CELLULASES AND XYLANASE PRODUCTION BY *Aspergillus fumigatus* SK1 THROUGH SOLID STATE FERMENTATION FOR ETHANOL FERMENTATION

ANG SIOW KUANG

A thesis submitted in fulfilment of the requirements for the award of the degree of
Doctor of Philosophy (Biosciences)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

MARCH 2015
SPECIALLY DEDICATED TO MY BELOVED DAD AND MUM

“THANKS FOR ALL SUPPORT AND UNDERSTANDING”
ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my supervisor, Assoc. Prof. Dr. Madiah Md Salleh for her encouragement, guidance, critics, advices and motivation that offered throughout the course of this project. The compliment also goes to my co-supervisors, Professor Suraini Abd Aziz and Dr Adibah Yahya for sharing their enthusiasm, knowledge and time.

I would also like to show my appreciation to the Ministry of Higher Education Malaysia (MOHE) and University for financial assistances.

I am also grateful to my fellow laboratory colleagues especially Mdn Huzalina, Mdn Rachmawaty, Mdn Fatimah, Mr Shankar, Ms Noratiqah, Mr Ahmad Fawwaz, Ms Anisah, Mdn Norashikin, Mr Mohd Afiezy and Mr Mohd Hairol for their patience and guidance during long days of laboratory life.

Finally, I would like to thank to my beloved parents and family members for their understanding, moral support and unconditional loves.
ABSTRACT

Direct utilization of oil palm trunk (OPT) without chemical pretreatment for cellulases and xylanase production under solid state fermentation (SSF) was conducted in batch culture. A total of 12 fungal strains from Biorefinery Laboratory collections and 5 strains isolated from wooden board were able to secrete cellulases and xylanase based on the clear zones formed on selective agar plates. *Aspergillus fumigatus* SK1 showed significant enzymes productivities with the xylanase activity of 648.448 U g\(^{-1}\), CMCase of 48.006, FPase of 6.860, β-glucosidase of 16.328 U g\(^{-1}\) and lignin peroxidase of 4.820 U g\(^{-1}\), respectively. Secretion of cellulases and xylanase by *Aspergillus fumigatus* SK1 was further confirmed by zymographic analysis. The crude cellulases-xylanase cocktail was highly stable at temperature lower than 40°C. The optimum temperature for FPase was 60°C and 70°C for CMCase, β-glucosidase, and xylanase. Statistical optimization of cellulases and xylanase production was carried out involving General Factorial Design (GFD), 2-Level-Factorial Design (2LFD), and Central Composite Design (CCD). The GFD optimization demonstrated significant improvement of cellulases and xylanase production in medium supplemented with ammonium sulphate. The significant factors for xylanase production were incubation time and temperature, inoculum size, and ammonium sulphate concentration. These factors were optimized through CCD which produced approximately 4.28 fold higher xylanase activity (1792.43 U/g) compared to that before optimization. The enzymes cocktail produced from SSF was successfully applied in saccharification of chemical untreated OPT, producing a hydrolysate containing a maximum of 15.06 g/L reducing sugars after 24 hours incubation at 40°C. Alcoholic fermentation of the hydrolysate by *Candida tropicalis* RETL-Crl and *Saccharomyces cerevisiae* were resulted in release of 3.067 g/L and 3.151 g/L of ethanol, respectively. The higher ethanol productivity (0.263 g/L/h), \(Y_{\text{plis}}\) (0.476 g/g) and specific ethanol productivity (0.0947 g/L/h/g of biomass) of *Saccharomyces cerevisiae* showed a great potential to be used in ethanol fermentation process.
Penggunaan batang kelapa sawit (OPT) secara terus tanpa prarawatan kimia untuk penghasilan sellulase dan xilanase melalui penapaian keadaan pepejal (SSF) telah dijalankan dalam kultur kelompok. Sebanyak 12 strain kulat daripada koleksi Makmal Biorefinery dan 5 strain kulat dipencilkan daripada papan kayu telah merembeskan sellulase dan xilanase berdasarkan kepada zon yang jelas atas plat-plat agar selektif. Aspergillus fumigatus SK1 telah menunjukkan produktiviti enzim signifikan dengan aktiviti xylanase 648.448 U g⁻¹, CMCase 48.006, FPase 6.860, β-glucosidase 16.328 U g⁻¹ dan lignin peroksida 4.820 U/g. Rembesan sellulase dan xilanase oleh Aspergillus fumigatus SK1 juga telah disahkan oleh analisis secara zymographic. Koktel mentah sellulase-xilanase adalah sangat stabil pada suhu yang kurang daripada 40°C. Suhu optimum untuk FPase adalah 60°C dan 70°C untuk CMCase, β-glucosidase, dan xilanase. Pengoptimuman statistik penghasilan enzim sellulase and xilanase terlibat General Factorial Design (GFD), 2-Level-Factorial Design (2LFD), dan Central Composite Design (CCD) telah dijalankan. Pengoptimuman GFD menunjukkan peningkatan yang ketara untuk sellulase dan xilanase dalam medium yang telah ditambahkan dengan ammonium sulfat. Faktor-faktor signifikan adalah masa pengeraman dan suhu, saiz inokulum, dan kepekatan ammonium sulfat. Faktor-faktor ini telah dioptimumkan melalui CCD untuk menghasilkan aktiviti xilanase yang lebih kurang 4.28 ganda (1792.43 U/g) lebih tinggi daripada keadaan sebelum pengoptimuman. Koktel enzim yang dihasilkan melalui SSF telah berjaya digunakan untuk sakarifikasi OPT tanpa rawatan untuk menghasilkan hidrolisat yang mengandungi 15.06 g/L gula penurun selepas dieram pada 40°C sebanyak 24 jam. Penggunaan hidrolisat tertentu untuk fermentasi alkohol telah dijalankan oleh Candida tropicalis RETL-Crl dan Saccharomyces cerevisiae dan menghasilkan sebanyak 3.067 g/L dan 3.1515 g/L etanol. Produktiviti etanol (0.263 g/L/h), Yp/s (0.476 g/g) dan produktiviti etanol tertentu (0.0947 g/L/h/g biojisim) yang tinggi telah diperolehi daripada Saccharomyces cerevisiae dan ini menunjukkan potensinya untuk digunakan untuk fermentasi etanol.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLES</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxvi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Problems | 1
1.2 Objectives | 4
1.3 Scope of Research | 4

