APPLICATION OF MAGNETIC FIELD FOR REDUCTION OF SLUDGE BULKING IN ACTIVATED SLUDGE SYSTEM

NUR SYAMIMI ZAIDI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

AUGUST 2016
Dedicated to my precious love

ABANG, KHAYLA ZAHRA, MAK & AYAH
ACKNOWLEDGEMENT

In the name of Allah the Most Gracious, the Most Merciful. First and foremost, I am truly grateful for the blessings of Allah that gives me the strength to complete this thesis. I would like to convey my highest gratitude to all my supervisors; Associate Professor Dr. Johan Sohaili and Associate Professor Dr. Khalida Muda for their excellent supervision, encouragement, understanding and patience throughout my study. May Allah bless and reward all of them.

A special thanks to Associate Professor Dr. Zaharah Ibrahim for allowing me to use several equipment and facilities at the Faculty of Bioscience and Bioengineering laboratories. To Dr. Robiah of the Mathematics Department, Faculty of Science, thank you very much for assisting me on the statistical analysis. I would also like to express my appreciation to all the laboratory staff; Encik Razale, Rahimah, Encik Shamsudin and Encik Jemahari. I would also like to extend my thanks to all my seniors, my colleagues and dear friends for the continuous support, advice and motivation during my study.

I am sincerely indebted to my mother, father and other family members for all the love, support and du’a. Lastly to my precious husband, Ahmad Syuwari, thank you very much for all the unconditional love, support, sacrifice and du’a during the hard times. All of you are my reasons to continue striving and overcome all obstacles.

Special thanks to the Ministry of Science Technology and Innovation (MOSTI) and UTM for funding this research under a project number 4S032.
ABSTRACT

Activated sludge treatment process is the most commonly used technology in treating municipal wastewater. Nevertheless, its stable operation is always plagued by occurrence of sludge bulking. Existing control approaches have led to various drawbacks and caused more problematic issues in the treatment system. Therefore, this study investigated the use of magnetic field on activated sludge in controlling the occurrence of sludge bulking and to further enhance wastewater treatment process. The initial stage of the study involved batch tests where statistical experimental design was implemented. Factorial design was carried out first, followed by central composite design experiment. The studies showed that turbidity reduction, aggregation and settling velocity of the activated sludge were affected by factors of magnetic field, exposure time, biomass concentration and mixing intensity. Interaction effects between the factors were also observed. Statistical models describing relationship between the variables were developed. From the study, the highest turbidity reduction (89.1%), aggregation (97.8%) and settling velocity (0.68 cm/min) were achieved under optimal condition of 88.0 mT magnetic field, 16.5 hrs exposure time, 2800 mg/L biomass concentration and 300 rpm mixing intensity. The following stages of the study were conducted in 6 L column reactors. The reactors were operated under long period of sludge retention time of 20 days and in deficient dissolved oxygen of less than 2 mg/L in order to induce the sludge bulking phenomenon. After reaching its stable state, the activated sludge under the magnetic field exposure showed significant results as compared to without the exposure. The average aggregation and settling velocity for the magnetically exposed activated sludge were 89% and 0.59 m/hr as compared to 68% and 0.50 m/hr for the unexposed sludge. Such properties resulted in significant enhancement of sludge volume index at 23.7 mL/g for magnetically exposed activated sludge as compared to 72.2 mL/g for the unexposed sludge. This enhancement benefited the treatment performances whereby the average chemical oxygen demand, ammonia and total phosphorus removal were 87%, 88% and 72% under the magnetic field exposure as compared to 67%, 75% and 44%, respectively without the exposure. Magnetically exposed activated sludge also contained high content of tightly bound extra-cellular polymeric substances (95.6 mg/g VSS) compared to unexposed sludge (61.8 mg/g VSS). Finally, Next Generation Sequencing analysis indicated that magnetically exposed activated sludge showed less possibility of filamentous microorganisms presence compared to the unexposed activated sludge. Overall, analysis confirmed that magnetic field could enhance the settling property of activated sludge through improvement on its aggregation and bioflocculation capability. These imply that magnetic field is reliable for accelerating activated sludge settleability, hence enhancing performance efficiency of the treatment systems. The applied magnetic field was also proven to inhibit proliferation of filamentous microorganisms, thus has potential to inhibit occurrence of sludge bulking.
ABSTRAK

