
THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE
TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)
Cotutelle internationale Université de Novi Sad

Présentée et soutenue le 02.12.2016 par :
Dániel TÖRTEI

CO-DESIGN OF ARCHITECTURES AND
ALGORITHMS FOR MOBILE ROBOT LOCALIZATION

AND MODEL-BASED DETECTION OF OBSTACLES

JURY
Branislav BOROVAC Professeur d’Université Président
Mohamed AKIL Professeur d’Université Rapporteur
Jonathan PIAT Mâıtre de Conférences Examinateur
Dorde OBRADOVIĆ Mâıtre de Conférences Examinateur

École doctorale et spécialité :
EDSYS : Systèmes embarqués 4200046

Unité de Recherche :
LAAS-CNRS (UMR 8001)

Directeur(s) de Thèse :
Michel DEVY et Mirko RAKOVIĆ

Rapporteurs :
Mohamed AKIL et Branislav BOROVAC

УНИВЕРЗИТЕТ У НОВОМ САДУ

ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА У
НОВОМ САДУ

Даниел Тертеи

КОДИЗАЈН АРХИТЕКТУРЕ И
АЛГОРИТАМА ЗА ЛОКАЛИЗАЦИЈУ
МОБИЛНИХ РОБОТА И ДЕТЕКЦИЈУ

ПРЕПРЕКА БАЗИРАНИХ НА МОДЕЛУ

ДОКТОРСКА ДИСЕРТАЦИЈА

Нови Сад, 2016

Abstract

English. An autonomous mobile platform is endowed with a navigational system
which must contain multiple functional bricks: perception, localization, path planning
and motion control. As soon as such a robot or vehicle moves in a crowded envi-
ronment, it continously loops several tasks in real time: sending reference values to
motors’ actuators, calculating its position in respect to a known reference frame and
detection of potential obstacles on its path. Thanks to semantic richness provided by
images and to low cost of visual sensors, these tasks often exploit visual cues. Other
embedded systems running on these mobile platforms thus demand for an additional
integration of high-speed embeddable processing systems capable of treating abundant
visual sensorial input in real-time. Moreover, constraints influencing the autonomy
of the mobile platform impose low power consumption. This thesis proposes SOPC
(System on a Programmable Chip) architectures for efficient embedding of vison-based
localization and obstacle detection tasks in a navigational pipeline by making use of
the software/hardware co-design methodology. The obtained results are equivalent or
better in comparison to state-of-the-art for both EKF-SLAM based visual odometry:
regarding the local map size management containing seven-dimensional landmarks and
model-based detection-by-identification obstacle detection: algorithmic precision over
execution speed metric.
Keywords: Robot navigation, visual SLAM, visual obstacle detection, hw/sw co-design,
SoPC, heterogeneous embedded boards

Français. Un véhicule autonome ou un robot mobile est équipé d’un système de
navigation qui doit comporter plusieurs briques fonctionnelles pour traiter de perception,
localisation, planification de trajectoires et locomotion. Dès que ce robot ou ce véhicule
se déplace dans un environnement humain dense, il exécute en boucle et en temps réel
plusieurs fonctions pour envoyer des consignes aux moteurs, pour calculer sa position
vis-à-vis d’un repère de référence connu, et pour détecter de potentiels obstacles sur sa
trajectoire; du fait de la richesse sémantique des images et du faible coût des caméras,
ces fonctions exploitent souvent la vision. Les systèmes embarqués sur ces machines
doivent alors intégrer des cartes assez puissantes pour traiter des données visuelles en
temps réel. Par ailleurs, les contraintes d’autonomie de ces plateformes imposent de très
faibles consommations énergétiques. Cette thèse proposent des architectures de type
SOPC (System on Programmable Chip) conçues par une méthodologie de co-design
matériel/logiciel pour exécuter de manière efficace les fonctions de localisation et de
détection des obstacles à partir de la vision. Les résultats obtenus sont équivalents
ou meilleurs que l’état de l’art, concernant la gestion de la carte locale d’amers pour
l’odométrie-visuelle par une approche EKF-SLAM, et le rapport vitesse d’exécution sur
précision pour ce qui est de la détection d’obstacles par identification dans les images
d’objets (piétons, voitures...) sur la base de modèles appris au préalable.
Mots clés: Navigation du robot, SLAM visuel, detection visuelle d’obstacles, adéquation
algorithme architecture, SoPC, cartes embarquées hétérogenes

Srpski. Autonomna mobilna platforma opremljena sistemom za navigaciju po-
drazumeva vǐse funkcionalnih blokova: percepciju, lokalizaciju, planiranje putanje i
upravljački podsistem. U slučaju kada se robot kreće u sredini sa mnoštvom prepreka na
putu, on kontinualno izvršava nekolicinu zadataka u realnom vremenu: šalje referentnu
vrednost fizičkih veličina za upravljanje aktuatorima, računa svoju poziciju u odnosu na
poznati referentni koordinatni sistem u prostoru i detektuje potencijalne prepreke na
svom putu. Zahvaljujući kamerama koje pružaju bogatu semantičku informaciju u vidu
slika u boji i njihovoj niskoj ceni, ovi zadaci se često baziraju na viziji. Prema tome,
standardni namenski sistemi implementirani na ovim mobilnim platformama zahtevaju
dodatno integrisanje brzih procesnih sistema sa kapacitetom obrade velike količine
vizuelnih podataka u realnom vremenu. Štavǐse, zarad što veće autonomije mobilne
platforme potrebno je osigurati njenu minimalnu energetsku potrošnju. Ova teza bavi
se dizajnom SoPC (engl. System on a Programmable Chip) arhitektura i algoritama
za efikasnu implementaciju zadataka lokalizacije i detekcije prepreka baziranih na viziji
u kontekstu autonomne navigacije koristeći metodologiju hardver/softver kodizajna.
Ostvareni rezultati su ekvivalentni ili bolji od aktualnog stanja u oblasti pri lokalizaciji
pomoću vizuelne odometrije bazirane na EKF-SLAM algoritmu i pri detekciju prepreka
putem algoritama identifikacije bazirane na modelu. Za lokalizaciju, razvijena je
efikasna računarska arhitektura za EKF algoritam, koja podržava skladǐstenje i obradu
sedmodimenzionalnih orijentira u lokalnoj mapi. Za detekciju prepreka je predložena
nova metoda prepoznavanja objekata u slici putem prozora detekcije fiksne dimenzije,
koja omogućava veću brzinu izvršavanja algoritma detekcije.
Ključne reči: Robotska navgacija, vizuelni SLAM, detekcija prepreka u slici, kodizajn
hardver-softver, SoPC, heterogene namenske kartice

Acknowledgements
This doctoral dissertation is the result of a rich past experience that spans far over last
four years. It would have been an impossible feat, if not for my childhood education,
early manufacturing-related working experience and most importantly the values taught
at me at home: discipline, passion to quality work and the need for critical and focused
thinking in this world characterized by evermore complex dynamics. I cannot express
enough my gratitude to my grandparents: Nagytata (András), Nagymama (Mária), Baka
(Ruža) and Deda (Josip), who, with their comprehension, patience and care, nurtured
an early flourishment of my creative skills and enabled their very first embodiments. I
am eternaly thankful to my parents, Mama (Erika) i Tata (Branislav), who aided me in
my endeavors and pushed me into the unknown, while always finding a way to be by my
side even when physically apart for several thousand kilometers. Not less worthy was my
partner’s support, which is proven to be inevitable for sharpening my communicational
and social skills. Thank you Brigitta for your daily efforts and sacrifices.

This PhD thesis was conducted under joint supervision of Michel Devy at LAAS-
CNRS, Toulouse, France and Mirko Raković at Faculty of Technical Sciences, University
of Novi Sad, Serbia. Funds allocated in the 2012-2016 period are:

• French Government Scholarship for joint-PhD students,

• FUI-AAP14 project AIR-COBOT, co-funded by BPI France, FEDER and the Midi-
Pyrénées region and

• Project Robot Viticole funded by the Midi-Pyrénées region.

In France, I was integrated in the Robotics, Action, Perception (RAP) group in LAAS-
CNRS laboratory and affiliated to University Paul Sabatier (Toulouse III). In Serbia, I was
registered at Computation and Control Engineering Department at Faculty of Technical
Sciences (University of Novi Sad). During the joint thesis preparation I have had an
opportunity to immerse myself largely into French and Serbian customs in terms of private
and professionnal life, leaving my zone of comfort well behind me. That resulted in an
exciting, multicultural and challenging adventure that improved greately my perception of
both Academia and Industry, given these aforementioned research projects I was entrusted
with. I would like to express my gratitude to Michel Devy who equivocally believed in
my capacities and under whose supervision I was able to fully experience driving on
the bulky road of a researcher’s work constrained by industrial applications. Thanks
to financial support from his behalf, I was able to attend and present my work at the
International conference on reconfigurable computing and FPGAs, which had a huge
impact on my understanding of the field of SoPC architectures design. I tend to thank
Dorde Obradović for his initial instructions, help and advices. Thanks to the genuine
help of Mirko Raković, under whose supervision the dissertation came to its final shape,
focus of the research content has been firmly formulated. Special thanks to Jonathan
Piat and Bertrand Vandeportaele, for all the advices for both sw/hw conceptual and
technical issues. I would like to thank Patrick Danès for his unreserved trust and support
and foremost for his time devoted to me during hard times when the joint cooperation
seemed almost unsustainable. Thank you Mohamed Akil and Branislav Borovac, and
to other members of the jury of the defence of my thesis, for your invested time for
reading, evaluating and synthesizing the dissertation. Your comments and critics are

1

unambiguously assertaining the value of this joint work and, to my great delight, give
motivation for consequent research.