2 LITERATURE REVIEW

2.1 Oil Palm Trunk (OPT) | 6
2.2 Lignocellulose Structure | 7
2.3 Cellulose | 9
2.4 Hemicellulose and Xylan | 10
2.5 Lignin | 12
2.6 Oil palm trunk (OPT) as the Substrate for Hydrolytic Enzymes Synthesis | 13
2.7 Cellulase
 2.7.1 Basic Cellulose Hydrolysis Mechanisms – Endo-Exo Mechanisms Theory 17
 2.7.2 Full Fungus Cellulose Degradation Mechanisms – Induction and Catabolite Repression Mechanisms Theory 19
2.8 Hemicellulases 20
 2.8.1 Mechanisms of Xylan Hydrolysis 22
2.9 Cellulase and Xylanase Producing Microorganisms 24
2.10 Aspergillus fumigatus 29
2.11 Applications of Cellulase and Xylanase 32
 2.11.1 Bioethanol 33
2.12 Ligninase 35
2.13 Solid-State Fermentation 39
 2.13.1 The Microscopic View of Fungi Growth in SSF System 44
 2.13.2 Solid-State Fermentation Bioreactor systems 46
2.14 Factors that Influence Cellulases and Xylanase Production Using Solid State Fermentation through Lignocellulosic Biomass 51
 2.14.1 Moisture Content 51
 2.14.2 Incubation Temperature 54
 2.14.3 Particle Size 54
 2.14.4 Inoculum Size 58
 2.14.5 Nitrogen Sources 58
2.15 Statistical Factor Screening and Optimization 63
 2.15.1 Details of Selected Statistical methodology 65

3 GENERAL MATERIALS AND METHODOLOGY 72
3.1 Experimental Design 72
3.2 Selection of Potential Cellulases and Xylanase Producing Fungi 74
 3.2.1 Isolation of Potential Fungi 74
3.2.2 Inoculum Preparation and Spores Harvesting 74
3.2.3 Qualitative Screening 75
 3.2.3.1 Qualitative Screening of Cellulolytic and Xylanolytic Fungi 75
 3.2.3.2 Medium for Qualitative Screening 76
3.2.4 Quantitative Selection 77
3.3 OPT as Substrate for Lignocellulose Degrading Fungi 78
 3.3.1 Crude Enzymes Extraction and Analysis 78
 3.3.2 Determination of Reducing Sugar – DNS Method 79
3.3.3 Enzyme Activity 79
 3.3.3.1 CMCase Assay 80
 3.3.3.2 FPase Assay 80
 3.3.3.3 β-glucosidase Assay 81
 3.3.3.4 Xylanase Assay 81
 3.3.3.5 Lignin Peroxidase Assay 81
 3.3.3.6 Determination of Protein Content 82
3.4 Determination of Cellulose, Hemicellulose and Lignin Content 83
 3.4.1 Determination of Extractives 84
 3.4.2 Determination of Hemicellulose 84
 3.4.3 Determination of Lignin Content 84
 3.4.4 Cellulose Content 85
3.5 Determination of Polyoses using High Performance Liquid Chromatography (HPLC) 85
3.6 Determination of Ethanol Using Gas Chromatography (GC) 86