Proses rawatan enapcemar teraktif adalah teknologi yang lazim digunakan dalam merawat sisa air kumbahan perbandaran. Namun begitu, operasinya yang stabil kerap terganggu oleh masalah pukal enapcemar. Pendekatan kawalan sedia ada membawa kepada pelbagai kelemahan dan mengakibatkan lebih banyak masalah kepada sistem rawatan. Justeru itu, kajian ini menyiapkan penggunaan median magnet terhadap enapcemar teraktif dalam mengawal masalah pukal enapcemar dan meningkatkan seberapa keberkesanan proses rawatan sisa air. Di awal kajian, kaedah reka bentuk eksperimen statistik dilaksanakan. Kaedah reka bentuk berfaktor dijalankan terlebih dahulu, diikuti dengan kaedah reka bentuk komposit pusat. Kajian ini menunjukkan bahawa pengurangan kekeruhan, pengagregatan dan halaju pengenapan enapcemar teraktif dipengaruhi oleh faktor median magnet, masa pendedahan, kepekatan biojisim dan intensiti pembauran. Kesaran interaksi yang wujud antara faktor juga diperhatikan. Beberapa model statistik dibina bagi menghubungkan faktor-faktor yang dikaji. Daripada kajian ini, pengurangan tertinggi kekeruhan (89.1%), pengagregatan (97.8%) dan halaju pengenapan (0.68 cm/min) telah dicapai pada keadaan optimum median magnet 88.0 mT, masa pendedahan 16.5 jam, kepekatan biojisim 2800 mg/L dan intensiti pembauran 300 rpm. Kajian seterusnya dijalankan dalam reaktor berisipadu 6 L. Reaktor tersebut beroperasi dalam tempoh masa tahanan enapcemar yang panjang iaitu selama 20 hari dan dengan oksigen terlarut rendah pada kepekatan kurang daripada 2 mg/L bagi menghasilkan fenomena pukal enapcemar. Selepas mencapai keadaan stabil, enapcemar teraktif di bawah pendedahan median magnet menunjukkan hasil yang ketara berbanding tanpa pendedahan. Purata pengagregatan dan halaju pengenapan bagi enapcemar teraktif di bawah dedahan median magnet adalah 89% dan 0.59 m/h berbanding 68% dan 0.50 m/h bagi enapcemar tanpa dedahan. Hal ini menghasilkan peningkatan besar dalam indeks isipadu enapcemar iaitu 23.7 mL/g bagi enapcemar teraktif di bawah dedahan median magnet berbanding 72.2 mL/g bagi enapcemar tanpa dedahan. Peningkatan ini memberi manfaat kepada penyempurnaan permintaan oksigen kimia, ammonia dan jumlah fosforus iaitu 87%, 88% dan 72% di bawah dedahan median magnet berbanding 67%, 75% dan 44% dengan tanpa pendedahan. Enapcemar teraktif di bawah dedahan median magnet juga mengandungi tinggi kandungan polimer tambahan sel yang kuat terikat (95.6 mg/g VSS) berbanding enapcemar tanpa dedahan (61.8 mg/g VSS). Analisis Penjujukan Generasi Terkini juga menunjukkan bahawa enapcemar teraktif di bawah dedahan median magnet mempunyai kurang kehadiran mikroorganisma berserabut berbanding enapcemar yang tidak terdedah. Secara keseluruhan, analisis mengesahkan bahawa median magnet boleh meningkatkan halaju pengenapan enapcemar teraktif melalui peningkatan pada keupayaan penggumpalan. Ini menunjukkan bahawa median magnet mampu meningkatkan keupayaan enap enapcemar teraktif sekaligus, meningkatkan kecepatan prestasi sistem rawatan. Keupayaan kesan median magnet juga terbukti dalam menghalang pembiaakan mikroorganisma berserabut, dan seterusnya berpotensi untuk menghalang berlakunya masalah pukal enapcemar.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xxvi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxix</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxx</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Preamble 1
1.2 Objectives of the Study 3
1.3 Scope of the Study 4
1.4 Significance of the Study 5
1.5 Organization of Thesis 6

2 LITERATURE REVIEWS 9
2.1 Introduction

2.2 Sludge Bulking

2.3 Factors Causing Sludge Bulking
 2.3.1 Concentration of Dissolved Oxygen
 2.3.2 Food-to-Microorganisms (F/M) Ratio
 2.3.3 Nutrients
 2.3.4 Soluble Substrate Concentration
 2.3.5 Sulfide Concentration

2.4 Existing Control Strategies of Sludge Bulking
 2.4.1 Specific Approach
 2.4.1.1 Minimization of Sludge Retention Time
 2.4.1.2 Maintain Higher Level of Dissolved Oxygen Concentration
 2.4.1.3 Selector Installation in Activated Sludge Reactor
 2.4.2 Non-specific Approach
 2.4.2.1 Chlorination
 2.4.2.2 Metal Salts Addition
 2.4.2.3 Synthetic Polymer Addition
 2.4.3 Biological Approach

2.5 Drawbacks / Limitations on Existing Control Strategies of Sludge Bulking
 2.5.1 Drawbacks on Specific Approach
 2.5.2 Drawbacks on Non-specific Approach
 2.5.3 Limitations on Biological Approach

2.6 Application of Magnetic Field in Wastewater Treatment Systems
 2.6.1 Organic Dyes and Color Removal
 2.6.2 High Strength Organic Wastewater
 2.6.3 Nitrogen Removal
 2.6.4 Turbidity and Suspended Solids Removal
 2.6.5 Removal of Heavy Metals
2.7 Mechanisms of Magnetic Field Application
 2.7.1 Magnetization and Exhibition of Magnetic Field
 2.7.2 Magnetic Gradient
 2.7.3 Lorentz Force
 2.7.4 Magnetic Memory
 2.7.5 Magnetohydrodynamic

2.8 Effects of Magnetic Field on Particle Stability
 2.8.1 Coagulation and Aggregation
 2.8.2 Crystallization
 2.8.3 Purification

2.9 Effect of Magnetic Field on Microorganisms
 2.9.1 Growth and Morphology
 2.9.2 Storage Capacity
 2.9.3 Surface Hydrophobicity
 2.9.4 Extra-cellular Polymeric Substances