As part of RAP group, I had the opportunity to interchange ethical views and con-
ceptions first hand with people originating from Middle East, India, Americas, Ethiopia,
Germany and Far East. It left me with tremendeous appreciation towards muslim, latin
and hindu traditions and cultural values and a much better understanding of the human
being and its potential. Thank you for all cooperation, funny conversations and great
babyfoot and table tennis games we had Ariel, Diego, Xavier, Alhayat, Ali, Mustaffa,
Wassim, Nemanja, Igor, Dušan, Marko, Borislav, Mukunda, Nirmal, Ganesh, Harmish,
Renliw, François, Phillippe-Antoine, Jean-Thomas, Justin, Marcus, Pierrick, Alexandre,
Stanislas and Guido.

The technical, scientific and social skills needed to surmount such a joint PhD
program are very well summarized in an old Hungarian proverb:

“Szemesnek áll a világ”

“World is upon those who see” (eng. trans.)

because, at the same time, it expresses the need of a physical ability of seeing the
world as is with eyes, the hypothesis of perceiving the world in a right way by means of
vision, and the skills requirement of one’s adaptability and cunning to process the
acquired knowledge and make something valuable out of it.

2

Contents

1 Introduction 11
1.1 General Introduction . 12
1.2 Simultaneous Localization and Mapping 14
1.3 Obstacle Detection and Tracking . 17
1.4 Organization of the manuscript . 20

2 Architectures and Algorithms for Robot Navigation 21
2.1 Robot Navigation . 22

2.1.1 The navigation system for the AIR-COBOT robot 23
2.1.2 Specifications of an embedded navigation system 26

2.2 HW/SW co-design methodology . 27
2.3 Conclusion . 30

3 State-of-the-art 31
3.1 Computer vision for object classification 32

3.1.1 Interest Point Detectors and Descriptors 32
3.1.1.1 Raw pixel patches . 32
3.1.1.2 Scale-invariant feature transform 32
3.1.1.3 Speeded-up robust features 34
3.1.1.4 Histogram of Gradients 34
3.1.1.5 Other Descriptors . 35

3.1.2 Explicit Shape . 35
3.1.2.1 K-fans . 35
3.1.2.2 Implicit-shape model (ISM) 36
3.1.2.3 Alphabets of visual words 37

3.1.3 Without explicit shape . 37
3.1.3.1 Hierarchical object recognition 38

3.1.4 Machine learning for classification 38
3.1.4.1 Boosting . 40
3.1.4.2 Support vector machines 41
3.1.4.3 Application in computer vision 41

3.2 Complete real-time video analytics systems 42
3.2.1 Non-embedded solutions . 42
3.2.2 Embedded solutions . 43

3.3 Visual EKF-SLAM . 44
3.3.1 Monocular SLAM implementations 45
3.3.2 FPGA-based SLAM implementations 45

3

4 EKF-SLAM HW/SW co-design: part I 47
4.1 Modeling . 48
4.2 Hardware specification before partitioning 50

4.2.1 System Cost Measure Definition . 50
4.2.2 Update Specifications . 52

4.3 Iterative prototyping . 53
4.3.1 First iteration: software-only prototype 54
4.3.2 Second iteration: Front-end hardware accelerator 55

4.3.2.1 Corner detector FAST . 55
4.3.2.2 Tesselation . 58

4.3.3 Third iteration: Back-end hardware accelerator 59
4.3.4 Fourth iteration: Front-end hardware accelerator 61

4.3.4.1 Correlation accelerator co-design 61
4.4 Final hardware prototype . 64

4.4.1 Experimental results and discussion 65
4.4.2 Comparison with state of the art 66

4.5 Conclusion . 67
4.5.1 Towards EKF-SLAM at 100Hz . 68

5 EKF-SLAM HW/SW co-design: part II 69
5.1 Algorithmic overview . 70

5.1.1 Computational bottleneck identification 71
5.2 Design considerations . 72

5.2.1 Matrix multiplication tradeoffs on FPGAs 72
5.2.2 Notion of systolic arrays on an FPGA 73
5.2.3 Computational model mapping . 73

5.3 Cross-covariance matrix block accelerator 76
5.3.1 HW/SW Integration . 79

5.4 Design evaluation . 81
5.4.1 Multiplier Latency . 81
5.4.2 Resource usage . 81
5.4.3 Power consumption . 82

5.5 Experimental results . 83
5.5.1 Measured multiplication latencies 83
5.5.2 Design scalability . 84
5.5.3 Power per feature . 84
5.5.4 Future work . 84

5.6 Conclusion . 86

6 Embedding Algorithms for Visual Obstacle Detection 87
6.1 Related work and motivation . 88
6.2 Proposed framework . 89

6.2.1 Appearance kernel . 90
6.2.2 Shape kernel . 90
6.2.3 Classifiers co-design . 94
6.2.4 Classifiers training . 97
6.2.5 Single scale decision making . 99

4

6.3 Conclusion . 103

7 Towards Real-Time Visual Vehicle Detection 105
7.1 Software architecture . 106

7.1.1 Concurrence . 108
7.2 Algorithmic Evaluation . 109

7.2.1 Estimation of vehicles detection on an embedded platform 112
7.3 Conclusion . 114

8 Conclusion 115

5

List of Figures

1.1 Tasks in a SLAM process . 15
1.2 2D SLAM with an obstacle . 16

2.1 Robot OZ from Naio Technologies . 22
2.2 Robot for pre-flight inspection used in AirCobot project 23
2.3 Functional architecture of navigational module in AIRCOBOT project . . 24
2.4 HW/SW co-design methodology for SoPC prototyping 29

3.1 SIFT keypoints: left image is mirrored and SIFT is applied on both images.
The extracted keypoints’s locations are invariant to image rotations. 33

3.2 An example of alphabet encoding with 4 cluster centers for intra-class clas-
sification: i) interest points are extracted and described with a decriptor in
form of encoded feature vectors; ii) each of the feature vectors is assigned
to closest visual word from codebook based on a distance measure; iii) his-
togram containing this combination of visual words is passed to a classifier
which determines object instance. 37

3.3 i) AdaBoost’s linear kernel vs ii) SVM’s Gaussian kernel: an example over
a complex, linearly non-separable dataset. 42

4.1 Example dataflow graph . 48
4.2 The vision-based EKF-SLAM SDF model 50
4.3 A simple dataflow graph and its one processor schedule 51
4.4 The simple dataflow graph with re-timing (delay token denoted by a red

dot) and its multi processor schedule . 51
4.5 Re-timed application SDF model . 52
4.6 Theoretical schedule of the SLAM aplication before and after re-timing . . 53
4.7 Schedule of the SLAM aplication after first iteration 54
4.8 FAST corner detection result . 56
4.9 Image acquisition as a 1-D pixel stream . 57
4.10 Fast segment test. Pixels from 1 to 16 form the Bresenham circle 57
4.11 FAST hardware architecture . 58
4.12 Corner score module . 58
4.13 Tesselation on FAST corner detection result 59
4.14 Schedule of the SLAM application after second iteration 60
4.15 Schedule of the SLAM application after third partitioning 61
4.16 Instantiation of a multicore correlator . 63
4.17 Schedule of the SLAM application after fourth partitioning 63
4.18 Embedded SLAM’s SoC architecture . 64

7

4.19 Summary over the iterative prototyping . 67
4.20 Expected schedule of the SLAM application after fifth partitioning 68

5.1 Our tiling of the 1-D systolic array for visual EKF-SLAM matrix multipli-
cations . 75

5.2 Tri-matrix multiplication architecture. 77
5.3 Our SoC implementation of the 3D EKF-SLAM application 78
5.4 EKF block throughput comparison #1 . 85
5.5 EKF block throughput comparison #2 . 85

6.1 Equal error rate of a set of classifiers for N SET = 300 93
6.2 Rule-based BoW classification. 96
6.3 Learning curves for SVM(Kraw) and SVM(KHoG) 98
6.4 Single scale detection window non-maximal suppression scheme 99
6.5 Subtractive clustering in a template-based NMS inferring 101
6.6 Block diagram of the proposed framework. 103

7.1 Partial SIFT KEYMAP, after having applied KBoW on extracted SIFT
keypoints . 107

7.2 Parallelization of stages I and II . 108
7.3 Tasks timing in hierarchical detection pipeline 109
7.4 Tasks timing without linear SVMs computation 110

8

List of Tables

1.1 Visual SLAM implementations - an overview 18

3.1 Comparison of generative and discriminative classfiers 39

4.1 vSLAM tasks execution before iterative prototyping 53
4.2 Prototype’s resource usage with IPs’ performance 65
4.3 Execution time of SLAM functional blocks in [ms] on ZedBoard 66

5.1 Description and matrices dimensions according to our implementation of
the EKF algorithm. 71

5.2 Number of floating-point operations in an EKF loop taking into consid-
eration symmetry of the cross-covariance matrix. Equations 5.4 - 5.7 are
executed c = 20 times, for each observation 71

5.3 Transfer analysis regarding P matrix in EKF equations 72
5.4 Control of en signals . 76
5.5 1-D systolic array resource usage . 81
5.6 Accelerator resource usage with on-chip memory 82
5.7 Visual EKF-SLAM accelerator’s power distribution: comparison with the

previous version . 83
5.8 EKF equations cycles measured with 125 MHz counter 83
5.9 Device resources usage with Nmax = 70 . 84
5.10 Power per feature metric for visual EKF-SLAM with AHP points 85

6.1 Histogram of Gradients: an empirical study 92
6.2 SVM kernels: an empirical study . 97

7.1 Stage II training . 110
7.2 Stage I training . 110
7.3 Stage I implementation . 111
7.4 Stage II implementation . 111
7.5 Stage III implementation . 111

9

Chapter 1

Introduction

Contents
1.1 General Introduction . 9
1.2 Simultaneous Localization and Mapping 11
1.3 Obstacle Detection and Tracking 14
1.4 Organization of the manuscript 17

11

1.1 General Introduction
Increasingly applications rely on mobility whatever the system - be it a robot, a vehicle,
a drone or an operator with a tablet or a smartphone, equipped with several sensors.
As soon as such a system moves in an environment, it must be endowed with several
functions able to provide its position with respect to a known reference frame. It also
needs to detect obstacles in order to avoid collisions (for robot navigation) or to recognize
some known objects (for augmented reality). Main subject studied in this thesis concerns
the localization and obstacle detection functionalities in the context of navigation of a
mobile platform.