4 ISOLATION, IDENTIFICATION AND SCREENING OF POTENTIAL CELLULOLYTIC AND XYLANOLYTIC FUNGI FOR UNTREATED OPT DEGRADATION 87
4.1 Introduction 87
4.2 Methods and Materials 90
 4.2.1 Isolation of Potential Fungi 90
 4.2.2 Inoculum Preparation 90
 4.2.3 Identification of Fungi Species through Molecular Analysis 90
 4.2.3.1 DNA Extraction 90
 4.2.3.2 Gel Electrophoresis 91
 4.2.3.3 Polymerase Chain Reaction (PCR) Amplification on 18S rDNA and Internal Transcribed Spacer (ITS) Regions of Fungi 92
 4.2.4 Qualitative Screening Medium 93
 4.2.5 Substrate 94
 4.2.6 Quantitative Screening and Sampling Procedures 94
 4.2.7 Analysis Procedures 94
4.3 Results and Discussion 95
 4.3.1 Isolation of Fungi from Decomposed Wood 95
 4.3.2 Qualitative Screening for Lignocellulose Degraders 100
 4.3.3 Quantitative Screening for Lignocellulose Enzymatic Hydrolysis Strains 105
 4.3.4 PCR Amplification and Sequencing of 18S rDNA and ITS Gene 114
4.4 Conclusion 121

5 PRODUCTION OF CELLULASES AND XYLANASE BY Aspergillus fumigatus SK1 USING UNTREATED OIL PALM TRUNK THROUGH SOLID STATE FERMENTATION 122
5.1 Introduction 122
5.2 Methods and Materials 124
5.2.1 Strain Isolation and Inoculum Preparation 124
5.2.2 Effect of Cellulolytic and Xylanolytic Enzymes Productions by SSF using Different OPT Substrate Size 124
5.2.3 Crude Cellulases and Xylanase Enzymes Extraction 125
5.2.4 Analysis Procedure 125
5.2.5 Chemical Analysis of OPT Compositions 125
5.2.6 Characterization of CMCase, FPase, Xylanase and β-glucosidase Activities for Optimum Temperature, pH and Enzyme Stability 126
5.2.7 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 126
5.2.8 Xylanase G11 Gene PCR Amplification 127
5.3 Results and Discussion 128
5.3.1 Macroscopic and Microscopic Characteristic of Aspergillus fumigatus SK1 128
5.3.2 Optimization of Cellulases and Xylanase Production in Solid-state Fermentation by Substrate Size 129
5.3.2.1 Cellulases Production Profile 132
5.3.2.2 Xylanase Production Profile 132
5.3.2.3 Comparative Studies 135
5.3.3 Characterization of Crude Cellulases and Xylanase Enzyme 138
5.3.4 SDS-PAGE and Zymogram of Crude Cellulases and Xylanase 145
5.3.5 Sequence Analysis of Glycoside Hydrolyse GH11 Xylanases in Aspergillus fumigatus SK1 146
5.4 Conclusion 149
6 SCREENING AND OPTIMIZATION OF FACTORS FOR CELLULASE AND XYLANASE PRODUCTION USING STATISTICAL FACTORIAL DESIGN

6.1 Introduction 151

6.2 Materials and Methods 153
 6.2.1 Microorganisms and Growth Conditions 153
 6.2.2 Medium Composition 154
 6.2.3 General Factorial Design (GFD) 154
 6.2.3.1 Effect of Ammonium Sulphate and Ammonium Chloride on Cellulase and Xylanase Production using One-Factor-at-a-Time (OFAT) Approach 156

6.2.4 The Experiment Design of 2-Level Factorial Design 156

6.2.5 The Experiment Design of CCD 157

6.2.6 Analytical Method 159

6.3 Results and Discussion 159

6.3.1 Study of Nitrogen Supplementation Effect on Cellulases and Xylanase Production using General Factorial Design (GFD) 159
 6.3.1.1 Ammonium Sulphate and Ammonium Chloride as the Sole Nitrogen Source in Medium for Cellulase and Xylanase Production 171

6.3.2 Screening of Significant Parameters for Cellulase and Xylanase Production using 2-Level Factorial Design (2LFD) 173
 6.3.2.1 Cellulase 174
 6.3.2.1.1 Response Analysis 186
 6.3.2.1.2 Residual Analysis 191
 6.3.2.2 Xylanase 196
 6.3.2.2.1 Response Analysis 197
6.3.2.2 Residual Analysis 198
6.3.2.3 Curvature Analysis 201
6.3.3 Central Composite Design (CCD) 202
 6.3.3.1 Model Development and Regression Analysis 203
 6.3.3.2 Response Analysis 207
 6.3.3.3 Localization of Optimum Conditions 208
 6.3.3.4 Model Validation 213
6.4 Conclusion 215

