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Spaceport Command and Control System Automation 

Testing 

Tom Plano 

Wentworth Institute of Technology, Boston Mass, 02115 

 

The goal of automated testing is to create and maintain a cohesive infrastructure of 

robust tests that could be run independently on a software package in its entirety. To that 

end, the Spaceport Command and Control System (SCCS) project at the National 

Aeronautics and Space Administration’s (NASA) Kennedy Space Center (KSC) has 

brought in a large group of interns to work side-by-side with full time employees to do just 

this work. Thus, our job is to implement the tests that will put SCCS through its paces. 

 

Nomenclature 

GUI: Graphical User Interface 

KSC: Kennedy Space Center 

LCC: Launch Control Center 

NASA: National Aeronautics and Space Administration 

OCR: Optical Character Recognition 

Scripting Language: High level, interpreted programming language 

SCCS: Spaceport Command and Control System  

QC: Quality Control 

 

 

I. Introduction 

 

he goal of this internship was to continue the development and expansion of the extensive 

array of automated tests that would be used to test the GUIs within SCCS software. The 

express purpose of this test suite is to free up the resources and time of those individuals who 

would otherwise be required to manually test each and every aspect of the user interface and user 

experience before each and every release of SCCS. This was a form of both active testing of the 

new features that were added and also a means of regression testing to check that no previously 

implemented features that had been successfully developed were now faulty. Automating these 

predominantly manual, image based tests also allows the development teams to consistently run 

the same tests over and over again without human error.  

 The major pieces of the test suite that we used to develop our tests was an automated test 

framework built on top of the Python programing language as a parser for generic files in which 

we would place keywords and directives. With this, we can automate any and all test procedures 

that we could be asked to work on.  

 

II. Objective 

 

The objective of this internship was to automate a given set of test steps in such a way that 

the testing of the SCCS software no longer needs to be done by hand by a QC engineer. These 

test cases come to us in the form of spreadsheets and our deliverable is a runnable script that 
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would do precisely the same execution and verification of those steps that a QC engineer would 

do. 

When we, the interns, could not work on our automated testing development in the LCC 

because of scheduling, we busied ourselves with other projects that were assigned or suggested 

by one of our technical mentors. One such project was research into software-based character 

recognition for the purpose of more easily reading user interfaces and text on-screen. This tool, 

should we integrate it into the testing suite proper, would do scans of the display and return a text 

document that we could use to map between actual images on that display and a memory 

location that would allow for direct calls to the display from our test scrips. Another such project 

was to develop a set of scripts or tools that would allow for the parallelization of multiple tests to 

be run across a network and to be coordinated by a central server.  

 

III. Approach 

With the goals outlined above, my approach was very straightforward and can be broken 

down into a few simple parts. As our first goal was to get very familiar with the automated 

testing framework, that is where I spent a majority of my time at first. Following that, I found 

time to exercise my preexisting knowledge of a scripting programming language. Finally, there 

were discussions toward the end of the internship about future plans of the automated testing 

framework, so that is also addressed. 

 

A. Training/Familiarization 

 

The first few days of the internship were all about training and learning the ropes of being on 

center and an employee of NASA. After that began the real work. Very quickly we were thrown 

right into the mix and given assignments to try and complete them as best as we could. For the 

first few weeks this was a struggle for me as the tools were new and it was an unfamiliar 

development environment. However, after completing my first few test cases, I got into a flow and 

was feeling confident in my abilities. 