Many solutions exist in the literature, depending on the available sensory modalities,
on the locomotion system, on the a priori knowledge learnt on the environment, and
overall, on the available resources (energy, memory, computing power). Many robots (e.g.
Automated Guided Vehicles (AGV) for industrial environments) and vehicles (e.g. the
Google car) are equipped with laser range finders in order to perceive the environment; in
this thesis it is proposed to use only vision, i.e. a low-cost sensor that could be embedded
both on autonomous robots and on smart devices moved by humans.

A standard Visual Odometry (VO) algorithm is exploited for the localization of our
system moving in an initially unknown environment. Such a function builds up a local
map that corresponds to its environment in the form of positions of landmarks observed
in images, estimates the local motion made by the system, and then, cumulating these
motions, estimates the system position with respect to a specific reference frame, generally
the initial position when the VO algorithm has been started. Landmarks are presumed
to be static. Our mobile system must be equipped with a camera and besides it may also
have proprioceptive sensors in order to give other measurements on the motions: wheel
odometry for a robot, Inertia Measurement Unit (IMU) for a device worn by an operator
or for a drone.

A VO algorithm is very similar to a Visual Simultaneous Localization and Mapping
approach (VSLAM), but the localization in VO is only estimated from a local map. Such a
map is built over a given horizon time, defined e.g. by the M last acquired images or by the
N last detected landmarks. As the localization is computed from local information, it will
be impacted by a drift growing over time. With a Visual SLAM algorithm, it is possible to
build a global map, even on large environments: if the mobile system returns in a known
area and succeeds in matching observed features with mapped landmarks, cumulative
errors may be corrected using a loop closure function. VO and VSLAM could be based
either on Filtering, e.g. EKF and Rao-Blackwellized Particle Filter, or on Optimization
(global or incremental, iterative or direct). It is known [Strasdat et al., 2010] that the
localization given by Optimization methods is more accurate than for Filtering ones, but
it requires more computing power, and moreover, for large environments, the map size
could be huge, so that some map management strategy has to be applied.

It is the reason why, for systems of limited size, an EKF-based VO algorithm is
most often applied for position estimation; moreover it is easier to take into account
measurements acquired from asynchronous multiple modalities (several cameras, gyros
and accelerometers). Drifts could be corrected from time to time either fusing with a
priori knowledge given to the system (e.g. Open Street Map in urban scenes, or a building
map for indoor scenes) or with a global position provided by a GPS receiver in outdoor
environments.

12

In spite of the increasing computing power on compact embedded system, EKF-based
VO’s computational complexity still may be too important with only a software imple-
mentation. It is so mainly due to image processing in order to extract features from
images and due to large scale matrix-matrix multiplications when applying the filter on
large state vectors. The real-time constraint for typical applications of drones, robots
or augmented reality on smart devices, involves to update the system position at least
at 30Hz(33.33ms). Moreover improving the frequency allows to enter a virtuous cycle:
faster is the VO process, easier and more robust is the feature-landmark matching. An-
other issue is that of autonomy for a mobile system: standard processors, such as Intel’s
quad core i7, consume a lot of power, thereby limiting the level of autonomy.

The SLAM and obstacle detection functionalities are interconnected. First as the
SLAM paradigm itself is used for both self-localization of the mobile platform and car-
tography of the static world around the moving platform, obstacle detection plays an
important role in providing reliant visual cues only on static entities. Moreover estimat-
ing the speed of the mobile platform helps to characterize other mobile objects sharing the
same world. In mobile robotics (including drones, micro-aerial vehicles (MAVs), terres-
trial rovers, autonomous driving vehicles), the navigation performance in crowded envi-
ronments depends heavily on efficient obstacle detection. In Advanced Driver Assistance
Systems (ADAS) and Intelligent Transportation Systems (ITS) early collision avoidance
systems play a crucial part in safe navigation. As vehicle speeds in urban areas may reach
50km/h, real-time execution of obstacle detection task at 10Hz implies that a single image
is to be fully treated at each 1.39m of path traveled.

Cutting edge computer vision algorithms, benchmarked on public data-sets such as
KITTI [Geiger et al., 2013] require huge amounts of processing power to deal with this
issue: they most often rely on Graphical Processing Units (GPUs) to compute intensive
image-related operations or multi-core personal computers with tens of gigabytes of RAM.
Well-performing image indexation algorithms such as [Harzallah et al., 2009] cope with
multiclass object detection by creating large computational kernels for non-linear Support
Vector Machines (SVMs). In the literature this is known as ”the curse of dimensionality”.
Calculating dense optical flow or depth map from stereo camera setup in real-time is
unimaginable without a GPU or a dedicated hardware platform. Other known techniques
for foreground/background segmentation are mainly used for visual monitoring of envi-
ronments from static cameras, such as Gaussian Mixture Models (GMMs) which come
with heavy computational load.

To overcome these difficulties, an embedded system ensuring high computational ef-
ficiency at low power consumption must be designed. Modern reconfigurable devices
such as Field-Programmable Gate Arrays (FPGAs) may meet this requirement. Their
reconfigurable fabric consists of a large number of configurable slices, and embedded
Digital Signal Processing (DSP) blocks that can be used for floating-point applications.
Compared to a standard processor, computationally extensive algorithms may be par-
allelized and thus executed several times faster on FPGAs in floating-point precision
[Underwood and Hemmert, 2004]. While Graphical Processing Units (GPUs) also make
use of the parallelization techniques, the main advantage of FPGAs over both GPUs and
general purpose central processing units (GPCPUs) remains in significantly lower power
consumption. Embedded GPUs have as well emerged on the market today with similar
power consumption to an FPGA [NVIDIA, 2015b]. However, they are designed as to im-
prove computational performances on highly demanding image processing applications.

13

Thus FPGAs with their algorithm-specific memory management capabilities owing to re-
configurability still remain a better choice over embedded GPUs in terms of computational
efficiency of a custom application.

Hence, migrating SLAM and obstacle detection algorithms on systems of limited
size, such as MAVs and intelligent vehicles, is most often done by developing dedi-
cated hardware accelerator architectures on Field Programmable Gate Arrays (FPGAs)
[Advani et al., 2015], [Chang et al., 2013], [Wilson et al., 2014], [Hahnle et al., 2013].
Their convenient size, powerful parallel processing capabilities and low power drain (˜5W
vs ˜300W for an average GPU) make them an optimal tool for embedded systems de-
velopment. Nowadays, the embedded industry is shifting towards issuing heterogeneous
hardware architectures which port besides an FPGA (which already comes with a multi-
core hard processor such as ARMv7) also an embedded GPU [Xilinx, 2015].

Contribution of this thesis concerns the localization and obstacle detection functionali-
ties by identifying the underlying particularities within visual SLAM and computer vision
algorithms: their complexity, inherent parallelisms and memory management specificities.
It describes and evaluates an efficient FPGA-based hardware accelerator for solving the
localization task and proposes a model-based obstacle detection framework to be executed
on multi-core heterogeneous1 hardware platforms.

1.2 Simultaneous Localization and Mapping
Simultaneous Localization and Mapping (SLAM) is a paradigm that intends to infer
structure of an initially unknown environment from sensors moved by a mobile platform
or by a person while performing self-localization of this platform or person by matching
observations with the incrementally built map. In literature, this localization-mapping
iterative process is known as ”chicken or egg” problem, while in practice the answer
to ”where am I” question is given after an initial observation of the environment. To
date, several thousand scientific and engineering papers have contributed to solving this
intriguing puzzle, with the cornerstone being laid by [Cheeseman et al., 1987] who used
landmarks in the environment in order to construct its map. SLAM may be divided into
six separate tasks, as can be seen on Figure 1.1:

Initialization is the first step in establishing a priori information about the unknown
world by identifying first landmarks in the vicinity of the robot via exteroceptive sensors.
After having performed a motion, it calculates its new position based on proprioceptive
sensors (odometers, accelerometers, gyros, magnetometers) and/or dynamic displacement
model- it estimates its new position. Because of incertitude on data readings which
eventually leads to a faulty pose estimation, it has to compare features observed from
the current position with potential observations of known landmarks so it can estimate
its pose relative to the point of departure (origin). For that it does feature detection
anew, following by a posteriori data association with cues collected in initialization
step. Upon successful data matching, the robot may update its state (localization) and
update landmarks’ positions in the map (mapping). As the process is iterative, a
new loop initializes new landmarks and the SLAM goes on in same fashion.