7 APPLICATIONS OF CRUDE CELLULASE AND XYLANASE PRODUCED BY Aspergillus fumigatus SK1 ON POLYOSES - ETHANOL PRODUCTION 217
7.1 Introduction 217
7.2 Methods and Materials 219
 7.2.1 Solid-state Fermentation Conditions 219
 7.2.2 Crude Cellulases and Xylanase Enzymes Extraction 219
 7.2.3 Saccharification of Untreated OPT for Sugars Production by Crude Cellulases and Xylanase 220
 7.2.3.1 Substrate Concentration 220
 7.2.3.2 Tween-80 Concentration 221
 7.2.3.3 Incubation Temperature 221
 7.2.4 Analytical Methods 221
 7.2.5 Chemical Analysis of OPT Compositions 222
 7.2.6 Scanning Electron Microscopy (SEM) Analysis 222
 7.2.7 Fourier Transform Infrared (FTIR) Spectroscopy 222
 7.2.8 Ethanol Production 222
7.3 Results and Discussion 223
 7.3.1 Saccharification of Chemical-untreated OPT for Sugar Productions 223
7.3.1.1 Influences of Substrate Loading on Oil Palm Trunk Hydrolysis using Crude *Aspergillus fumigatus* SK1 Cellulases and Xylanase

7.3.1.2 Influences of Tween-80 Loading on Oil Palm Trunk Hydrolysis using Crude *Aspergillus fumigatus* SK1 cellulases and Xylanase

7.3.1.3 Influences of Incubation Temperature on Oil Palm Trunk Hydrolysis using Crude *Aspergillus fumigatus* SK1 Cellulases and Xylanase

7.3.2 Characterisation of Enzymatic Hydrolysed OPT

7.3.2.1 Scanning Electron Microscopy (SEM) Analysis

7.3.2.2 Fourier Transform Infrared (FTIR) Spectroscopy Analysis

7.3.3 Conversion of Lignocellulosic Sugars into Bioethanol

7.4 Conclusion

8 CONCLUSION AND SUGGESTION

8.1 Conclusion

8.2 Suggestion

REFERENCES

Appendices A - P
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLES</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The chemical composition of oil palm biomass</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of amorphous and crystalline structural properties of cellulose</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Bioconversion processes of OPT into various value-added products</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>The modes of cellulase hydrolyze actions</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Different types and functions of the major xylanolytic enzymes</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Cellulase and xylanase producing microorganisms</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>Differences between fungi and bacteria cellulases</td>
<td>26</td>
</tr>
<tr>
<td>2.8</td>
<td>Comparison between different fungi for cellulase production</td>
<td>27</td>
</tr>
<tr>
<td>2.9</td>
<td>Cellulase and xylanase production by Aspergillus fumigatus</td>
<td>31</td>
</tr>
<tr>
<td>2.10</td>
<td>Potential applications of cellulase and xylanase</td>
<td>32</td>
</tr>
<tr>
<td>2.11</td>
<td>The important properties of ethanol as biofuel</td>
<td>35</td>
</tr>
<tr>
<td>2.12</td>
<td>Production of lignin-degrading enzymes using agricultural residuals in SSF</td>
<td>36</td>
</tr>
<tr>
<td>2.13</td>
<td>General comparison between solid-state fermentation (SSF) and submerged liquid fermentation (SLF)</td>
<td>41</td>
</tr>
<tr>
<td>2.14</td>
<td>Cellulases and xylanase production comparison between solid-state fermentation and submerged fermentation.</td>
<td>42</td>
</tr>
<tr>
<td>2.15</td>
<td>Features, limitations, and solutions to common bioreactor systems in SSF</td>
<td>49</td>
</tr>
</tbody>
</table>
2.16 The effects of substrate moisture on cellulases and xylanase production in SSF

2.17 The effects of incubation temperatures on cellulases and xylanase production in SSF

2.18 The effects of substrate particle sizes on cellulases and xylanase production in SSF

2.19 The effects of fungi inoculation sizes on cellulases and xylanase production in SSF

2.20 The effects of nitrogen supplements on cellulases and xylanase production in SSF

2.21 The types of experimental design and optimum conditions for maximum enzymes production using lignocellulose wastes

3.1 Composition of CMC-agar plates

3.2 Composition of birchwood-xylan agar plates

3.3 Composition of Modified Mendel Medium

3.4 Trace elements

3.5 Summary of the fibre analysis and its required detergents and reagents.

3.6 Retention time of reference standards

4.1 Macroscopic features of fungal isolates identified by comparison with those reported in literatures

4.2 The comparison of clearing zones produced by cellulases and xylanase

4.3 Cellulases production by 17 strains of fungi under solid-state fermentation using oil palm trunk as the sole carbon source

4.4 Xylanase, lignin-peroxidase and total reducing sugars production by 17 strains of fungi under SSF using oil palm trunk as the sole carbon source

