
 

 

 

 

 

 

CONTROL OF MACPHERSON ACTIVE SUSPENSION SYSTEM USING 

SLIDING MODE CONTROL WITH COMPOSITE NONLINEAR 

FEEDBACK TECHNIQUE 

 

 

 

 

 

 

 

 

 

MUHAMAD FAHEZAL BIN ISMAIL 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/83531015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

 

CONTROL OF MACPHERSON ACTIVE SUSPENSION SYSTEM USING 

SLIDING MODE CONTROL WITH COMPOSITE NONLINEAR FEEDBACK 

TECHNIQUE 

 

 

 

 

MUHAMAD FAHEZAL BIN ISMAIL 

 

 

 

 

A thesis submitted in fullfilment of the  

requirements for the award of the degree of  

Doctor of Philosophy (Electrical Engineering) 

 

 

 

 

Faculty of Electrical Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

JUNE 2016 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my beloved wife Miza and childs........... 

Aina, Imanina, Irdina, and Aminul Fatih.  

 

 

 

 

 

 

 

 

 

 

 



iv 

 

ACKNOWLEDGEMENT 

Alhamdullilah, thank to Allah, because of Him we are still here and His 

entire gift in this world and most of all, for giving me opportunities to learn His 

knowledge. 

 

This research work was supervised by Professor Dr. Yahaya Md. Sam, co-

supervised Dr. Shahdan Sudin at the Universiti Teknologi Malaysia, and external 

co-supervisor Dr.Kemao Peng from National University of Singapore. I would like 

to express my thanks and greatly appreciate all their help and guidance. 

 

I am grateful to my wife, Miza Hj. Hamid my childs, Nur Qurratu ‘Aina, Nur 

Imanina Musfirah, Nur Irdina Khadijah, Muhammad Aminul Fatih and my parents, 

Hj. Ismail Hj. Razali (Former R&D manager, UDA Holding Berhad), Hjh Noraini 

Hj. Tumpang, without whose help, encouragement and patience I would never have 

gotten this thesis completed and who made it all worthwhile. 

 

I would also like to grateful to my friends, Muhamad Khairi Aripin, 

Norhazimi Hamzah , Rozaimi Ghazali , Mohammad Sani Gaya and Ling, who also 

gave me a great deal of support and encouragement.  

 

Finally, thank you to all the other people who have supported me during the 

course of this work. Thank You! Thank You! 



v 

 

ABSTRACT 

The MacPherson active suspension system is able to support the weight of 

vehicle and vibration isolation from road profile, and is also able to maintain the 

traction between tyre and road surface. It also provides both additional stability and 

maneuverability by performing active roll and pitch control during cornering and 

braking, and the most significant are ride comfort and road handling performance. 

However, a drawback of MacPherson model is the self-steer phenomenon in the 

active suspension system. The problem might be solved by controlling the actuator 

force and control arm of the system. The MacPherson model has a similar layout to 

a real vehicle active suspension system. The mathematical model of the system 

produces a nonlinear mathematical model with uncertainties. Therefore, the 

proposed control strategy must be able to cater the uncertainties in mathematical 

model and simultaneously provide a fast response to the system. The control 

strategy combines Composite Nonlinear Feedback (CNF) algorithm and 

Proportional Integral Sliding Mode Control (PISMC) algorithm to achieve quick 

response and to reduce uncertainties. Optimisation of parameters in the CNF was 

performed using Evolutionary Strategy (ES) algorithm for fast transient 

performance. Thus, the controller is called Proportional Integral Sliding Mode 

Control – Evolutionary Strategy – Composite Nonlinear Feedback (PISMC-ES-

CNF). To validate the proposed controller, the conventional Sliding Mode Control 

(SMC) and CNF were utilised to control the system under various road profiles. The 

ISO 2631-1, 1997 was used as a reference of ride comfort level for the acceleration 

of sprung mass. Results show that the proposed controller, PISMC-ES-CNF 

achieved the best control performance under various road profiles. The results 

obtained also prove that the PISMC-ES-CNF managed to improve ride comfort 

quality and road handling quality and has also delivered better control performance 

in terms of transient response of acceleration of sprung mass, reducing overshoot 

and chattering problem compared to conventional SMC and CNF. 
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ABSTRAK 