A hypothetical two-dimensional SLAM process is depicted on Figure 1.2. Here, a
holonomous robot is passing from state x1 to x5 while avoiding an obstacle. Initially, at

1multi-core CPU + FPGA

14

Figure 1.1: Tasks in a SLAM process

state x1, it observes two landmarks L1 and L2. After having moved, it reobserves L2 and
updates its position along with the positions of both first two landmarks in its map. At
x2 three new landmarks are initialized: L3, L4, L5 and at x3 the fifth is reobserved, upon
which it is able to adjust all the five landmarks in the map. At the final state x5 robot’s
map contains nine landmarks.

All tasks involved in feature acquisition, data association and map management belong
to so-called front-end part of SLAM while the tasks related to the state estimation and
update both of the robot’s state vector and of the map are alltogether known as back-end
SLAM. Along past decades, the community has proposed different algorithmic solutions
to these two distinct parts of the paradigm, treating several major problems arising from
data uncertainty that eventually lead to loss of localization and mapping accuracy. Data
uncertainty may be caused by unpredictive physical phenomena, environment conditions,
material properties of objects and quality of the sensors.

A state-space based estimator, the Kalman filter [Kalman, 1960] - KF for short, was
first used to model the dynamic system behavior, from imprecise sensory data. It functions
well under two assumptions: the system is modelled as a linear system and transitional
processes are affected by Gaussian-characterizable noise. For nonlinear system model,
an Extended KF [Maybeck, 1979] - or simply EKF is used. The important particularity
of an EKF-SLAM is the ability of updating the whole state-space vector based on a
measure of its single element (observation) by means of convolving innovation with cross-
correlation matrix. EKF-SLAM’s algorithmic drawback comes after unsuccessful data
association, due to linearization errors in state estimation and update phases, known
as filter inconsistency. A study was conducted by [Castellanos et al., 1997] on impact
of correlating mapping with state-space vector, where it is shown that tightly coupled
systems contribute to more accurate mapping (consistent maps) than loosely coupled

15

Figure 1.2: 2D SLAM with an obstacle

ones. In addition, the theoretical work of [Dissanayake et al., 2001] showed the need of
having all the information regrouped in a single cross-covariance matrix for the sake of
filter’s good convergence.

First exteroceptive sensors to be used were laser rangefinders
[Betge-Brezetz et al., 1996] [Csorba, 1998] - fast and providing confident 3D obser-
vations, but being too costly for larger-scale SLAM use. It is the reason why the
robotics community has studied visual SLAM for almost fifteen years, taking profit of
the existing ”Structure from Motion” contributions of the Machine vision community.
Use of a multi-camera setup with odometry for localization was proposed first by
[Harris and Pike, 1987]. Three-dimensional point representation used in this work raised
new questions about point parametrization during initialization phase due to perspective
3D (real-world) to 2D (camera plane) projection, as they didn’t make use of stereo setup
in their multi-camera configuration in order to acquire depth. There, several landmark
observations are required to build landmark’s 3D representation. Their work is equally
valuable in presenting active search strategy, a technique used for limiting the search
space in image plane during feature tracking phase, which greatly increases processing
speeds in comparison to brute-force matching over the entire image.

The first ground-breaking work on monocular real-time SLAM was done by
[Davison, 2003a]. From sensors, he used only a low-cost webcam which was connected to
a those-days standard personal computer (PC). Mapping was done in three dimensions
with a tightly-coupled back-end, using a delayed initialization of landmarks, based on a
particle filter (PF). The depth uncertainty of each landmark is reduced over time while
reobserving it during displacement. Once the uncertainty passes under a certain thresh-
old, the point is added to the map. In order to keep real-time performance, a limited

16

amount of landmarks is held within the map.
In literature, based on environment representation (front-end) we may distinguish

between different types of SLAM: semantic SLAM, topological SLAM, and geomet-
ric SLAM. Semantic SLAM, also known as object-based SLAM, uses object detection
for self-localization. Here, the most common representative is grid-based SLAM (i.e.
FastSLAM2.0 [Magnenat et al., 2010]) which uses laser telemetry to construct a map
which is a discrete occupancy grid of robot’s vicinity. Topological SLAM (i.e. TSLAM
[Choset and Nagatani, 2001]) uses known topological maps (forms of structured graphs)
of the environment for localization. Geometric SLAM uses low-dimensional spatial priors
as landmarks: points, line segments, circular arcs.

On the other hand, based on back-end methods, the SLAM corpus may be divided into
following categories: probabilistic, graph (optimization-based), and interval propagation
SLAM. Probabilistic SLAM uses filtering techniques such as EKF and PF (i.e. Fast-
SLAM [Montemerlo et al., 2002]) for state-space vector transformations. Graph SLAM
[Kaess et al., 2011] [Kümmerle et al., 2011] makes use of energy optimization in a gener-
alized graph whose vertices are ensembles of landmarks and robot poses through all past
frames. The interval propagation SLAM methods transform the SLAM problem into a
hybrid constraint satisfaction problem (CSP), which estimates a set-valued representation
of the state [Jaulin, 2011].

This thesis deals with a monocular EKF SLAM that builds 3D maps of robot’s envi-
ronment for localization. An overview over existing monocular SLAM implementations
may be seen on Table 1.1. Relevant methods will be cited and brieflly described in Chap-
ter 3. The more recent methods are based on optimization, but considering constraints
related to embedded systems, filtering-based approaches remain interesting.

1.3 Obstacle Detection and Tracking
Obstacle detection, and overall Mobile Object Tracking (MOT), are critical functionali-
ties in robotics or intelligent transportation systems, so many works have been devoted
to this topics. As mentionned, SLAM and MOT are interconnected, mainly because fea-
tures created by mobile objects in sensory data, could be considered as perturbations for
the SLAM methods, as it was analyzed in [Márquez-Gámez, 2012]. Obstacles could be
detected from many sensors, depending on the constraints upon minimal and maximal
distances between the robot/vehicle and the obstacle to be detected. The more classical
sensor used for this function on a terrestrial robot or for a vehicle, is a 2D laser range
finder (LRF), scanning the environment on a plane parallel to the ground: it is known
that it is very efficient, but it cannot detect obstacles under the laser plane (short objects
on the ground) and the laser data are too poor in order to recognize the obstacle class
(car, pedestrian, bicycle, etc.) with a good success rate. It is the reason why vision has
been also used for obstacle detection for many years, either alone or tightly coupled with
the 2D LRF. Here only obstacle detection and MOT are considered from vision.

In general, image indexation (content retrieval) is a two-stage hierarchical process
which consists of

I. Hypothesis generation on object location within an image

II. Hypothesis verification

17

Ta
bl

e
1.

1:
V

isu
al

SL
A

M
im

pl
em

en
ta

tio
ns

-a
n

ov
er

vi
ew

SL
A

M
Fe

at
ur

es
M

ap
pi

ng
P

os
e

es
ti

m
at

io
n

im
pl

em
en

ta
ti

on
s

D
es

cr
ip

to
r-

ba
se

d
D

ire
ct

D
en

se
Sp

ar
se

O
pt

im
iz

at
io

n
Fi

lte
rin

g

PT
A

M
[K

le
in

an
d

M
ur

ra
y,

20
07

]
ye

s
ye

s
ye

s

D
TA

M
[N

ew
co

m
be

et
al

.,
20

11
]

ye
s

ye
s

ye
s

LS
D

SL
A

M
[E

ng
el

et
al

.,
20

14
]

A
t

lo
op

cl
os

ur
e

ye
s

ye
s

ye
s

O
R

BS
LA

M
[M

ur
-A

rt
al

et
al

.,
20

15
b]

ye
s

ye
s

ye
s

SV
O

[F
or

st
er

et
al

.,
20

14
]

A
t

ke
yf

ra
m

es
ye

s
ye

s
ye

s

RT
SL

A
M

[R
ou

ss
ill

on
et

al
.,

20
11

]
ye

s
ye

s
ye

s

C
SL

A
M

[G
on

za
le

z
et

al
.,

20
11

]
ye

s
ye

s
ye

s

2D
EK

F-
SL

A
M

[B
on

at
o

et
al

.,
20

08
]

ye
s

ye
s

ye
s

3D
EK

F-
SL

A
M

[V
in

ck
e

et
al

.,
20

12
b]

ye
s

ye
s

ye
s

3D
EK

F-
SL

A
M

w
/

su
bm

ap
s

[L
ee

an
d

Le
e,

20
13

]
ye

s
ye

s
ye

s
ye

s

18

In the first stage and based on sensor setup, obstacle detection methods in computer
vision and image processing follow two main directions: monocular and stereo (binocu-
lar) camera detection. The latter takes advantage of the Inverse Perspective Mapping
(IPM) [Mallot et al., 1991] to estimate the locations of obstacles. In case of vehicles,
[Bertozzi and Broggi, 1998] IPM was computed from the left and right images and based
on the comparison objects not belonging to ground plane (road presumed to be flat)
were identified as vehicles. Another classical approach for obstacle detection from stereo-
vision is based on the v-disparity [Labayrade, 2004], which requires also a flat ground.
Dedicated architectures have been proposed both for IPM or v-disparity approaches
[Botero-Galeano, 2012] [Irki et al., 2013]. Main problem with obstacles detection by
stereo-vision is that it is very sensitive to the camera calibration parameters (extrin-
sics) and range of the detection is limited to about 10m upfront the sensor rig (depending
on the stereo baseline - wider the baseline, higher the range).