 

B. Automated Testing for the main SCCS GUI 

 

Automation of the testing for the main SCCS GUI was done in a general-purpose automation 

framework. The tests are written in the form of “Label” followed by “Keyword”, where keywords 

are essentially macros that map high level strings down to operating system level commands to 

interface with GUIs and move the mouse. In this way, the testing framework is able to obfuscate 

the particulars of test execution while still providing a robust set of rules that can return with 

certainty whether or not a test step has passed. The test steps that we are to automate come to us 

in form of spreadsheets. These are the exact manual tests that an engineer would have to run if it 

were not for our work of automating.  Most of my work consisted of determining where, if 

applicable, I could use preexisting keywords to accomplish the goal of fast, effective automation 

and where, when necessary, a new keyword would have to be created to serve the purposes of 

some new class of test or a new type of test step. The simplest type of test is one in which no new 

keywords had to be created, but it was more common that at least one new keyword would have 

to be created per test case. This constituted the bulk of my work this semester, alongside the 

maintenance and upgrading of previously written tests; there were that may have run correctly on 
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a previous build of the SCCS program but now either needed to test new features or just had new 

test steps. 

 

 

C. Scripting 

 

One of the main projects that I worked on other than creating and maintaining test scripts was 

to create a test script manager and parallelizer. This was a full project that I volunteered for in 

addition to the work I was doing on creating test scripts. This process started out with an extensive 

design meeting, where myself, Jason Kapusta (a software architect), and other members of the 

team discussed ideas and outlined requirements for exactly what my software tool should be doing. 

Those requirements were as follows: 

1. Be able to utilize independent multiple workstations on the development set  

2. Sequence test execution at the test step level 

3. Collate results from all stations into one report 

4. Be highly maintainable for those who come after me 

5. Be implemented in the language of our automation framework 

6. Control multiple work stations simultaneously 

7. Control multiple work stations in sequence 

8. Pass data between work stations 

9. Handle failure states on a workstation such that the rest of the test does not crash 

10. Allow for the parallelization of multi-user processes 

With these design goals in mind, I was able to get right to work on the tool development. The 

requirements listed above are in no particular order and as such I was able to develop first those 

requirements that I saw as most difficult or integral to the main functionality of the tool. As my 

first goal, I focused on requirements 1, 2 and 5. As previously stated, our automation framework 

is built on top of a scripting language and so an extension that would correctly interface with that 

program would also have to be written in that same language. I began by white boarding a design 

solution that would accommodate those requirements.  

My design involves a single control node, written in that same scripting language, that would 

connect to remote boxes and initiate specially written automated testing scripts that contain 

control flow arguments. This control node also initializes a type of lock mechanism know as a 

semaphore for each running process in a shared network file where all processes and the control 

node can read and write from.  My solution revolves around this lock file being polled by each 

testing process as well the controller. The controller is fed a sequence file that rewrites the lock 

file on a state change initiated by the test scripts rewriting the locks file when they complete a 

step. The controller will then rewrite the lock file with the next step in the sequence file. With 

these simple things implemented, requirements 1, 2 and 5 all are met. The other requirements 

will be met some time after the creation of this document.   

 

D. Future Developments 
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In its current state, the SCCS automated testing framework is progressing nicely. More tests 

than ever are being run independently of human interaction and entire swaths of the test suite are 

being run over night. However, there is always more work to do when it comes to creating and 

maintaining a robust set of tests. To that end, plans for the future of the project are in the works. It 

has become clear that the future of our software package is in the creation of customized control 

processes that will manage and allocate test processes running on multiple, independent 

workstations across the network. In fact, these design and development meetings have already 

begun, but as their implementation will be completed after the termination of my internship, it only 

seems fitting to include it as future work.  

 

IV. Conclusion  

 

Since the beginning of this internship, a great amount of progress has been made on the 

development of our automated testing suite. There has been an almost 60% increase in the 

number of completely automated test steps over the beginning of the semesters. Additionally, 

significant progress has been made in the form of scripts, tools and utilities that will be running 

alongside the main automation scripts. That’s not to say that the whole process was without its 

difficulties along the way, though. There were times when our normal development set was 

disabled or otherwise unavailable. At those times, it was down to our abilities and training to 

continue the development process without being able to work on a live set. As our completion 

numbers will attest, however, this was not a great detriment to our productivity, a fact that we are 

all very proud of. Knowing that our tests and tools will be helping to send humans to Mars and 

beyond has been a large motivation and really pushed to work hard on all our projects and it 

really is exciting to be part of something so big. 
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