Sistem gantungan aktif kenderaan MacPherson berkeupayaan untuk 

menyokong berat kenderaan, pengasingan getaran berdasarkan profil jalan dan 

untuk mengekalkan cengkaman antara tayar dan permukaan jalan raya. Ia juga 

menyediakan kestabilan tambahan dan pergerakan dengan melakukan gelekan dan 

kawalan anggul aktif semasa membelok dan membrek, dan yang lebih penting ialah 

keselesaan pemanduan dan prestasi pengendalian jalan raya. Walau bagaimanapun, 

kelemahan model MacPherson adalah fenomena mengemudi-diri yang berlaku 

dalam sistem gantungan aktif. Model MacPherson mempunyai susun atur yang 

sama dengan sistem gantungan aktif kenderaan sebenar. Pemodelan matematik 

sistem menghasilkan model matematik tak linear dengan ketidaktentuan. Oleh itu, 

strategi kawalan yang dicadangkan mesti berupaya untuk menampung dalam 

ketidaktentuan dalam model matematik dan pada masa yang sama memberikan 

tindak balas yang cepat kepada sistem. Strategi kawalan menggabungkan algoritma 

pengawal Suap Balik Tak linear Komposit (CNF) dan algoritma pengawal Mod 

Gelangsar Kamiran Berkadaran (PISMC) untuk mencapai prestasi sambutan cepat 

dan mengurangkan ketidaktentuan. Pengoptimuman parameter dalam CNF 

dilakukan dengan menggunakan algoritma Strategi Evolusi (ES) untuk prestasi fana 

cepat. Oleh yang demikian, pengawal ini dikenali sebagai Mod Gelangsar Kamiran 

Berkadaran – Strategi Evolusi – Suap Balik Tak Linear Komposit (PISMC-ES-

CNF). Untuk mengesahkan pencapaian pengawal yang dicadangkan, Pengawal 

Konvensional Mod Gelangsar (SMC) dan CNF telah digunakan dalam mengawal 

sistem untuk profil permukaan jalan raya yang pelbagai. ISO 2631-1 1997 

digunakan sebagai rujukan pada tahap keselesaan perjalanan yang berkualiti untuk 

pecutan jisim terpegas. Keputusan menunjukkan bahawa cadangan kawalan, 

PISMC-ES-CNF telah mencapai prestasi kawalan terbaik pada pelbagai jenis 

permukaan jalan. Hasil kajian juga membuktikan bahawa PISMC-ES-CNF telah 

meningkatkan keselesaan perjalanan yang berkualiti dan pengendalian jalan yang 

berkualiti serta memberikan prestasi kawalan yang lebih baik dari segi sambutan 

fana untuk pecutan jisim terpegas, mengurangkan terlajak, dan mengurangkan 

masalah gelatukan berbanding dengan SMC konvensional dan CNF. 
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CHAPTER 1  

INTRODUCTION 

1.1  Introduction to Active Suspension System 

 

 

A vehicle passive suspension system usually involves springs and shock 

absorbers that aid in isolating the vehicle chassis and passenger from unexpected 

vertical displacements of the wheel assemblies while driving; the phenomenon is 

called ride comfort performance. Meanwhile, active suspension is composed of an 

actuator and a mechanical spring, or an actuator, and a damper, Xue et al. (2011). 

Another important purpose of vehicle suspension is to maintain a secure 

interaction between the road and the tyres, as well as to offer guidance along the 

road profiles. This capability is known as handling performance. The active 

suspension can be classified into two types of bandwidths. The high-bandwidth 

active suspension controls both the sprung mass, 𝑚𝑠, and the unsprung mass, 𝑚𝑢 if 

the active actuator works mechanically in parallel with the spring as illustrated in 



2 

 

Figure 1.1(a). On the hand, the low-bandwidth active suspension controls the sprung 

mass if the active actuator works mechanically in series with the spring and the 

damper as portrayed in Figure 1.1(b). The 𝐹𝑎 is refers to the actuator force, 𝑘𝑠 is 

stiffness of the car body spring, 𝑘𝑡 stiffness of car tyre, and 𝐶𝑑 damper coefficient. 