Hypothesis generation in monocular setup may be further divided into three cate-
gories: (1) constrained IPM (2) motion-based and (3) knowledge-based. An IPM-based
on-road obstacles detection system in urban areas is presented in [Itu and Danescu, 2014].
Executing on a smart-phone and making use of its main camera and accelerometer, the
algorithm makes assumptions of an upfront flat road free from obstacles. Upon im-
age transformation, color-based segmentation is used for obstacle areas identification.
Motion-based approaches calculate optical flow, generating a displacement vector for
each pixel - [Bruhn et al., 2005] [Stein, 2004]. High computational complexity of op-
tical flow based approaches still remains a challenge for a straightforward implemen-
tation on an embedded platform. Knowledge-based methods employ various abstrac-
tions on object representation i.e. about shape, color, texture as well as contextual
information about its environment: streets for pedestrians and vehicles, freeways for
trucks Object location is searched for via sliding-windows (brute force) approach
[Harzallah et al., 2009] or after some scene geometry-related assumption - i.e. vanishing
point calculation [Hartley and Zisserman, 2004] or edge detection [Sun et al., 2002] for
image search-space reduction.

In the second stage, methods that corroborate hypotheses on object location can be
classified into two categories: (1) template-based and (2) appearance-based. Template-
based approach defines an object class pattern. Each input sample (sub)image is corre-
lated upon the class representative. Authors in [Betke et al., 1996] proposed a multiple-
vehicle detection approach using deformable gray-scale template matching. Appearance-
based methods detect the presence of an object in the scene based upon characteris-
tics of the object class from a set of training image patches which capture the vari-
ability in object appearance. Local and/or global characteristics called features are
extracted and most often learned by a binary classifier (e.g. convolutional neural net-
work [Krizhevsky et al., 2012] or support vector machine (SVM)). These knowledge-based
methods tend to be used alone, both for hypothesis generation and verification. They are
now very popular, thanks to the massive distribution of low cost cameras on the market,
to the success of the Viola&Jones’s approach to detect faces on images using an AdaBoost
classifier, and also, to the emerging use of Deep Learning for this topic.

In order to ease object redetection in successive frames, detected obstacles may be
tracked. In this scenario a tracklet is initialized for each detected obstacle. Then, inter-
frame object’s position estimation is most often performed by a Kalman filter, following
data association via a graph-search based algorithm (i.e. the Hungarian method). Only

19

tracklets that are at least three frames long are taken into further consideration.

1.4 Organization of the manuscript
The main body of this thesis is divided as follows.

Chapter 2 describes applicative domain, raises designing constraints and precises eval-
uation metrics of the research. Consequently it introduces and explains the methodology
used for conception, emulation, design and validation steps of software and hardware
components developped during my thesis.

Chapter 3 references state-of-the-art and relevant visual EKF SLAM applications and
computer vision techniques used for model-based object recognition.

Chapter 4 describes iterative prototyping on the given visual EKF SLAM application
ending with a functional SoPC model capable of executing at 100Hz.

Chapter 5 puts forward the co-design with evaluation metrics of FPGA based EKF
co-processor’s architecture.

Chapter 6 introduces a framework for model-based obstacle detection with focus on
embedded target devices. A theoretical basis with relevant statistical studies has been
profoundly explained.

Chapter 7 begins with a software implementation of previously described framework.
Afterwards it presents results after a case-study evaluation on the exemple of vehicles
type of obstacles.

Chapter 8 summarizes the thesis, exposes the remaining questions to be asked, and
gives an outline of the subsequent work enabled by my research.

20

Chapter 2

Architectures and Algorithms for
Robot Navigation

Contents
2.1 Robot Navigation . 19

2.1.1 The navigation system for the AIR-COBOT robot 20
2.1.2 Specifications of an embedded navigation system 23

2.2 HW/SW co-design methodology 24
2.3 Conclusion . 27

21

2.1 Robot Navigation
In the context of this thesis the applicative domain of autonomous navigation includes
following environment types:

• Indoor structured: popular off-the-shelf solution for these kinds of constrained envi-
ronments is Robotics Operating System’s ROS-nav-stack. It usually uses grid-based
SLAM methods for localization.

• Outdoor structured (urban robotics) or large indoor, assuming robot motions on a
flat terrain with possibly cluttered environment: service robots in factories, airports
(i.e. in the context of AirCobot project1). Obstacles may be also dynamic (people,
bikes, vehicles, other mobile robots) and this problem is too large for classical SLAM
methods.

• Outdoor natural (typically agricultural robotics - Figure 2.12): uneven and 3D ter-
rain, with few dynamic obstacles, but many static obstacles on the terrain (ditches,
puddles, tools on the ground).

Figure 2.1: Robot OZ from Naio Technologies

and different navigation methods:

• Reactive navigation: complementary to planned motions and used for obstacle
avoidance i.e. the robot leaves the nominal trajectory if an obstacle is found on
the path (i.e. in the context of AirCobot project).

• Sensor-based navigation: motions are defined as a sequence of sensor-based com-
mands. Typically it is used when navigating in a field following successive raws, or
navigating around an aircraft based on different targets.

• Trajectory-based navigation: robot learns the map of an obstacle-free environment
and the motion planner finds a trajectory consistent with the robot’s characteristics.

1image courtesy of Airbus Group
2image courtesy of Naio Technologies

22

Figure 2.2: Robot for pre-flight inspection used in AirCobot project

It then executes this trajectory, based on a localization method (along with obstacle
avoidance) in order to generate a control law.

Before giving some conceptual constraints for embedded navigational systems, in next
subsection the system developed for the AirCobot robot by AKKA and LAAS will be
presented. Here, the central role of the localization function on such a system will be
accentuated.

2.1.1 The navigation system for the AIR-COBOT robot
During the preparation of this thesis, PhD candidate participated on the two projects
illustrated on figures 2.1 (on agricultural robotics with the start-up NAIO Technologies)
and 2.2 (on service robotics in airports with a consortium lead by AKKA Research and
AIRBUS). Contribution on these projects was devoted to the evaluation of several visual
SLAM methods for Visual Odometry (VO): the VO results are typically fused with motion
estimates provided by wheel odometry and by inertial measurements, to improve the
localization obtained from the integration of these motion estimates. It is well known
that the odometry based localization drifts. So dead-reckoning navigation, based on
these position estimates, can only work locally: this strategy is used only when other
localization methods integrated on the robot fail.

By now, the VO function is executed in software, consuming important computational
resources on the embedded system. A long term objective for these two projects is to
integrate the VO method on a dedicated hardware platform, i.e. to generate a smart
camera or stereo sensor specialized for visual odometry.

A simplified navigational schematic with its functional architecture, executed on the
AIRCOBOT demonstrator (Figure 2.2 on the left) in a complex operational environment,
is presented on Figure 2.3. This robot assists a pilot for the pre-flight inspection task,
performed on the parking area before every departure. It must navigate autonomously
around an airplane, going successively to every check point (from 1 to 21, presented on Fig-
ure 2.2 on the right). These motions must be executed on the taxiway, avoiding vehicles,
trucks or operators executing other tasks (refueling, baggage loading, etc.), knowing that
close to the airport buildings or to the airplane, GPS-based localization is not reliable.
Moreover, airlines or AIRBUS prevent the robot navigating in some areas around the
airplane, typically under the wings to avoid collisions with reactors. Before any mission,
during an interactive initialization step, the robot learns several representations:

23

Cameras	

Figure 2.3: Functional architecture of navigational module in AIRCOBOT project

• first the airplane model (here an A320) expressed in the aircraft reference frame
and the visual targets it could detect, track and use to control motions around the
airplane,

• then the airport model expressed in the airport reference frame, mainly along the
trajectories that the robot will have to execute between its docking station and the
different parking areas where the pre-flight inspection must be performed,

• and finally the transform between the GPS geo-centered frame (WGS84 or ECEF)
and the airport reference frame through a local orthographic projection.

Many modules have been integrated to deal with obstacle detection using laser and visual
data (Figure 2.3 on the right), robot localization fusing dead-reckoning, model-based and
GPS-based methods (Figure 2.3 in the middle) and motion control based on four modes:
• Visual Servoing activated typically to reach precisely a check point based on image-

based control from visual targets detected and tracked on the airplane surface.

• Go-to-Goal used to execute trajectories defined as a sequence of way points expressed
either in the airport or in the aircraft reference frame.

• Obstacle Avoidance in order to locally avoid an obstacle, maintaining the camera
pointed towards the visual targets if required.

24

• Person follower: the AIR-COBOT robot may also be used as a cobot, i.e. executing
collaborative tasks with an operator, especially following him until a given point
where it could execute an inspection task, or following him in order to avoid an
obstacle when the autonomous avoidance strategy fails.

Motions are planned by the navigation supervisor knowing the mission to be executed
(typically, the next check point to be visited): it activates a navigation mode based on
different events (obstacle detected close to the trajectory, detection of visual targets,
failure of the tracking, failure of the obstacle avoidance, etc.); it combines low-level orders
generated by these modes before sending them to the micro-controllers through the CAN
bus. This architecture shows the central role of the localization functions. Whatever the
navigation mode, the robot position with respect to the airport and the airplane reference
frames are updated using available observations. This knowledge allows the navigation
supervisor to plan trajectories, to select a better mode and to switch smoothly between
modes . The dead-reckoning localization is only taken into account when GPS-based or
model-based methods fail (either due to occlusions for GPS, or to failures of the feature
detection or matching functions for vision); when a GPS or a model-based localization
is available, it allows to correct the drifts and to maintain the localization error below a
maximal value (typically 1.5m for GPS, 1m for vision), consistent with the other modules.