4.5 Comparison between different fungi and substrates for cellulase and xylanase productions under solid-state fermentation
4.6 Comparison of chemical composition of lignocellulosic biomass 112
4.7 Species of fungi determined by amplification of 18S rDNA 117
4.8 Species of fungi determined by amplification of internal transcribed spacer (ITS) primer pairs 118
5.1 Comparison on chemical composition of oil palm fibres 130
5.2 Cellulases and xylanase production of different fungi and substrate under solid-state fermentation (SSF) 137
5.3 Amino acid composition of Aspergillus fumigatus SK1 GH11 xylanase 149
6.1 The combination of different nitrogen sources in general factorial design 155
6.2 The level of variables for 2-level factorial design 157
6.3 Assigned concentration of selected parameters and their levels in CCD for xylanase production by Aspergillus fumigatus SK1. 158
6.4 General factorial design of organic and inorganic nitrogen sources screening 161
6.5 Analysis of variance (ANOVA) for nitrogen sources screened by General Factorial Design (GFD) 163
6.6 The experiment design and results of 2-level factorial design 175
6.7 The analysis of variance (ANOVA) on CMCase production 188
6.8 The analysis of variance (ANOVA) on FPase production 189
6.9 The analysis of variance (ANOVA) on β-glucosidase production 190
6.10 The analysis of variance (ANOVA) on xylanase production 198
6.11 The experiment design of CCD for four variables along with observed results for xylanase production 204
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.12</td>
<td>Analysis of variance (ANOVA) for xylanase production using Central Composite Design (CCD)</td>
<td>206</td>
</tr>
<tr>
<td>6.13</td>
<td>Xylanase and cellulase produced from different fungi and substrates in solid state fermentation</td>
<td>214</td>
</tr>
<tr>
<td>6.14</td>
<td>Comparisons between natural and degraded OPT based on fibre composition and macronutrients content.</td>
<td>215</td>
</tr>
<tr>
<td>7.1</td>
<td>Nutrient composition of ethanol fermentation</td>
<td>223</td>
</tr>
<tr>
<td>7.2</td>
<td>The infrared wavelength and peak assignment of FTIR spectra</td>
<td>243</td>
</tr>
<tr>
<td>7.3</td>
<td>Relative ratio between lignin, cellulose and hemicellulose bands intensities for raw and degraded OPT.</td>
<td>245</td>
</tr>
<tr>
<td>7.4</td>
<td>Process parameters for bioethanol production by C. tropicalis RETL-Crl and Saccharomyces cerevisiae using OPT hydrolystate.</td>
<td>250</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURES NO.</th>
<th>TITLES</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Lignocellulose structure</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Cellulose structure</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Lignin precursors.</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Mechanism of cellulolysis.</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Cellulase induction in H. jecorina.</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Specific attack sites and function of xylanolytic enzymes system.</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>Cleavage of lignin by lignin peroxidase</td>
<td>37</td>
</tr>
<tr>
<td>2.8</td>
<td>The relationship between solid particle and gas phase in SSF which involve growth of filamentous fungi</td>
<td>40</td>
</tr>
<tr>
<td>2.9</td>
<td>Microscale view of particle degradation that involve filamentous fungi</td>
<td>45</td>
</tr>
<tr>
<td>2.10</td>
<td>The common bioreactor systems in SSF.</td>
<td>48</td>
</tr>
<tr>
<td>2.11</td>
<td>General comparisons between 2-level factorial and one-factor-at-a-time</td>
<td>68</td>
</tr>
<tr>
<td>2.12</td>
<td>Central composite design (CCD) for three factors</td>
<td>70</td>
</tr>
<tr>
<td>2.13</td>
<td>Box-Behnken design (BBD) for three factors</td>
<td>70</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental design</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Experiment design</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>The colony morphology of new fungi strains on PDA isolated from decomposed wood board.</td>
<td>96</td>
</tr>
<tr>
<td>4.2</td>
<td>Qualitative screening for cellulolytic activity on CMC-agar plates with Congo-red staining.</td>
<td>101</td>
</tr>
</tbody>
</table>
4.3 Qualitative screening for xylanolytic activity on birchwood-xylan agar plates with iodine staining.

4.4 Diagram representation of primers position on rDNA

4.5 Phylogenetic analysis of partial 18S rDNA sequences between 12 fungi clones by Neighbor-joining (NJ) method with bootstrap of 1000

4.6 Phylogenetic analysis of partial internal transcribed spacer (ITS) region between 12 fungi clones by Neighbor-joining (NJ) method with bootstrap of 1000

5.1 Colony morphology (A and B) and microscopic (C) characteristics of *Aspergillus fumigatus* SK1 (400X magnification).

5.2 SEM micrographics of oil palm trunk fibers.

5.3 Highest cellulases and xylanase activities on different OPT particles sizes of *Aspergillus fumigatus* SK1

5.4 Profiles of cellulases (a) and xylanase (b) production by *Aspergillus fumigatus* SK1 in SSF using 125μm oil palm trunk as sole carbon source

5.5 Optimum temperature of crude CMCase, FPase, β-glucosidase, and xylanase of *Aspergillus fumigatus* SK1.

5.6 Thermostability of crude CMCase (A), FPase (B), β-glucosidase (C), and xylanase (D) of *Aspergillus fumigatus* SK1.

5.7 Effect of pH on crude CMCase, FPase, β-glucosidase, and xylanase of *Aspergillus fumigatus* SK1.

5.8 Optimum pH (A) and stability of crude CMCase (B), FPase (C), β-glucosidase (D), and xylanase (E) of *Aspergillus fumigatus* SK1.