Other than that 𝑋𝑠, 𝑋𝑢, and 𝑋𝑟 are state variables for sprung mass, unsprung mass, 

and road profile. Generally, the frequency of the unsprung mass lies in the range of 

10-15 Hz, while the frequency of the sprung mass lies in the range of 1-2 Hz. (Xue 

et al. 2011, Appleyard and Wellstead 1995). Moreover, active suspensions 

commercially implemented in automobiles today are based on hydraulic or 

pneumatic actuator, Appleyard and Wellstead (1995). Figure 1.2 shows the 

schematic diagram of the MacPherson strut suspension system applied in modern 

automotive active suspension system. (Hong et al. 1999). The 𝑓𝑑 is a body force of 

human, 𝑚𝑢 reflects the unsprung mass, 𝑚𝑠 is sprung mass, and 𝑍𝑠 refers to 

displacement of sprung mass. If the joint between the control arm and the car body 

is assumed to be a bushing and the mass of the control arm is not neglected, the 

degrees of freedom of the whole system are four. The generalised coordinates in this 

case are 𝑍𝑠, d, 𝜃1, and 𝜃2. However, if the mass of the control arm is ignored and 

the bushing is assumed to be a pin joint, then the degrees of freedom will becomes 

two. In fact, the typical independent type of MacPherson suspension system consists 

of wheel assembly connected to the tyre, lower arm connecting to the chassis and 

the wheel assembly, tie rod for the steering, and strut involving the spring-damper 

system that absorb shock from the road surface. 
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(a) 

 

(b) 

Figure 1.1: Quarter car linear model active suspension system: (a) High-bandwidth, 

and (b) Low-bandwidth in Xue et al., (2011). 
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Figure 1.2: A schematic diagram of the MacPherson suspension system for quarter 

car model in Hong et al., (1999). 
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1.2  Research Background 

 

 

Designing active suspension control strategies is indeed a major challenge in 

relation to automotive control problem. The control problems are related to ride 

comfort, body motion, road handling and suspension travel. Ride comfort is directly 

associated to the acceleration of sprung mass based on the degree of comfort. 

Meanwhile, body motion refers to bounce, pitch, and roll of sprung mass are 

generated by cornering, acceleration, or deceleration manoeuvre. Next, road 

handling reflects the contact forces of tyres and the road surface; whereas 

suspension travel refers is displacement between a sprung mass and an unsprung 

mass. Therefore it is inspiring issue for one active suspension system to 

simultaneously optimize all four sets of parameters.(Hrovat, 1997, Appleyard and 

Wellstead, 1995, Xue et al., 2011).  

Furthermore, the modern automotive suspension system can be classified as passive, 

semi-active and active suspensions systems as presented in Figure 1.3. Passive 

suspension consists of spring and damper connected in parallel with each other, 

whereas semi-active suspension is comprised of adjustable damper and spring in 

parallel. Meanwhile, active suspension system is made of spring, damper, and 

actuator. 
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Figure 1.3: Classification of modern automotive suspension in Xue et al. (2011) 

In addition, researches over the past five decades have shown that a linear 

optimal control scheme offers an effective method in designing active suspension 

control strategies that can improve both vehicle ride and handling performance 

simultaneously, Hrovat (1997). In fact, most researchers focused on active 

suspension system with a linear model without uncertainties. However, a modern 

active suspension system is characteristically nonlinear and uncertain especially for 

the MacPherson active suspension system.  
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1.3  Problem Statement 

 

 

Most previous researches concerning automotive have employed the linear 

model of active suspension system (Hrovat 1990, 1997, Xue et al., 2011). In this 

model the spring, the damper and the actuators were arranged in a 90 degree vertical 

arrangement. The new model of the MacPherson suspension has been proposed by 

(Hong et al., 1999, and Fallah et al,. 2008). In this new model the spring, the 

damper and the actuators were not arranged in 90 degree vertical where this 

phenomenon created a nonlinear characteristics. However, the number of studies 

from previous researchers did not consider the issues pertaining to uncertainties, and 

nonlinearities in the parameters of MacPherson active suspension system. 