This navigation system is implemented on an embedded PC (2,3GHz quad core i7):
it has been integrated using the middleware ROS and some ROS standard modules:

• the drivers used to acquire sensory data: LRF modules linked to the 2D laser range
finders at 40Hz and image acquisition at 15Hz

• and the module Robot-Pose-EKF integrated to perform the dead reckoning local-
ization from a loose fusion of three methods executed in order to estimate the robot
motions (Visual odometry, Wheel odometry and Inertial measurements).

In this context we evaluated several VO methods: first CSLAM from LAAS, then
ORB-SLAM proposed recently by authors from the University of Zaragoza:

• CSLAM will be described in detail in chapter 4; it performs a tight fusion between
wheel odometry, inertial measurements and visual observations in order to update
both the robot state (position and speed) and landmarks positions. It could replace
the Robot-Pose-EKF module. In the AIR-COBOT context, it gave poor results,
mainly because we could not guarantee a good synchronization between all sensory
data.

• ORB-SLAM exploits only visual data in order to estimate the camera trajectory by
an optimization method. It provides better position estimates as it makes use of
a large number of landmarks (approx. 2000) and performs loop closure technique
when revisiting known locations in order to correct for drifts. The cost of using it
involves higher computational latencies and active memory requirements (its visual
vocabulary takes only approx. 1GB of RAM while maximum operating frequency
does not exceed 10Hz).

25

2.1.2 Specifications of an embedded navigation system
In the AirCobot project, all functionalities were implemented in software as ROS nodes.
If an embedded device supporting these functionalities on a mobile operating platform is
to achieve satisfactory behavior, some constraints must be taken into consideration:

• portability : one of the paramount conditions of an embedded device is that it
should be small in dimensions and thus easily integrable into different systems,

• processing power : it should dispose of high processing power capabilities, as the
problem we are treating is deeply rooted in computer vision and localization do-
mains,

• power consumption : level of autonomy of a mobile platform is directly dependent
of energy it consumes for its functioning. E.g. in mobile robotics and in automotive
industry putting an Intel Core i3 processor (e.g. i3-4170 launched Q1’15 dissipating
54W at 3.70 GHz) or an Intel Core i7 processor (e.g. i7-6870HQ launched Q1’16
dissipating 45W at 3.6 GHz) in the mobile platform is not affordable due to power
issues. So most of the processors that are used have an ARM core (Cortex-A8,
A9 and nowadays A15 which dissipate roughly 1W at 1.2 GHz per core) plus a
DSP/FPGA inside it. Thus, for higher levels of autonomy, the embedded design
needs to take into consideration a logic that is both performing and minimalistic in
terms of resource usage,

• accuracy : the most crucial characteristic of the device is to detect well the obstacles
and to perform an accurate self-localization.

Real-time measure is based on 30 frames per second (fps) where the embedded system
needs to provide thirty robot position responses in a second. Apart algorithmic complexity
issues, second biggest and equally important challenge for this thesis is sw/hw integration.
It is envisaged to independently provide an embedded solution for SLAM algorithm and
for obstacle detection subsystem, respectively. Each subsystem needs to react in real-
time, which brings up integration issues in each subsystem as well. Main problems that
arise are:

• memory handling and custom data storage techniques,

• adapting the coding technique to ”pixels on-the -fly treatment”, which is different
than the usual when storing images on disk,

• data synchronization of different sensors, namely of odometers, GPS (Global Posi-
tioning System), IMU (Inertia Measurement Unit) and camera frames,

• custom, application-specific, logic that accommodates processing power with energy
consumption and resource usage,

• software behavioral simulation, functional hardware verification and insuring timing
constraints satisfaction of hardware components.

An adequate sw/hw partitioning methodology, called sw/hw co-design, needs to be
proposed in order to efficiently balance the aforementioned trade-offs. Thus this thesis will

26

mainly focus on co-design modeling of hardware architectures on SoC (System On a pro-
grammable Chip) and software coding techniques such as single-threaded, distributed and
multi-threaded and alike stand-alone (so called bare-metal) and Linux-based applications.

Efficiency measures against which proposed designs for visual SLAM and obstacle
detection and identification will be evaluated are:

• satisfaction of real-time constraints, that is how many frames per second an archi-
tecture is capable of processing,

• accuracy, DET (Detection Error Tradeoff [Hanley and McNeil, 1982]) curve for em-
bedded classifiers and absolute difference in position for self-localization

• ”performance per watt” [Afonso et al., 2011] measured in FLOPs (FLOating Point
operations) over power usage of the embedded device,

• resource usage of the hardware components.

2.2 HW/SW co-design methodology
In literature, there is a plethora of works related to developing suitable methodologies to
prototype an embedded system. A subset of these refers to heterogenous architectures
and they can be summarized - [Shaout et al., 2009] - as: (A) Top-down approaches where
from the behavioral system specification the target architecture is gradually generated
by adding implementation details to the design; (B) Platform-based design where prede-
fined system architecture is used for mapping the system behavior; and (C) Bottom-up
approach where a designer assembles the final hardware architecture by inserting wrap-
pers between functioning heterogenous components. In order to efficiently map system
functionalities in a hw/sw co-design process, authors in [Sciuto et al., 2002] propose a
methodology for defining co-design analysis metrics with the goal to statically associate
to each task an affinity to be executed on a given processing element like a microproces-
sor, FPGA, DSP and alike. However, as authors report themselves, there could be no
panacea refering to a single best-performing co-design methodology for all domains. In
[Vincke et al., 2012b] a platform-based approach is used to develop a low-cost visual EKF
SLAM application on a multi-core platform with a DSP. As authors conclude, a further
step forward is implementing their work on a heterogenous architecture with an FPGA.
Model-driven design flow is a long studied problem and proved worthy in a number of
applicative domains where application complexity and computing architecture complexity
may result in a delicate design flow. Some approaches use the data-flow model of applica-
tion to ease the parallelism exploration to target heterogeneous multi-core architectures -
[Bezati et al., 2014]. Others use a high level programming language that implements the
data-flow model to be automatically transformed into a valid hardware implementation -
[Sérot et al., 2014].

In our terms, applying hw/sw co-design methodology understands taking a defined
system-level behavioral algorithmic model (it can also be a standalone software applica-
tion) and transforming it to an application-specific integrated circuit (ASIC)-compliant
design. The reason behind targeting a single-chip based hardware architecture is in pos-
sibility of achieving optimal performance/energy consumption trade-off given contempo-

27

rary technological traits. We apply a more general top-down methodology for hw3/sw
co-design of visual SLAM (based on filtering techniques, such as EKF) on a heterogenous
architecture - Fig. 2.4 - referred to in [Shaout et al., 2009]. Our approach is as follows4:

I find and accomodate the application to the global co-design analysis metric

II given system cost measure, identify bottlenecks

III repartition the design, build HW modules, integrate them back into design

IV if global cost measure is not achieved reiterate from step II, else stop.

Based on the level of parallelism (defined at the conceptual level) that the model/ap-
plication may exhibit and in order to efficiently explore the design space, at Modelling
phase our application is modelled in the form of a data-flow. Constraints such as power
consumtion, memory footprint, speed, accuracy, time-to-market are set. They will influ-
ence HW/SW partitioning and condition whether the prototype is ready to be deployed
for engineering a consumer-grade product based on its functional IPs and application’s
adapted execution flow. In HW specifications phase model-driven optimization is per-
formed. The validated degree of parallelism is set as the static co-design analysis metric
along with a heterogeneous development board on which we would be able to exerce that
degree of parallelism. Then, tasks are being mapped to parallel executors and specifica-
tions are updated on them. Going through CO-synthesis phase, design gets incrementally
partitioned [Balboni et al., 1996] into software and hardware modules with the accent
on increasing number of hardware modules. During this phase, Hardware in the loop
process is used to assure intellectual properties (IPs) compatibility with the rest of the
system. In Prototyping phase multiple functional prototypes are dispatched until a final
target-compliant prototype is issued.

In comparison with general co-design approaches, target hardware platform is chosen
once in the Update Specifications block (i.e. the loop from prototype N never goes all the
way back to modelling on Fig. 2.4). Given the maturity of the applicative domain i.e.
taking into consideration all the previous scientific and engineering work in the community,
it is argued that a well-chosen heterogenous development board porting an embedded
processor with an FPGA device should suffice for small number of design loops.

For obstacle detection, according to Figure 2.4, this thesis will cover steps from Appli-
cation modeling to Allocation. A model-based learning framework will be proposed with
a case-study on vehicle obstacle class. For localization, the whole co-design methodology
will be applied, starting with a working software code of SLAM.

3hw stands for FPGA
4In reference to Fig. 2.4, I: Modelling, Hardware Specifications until HW/SW Partitioning; II: Con-

straints verification in HW/SW Partitioning, III (we call it iterative prototyping): all blocks from HW/SW
Partitioning to Constraints verification in Prototyping; IV: Target-Compliant Prototype

28

APPLICATION
MODELLING

SYSTEM COST MEASURE
DEFINITION

Hw SwINTERFACE

ALLOCATION

MODULE SPECIFICATIONS

BEHAVIORAL
MODEL

BEHAVIORAL
TESTBENCH

SOFTWARE
COMPILATION

BEHAVIORAL MODEL
VALIDATION

OK?

SYNTHESIZED
MODEL

SOFTWARE
TESTBENCH

SYNTHESIZED MODEL
VALIDATION

OK?