2.10 Potential Implementation of Magnetic Field in Inhibiting Sludge Bulking

3 EFFECTS OF MAGNETIC FIELD TOWARDS PHYSICAL PROPERTIES OF ACTIVATED SLUDGE

3.1 Introduction
3.2 Materials
 3.2.1 Reactor Set-Up
3.3 Analytical Methods
 3.3.1 Turbidity Reduction
 3.3.2 Aggregation
 3.3.3 Settling Velocity
3.4 Experimental Procedures
 3.4.1 2-Level Factorial Experimental Design
 3.4.2 Response Surface Methodology
3.5 Results and Discussions 82
3.5.1 Effect of Magnetic Field, Exposure Time, Biomass Concentration and Mixing Intensity on Turbidity Reduction, Aggregation and Settling Velocity 82
3.5.2 Factorial Analysis: Turbidity Reduction 87
3.5.2.1 Main Effect 87
3.5.2.2 Interaction Effects 89
3.5.3 Factorial Analysis: Aggregation 92
3.5.3.1 Main Effect 92
3.5.3.2 Interaction Effects 94
3.5.4 Factorial Analysis: Settling Velocity 96
3.5.4.1 Main Effect 96
3.5.4.2 Interaction Effect 99
3.5.5 Response Surface Analysis 100
3.5.6 Experimental Condition Optimization 113
3.6 Conclusions 113

4 EFFECT OF MAGNETIC FIELD EXPOSURE ON THE ACTIVATED SLUDGE SUBJECTED TO LONG SLUDGE RETENTION TIME 116

4.1 Introduction 116
4.2 Materials 117
4.2.1 Wastewater and Activated Sludge 118
4.2.2 Magnetic Device 119
4.2.3 Reactor Set-up 120
4.3 Analytical Methods 122
4.3.1 Physical Characteristics 123
4.3.1.1 Aggregation 123
4.3.1.2 Biomass Concentration 124
4.3.1.3 Settling Velocity 124
4.3.1.4 Sludge Volume Index 125
4.3.1.5 Relative Hydrophobicity 125
4.3.1.6 Surface Charge 126

4.3.2 Removal Performances 127
4.3.2.1 Chemical Oxygen Demand 127
4.3.2.2 Suspended Solids 127
4.3.2.3 Ammonia 128
4.3.2.4 Nitrogen 129
4.3.2.5 Phosphorus 130

4.3.3 Microbial Activity 130

4.4 Experimental Procedures 131

4.5 Results and Discussions 133
4.5.1 Physical Profile of the Reactor System 133
4.5.2 Effect of Magnetic Field under Long Sludge Retention Time on Physical Properties of the Activated Sludge 136
4.5.2.1 Sludge Volume Index and Settling Velocity 136
4.5.2.2 Aggregation, Relative Hydrophobicity and Surface Charge 138

4.5.3 Effect of Magnetic Field Exposure under Long Sludge Retention Time on Chemical Oxygen Demand Removal 142
4.5.4 Effect of Magnetic Field Exposure under Long Sludge Retention Time on Ammonia Removal 145
4.5.5 Effect of Magnetic Field Exposure under Long Sludge Retention Time on Nitrogen Removal 147
4.5.6 Effect of Magnetic Field Exposure under Long Sludge Retention Time on Phosphorus Removal 150
4.5.7 Microbial Activity and Biokinetic
5 EFFECT OF MAGNETIC FIELD EXPOSURE ON ACTIVATED SLUDGE UNDER LOW DISSOLVED OXYGEN

5.1 Introduction
5.2 Materials
5.3 Analytical Methods
 5.3.1 Physical Characteristics
 5.3.2 Floc Characteristics
 5.3.3 Removal Performances
5.4 Experimental Procedures
5.5 Results and Discussions
 5.5.1 Physical Profile of the Reactor System
 5.5.2 Effect of Magnetic Field under Low Dissolved Oxygen on Physical Properties of Activated Sludge
 5.5.3 Characterization of the Activated Sludge Flocs
 5.5.3.1 Morphology of Activated Sludge Flocs
 5.5.3.2 Cellular Characterization of Activated Sludge Floc
 5.5.4 Effect of Magnetic Field under Low Dissolved Oxygen on Removal of Chemical Oxygen Demand
 5.5.5 Effect of Magnetic Field under Low Dissolved Oxygen on Removal of Ammonia
 5.5.6 Effect of Magnetic Field under Low Dissolved Oxygen on Removal of Nitrogen
 5.5.7 Effect of Magnetic Field under Low
Dissolved Oxygen on Removal of Phosphorus

5.6 Conclusions

6 SUSCEPTIBILITY OF FILAMENTOUS MICROORGANISMS IN THE ACTIVATED SLUDGE BULKING SUBJECTED TO MAGNETIC FIELD

6.1 Introduction
6.2 Materials
 6.2.1 Reactor Set-up
6.3 Analytical Methods
 6.3.1 Filamentous Characterization
 6.3.1.1 Culture and Isolation of Filamentous Microorganisms
 6.3.1.2 Gram and Neisser Staining
 6.3.2 Next Generation Sequencing
 6.3.3 Extra-cellular Polymeric Substances
 6.3.3.1 Extraction by Heat Method
 6.3.3.2 Determination of Carbohydrate Component
 6.3.3.3 Determination of Polysaccharides Component
 6.3.3.4 Determination of Protein Component
6.4 Experimental Procedures
6.5 Results and Discussion
 6.5.1 Morphological and Cellular Characterization of Filamentous Isolates from Activated Sludge
 6.5.2 Abundances of the Overall Microorganisms
 6.5.3 Community Structures of Filamentous
Microorganisms