Furthermore, the self-steer that takes place in the MacPherson active suspension 

system causes unbalanced tyre forces and moments, suspension geometry, as well 

as unbalanced force line position, Nishizawa et al. (2006). The vertical acceleration 

of sprung mass and the angular acceleration of the control arm in the MacPherson 

strut are the parameters have been applied to minimize the self-steer. The self-steer, 

hence, can be minimized by controlling the angular acceleration of the control arm 

in the MacPherson strut. Therefore, a robust control strategy is essential to control 

the MacPherson active suspension system due to its nonlinear, uncertain and self-

steer characteristics toward achieving a virtuous measurement on ride comfort and 

road handling performances.  

In conjunction to that, the Composite Nonlinear Feedback (CNF) control 

technique is a fast and a smooth tracking performance. The CNF consists of both 

linear feedback and nonlinear feedback laws. The linear feedback part is designed to 

yield a closed-loop system with a small damping ratio for a quick response, while 

the nonlinear feedback part is used to increase the damping ratio of the closed-loop 

system as the system output approaches the target reference to reduce the overshoot 

caused by the linear part. Besides, the PISMC controller is used to reject 

disturbance and zero steady state error while the proportional part removes the 

uncertainty. Therefore, the study utilised the CNF to achieve high performance 

saturated actuator and the PISMC to ensure invariance against disturbances, 
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uncertainties, nonlinearities, and zero steady state error. The parameters of 𝛼 and 𝛽 

of nonlinear function in CNF had been optimized by using Evolutionary Strategy 

(ES) for better control performance in transient response for MacPherson active 

suspension system. The ES algorithm was used for optimization of nonlinear 

function in CNF. 

 

1.4  Research Objectives 

 

 

This research had enhanced and improved the performance of the 

Macpherson active suspension systems using a robust controller. The specific 

objectives of the research are given in the followings: 

(i) To establish a nonlinear mathematical model based on the MacPherson 

suspension system. 

(ii) To design a Proportional Integral Sliding Mode Control with 

Composite Nonlinear Feedback (PISMC-CNF) strategy that is able to 

improve the ride comfort and the road handling performances. 

(iii) To evaluate the effectiveness of the proposed controller for ride 

comfort and road handling performance enhancement by using 

MATLAB/Simulink. 
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1.5  Scope of Research Work 

 

 

The scope of work focused on the mathematical model of the MacPherson 

active suspension system, as well as the control performance analysis of the system 

by using MATLAB/Simulink and Minitab. Moreover, the numerical experiment 

was performed to execute the validation process on the MacPherson active 

suspension system. The scopes of this research are provided in the followings: 

(i) The main elements of mathematical modeling of the MacPherson active 

suspension system consisted of displacement of sprung mass, 𝑍𝑠 , velocity of 

sprung mass, 𝑍̇𝑠, and acceleration of sprung mass, 𝑍̈𝑠. These elements are 

related to the ride comfort performance. The angular displacement of the 

control arm, 𝜃, the angular velocity of the control arm, 𝜃̇, and the angular 

acceleration of the control arm, 𝜃̈ are related to the road handling 

performance. These elements are also known as unsprung mass.  

(ii) The type of actuator force 𝑓𝑎 is not discussed in detail in term of 

mathematical modeling. Some examples of the actuator force 𝑓𝑎 are 

hydraulic actuator, pneumatic actuator, and electromagnetic actuator.  

(iii) Only vertical displacement for the sprung mass 𝑍𝑠 had been used in this 

model. 

(iv) Parameter 𝜃 is the angular displacement of the control arm. The link of  to 

the car body is deliberated as an unsprung mass. 

(v) The values of vertical displacement and control arm were measured from the 

static equilibrium point. 

(vi) The sprung and the unsprung masses had been assumed to be two different 

elements which, reflected ride comfort and road handling. 

(vii) The mass and the control arm stiffness were ignored. 
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(viii) The forces were in the linear region for spring deflection, tyre deflection and 

damping forces. 