TARGET-COMPLIANT
PROTOTYPE

Hw/Sw INTEGRATION

yes

yes

no

no

4.Hw in
the loop

3.co-synthesis

1.Modelling

2.Hardware
specifications

5. Prototyping

EMULATORS

UPDATE SPECIFICATIONS

SYSTEM
COST MEASURE

ACHIEVED
?

no

yes

PROTOTYPE N

Hw/Sw PARTITIONING

CONSTRAINTSARCHITECTURE
MODELLING

Figure 2.4: HW/SW co-design methodology for SoPC prototyping

29

2.3 Conclusion
After having described the context and constraints of the research in more detail in this
chapter, its contributions relative to localization and obstacle detection tasks mentioned
in previous chapter may be further refined in more detail as:

• Development of an FPGA-based scalable EKF block accelerator for Filtering-based
visual SLAM applications. The accelerator’s behavior is validated in Hw in tho loop
process, as a bare-metal component in standalone application using Xilinx Software
Development Kit and

• Single-scale obstacle detection framework proposition for embedded systems. In
the executional pipeline (detailed in Chapter 6), most time-demanding tasks that
should be executed on different physical threads are identified.

Using the hw/sw co-design methodology and by targetting embedded platforms, local-
ization and obstacle detection tasks within a navigational framework are substantially
accelerated and the power consumption during their execution is significantly lowered.
As a result, this thesis offers efficient and real-time capable hardware and software archi-
tectures for mobile robots enabling them with evermore autonomy compared to equivalent
state-of-the-art solutions.

30

Chapter 3

State-of-the-art

Contents
3.1 Computer vision for object classification 29

3.1.1 Interest Point Detectors and Descriptors 29
3.1.2 Explicit Shape . 32
3.1.3 Without explicit shape . 34
3.1.4 Machine learning . 35

3.2 Complete real-time video analytics systems 39
3.2.1 Non-embedded solutions . 39
3.2.2 Embedded solutions . 40

3.3 Visual EKF-SLAM . 41
3.3.1 Monocular SLAM implementations 42
3.3.2 FPGA-based SLAM implementations 42

31

As the up-to-date Computer Vision field covers quite a broad spectrum of vision-based
algorithms, geometry and image processing techniques, the present overview is incented
to give both critical and characteristic descriptions of techniques that are widely used
within computer vision community for 2D object recognition. Some of them are adopted
in this research for hypotheses generation. Built upon these algorithms are video analytic
systems, presented in the second section. The third part describes contemporary visual
EKF-SLAM algorithm implementations, focusing on performance and power metrics.

3.1 Computer vision for object classification
The task of detecting an object is equivalent to extracting a region of interest (ROI) in
an image and assigning a label to it. This ROI is a bounding box represented by 2D
coordinates which is slided over the image. Some works reduce the complexity of the
detection window sliding task from O(n2m2) to O(nm) [Lampert et al., 2008]. In order
to confront scaling issues, either parts of the objects or the objects in the whole are
searched for in these image patches. Either than working on the raw group of pixels, a
local descriptor algorithm is used to describe the central pixel in relation to its neighbours.
With the information issued from descriptors we feed a trained classifier that labelizes
the ROI with a related classification-quality score.
As my thesis focuses on monocular obstacle detection, all references made on 3D models
in this chapter assume 2D feature extraction in the background.

3.1.1 Interest Point Detectors and Descriptors
These descriptors search for information (local features) within an image patch. In-
formation is provided by a detector which is an image processing algorithm perform-
ing some morphological and/or convolutional operation. The detected, consistent
points are called salient. These points are searched for by a Harris corners detector
[Harris and Stephens, 1988] (which is scale-variant), Hessian [Bay et al., 2006] (scale in-
variant) and Difference of Gaussians (DoG) [Lowe, 1999] (which is fast but less accurate).
Interest point descriptors are compaired in [Mikolajczyk and Schmid, 2005a]. Here, the
authors conclude that the quality of descriptors is independent of detectors.

3.1.1.1 Raw pixel patches

This is a grouping of neighboring image pixels values. In [Agarwal et al., 2004], authors
use these groups as raw visual words in order to generate a patch-based visual alphabet
model for object classification. The distance measure between words is defined by their
cross correlation. However, the correlation function is quite sensitive to the size and
brightness in the image, which encourages other more invariant feature transformations
that can cope with changes in real-life conditions.

3.1.1.2 Scale-invariant feature transform

SIFT descriptor [Lowe, 1999] computes a histogram of local oriented gradients around the
interest point and stores the bins in a 128-dimensional vector (8 orientation bins for each
of the 4×4 regions in a 16×16 pixels neighborhood centered at the interest point). The

32

local features generated are invariant to image scaling, translation, and rotation and are
partially invariant to changes in brightness and affine transform changes. Conceptually,
the appearance of salient points in the image should remain salient, even if the image is
resized, rotated, or the brightness levels are changed - Figure 3.1. SIFT features may be
used also for point-to-point matching of the same object between different image frames
in the context of tracking.

Figure 3.1: SIFT keypoints: left image is mirrored and SIFT is applied on both images.
The extracted keypoints’s locations are invariant to image rotations.

As reported in [Mikolajczyk and Schmid, 2005a], SIFT-based descriptors perform
in general best among moment invariants [Mindru et al., 2004], differential in-
variants [Florack et al., 1994], shape context [Belongie et al., 2002], steerable filters
[Freeman and Adelson, 1991], spin images [Lazebnik et al., 2003] and complex feature
[Schaffalitzky and Zisserman, 2002] descriptors whereas moment invariants and steerable
filters show the best performance among the low dimensional descriptors.
FPGA-based SIFT architecture is proposed in [Chang et al., 2013]. The architecture pre-
sented in this paper is able to detect interest points in a 320×240 resolution image in
11ms, which represents a speedup of 250× with respect to a software implementation.
Several SIFT variants can be found in literature:

• Authors in [Ke and Sukthankar, 2004] use Principal Component Analysis on
the gradient image (PCA–SIFT). Descriptor returns a 36-dimensional vector
which is fast for matching, but less discriminative than SIFT as reported in
[Mikolajczyk and Schmid, 2005a]. Also it is more computationally demanding which
reduces the speed-up effect of faster matching.

• Mikolajczyk et al., also in [Mikolajczyk and Schmid, 2005a], propose Gradient Loca-
tion and Orientation Histogram (GLOH). A larger feature vector with finer gran-
ularity than SIFT is extracted, and the dimensionality is reduced using PCA based
on a large training set. The 128 strongest eigenvectors are used for description.
However, the drawback when using dimensionality reduction techniques is always
slower execution time to on-line classification tasks due to computational overkill.

• Modified SIFT descriptors with global edge features (extracted with a Canny detec-
tor [Canny, 1986]) are used in [Ma and Grimson, 2005] on vehicle images for intra-
class classification. This type of classification differentiates between individual ob-
ject instances in a given class i.e. between vehicle models in vehicle class. An
evaluation on the test set from a mid-range surveillance camera shows small error
rates, from 2% to 6%.

33

3.1.1.3 Speeded-up robust features

SURF descriptors are introduced in [Bay et al., 2006] in order to speed-up SIFT-like fea-
ture generation. The detector is based on the Hessian matrix [Lindeberg, 1998] on integral
images. The descriptor, on the other hand, build the feature vector on a distribution of
Haar-wavelet responses within the interest point neighborhood (on integral image). As
its design focuses on computational speed, only 64 dimensions are used, which increases
robustness but decreases distinctivity at the same time.
Recenlty, a Zynq-device based parallel architecture was implemented for SURF
[Wilson et al., 2014]. It operates at 131fps with a 640×480 (VGA) resolution camera.

3.1.1.4 Histogram of Gradients

The concept of HoG was introduced in [Dalal and Triggs, 2005] for pedestrian detection.
Descriptor uses a global feature to describe a large ROI that could contain a person
rather than a collection of local features. Here, an entire person is represented by a
single feature vector. To compute it, the input gradient image is divided into overlapping
blocks (usually with a 50% rate of overlap) with each containing non-overlapping cells in
itself. A histogram over given binning is calculated in each cell. Each block histogram
represents a concatenated value from cell histograms. Final feature vector, representing
the input gradient image, is obtained after having applied a contrast normalization scheme
on each block and concatenated all the results. As gradient magnitudes vary over a wide
range because of local variations in brightness and foreground-background contrast, so
an eective local contrast normalization is essential for good performance. As a gradient-
image based descriptor, HoG captures well the structure of the objects and is used most
often in conjunction with Support Vector Machine (SVM) classifiers.

In [Negri et al., 2007] authors compare Haar (all-time famous face detector) to HoG
features in vehicle detection. They conclude that HoG outperforms the Haar cascade and
they make an interesting observation that when increasing the HoG feature space the
detection rate increases while the number of false positives fluctuates at a stable level
contrary to Haar where (by increase in Haar feature space) the number of false positives
decrease with decrease in detection rate. The training contains multi-stage levels (11 and
12) as in a Viola Jones boosting algorithm [Viola and Jones, 2001].

A fused HoG-HCT (Histograms of Census Transform) feature set is created in
[Li et al., 2012]. First, HoG and HCT features are extracted from different vehicle view-
points and then fused together in a single block of matrix elements by PCA (Principal
Component Analysis) algorithm. Afterwards they are introduced and built into a de-
formable parts model (front view, rear view, side view). Astonishing results based on
”car” object class images from VOC 2007 show that this aproach outperforms HoG. How-
ever, they only present results on images of cars on roadways (not in urban environments).
The quality of detector is always tied to specificity of the training set (data set).