6.5.4 Total Extra-cellular Polymeric Substances Content

6.5.4.1 Content of Loosely-bound EPS and Tightly-bound EPS

6.5.4.2 Chemical Components of Extra-cellular Polymeric Substances

6.6 Conclusions

7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

7.2 Recommendations

REFERENCES

Appendices A-G
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of the specific approaches towards inhibiting the filamentous sludge bulking</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of the non-specific approaches in controlling filamentous sludge bulking</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>Overview of the drawbacks/limitations due to the implementation of existing control strategies</td>
<td>34</td>
</tr>
<tr>
<td>2.4</td>
<td>Removal of various colors and dyes by magnetic separation</td>
<td>41</td>
</tr>
<tr>
<td>2.5</td>
<td>Removal of pollutants in high strength organic wastewater by magnetic field application</td>
<td>43</td>
</tr>
<tr>
<td>2.6</td>
<td>Effects of the magnetic field on the crystallization of CaCO₃ (Zaidi et al., 2014)</td>
<td>58</td>
</tr>
<tr>
<td>2.7</td>
<td>Comparisons of removal performances between magnetic and non-magnetic (conventional) wastewater treatment systems</td>
<td>69</td>
</tr>
</tbody>
</table>
A and Reactor B

4.5 Physical properties (aggregation, relative hydrophobicity and surface charge) of the activated sludge throughout the experiment

4.6 ANOVA of COD removals between Reactor A and Reactor B

4.7 ANOVA of ammonia removals between Reactor A and Reactor B

4.8 ANOVA of nitrite removals between Reactor A and Reactor B

4.9 ANOVA of total phosphorus removals between Reactor A and Reactor B

4.10 Coefficient of biokinetic parameters

4.11 Kinetic coefficients of activated sludge in Reactor A and Reactor B

5.1 Characteristics of wastewater during experimental study

5.2 Average values of the biomass concentration and effluent suspended solids for Reactor A and Reactor B

5.3 ANOVA for the physical properties of activated sludge between reactors

5.4 ANOVA of COD removals between Reactor A and Reactor B
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>ANOVA of ammonia removals between Reactor A and Reactor B</td>
<td>182</td>
</tr>
<tr>
<td>5.6</td>
<td>ANOVA for the removal of orthophosphate and total phosphorus between Reactor A and Reactor B</td>
<td>187</td>
</tr>
<tr>
<td>6.1</td>
<td>List of reagents used in the experiment</td>
<td>194</td>
</tr>
<tr>
<td>6.2</td>
<td>List of equipments/instruments used in the experiment</td>
<td>195</td>
</tr>
<tr>
<td>6.3</td>
<td>Composition of Solution A and Solution B for Gram stain preparation</td>
<td>198</td>
</tr>
<tr>
<td>6.4</td>
<td>Composition of Solution C and Solution D for Neisser stain preparation</td>
<td>199</td>
</tr>
<tr>
<td>6.5</td>
<td>Composition of Solution X, Solution Y and Solution Z for preparation of Lowry solution</td>
<td>203</td>
</tr>
<tr>
<td>6.6</td>
<td>Morphological and cellular characterization of the ten isolated filamentous microorganisms from activated sludge</td>
<td>206</td>
</tr>
<tr>
<td>6.7</td>
<td>Percentage of total reads classified to taxonomic level</td>
<td>212</td>
</tr>
<tr>
<td>6.8</td>
<td>List of phylums and respective filamentous microorganisms’ species (Guo and Zhang, 2012)</td>
<td>216</td>
</tr>
<tr>
<td>6.9</td>
<td>Related groups of filamentous microorganisms database</td>
<td>220</td>
</tr>
<tr>
<td>6.10</td>
<td>The content of EPS during sludge bulking in Reactor A and Reactor B</td>
<td>222</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURES NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Outline of the experimental research works</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Characteristics of activated sludge under present and absent of filamentous microorganisms (Gray, 2004)</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Effect of magnetic field on polar and non-polar molecules (Vick, 1991)</td>
<td>50</td>
</tr>
<tr>
<td>2.3</td>
<td>The Laplace-Lorentz force on a moving charged ion is at right angle of both the ion flowing direction and the magnetic field direction (Bruk et al., 1987)</td>
<td>52</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental setup of which glass flask is fixed in the middle of magnetic cage where all four surfaces were covered with magnets</td>
<td>75</td>
</tr>
<tr>
<td>3.2</td>
<td>Magnetic field lines (top view) exhibited from the magnets’ pairs</td>
<td>75</td>
</tr>
<tr>
<td>3.3</td>
<td>Pareto chart of the (a) turbidity reduction, (b) aggregation and (c) settling velocity of activated sludge</td>
<td>86</td>
</tr>
</tbody>
</table>
3.4 Main effects for the response of turbidity reduction

