 

and is used for the signaling purpose. The track circuits are connected across the S-

rail and I-rail and across which a constant potential of 7V exists. This voltage 

collapses to zero once the locomotive is on this section of the rails in the normal case. 

Groun

d 
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Then relay units are also connected across the tracks. These serve the purpose of train 

positioning and signaling systems. Z5 is the cable underground, which feeds the light. 

The Kluang railway system works at 10 kV and 16(2/3) Hz [19]. 

Table 2.2: Material properties of MTLs. 

 

Mediums/conductor 

Systems 

Relative 

permittivity 

Relative 

permeability 

Conductivity 

          (S/m) 

Air 1.0 1.0 1.0e-11 

Ballast 10.0 1.0 1.0e-5 

Ground 10.0 1.0 4.0e-4 

Z1,Z2,Z3and Z4 1.0 20.0 4.40e-6 

 

2.6    Modeling direct Lightning Strikes for Railway Systems with Lumped 

Components. 

 

 A model with most common devices connected along the multiconductor 

transmission line (MTL) system of railway, i.e., booster transformers (BTs), 

autotransformers (ATs), and track circuits, for evaluating the voltage and current 

propagation due to lightning and switching transient sources was developed by the 

authors [20]. As the potential between above ground wires and poles may exceed the 

insulator impulse withstand voltage levels, flashovers occur and hence needs to be 

implemented in the model [21]. 

 

2.6.1   Induced Voltages Across Lumped Devices Along The Track System in 

Railway And Transmissions Lines. 

 

The electromagnetic interference (EMI) source used in the calculations is 

representative of a subsequent lightning return stroke. The lightning is simulated to 

strike at a 50-m perpendicular distance from the midpoint of the system. The lightning 

channel base-current wave shape, at time t, is expressed by the sum of two functions 

expressed as (1), with the parameters as stated in Table 2.3 [22].With these parameter 

values, the base current peak is about 12 kA. This current is assumed to propagate 

upward in the lightning channel in accordance with the modified transmission-line 

model with linear decay [23]. The field-to-line coupling model adopted in the 

calculations is the Agrawal et al. model. In this model, the electromagnetic fields are 
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represented as series- and shunt-connected voltage sources along the lines of the MTL 

system [24]. In the analysis, an MTL system, representative of the catenary track 

system of electrified single-track railway system, as shown in Figure. 2.9, is 

considered. As seen, this 6-km long MTL system consists of five overhead wires, S-

rail, I-rail, catenary, return conductor/negative feeder (called as return conductor), and 

auxiliary wire. All lines are terminated to the finitely conducting ground (ground 

resistivity 1000 Ω/m) by their self-characteristic impedance. The conductor radii and 

characteristic impedances are given in Table 2.4. Characteristic impedances are 

calculated for ideal ground, and are only approximate for finitely conducting ground. 

The telegraphers’ equation for the 5-conductor transmission line system above finitely 

conducting ground is given as follows [25]: 

 

Table 2.3: Base-current parameter values. 

 

I01             τ11        τ21                     n1                           I02              τ12         τ22                     n2 

(kA) (µs)      (µs)                                 (kA)           (µs)        (µs) 

10.7           0.25       2.5             2                  6.5             2.1         230             2 

 

 

' 
Figure. 2.9: MTL system representative of a typical railway traction conductor 

feeding system. 

 

Table 2.4: Conductor radii and characteristic impedances for Figure 2.16. 

 

                       S-Rail         R-Rail     Catenary    Return/               Auxiliary 

                                                                               Neg.feeder                wire 

Radii(mm)    49.5               49.5          50.6               8.2                         5.6 

Zc(Ω)             186                186            331               442                        490 
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In Figure 2.17. It shows the complex distribution of MTLs. In the simulation, 

we have taken only a single-track system. However, an analysis with the double-track 

system would be similar as described here but with more conductors. Both the tracks 

and overhead conductors are considered as MTLs above the ground and are assumed 

to be infinite in either direction [26]. 

 

 

Figure 2.10: Railway track showing the complexity of MTLs. 