5.9 SDS-PAGE and zymogram analysis of crude cellulases and xylanase.

5.10 Predicted PCR conditions by Primer 3.
6.1 Parity plots of distribution actual vs predicted values of CMCase (A), FPase (B), β-glucosidase (C), and xylanase (D) 165
6.2 Normal probability of residuals plot for CMCase (A), FPase (B), β-glucosidase (C), and xylanase (D) 166
6.3 Residuals versus predicted response for CMCase (A), FPase (B), β-glucosidase (C), and xylanase (D) 167
6.4 3D surface plot showing effects of different organic and inorganic nitrogen sources combinations on CMCase (A), FPase (B), β-glucosidase (D), and xylanase (E) (U/g) productions 170
6.5 The effect of different concentration of ammonium sulphate and ammonium chloride on CMCase (A), FPase (B), β-glucosidase (A), and xylanase (C) production. 172
6.6 Half-normal plots for the effects on CMCase (A), FPase (B), and β-glucosidase (C) production 192
6.7 Perturbation graph for CMCase (A), FPase (B), and β-glucosidase production 194
6.8 The moisture distribution model between two particles in SSF 196
6.9 Half-normal plots for the effects on xylanase production 199
6.10 Perturbation graph for xylanase production 200
6.11 Central composite design for (a) two and (b) three factors. Blue points denote factor points; red points denote star points 202
6.12 Normal plot of residuals for xylanase production 207
6.13 Residual versus predicted plot for xylanase production 208
6.14 3D response surface plots showing relative effect of two variables on xylanase (U/g) production. 209
6.15 Perturbation graph showing the effect of each independent variable towards xylanase production at their respective middle point.