3.5 Interaction plot for the turbidity reduction

3.6 Main effects plot for the aggregation of activated sludge

3.7 Interaction plot for aggregation

3.8 Main effects for the response of settling velocity

3.9 Interaction plot for the settling velocity

3.10 Residual plots for (a) Turbidity reduction and (b) Aggregation

3.11 Outlier T plots for (a) Turbidity reduction and (b) Aggregation

3.12 (a) Contour and (b) 3D response surface plots representing relationship between magnetic field, exposure time and turbidity reduction (Hold value: Biomass concentration = 3000 mg/L; Mixing intensity = 300 rpm)

3.13 (a) Contour and (b) 3D response surface plots representing relationship between exposure time, biomass concentration and turbidity reduction (Hold value: Magnetic field = 51.5 mT; Mixing intensity = 300 rpm)

3.14 (a) Contour and (b) 3D response surface plots
representing relationship between magnetic field, exposure time and aggregation (Hold value: Biomass concentration = 3000 mg/L; Mixing intensity = 300 rpm)

3.15 (a) Contour and (b) 3D response surface plots representing relationship between magnetic field, biomass concentration and aggregation (Hold value: Exposure time = 24.25 hrs; Mixing intensity = 300 rpm)

3.16 (a) Contour and (b) 3D response surface plots representing relationship between exposure time, biomass concentration and aggregation (Hold value: Magnetic field = 51.5 mT; Mixing intensity = 300 rpm)

4.1 Arrangement of permanent magnets in the fabricated holder (unit in mm)

4.2 Schematic layout of the magnetic activated sludge bioreactor (unit in mm) with Column A located at the middle of four fabricated holder consisted of permanent magnets

4.3 6-L laboratory scale of magnetic activated sludge bioreactor

4.4 Experimental analysis on the effect of magnetic field exposure under long SRT on activated sludge

4.5 Profile of biomass concentration throughout the experiment
4.6 Effluent suspended solids concentration for both reactors throughout the experiment 134

4.7 Profile of SVI and settling velocity (SV) of activated sludge in Reactor A and Reactor B 137

4.8 Profile of relative hydrophobicity and surface charge of the activated sludge throughout the experiment 140

4.9 Profile of COD for both reactor systems throughout the experiment 143

4.10 Profile of ammonia for both reactors throughout the experiment 145

4.11 Influent – Effluent profile and removal performance of nitrite and nitrate for Reactor A 148

4.12 Influent – Effluent profile and removal performance of nitrite and nitrate for Reactor B 148

4.13 Profile of the effluent total organic nitrogen for both reactors throughout the experiment 150

4.14 Profile of orthophosphate for both reactor systems throughout the experiment 151

4.15 Profile of total phosphorus for both reactor systems throughout the experiment 152

4.16 OUR profile in one complete cycle of aeration phase for Reactor A and Reactor B 153
5.1 Experimental analyses on the effect of magnetic field under low DO on the activated sludge in treating municipal wastewater 161

5.2 Profile of DO concentration for Reactor A and Reactor B 165

5.3 Profile of biomass concentrations for Reactor A and Reactor B 167

5.4 Aggregation and SVI profiles of activated sludge for Reactor A and Reactor B 169

5.5 Relative hydrophobicity and surface charge profiles of activated sludge for Reactor A and Reactor B 171

5.6 Morphological development of the activated sludge flocs under magnification of 45x. (a), (b), (c) Flocs developed at early, middle and end stage of the experiment in Reactor A; (d), (e), (f) Flocs developed at early, middle and end stage of the experiment in Reactor B 174

5.7 FESEM microstructure observations on activated sludge under the magnification of 10,000x. (a) Filamentous microorganisms were seen to intertwine among the sludge surfaces; (b) Fat-rod and coccal-types of bacterial morphotypes in sludge Reactor A; (c) Presence of filaments that were still seen in sludge Reactor B 178