 

 
 

Figure 2.11: Railway track showing of MTLs in Malaysia  
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Figure 2.12: Schematic of single-track railway system (axes are in meters). 

 

Table 2.5: Conductor nomenclature. 

Conductor nomenclature Conductor with bundle 

S-Rail R1 

R-Rail R2 

Contact and messenger R3 

Reinforcement R4 

Return R5 and R6 

help R7-R9 

 

2.6.2     The electrified railway system. 

 

A normal single-track electrified railway system can consist of as many as ten above 

ground conductors, and one buried communication cable along the track, not shown 

in the cross sectional view of the MTL system. The contact and messenger cables, 

both noted as R3 in the cross-sectional view of Figure. 2.17, are interconnected at 

every 7-10 m and these conductors can, in accordance with the principle of bundled 

conductors [27], be combined into a single conductor. 

 

 

Railway 

Tracks  
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Table 2.6: Conductor nomenclatures and properties in a typical single-track electrified 

railway system. 

Conductor nomenclature Conductor notation  Conductivity (S/m) 

S-Rail R1  4.4×10-6 

R-Rail R2                                     4.4×10-6 

Contact and messenger R3 5.8×10-7 

Reinforcement R4  3.5×10-7 

Return R5 and R6  3.5×10-7 

help R7-R9  3.5×10-7 

Names, notations and conductivities of the overhead conductors of Figure 1.1 are 

presented in Table 2.6. The conductors forming the MTL system consist of the 

following:  

• Two rails; the S-rail, R1, is continuous though out the entire railway system and used 

as a return path for the traction current and the I-rail, R2, has 45 insulated gaps at 

regular intervals and is used for signaling purposes.  

• The bundled R3 conductor, also known as the catenary wire, is used for feeding 

power to the locomotive through the pantograph located on the locomotive roof with 

15 kV, 16.67 Hz.  

• An electrical reinforcement wire, R4, is running in parallel with the catenary and it 

is connected to it every 200-300 m. This wire is present for reducing the catenary 

system impedance.  

• Return conductors, R5 and R6, are used for returning the traction currents to the 

feeding stations.  

• Auxiliary power wires, R7, R8 and R9, operating at 22 kV, 50 Hz are used to supply 

power to trackside equipment after a step down to 400/230 V. The communication 

cables used in the Swedish railway systems are buried or put in trenches at a depth of 

0.5-0.75 m and about 1-2 m away from the tracks on the pole side. There are different 

kinds of communication cables used on different track sections based on current 

demand and future planning. A communication cable frequently used by Banverket is 

the Ericsson made BV ECLALPLE 1S1.2 + 28P 0.9 [28], a cross sectional view of 

this cable is shown in Figure 2.13. This multiconductor communication cable consists 

of 60 copper conductors split in three layers, pair-wise twisted arrangement, enclosed 

by a stranded aluminum shield and a steel armor [29].  
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Figure 2.13: Ericsson BV-ECLALPLE 1S1.2 + 28P 0.9 cable, a typical 

communication cable used in the railway systems. 

In double-track railway systems the tracks run in parallel and the overhead 

conductors are mirrored, with a distance of 4.4-10 m between the centers of the lines, 

with auxiliary wires only present at one side of the track [30]. 

 

2.7      Pole insulator flashover and ionization at the pole footing. 

 

2.7.1    The interconnection between the conductors. 

 

Interconnections between conductors play an important role in surge current 

distribution. The return conductors (R5 and R6) and S-rail (R1) are connected together 

at every 5 km. This situation is shown in Figure. 2.21 (dashed line). The 

interconnection is assumed to be at the middle of the line being simulated, where the 

lightning is assumed to strike at the top of conductor R7. The termination matrix at 

this junction point on the middle of the line is a sparse conductance matrix with its 

elements corresponding to short and open circuit resistances. Note that in all the 

simulations, this junction is assumed to be in the middle of the two pole locations. 

The distance between the two poles is 60 m. 

 

 2.7.2    Pole insulator flashover and soil ionization at the pole footing. 

 

The poles support the conductors through insulators, which have different impulse 

with stand voltages as shown in Table 2.7. 
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Figure 2.14: Interconnection between R5, R6 and R1. 