7.1 Reducing sugars production based on OPT concentration.

7.2 Effects of OPT concentration towards CMCase activities during saccharification.

7.3 Effects of OPT concentration towards FPase activities during saccharification.

7.4 Effects of OPT concentration towards β-glucosidase activities during saccharification.

7.5 Effects of OPT concentration towards xylanase activities during saccharification.

7.6 Reducing sugars production based on OPT concentration.

7.7 Effects of Tween-80 concentration towards CMCase activities during saccharification.

7.8 Effects of Tween-80 concentration towards FPase activities during saccharification.

7.9 Effects of Tween-80 concentration towards β-glucosidase activities during saccharification.

7.10 Effects of Tween-80 concentration towards xylanase activities during saccharification.

7.11 Protein concentrations in medium relative to different concentration of Tween-80 during saccharification of OPT.

7.12 Reducing sugars production based on OPT concentration.

7.13 Effects of incubation temperature towards CMCase activities during saccharification.

7.14 Effects of incubation temperature towards FPase activities during saccharification.
7.15 Effects of incubation temperature towards β-glucosidase activities during saccharification. 236
7.16 Effects of incubation temperature towards xylanase activities during saccharification. 236
7.17 Protein concentrations in medium relative to different incubation temperature during saccharification of OPT. 237
7.18 SEM micrographics of OPT fibers before enzymatic saccharification (400X magnification). 219
7.19 SEM micrographics of OPT with internal structure exposed fibril after enzymatic saccharification. (A) 750X magnification; (B) 1000X magnification 240
7.20 SEM micrographics of OPT with total destructed fibril after enzymatic saccharification (350X magnification). 241
7.21 FTIR spectra of oil palm trunk before and after saccharification. 242
7.22 FTIR analysis within the range of 850 to 1800 cm\(^{-1}\) for oil palm trunk before (blue line) and after (red line) saccharification. 242
7.23 Profile of ethanol produced by *Candida tropicalis* RETL-Crl using oil palm trunk hydrolysates. 247
7.24 Profile of ethanol produced by *Saccharomyces cerevisiae* using oil palm trunk hydrolysates. 248
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>2LFD</td>
<td>Two-factorial design</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CCD</td>
<td>Central Composite Design</td>
</tr>
<tr>
<td>CMC</td>
<td>Carboxymethyl cellulose</td>
</tr>
<tr>
<td>CMCase</td>
<td>Carboxymethyl cellulase</td>
</tr>
<tr>
<td>DNS</td>
<td>Dinitrosalicylic acid</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscope</td>
</tr>
<tr>
<td>FID</td>
<td>Flame Ionized Detector</td>
</tr>
<tr>
<td>FPase</td>
<td>Filter Paper culture enzyme</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>GFD</td>
<td>General Factorial Design</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Sulphuric acid</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen Peroxides</td>
</tr>
<tr>
<td>HNO₃</td>
<td>Nitric acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>N/A</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>OPT</td>
<td>Oil Palm Trunk</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
<tr>
<td>pNPG</td>
<td>p-nitrophenyl β-D-glucoside</td>
</tr>
<tr>
<td>RID</td>
<td>Refractive Index Detector</td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Methodology</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulfate</td>
</tr>
<tr>
<td>U/g</td>
<td>Unit of enzyme per gram</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>μL</td>
<td>Micro liter</td>
</tr>
<tr>
<td>μm</td>
<td>Micro meter</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLES</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Qualitative Screening for Cellulolytic Fungi</td>
<td>282</td>
</tr>
<tr>
<td>B</td>
<td>Qualitative Screening of Xylanolytic Fungi</td>
<td>283</td>
</tr>
<tr>
<td>C</td>
<td>Determination of Reducing Sugar – DNS Method</td>
<td>284</td>
</tr>
<tr>
<td>D</td>
<td>Determination of CMCase Activity</td>
<td>286</td>
</tr>
<tr>
<td>E</td>
<td>Determination of FPase</td>
<td>289</td>
</tr>
<tr>
<td>F</td>
<td>Determination of β-glucosidase Activity</td>
<td>292</td>
</tr>
<tr>
<td>G</td>
<td>Determination of Xylanase Activity</td>
<td>295</td>
</tr>
<tr>
<td>H</td>
<td>Determination of Lignin Peroxidase Activity</td>
<td>298</td>
</tr>
<tr>
<td>I</td>
<td>Determination of Protein Content</td>
<td>300</td>
</tr>
<tr>
<td>J</td>
<td>Determination of Extractives</td>
<td>303</td>
</tr>
<tr>
<td>K</td>
<td>Determination of Hemicellulose Content</td>
<td>304</td>
</tr>
<tr>
<td>L</td>
<td>Determination of Lignin and Cellulose Content</td>
<td>305</td>
</tr>
<tr>
<td>M</td>
<td>Determination of Spores Content through Hemocytometer</td>
<td>306</td>
</tr>
<tr>
<td>N</td>
<td>Buffer Tables</td>
<td>308</td>
</tr>
<tr>
<td>O</td>
<td>Substrate loading - enzyme recovery coefficients</td>
<td>310</td>
</tr>
<tr>
<td>P</td>
<td>Publication</td>
<td>312</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Problems

Malaysia is one of the largest palm oil producer in the world with 18.2 million tons of palm oil production in year 2011/2012 (Michael, 2012). In the year 2012, an estimation of 4.56 million hectare land were planted with palm oil trees (Michael, 2012). Normally, after 25 to 30 years, the palm oil trees will be cleared off and replanted with new trees due to decreased yield. It is estimated that the replanting process for each hectare of oil palm trees produces about 66 tonnes of palm trunks and 14.4 tonnes of fronds (Lim, 1986). Therefore, according to some research, the replanting process can generate million tonnes of oil palm biomass including trunks, fronds, and empty fruit bunches (EFB) annually.

Within these few decades, environmental issues and pollutions caused by agriculture wastes have gained public concerns, which in turn have boosted more researches on technologies that promote the reuse of these wastes as alternative materials for commodities production, particularly for chemical, energy and food applications. Most of these commodities are in fact more economical since they require less production energy (Nigam and Pandey, 2009). Due to these reasons, these readily available renewable and free resources have the potential to be transformed into value-added products such as biofuels, biochemical, biopesticides, biopulp, biobleach, biopromoters, and biofertilizer (Nigam and Pandey, 2009). Furthermore, the enforcement of zero burning and strict pollutants diminishing policies is forcing the industries to mitigate the disposal of these biomasses.
Oil palm trunk is a lignocellulose containing waste that is rich in cellulose, hemicellulose, and lignin. The cellulose and hemicellulose are known as reservoir of fermenting sugars due to their structures, remarked as polymers fractions of sugars. Degradation of this complex biomass into monomeric sugars requires a complete multiple hydrolytic enzyme cocktail including cellulases, hemicellulases, and ligninase to act synergistically. Yet, this degradation process can be prevented or limited in natural circumstances due to the existence of robust lignin layers, highly recalcitrant crystalline cellulose, and strong bonding in hemicellulose.

To increase the accessibility of the fibres to enzyme action, some previous works suggested chemical pre-treatment using acid, alkaline or solvents. However, these harsh treatments can cause the losses of some valuable sources such as sugars from hemicellulose and cellulose, and the lignin can be degraded into other by-products such as furfural, 5-hydroxymethyl-2 furfural, acetic acid, phenols, heavy metals, levulinic acid, and formic acid (Mussatto and Roberto, 2004) that have inhibition effects on fermentation yields (Mussatto and Teixeira, 2010). Therefore, the ultimate solution to prevent the formation of inhibitors and reduce the dispersion costs of chemical liquid wastes is to minimize the use of pre-treated biomass, and the use of enzyme-catalysed degradation in this case can provide good production yields without generating side products.