5.8 Profile of COD removal for Reactor A and Reactor B 179
5.9 Profile of ammonia removal between Reactor A and Reactor B 181
5.10 Profile of influent-effluent concentration and removal efficiency of nitrite for Reactor A and Reactor B 184
5.11 Influent-effluent concentration of nitrate for Reactor A and Reactor B 185
5.12 Profile of influent-effluent concentration and removal efficiency of total nitrogen for Reactor A and Reactor B 186
5.13 Profile of influent-effluent concentration and removal efficiency of orthophosphate for Reactor A and Reactor B 187
5.14 Profile of influent-effluent concentration and removal efficiency of total phosphorus for Reactor A and Reactor B 189
6.1 Experimental workflow on the study of filamentous’ susceptibility under the effect of magnetic field 196
6.2 Phase-contrast image of filamentous isolates ($FM1_{raw}$) at 1000x magnification 209
6.3 Phase-contrast image of filamentous isolates ($FM8_{RB}$) at 1000x magnification 209
6.4 Phase-contrast image of filamentous isolates ($FM6_{RA}$) at 1000x magnification 210
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>Phase-contrast image of filamentous isolates ($FM2_{raw}$) at 1000x magnification</td>
</tr>
<tr>
<td>6.6</td>
<td>Top 8 abundances of various microorganisms in S_{initial} (other species referring to sum of all classification with less than 1.3%)</td>
</tr>
<tr>
<td>6.7</td>
<td>Top 8 abundances of various microorganisms in S_A (other species referring to sum of all classification with less than 1.0%)</td>
</tr>
<tr>
<td>6.8</td>
<td>Top 8 abundances of various microorganisms in S_B (other species referring to sum of all classification with less than 1.1%)</td>
</tr>
<tr>
<td>6.9</td>
<td>Heat gradient map of the phylums’ classifications. The scale bar corresponds to 1% sequence divergence.</td>
</tr>
<tr>
<td>6.10</td>
<td>Abundances of filamentous microorganisms for (a) S_{initial}; (b) S_A; (c) S_B</td>
</tr>
<tr>
<td>6.11</td>
<td>Composition of chemical components in each LB-EPS and TB-EPS for Reactor A and Reactor B</td>
</tr>
<tr>
<td>6.12</td>
<td>Changes of PN/PS ratio in EPS for Reactor A and Reactor B throughout the experimental period</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ASP - Activated sludge process
SRT - Sludge retention time
DO - Dissolved oxygen (mg/L)
SBR - Sequential/Sequencing batch reactor
CCD - Central Composite Design
EPS - Extra-cellular polymeric substances
RSM - Response surface methodology
MLSS - Mixed liquor suspended solids (mg/L or g/L)
MLVSS - Mixed liquor volatile suspended solids (mg/L or g/L)
SVI - Sludge volume index (mL/g)
COD - Chemical oxygen demand (mg/L)
ESS - Effluent suspended solids (mg/L or g/L)
VSS - Volatile suspended solids (mg/L or g/L)
NGS - Next Generation Sequencing
HGMS - High gradient magnetic separation
EMF - Electromotive force
MTD - Magnetic treatment device
PHAs - Polyhydroxyalkanoates
PHB - Poly-3-hydroxybutyrate
PHV - Poly-3-hydroxyvalerate
HB - Hydroxybutyrate
HV - Hydroxyvalerate
DNA - Deoxyribonucleic acid
PB - Prussian blue
FA - Formaldehyde (mg/L)
NdFeB - Neodymium-Iron-Boron
FISH - Fluorescence in situ hybridization
F/M - Food-microorganisms ratio
BOD - Biochemical oxygen demand
WWTP - Wastewater treatment plant
RAS - Return activated sludge
FI - Filamentous index
RBCOD - Readily biodegradable substrates
PAX-14 - Polyaluminium chloride
SSVI - Stirred specific volume index
SRF - Specific resistance to filtration
EPS_s - Soluble Extra-cellular polymeric substances
EPS_b - Bound Extra-cellular polymeric substances
SV₃₀ - Sludge volume
AOP - Advanced oxidation process
TN - Total nitrogen (mg/L)
IWK - Indah Water Konsortium
ANOVA - Analysis of variance
TP - Total phosphorus
OUR - Oxygen uptake rate
SOUR - Specific oxygen uptake rate
Ag - Aggregation (%)
PVSK - Polyvinylsulfuric acid potassium salt
HRT - Hydraulic retention time
VER - Volumetric exchange rate
RH - Relative hydrophobicity (%)
SC - Surface charge (meq/g MLSS)
DLVO - Derjaguin and Landau, Verwey and Overbeek theory
OLR - Organic loading rate
AOB - Ammonium oxidizing bacteria
PAOs - Phosphorus accumulating organisms
VFAs - Volatile fatty acids
FESEM - Field Emission Scanning Electron Microscopy
TSS - Total suspended solids (mg/L or g/L)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>Ammonia-nitrogen (mg/L)</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>FC</td>
<td>Folin-Ciocalteu</td>
</tr>
<tr>
<td>16S rRNA</td>
<td>16 subunit ribosomal ribonucleic acid</td>
</tr>
<tr>
<td>LB-EPS</td>
<td>Loosely-bound Extra-cellular polymeric substances</td>
</tr>
<tr>
<td>TB-EPS</td>
<td>Tightly-bound Extra-cellular polymeric substances</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>EPS_T</td>
<td>Total Extra-cellular polymeric substances</td>
</tr>
<tr>
<td>PN/PS</td>
<td>Protein-to-Polysaccharides ratio</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>Magnetization of a particle</td>
</tr>
<tr>
<td>(\chi_v)</td>
<td>Magnetic susceptibility of the molecules’ electrons</td>
</tr>
<tr>
<td>(H)</td>
<td>Applied magnetic field (emu/cm(^3))</td>
</tr>
<tr>
<td>(E)</td>
<td>Energy of magnetic gradient</td>
</tr>
<tr>
<td>(V)</td>
<td>Volume of the material</td>
</tr>
<tr>
<td>(F)</td>
<td>Magnetic interaction force</td>
</tr>
<tr>
<td>(\chi_o)</td>
<td>Magnetic susceptibility of the magnetized material</td>
</tr>
<tr>
<td>(\frac{dH}{dx})</td>
<td>Difference of the magnetic field strength with distance</td>
</tr>
<tr>
<td>(T_i)</td>
<td>Turbidity influent (FNU)</td>
</tr>
<tr>
<td>(T_f)</td>
<td>Turbidity effluent (final) (FNU)</td>
</tr>
<tr>
<td>(T_0)</td>
<td>Turbidity at 0 min (FNU)</td>
</tr>
<tr>
<td>(\mu_{\text{overall}})</td>
<td>Overall specific biomass growth rate (day(^{-1}))</td>
</tr>
<tr>
<td>(k_d)</td>
<td>Endogenous decay rate (hour(^{-1}))</td>
</tr>
<tr>
<td>(Y_{\text{obs}})</td>
<td>Observed biomass yield (mg VSS/mg COD)</td>
</tr>
<tr>
<td>(Y)</td>
<td>Theoretical biomass yield (mg VSS/mg COD)</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Sludge retention time (d)</td>
</tr>
<tr>
<td>(\frac{dO_2}{dt})</td>
<td>Oxygen uptake rate</td>
</tr>
<tr>
<td>(O_x)</td>
<td>Theoretical COD (1.42 mg O(_2)/mg biomass)</td>
</tr>
<tr>
<td>(M)</td>
<td>Biomass concentration (mg VSS/L)</td>
</tr>
<tr>
<td>(X_e)</td>
<td>Effluent volatile suspended solids (mg/L)</td>
</tr>
<tr>
<td>(C_i)</td>
<td>COD concentration in the influent (mg/L)</td>
</tr>
<tr>
<td>(C_e)</td>
<td>COD concentration in the effluent (mg/L)</td>
</tr>
<tr>
<td>(X_r)</td>
<td>Mixed liquor volatile suspended solid in reactor (mg/L)</td>
</tr>
<tr>
<td>(V_T)</td>
<td>Total working volume in reactor (L)</td>
</tr>
<tr>
<td>(Q_e)</td>
<td>Effluent flow rate (L/d)</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Classification of Filamentous Microorganisms Based On Gram and Neisser Staining Reactions</td>
<td>263</td>
</tr>
<tr>
<td>B</td>
<td>Factorial Design and Response Surface Methodology Data Analysis for Turbidity Reduction</td>
<td>264</td>
</tr>
<tr>
<td>C</td>
<td>Factorial Design and Response Surface Methodology Data Analysis for Aggregation</td>
<td>267</td>
</tr>
<tr>
<td>D</td>
<td>Factorial Design and Response Surface Methodology Data Analysis for Settling Velocity</td>
<td>270</td>
</tr>
<tr>
<td>E</td>
<td>Data and Calculations</td>
<td>274</td>
</tr>
<tr>
<td>F</td>
<td>Next Generation Sequencing Data Analysis</td>
<td>303</td>
</tr>
<tr>
<td>G</td>
<td>Extra-cellular Polymeric Substances Data Analysis</td>
<td>310</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Preamble