  

The other terminations to the ground from the conductors are due to the 

insulator flashovers on the poles and pole’s footing ionization/static resistance as the 

case may be. Determining the equivalent termination resistance at the pole is a bit 

complex and depends on the ionization characteristics at the pole footing and insulator 

flashover behavior. The S-rail (R1) is connected to the pole footing directly and all 

the other conductors excepting I-rail (R2) are connected to the pole through the 

insulators, the schematic of which is shown in Fig. 2.22 The resistance (Rg) due to 

soil ionization at the pole footing is calculated using the method proposed by the IEEE 

standard [31],R0 is the footing resistance measured with low current (dc), IR the 

lighting current through the footing resistance and Ig is the current required to produce 

a voltage gradient, E0, at which soil breakdown occurs which is about 400 kV/m. The 

termination resistance is calculated using the equivalent circuit based on the schematic 

diagram shown Figure 2.15. 

 

Table 2.7: Impulse withstand levels for the insulators. 

 

Conductor 

nomenclature 

Ceramic insulator type Impulse withstand 

voltage (kV) 

R3 Rod or composite 225 

R4 Lie post 170 

R5 and R6 Spool 60 

R7–R9 Pin 140 
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Figure 2.15: Insulators, connections and pole footing resistance in a single track 

railway system. 

 

At every 60 m along the MTL system there are poles. These are not only used 

for grounding points for the S-rail, but also to hold the overhead wires in the air along 

the system, as shown in Figure. 2.22. The above ground wires are connected onto this 

pole by insulators of different materials and impulse withstand over voltages, as 

shown in Table 2.7. 

 

2.8    Waves on railway lines. 

 

Figure 2.16: Travelling wave in railway Line model. 
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Considering the above railway line in the sinusoidal steady state. Assuming 

series impedance per meter and shunt admittance per meter to neutral are: 

𝑍 = 𝑟 + 𝑗𝜔𝑙                                                                                                       (2.1) 

𝑦 = 𝑔 + 𝑗𝜔𝑐                                                                                                      (2.2) 

            From figure 2.16 V1 and I1 are per phase terminal voltages and currents at left 

and V2, I2 are per phase terminal voltage and current at right. Considering a small 

section of line length dx .Taking the series impedance and the shunt admittance of dx 

are zdx and ydx respectively. The receiving end at the right side is located at x=0 and 

the sending end at the left side is at x=L. Applying Kirchhoff’s voltage law and 

Kirchhoff’s current law to dx. 

 𝛾 = √𝑍𝑌 = 𝛼 + 𝑗𝛽                                                                                                      (2.3) 

 

𝛾 is a complex quantity which is known as the propagation constant. Where 

Z is the characteristic impedance of the line and is given by: 

 

𝑍 = √
𝑅+𝐿

𝜕

𝜕𝑡

𝐺+𝐶
𝜕

𝜕𝑡

                                                                                                           (2.4) 

𝑍 = √
𝐿

𝐶
                                                                                                                (2.5) 

 

This is the characteristic impedance of the line. This implies that the voltage 

and current waves travel down the line without changing their shapes. 

 

   
𝜕2𝑢

𝜕2𝑥2
= 𝐿𝑐𝑢                                                                                                     (2.6) 

Equation (2.6) is the so called travelling wave equation of a loss less railway 

line. The solutions of voltage and current equations reduce to 

 

  𝑢(𝑥, 𝑡) = 𝐴1(𝑡)𝑒
𝑥

𝑣 + 𝐴2(𝑡)𝑒
−𝑥

𝑣                                                                            (2.7) 

𝑖(𝑥, 𝑡) = −
1

𝑍0
[𝐴1(𝑡)𝑒

𝑥

𝑣 − 𝐴2(𝑡)𝑒
−𝑥

𝑣 ]                                                                   (2.8) 

 

Where v is the travelling wave propagation speed defined as: 
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V = 
1

√𝐿𝐶
                                                                                                               (2.9) 

2.8.1     Reflection and refraction of travelling waves (Bewley Lattice diagram) 

When the wave propagates along a railway line with certain characteristic impedance, 

there is a fixed relation between the voltage and current waves. The line is defined as: 

 

𝛼 =
𝑍𝑅 − 𝑍0

𝑍𝑅 + 𝑍0
   

 

       Where Z0 is a characteristic impedance of the line and ZR is the railway impedance 

[32]. Similar coefficients can be obtained for the currents, but the current reflection 

coefficient equals the negative of the voltage reflection coefficient value. 