Cellulase and xylanase are major enzyme groups responsible for biodegradation of lignocellulosic materials into polyoses. These cellulases, which include endoglucanase, exoglucanase, and β-glucosidase, work synergistically to degrade cellulose. Endoglucanase initiate the catalytic disruption of internal bonds within the cellulose crystalline structure to produce oligosaccharides. Exoglucanase attack non-reducing end of oligosaccharide chains to produce tetrasaccharides or cellobiose (disaccharides), and finally, β-glucosidase complete the hydrolysis process by converting cellobiose fragment into glucose (Miyamoto, 1997). Xylanase is a group of glycosidase enzymes that catalyse the xylanolytic endohydrolysis of 1,4-β-D-xylosidic linkages in xylan, which is the principal constituent of hemicellulose to produce pentose sugars (xylose and arabinose) as well as hexane sugars (galactose and mannose). These in turn become the primary carbon source for cell metabolisms.
and good substrates for bioethanol and chemicals production (Collins et al., 2005; Bisaria and Ghose, 1981).

Currently, cellulase, xylanase, and pectinase contribute almost 20% of world enzyme market (Polizeli et al., 2005). However, high enzyme production costs and low production yields have hindered its industrial applications (Kang et al., 2004). Cellulase and xylanase can be produced through submerged fermentation (SmF) (Tolan and Foody, 1999) and solid-state fermentation (SSF) (Pandey et al., 1999). In fact, most of the commercially available cellulase and xylanase are produced through SmF using pure substrates since it is easier to control and maintain the fermentation factors. Nevertheless, SSF is gaining more attentions due to its higher volumetric productivities, higher product stability, lower contamination risk, and lower operating costs (Mitchell et al., 2006). SSF has been reported as the successful method to produce huge amount of important enzymes such as cellulase, ligninase, xylanase, and amylase for industrial usage (Pandey et al., 2000). Therefore, to produce such high potential enzymes through degradation of lignocellulosic materials, filamentous fungi are the superior microbial group which has better adaption to SSF since the hyphae can grow on the surface of moist particles as well as penetrate into inter-particles spaces and colonize it (Pandey et al., 2011; Muller dos Santos et al., 2004).

The production of thermostable cellulase and xylanase by fungi through various palm oil residuals such as palm kernel cake (Kheng and Omar, 2005), palm oil mill residual (Prasertsan et al., 1992), and oil palm empty fruit bunch (Bahrin et al., 2011) have been widely reported. Yet, none of these literatures have demonstrated the use of untreated oil palm trunk as the sole carbon sources for fungi in SSF. The oil palm trunk used as sole carbon source in this research is highly suitable for industrial scale applications since it is cheap, readily available, easy to store, has low moisture content, and can be stored in aerobically stable storage (Mielenz, 2009). Therefore, by conducting some comprehensive and highly efficient optimization strategies on all physiochemical factors that can significantly affect the fermentation process, highly potential yet economical crude enzymes cocktail with high activities
of xylanases and cellulases can be produced; this is more plausible to accelerate the
development of more sustainable biofuel production methods.

1.2 Objectives

The objectives of this research are:

1. To screen, isolate, and identify the most effective fungi for cellulase and
 xylanase production in solid-state fermentation using untreated palm oil trunk
 as a substrate.
2. To partially characterize the crude cellulase and xylanase enzyme by selected
 fungi.
3. To screen and optimize factors influencing cellulases and xylanase
 production using general factorial design (GFD), two-level factorial design
 (2LFD) and central composite design (CCD).
4. To optimize the production of polyoses during saccharification of untreated
 oil palm trunk using crude cellulases and xylanase.
5. To conduct kinetic evaluation on bioethanol production process.

1.3 Scope of Research

The scope of this research is to study the biodegradation of untreated oil palm
trunk using locally isolated fungi to produce high activities of cellulases and
xylanase through solid-state fermentation. All of the selected fungi were screened
through quantitative and qualitative analyses to identify the isolate that was capable
of secreting extracellular cellulolytic and xylanolytic enzymes. The cellulases and
xylanase production of selected fungi were optimized using statistical approaches.
The best nitrogenous supplement in the basal medium was determined using general
factorial design (GFD). The two-level factorial design (2LFD) was used to select the
most significant parameters that influenced the cellulases and xylanase production,
and lastly CCD was used to determine their optimal values. The thermostability and acid-alkaline tolerant of crude cellulases and xylanase were characterized while the major components of cellulases (endoglucanase, exoglucanase, and \(\beta \)-glucosidase) and xylanase were observed in SDS-PAGE and zymogram. The presence of G11 xylanase gene in the crude enzyme was further confirmed through molecular and SDS-PAGE analysis. The saccharification ability of crude cellulases-xylanase cocktails to degrade the untreated oil palm trunk for sugars production was evaluated. Through alcoholic fermentation of reducing sugars in OPT hydrolysates by fermented yeast, better understanding was obtained on the types of sugars that had contributed to ethanol production.
REFERENCES