Activated sludge system was developed in the early 1900s. Since then, it has been the most frequently used process in various wastewater treatment technologies. In general, activated sludge process (ASP) is comprised of two stages which are biological degradation that occurs in an aeration tank, and the physical stage, which takes place in a secondary clarifier. The key feature of the biological degradation process is the responsible bacteria in converting the incoming organic pollutants into the purified water that later, has to be separated from the liquid portion by gravity. The performance of ASP is therefore, relies on bacterial activity and efficient solid-liquid separation as to guarantee good effluent quality being discharged from the system (Clauss et al., 1998).

Even though ASP has been the most commonly used technology in treating municipal and industrial wastewaters, its stable operation is still plagued by the solid-liquid separation problem (Martins et al., 2011) caused by the occurrence of sludge bulking. The primary factor that was reported to induce the bulking is the excessive proliferations of the filamentous microorganisms. The abundances of the filaments
have physically prevent the close packing of activated sludge flocs thus cause severe interferences to the separation and settling activities in the treatment process (Lou and De los Reyes, 2008). Such interferences lead to the deterioration of the effluent quality and sludge wash out in the final treated effluent. The sludge bulking occurrence can also become more critical as it can fail the overall treatment system performances particularly in terms of removal ability of the pollutants (Martins et al., 2004a).

For the purpose of enhancing the wastewater treatment processes, various approaches have been used including magnetic field application. This approach has been applied for removal of turbidity and suspended solids (Johan, 2003; Chin et al., 2006), organic compounds (Yavuz and Çelebi, 2000; Ji et al., 2010; Łebkowska et al., 2011), nutrients consists of nitrogen and phosphorus compounds (Liu et al., 2008; Merino-martos et al., 2011) and toxic chemicals (Jung et al., 1993). As to ensure higher effectiveness of these removals, microorganisms have to act efficiently in order to degrade the organic pollutants, resulted in good solid-liquid separation and settling processes. However, provoke by the filamentous sludge bulking can disturb these processes thus cause reduction in removal performances of the wastewater treatment. Through the application of magnetic field, the treatment processes have been proven to be enhanced. These enhancements are resulted from the significant influence of the magnetic field towards the bacterial activity, thus indirectly indicates that it may also potential to control the filamentous sludge bulking problem.

To the recent knowledge, none of the research has been carried out to investigate the effect of magnetic field application towards the sludge bulking especially in terms of filamentous microorganisms’ proliferations in the ASP. The existing approaches used to control the sludge bulking were evidenced to exhibit various drawbacks that relatively caused more problems to the ASP. The approaches such as chlorine addition were not sustainable as it only transferring one problem (sludge bulking) to another problem (i.e. increase of sludge wastage), which at the
end cause various adverse effects to the environment. Additionally, effect of the approaches is only instantaneously functioned. Once the control effect is halted, the sludge settleability will worsen, and the recovery of the treatment system will consumed lots of time and costs.