𝛽 =  
𝑍0−𝑍𝑅

𝑍𝑅+𝑍0 
                                                                                                (2.11)  

As a special case, termination in a short circuit results in 𝛼 = -1 for the voltage 

signals and 𝛽 = 1 for current signals. If the termination is an open circuit, ZR is infinite 

and 𝛼 = 1 in the limit for the voltage signal and 𝛽 = -1 for the current signal. For a 

travelling wave while propagating through the railway, the railway (refraction) 

coefficient can be calculated as: 

 

𝛽 =  
2𝑍𝑅

𝑍𝑅+𝑍0 
= 𝛼 + 1                                                                          (2.12) 

Therefore, for a line terminated in a short circuit, the voltage of the backward 

(or reflected) wave is equal and opposite to the voltage of the forward (or incident) 

wave. The bounce diagram, also known as the lattice diagram, provides a systematic 

way of tracing the wave propagation on a railway line in a graphical manner. This 

methodology is called the bounce diagram since it represents the travel waves that 

bounce back and forth at the impedance discontinuities of the railway line. Figure 

2.17 shows the typical voltage bounce diagram [33] that represents the transient 

voltage at the total railway length with an incidental voltage signal of V+. 

(2.10) 
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Figure 2.17: Bewley Lattice diagram that illustrates the injected voltage traveling 

back and forth in railway line. 

 

𝑉𝑖,𝑗
𝐿 = 𝛽𝑖−2,𝑖−1𝑉𝑖−1,𝑗

𝐿 + 𝛼𝑖−1,𝑖−2𝑉𝑖−1,𝑗
𝑅                                                       (2.13) 

𝑉𝑖,𝑗
𝑅 = 𝛼𝑖,𝑖+1𝑉𝑖+1,𝑗−1

𝐿 + 𝛽𝑖+1,𝑖𝑉𝑖+1,𝑗−1
𝑅                                                 (2.14) 

    Where Ti;i+1 and Ti+1;i are the transmission coefficients 𝛼𝑖,𝑖+1 and 𝛼𝑖+1,𝑖are the 

refection coefficients between Zi and Zi+1. 𝛽𝑖,𝑖+1, 𝛽𝑖+1,𝑖 , 𝛼𝑖,𝑖+1 and 𝛼𝑖+1,𝑖  are 

defined as follows [34]. 

𝛼𝑖,𝑖+1 =
𝑍𝑖+1 − 𝑍𝑖

𝑍𝑖+1 + 𝑍𝑖
 

𝛼𝑖+1,𝑖 =
𝑍𝑖 − 𝑍𝑖+1

𝑍𝑖+1 + 𝑍𝑖
 

𝛽𝑖,𝑖+1 = 1 + 𝛼𝑖,𝑖+1 

𝛽𝑖+1,𝑖 = 1 + 𝛼𝑖+1,𝑖  

2.8.2       Propagation the waves in Bewley Lattice diagram method. 

Figure 2.18 show how the voltage propagation in one section and determined peak 

voltage in end the line. 

(2.15) 

 

(2.16) 

 

(2.17) 

 

(2.18) 
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Figure 2.18: Bewley Lattice diagram for one section in railway line. 

The following equations explain how to get the peak voltage in the strike point.  