(ix) At interaction patch between tyre and ground, with no moment was applied. 

(x) The analysis of acceleration of sprung mass referred to the RMS vertical 

acceleration level and degree of comfort based on ISO2631-1, 1997. The 

analysis was carried out based on the control performance applied in the 

MacPherson active suspension system. 

(xi) The quarter car model of MacPherson active suspension had been employed 

for this research work. 

(xii) Most D Class cars are equipped with dynamic suspension system. Therefore 

it was selected for this research work. 

(xiii) The road profiles used in mathematical simulation and numerical 

experimental were Bounce Sine Sweep road, Chassis Twisted road and 

Large Smooth Bump road. 

(xiv) The conventional Sliding Mode Control (SMC) and the CNF were only used 

to be compared with the proposed controller in analysing the control 

performance in the system. 

(xv) An optimization is of a nonlinear control law of CNF was performed by 

using the Evolutionary Strategy (ES) only.  

(xvi) Statistical data analysis was only applied for acceleration of sprung mass. 

Some tools of statistical data analysis are process capability and one way 

analysis of variance. In fact, a software programme known as Minitab was 

used. 
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1.6  Contributions of Research Work 

 

 

Over these recent years, the issue pertaining to active suspension system has 

been related to attain the best ride comfort and road handling performance. Thus the 

main objective of any proposed controller is to reduce the effect of the road profiles 

and to ensure the stability of the vehicle during the manoeuvres. Hence, the main 

contributions of this research are listed in the followings: 

(i) A new robust control strategy based on the Proportional Integral Sliding 

Mode Control and Composite Nonlinear Feedback (PISMC-CNF) that 

successfully improved the ride comfort and the road handling performance 

of the MacPherson active suspension system. 

(ii) A new method was discovered for optimizing the values of sliding gain, 

boundary layer thickness, as well as the value of 𝛼 and 𝛽 in nonlinear 

function of PISMC-CNF by using Evolutionary Strategy (ES). The neural 

network was utilised to search the matrix of 𝐶𝑞𝑀𝑃 in PISMC-CNF. 
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1.7  Structure and Layout of the Thesis 

 

 

The thesis presents the implementation of the mathematical modeling of 

MacPherson active suspension system and the designs of control strategy for the 

system. 

Chapter 2 highlights of the literature review, which presents the overview of 

active suspension system and the recent control strategies employed. This chapter 

further describes previous researches concerning vehicle suspension system 

mathematical modeling. The control strategies applied such as linear control, 

nonlinear control, and intelligent control are also reviewed.  

 

Chapter 3 presents the details of the MacPherson active suspension system 

mathematical modeling. Two degrees of freedom (2-DOF Quarter Car Model) has 

been modelled for active and passive suspension system. The details of the physical 

parameters employed for both numerical simulation and numerical experiment are 

highlighted in this chapter. Besides, some issues related to uncertainties and 

nonlinearities of the MacPherson active suspension system are looked into as well. 

 

Chapter 4 presents the overview of the Composite Nonlinear Feedback 

(CNF) and the Sliding Mode Control (SMC) control theories. The properties of 

CNF are explained in detail. The components of CNF are both linear and nonlinear 

control laws. Applications of the CNF in past years are reviewed in this chapter. In 

fact, the point of view for control theory pertaining to SMC is explained. 

Furthermore, matched and unmatched cases, as well as some issue of the chattering 

problem, are discussed. Moreover, a particular application of the SMC in past 

research work is explained. 
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Chapter 5 presents a new control strategy for the MacPherson active 

suspension system. Proportional Integral Sliding Mode Control Evolutionary 

Strategy Composite Nonlinear Feedback (PISMC-ES-CNF) is proposed to 

overcome the uncertainties, as well as to achieve acceptable ride comfort and road 

handling performance. The details of the controller design are explained in this 

chapter. Overall the results obtained are discussed in this chapter. The stability and 

the reachability conditions of both sliding surface and those controlled are also 

discussed. Furthermore, optimization of the related parameters performed by using 

the ES method is presented. 

 

Finally, Chapter 6 depicts the conclusion of the research work and future 

work. 
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