Therefore, this study is aimed to investigate the potential approach of the magnetic field in controlling the sludge bulking occurrences, thus further improving the separation and settleability of the activated sludge. As to achieve the aim, physical properties of the activated sludge are first been studied with regards to the variation of magnetic field effects. Furthermore, parameters that are known to induce the sludge bulking; sludge retention time (SRT) and dissolved oxygen (DO) concentration are been further investigated in terms of the characterization of the physical, biological properties and removal ability of the activated sludge. Susceptibility of the filamentous microorganisms towards the magnetic field were also being investigated.

1.2 Objectives of the Study

The specific objectives of this study are:

i. To investigate the potential effects of magnetic field in terms of its intensity and exposure time towards physical properties of the activated sludge.

ii. To determine the effect of magnetic field on the physical properties, removal ability and microbial activity of activated sludge subjected to long sludge retention time (SRT).
iii. To investigate the effect of magnetic field on the characteristics of activated sludge bulking subjected to low dissolved oxygen (DO) concentration.

iv. To investigate the susceptibility of filamentous microorganisms in the activated sludge bulking under magnetic field.

1.3 Scope of the Study

This study focused on the activated sludge bulking under the effect of magnetic field. The range of magnetic field intensity used in this study was 15 mT and 88 mT. These magnets were attached to a laboratory-scale reactor system which its design was based on the sequential batch reactor (SBR) system. All of the experiments were conducted in Environmental Laboratory, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM). The wastewater and activated sludge samples were both collected at Indah Water Konsortium (IWK) Treatment Plant, Pulai Emas, Johor. The type of wastewater used throughout the study were raw domestic wastewater.

This study involved batch tests experiments in small working volume of 250 mL. These experiments involved the use of statistical experimental design in order to investigate the significance between the variables of magnetic field, exposure time, biomass concentration and mixing intensity on the physical properties of activated sludge. Consequent experiments were conducted using reactor systems with working volume of 6 L. There were two reactors used throughout the study. Reactor A was an experimented reactor that comprised attached series of permanent magnets while Reactor B was acted as control reactor that have no magnets. For the purpose of studying the activated sludge bulking, the reactors were set in two conditions. For the
first condition, the sludge retention time (SRT) was set at longer period of about 20 days. Later, for the second condition, the dissolved oxygen (DO) was set at concentration of less than 2 mg/L. The final study was then focused on the characteristics of filamentous microorganisms, its abundances and production of extra-cellular polymeric substances (EPS).

1.4 Significance of the Study

Activated sludge bulking is among the operational problems that commonly occurred in the treatment plants worldwide. Various control strategies such as increasing DO concentration, adding chlorine or metal salts have been reported by many researchers in inhibiting the occurrence of sludge bulking (Xie et al., 2007; Li et al., 2011; Guo et al., 2012a). However, these control strategies led to various drawbacks that consequently exhibited more problematic issues to the treatment plants (Juang, 2005; Rossetti et al., 2005; Xie et al., 2007; Guo et al., 2012a). Apparently, the application of magnetic field in inhibiting the sludge bulking has not been explored yet. Therefore, the significance of this study can be listed as follows.

i. The study provides the design and procedural input of a laboratory scale SBR system, fabricated to allow attachment of magnetic devices which comprised series of permanent magnets.

ii. The study provides the effect of applying magnetic field with intensity 88 mT in the sludge bulking conditions at long SRT of 20 days and low DO concentration of less than 2 mg/L.
iii. The study provides the effect of magnetic field on the biokinetic properties of activated sludge including growth rate (μ), endogenous decay rate (k_d), observed biomass yield (Y_{obs}) and theoretical biomass yield (Y) under the condition of sludge bulking.

iv. The study also provides the effect of magnetic field in inhibiting the proliferation of filamentous microorganisms and limiting the growth of its filaments, thus able to reduce the occurrence of sludge bulking.

v. The study provides the effect of magnetic field in enhancing the production of EPS and its chemical constituents despite the condition of sludge bulking.

1.5 Organization of Thesis

The thesis is presented in seven chapters. Chapter 1 provides the overview of the problems generated in the activated sludge wastewater treatment and the conditions of the sludge bulking that concurrently hinder the efficiency of the treatment process. This chapter also points out the significant of the magnetic field in potentially inhibits the occurrence of the sludge bulking in ASP system. The literature review is presented in Chapter 2. This chapter highlights the occurrence of sludge bulking and the factors that cause its occurrence. The approaches used to control this sludge bulking problem and consequent drawbacks are also been emphasized in this chapter. Additionally, this chapter also covers the application of magnetic field in water and wastewater treatment systems. The mechanisms of magnetic field contributed to the various processes in the treatment systems are also
been deliberated. At the end of this chapter, a knowledge gap is highlighted showing the potential of magnetic field in inhibiting the sludge bulking.

Chapter 3, 4, 5, and 6 present the works that have been conducted in this study. Chapter 3 presents the study on the preliminary investigation involving the magnetic factors towards the physical properties of the activated sludge. Chapter 4 and Chapter 5 are both focusing on the performances of magnetically-modified ASP bioreactor system that were run under the factor of SRT and DO concentration, respectively as to induce the filamentous sludge bulking condition. Chapter 6 presents the detail study on the filamentous microorganisms particularly on its abundances, micro-structures and EPS. Figure 1.1 presents the overall outline of the experimental works involved. Finally, Chapter 7 presents the conclusions of the study. This chapter also provides recommendation for future research exploration in relation to the findings of the study.
Membrane separation and Aerobic digestion process

Figure 1.1 Outline of the experimental research works
REFERENCES