   

V1=u (t)                                                     t=0 

V2= (α+ βα)                                              t=2TT  

V3= (α2β+α2β2) u (t)                                t=4TT  

V4= (α3β2+α3β3) u (t)                              t=6TT  

UTT=V1+V2+V3+V4                                                                                        (2.23) 

UTT (t) = ut(t)+ αut(1- β) (t-2TT) +α2 βu(t-4TT) +α2 β2 u(t-4TT) +α3 β2 u(t-6TT) 

                + α3 β3 u(t-6TT) .                                                                                (2.24) 

= ut(t) +α (1- β) +ut (t-2TT) +α2 β3 (1-β) u(t-4TT) +α3 β2 (1-β) u(t-6TT)  

= ut(t) +α (1+β)[ ut (t-2TT) +α β u(t-4TT)+ (α+β)2 u(t-6TT)].                          (2.25) 

 

2.9   Lightning risk evaluation for railway signalling systems.  

 

The lightning overvoltage on signalling cables 

V = 0.0145 × (I / r) + 0.17                                                                    (2.26) 

The lightning overvoltage on rails 

V = 0.0134 × (I / r) + 0.19                                                                    (2.27) 

We can estimate the lightning conditions at the case of lightning damage occurrence 

caused by exceeding the withstand voltages of railway signalling systems according 

to (2.25) – (2.26). We can evaluate the occurrence frequency of lightning risk for 

(2.19) 

 (2.20) 

 (2.21) 

 (2.22) 
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railway signalling systems to the occurrence probability of lightning conditions as 

shown in Figure 2.19. If the railway signalling systems leading overhead power lines 

have a withstand voltage of approximately 30 kV where countermeasures for 

protection against lightning are taken, These lightning conditions correspond to the 

case that 31 kA of  lightning strikes within a 0.155-km radius. 31 kA of lightning 

stroke current is 50 % value of cumulative occurrence frequency distribution of the 

peak value of lightning current. [35]. 

𝑃(𝐼) =
1

1+(
𝐼

31
)2.6

                                                                               (2.28) 

                                                      

 

Where P (I) is the cumulative occurrence frequency distribution of the peak 

value of lightning current [%]. Iis the lightning stroke current [kA]. At the region 

where is N [times/year] of lightning stroke within a 10-km radius, the number of 

lightning stroke within r/km radius can be calculated by (2.28).  

𝑁(𝑟) = 𝑁 ×
𝜋𝑟2

𝜋×102
                                                                                       

Where N(r) is the number of lightning stroke within a r-km radius [times/year] 

[36]. R is the radius [km]. N is the number of lightning stroke within a 10-km radius 

[times/year]. for example of the region where is N = 1,000 times/year, we can evaluate 

that occurrence frequency of lightning damages of railway signalling systems leading 

overhead power lines is 0.36 times/year/equipment.  

 

Figure 2.19: Evaluation flow of lightning risk for railway signaling systems. 

 

(2.29) 
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2.10       Devices along Electrified Railway Systems.  

 

The most common devices connected along electrified railway systems consist of 

trackside transformers; BT and AT, and track circuits; relay and rectifier units. There 

are also interconnections between the overhead conductors in the railway system, 

depending on which feeding system that is used. In the single-track electrified railway 

system with ten overhead conductors there are not only the contact, messenger and 

reinforcement wires that are interconnected as explained before. The return 

conductors are also interconnected, and for BT systems these are also connected to 

the S-rail at the midpoint between two consecutive transformers. In double track 

railway systems the S-rails of the different tracks are interconnected at every 300 m. 

At every pole position the S-rail is shorted to the pole footing. The pole footing is in 

turn grounded, but due to the phenomenon of soil ionization [37] not to ideal ground. 

This can be accounted for by connecting series non-linear resistors between every 

pole footing and the reference ground.  

Components and devices connected to the auxiliary wires are not considered in this 

work. 

 

Figure 2.20: Transformer connections in BT feeding systems. 

2.10.1   Trackside Transformers. 

  

There are mainly two types of trackside transformer used in the Swedish electrified 

railway system, BT and AT. Both these are 1:1 transformers with the same purpose, 

i.e. to force the traction current to return through the designated return conductors (or 

negative feeder) to the traction supply to reduce stray currents which may cause EMI 

with electrical systems in the vicinity of the railway system. There are differences 

between the transformers, the primary and secondary coils of a BT are connected in 

series with the catenary and return conductor, and the coil of an AT is connected as 

shunt between the catenary and negative feeder and the midpoint of this coil is 
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