One interesting study aimed to train HoG-based classifiers specific to vehicle orienta-
tion in comparison to a coarse (default) HoG-based classifier [Rybski et al., 2010]. The
goal was to detect vehicle orientation and with it to further infer some relevant informa-
tion. The conclusion was that, counter-intuitivelly, the coarse classifier outperformed the
specific ones. There is also a study that unsuccessfully tried to modify the HoG descriptor
to separate between edges (edge gradients) and shades (”diuse” gradients) because this
descriptor at its current implementation cannot feed classifiers (such as SVMs) with in-

34

formation that is insensitive to texture [Doersch and Efros,]. Also, HoG exhibits aliasing
problems where two image patches that are perceptually very different may end up with
very similar HoG descriptors.

As a gradient-image based descriptor, HoG captures well the structure of the objects
and is used most often in conjunction with Support Vector Machine (SVM) classifiers.
Cell dimension, number of cells within a block, block overlap rate and number of blocks
are all empirical values. In this thesis, a study over the optimal HoG parametrization for
vehicle classification is described [Tertei, 2013].
A real-time version of this descriptor on Full HD images (1920×1080) is proposed in
[Hahnle et al., 2013].

3.1.1.5 Other Descriptors

Boundary fragment model (BFM) for generic object recognition is introduced in the
seminal paper [Opelt et al., 2006b]. Canny edge detector is used to generate object
boundaries - fragmented lines. In the phase of model training, Chamfer distance mea-
sure [Borgefors, 1988] is used to generate a codebook of fragments. Each fragment has
a geometric information to vote for an object centroid (in the manner of Leibe et al.
[B. Leibe and Schiele, 2004]). Discriminative fragments are learned afterwards via the
process of boosting. In general, part-based models are advantageous in dealing with par-
tial object occlusions.
Edgelet features [Wu and Nevatia, 2007]. These local shape features represent short
segment of a line or a curve. Extracted after a Sobel convolution, they are used for pedes-
trian detection. A strong edgelet-based classifier is learned after boosting. Authors in the
aforementioned paper combine people detection and tracking (initialization and hypothe-
ses on trajectories) which in that way shows improved robustness for both techniques.
Apart from aforementioned descriptors (SIFT, SURF and HoG) raw pixels may be used
for binary edge extraction. In that way the information may be used as normalized input
for feature descriptors, as varying brightness levels in pixel intensities are mostly removed
during edge detection. Canny edge detector to generate features is used for:
• Traffic flow analysis by tracking vehicles on highway [Kim and Malik, 2003]. Edges

are detected for generating lines of a 3D vehicle model. Then, connected-component
analysis is applied for line grouping.

• Intra-class vehicle detection [Ma and Grimson, 2005] as described earlier in Subsec-
tion 3.1.1.2.

• Generic object recognition in [Opelt, 2006], which will be more detailed in Subsec-
tion 3.1.4.

3.1.2 Explicit Shape
Here it is presumed that parts of objects are detected. This Subsection focuses on direct
modeling of the spatial relationship between them.

3.1.2.1 K-fans

The N parts of an object are modelled as nodes of a graph. K-fan model
[Crandall et al., 2005] separates this nodes into k reference nodes and N-k regular nodes.

35

Each reference node is N-regular, having edges towards all other nodes. The spatial prior
is thus conceptualised in this manner as number of N-regular reference nodes within a
graph. Changing the value of k, the graph goes from null to complete, changing the spatial
representation of an object from no structure to full rigid structure. This concept is intro-
duced in order to improve understanding of tradeoffs between representational power and
inherent computational complexity for part-based recognition. Authors conclude that for
efficient object detection and localization (in this sense k-fans model combines the two)
very often we don’t have to use higher order fans.
Most shape models are related to k-fans:

• Authors in [Kim and Malik, 2003] use a 1-fan model to group edges of highway
scenes into vehicles.

• A 1-fan constellation for vehicle detection based on SIFT features is used in
[Ma and Grimson, 2005].

• Also, image gradient-based descriptors such as HOG and 3DHOG use a complete
graph model.

3.1.2.2 Implicit-shape model (ISM)

This 1-fan model is introduced in [B. Leibe and Schiele, 2004] and in more detail in
[Leibe et al., 2008a]. During training process, 25 × 25 pixel patches are extracted from
images using Harris corner detector. After agglomerative clustering based on a defined
similarity criterion, cluster centers are stored in a codebook. In the second training
iteration, all codebook entries are assigned a probability relative to their location in
regard to object centroid. That, in fact, defines the ISM model. During prediction,
unknown image patches are matched against all codebook entries and each element
gives a vote toward object centroid based on its spatial occurrence distribution, in a
generalized Hough voting [Ballard, 1981] manner. Interesting and useful part of this
procedure is what comes next: once the object centroid is found (mean-shift mode
estimation [Cheng, 1995]), the most contributing codebook entries are backprojected
with their surrounding in original image, giving us a segmented object.

Generalized Hough Voting. Similar approach for object voting is used in Lowe’s seminal
paper [Lowe, 1999], which has been already described in Subsection 3.1.1.2. Same method,
extended using different features and distance metrics is reused in:

• [Leibe et al., 2007] and [Leibe et al., 2008b]; features, averaged pixel intensities
matched in consecutive camera frames are fed into a Structure from Motion (SfM
[Hartley and Zisserman, 2000]) pipeline. Cars and pedestrians are detected in an
urban area from a moving camera.

• [Cornelis et al., 2008]; corners and edges are used for features,

• [Leibe et al., 2005]; with SIFT features fed into ISM codebook,

• [Opelt et al., 2006b]; already described in Subsection 3.1.1.5,

36

• Opelt et al. [Opelt et al., 2006c] and [Opelt et al., 2006a] where authors make use
of the BFM model and a plethora of descriptors (SIFT, Harris corners, moment-
invariant descriptors) - respectively, with AdaBoost.

3.1.2.3 Alphabets of visual words

Alphabets are used for reducing the number of training samples. Some clustering tech-
nique is used to identify similar feature vectors and to combine them. Visual vocab-
ulary is then built upon the set of cluster centers. In this kind of codebook the spa-
tial information is embedded in cluster centers as each holds a list of class labels and
could represent several positions in a shape model - Figure 3.2. This idea is used
in [Wijnhoven et al., 2008],[Creusen et al., 2009], [Ma and Grimson, 2005], [Opelt, 2006]
and [Wijnhoven and de With, 2009].

Figure 3.2: An example of alphabet encoding with 4 cluster centers for intra-class
classification: i) interest points are extracted and described with a decriptor in form of
encoded feature vectors; ii) each of the feature vectors is assigned to closest visual word
from codebook based on a distance measure; iii) histogram containing this combination

of visual words is passed to a classifier which determines object instance.

3.1.3 Without explicit shape
Also known in literature as Bag of Words (BoW [Sivic et al., 2005],
[Fei-Fei and Perona, 2005], [Jurie and Triggs, 2005], [Nowak et al., 2006]). This 0-
fan ”shapeless” model is extensively used for generic object recognition. A set of
extracted visual features is grouped into empirically chosen number of cluster centers
(a visual dictionary). Each training instance (feature vector) here is represented as a
histogram containing the number of appearances for each feature in a visual dictionary.
Interesting comparison between alphabets and BoW as object categorization techniques
is given in [Wijnhoven and de With, 2009]. Authors argue that when it comes to feature
vector representation, the histogram-based BoW compares better to HMAX-based
alphabet (also known in the literature as extended standard model [Serre et al., 2007]) for
small dictionaries with up to 500–1000 features, making it more suitable for embedded
applications. Further they conclude:

37

• Dictionary quality. Random BoW dictionaries outperform dictionaries created from
Hessian-Laplacian salient points.

• Interest point selection. Hessian-Laplace point operators fail to match up against
processing all image points.

3.1.3.1 Hierarchical object recognition

Hierarchical object recognition is mainly inspired by biological vision, more precisely on
the structure of the human visual cortex [Ullman, 2007]. Inherent advantage of such a
hierarchy lies in invariance to position and scale in lower layers and invariance in viewpoint
angle and other transformations in hiher layers of the structure. Here object features are
based on image patches. Every image patch is decomposed into smaller informative sub-
parts. The procedure is repeatedly carried out until we obtain atomic patches. This leaves
us at the end with a tree-style object hierarchy.

The standard model [Serre et al., 2007] presents a complete object recognition and
segmentation framework using a visual cortex structure. Four layers are used, which
perform:

• Simple filtering. Simple S1 cells apply a battery of Gabor filters ([Gabor, 1946] and
[Daugman, 1985]) over input image patches at multiple scales, and at each scale in
0◦, 45◦, 90◦ and 135◦) orientations,

• Complex searching. Cortical C1 cells search for local maxima over scale and position.

• Filtering. S2 units behave as Radial Basis Function (RBF) units. Each S2 unit’s
response depends in a Gaussian-like way on the Euclidean distance between a new
input and a stored prototype. Patch prototypes are learned during previous training.
Response is kept for each orientation.

• Likelihood response. C2 units compute a global maximum over S2 units. That is
thus a shift- and scale-invariant response. Final result is a vector of N C2 values,
where N corresponds to the number of prototypes.

This feature vector mat further be passed to a linear classifier, SVM
or boost. This approach is used in traffic surveillance applications in
[Wijnhoven et al., 2008], [Creusen et al., 2009], [Wijnhoven and de With, 2009] and
[Wijnhoven and de With, 2007].

3.1.4 Machine learning for classification
A classification algorithm is defined as a mathematical function that maps input data to
a category. If the categories labels are provided a priori, the classifier is said to be su-
pervised, otherwise it is unsupervised1. Authors in [Bradski and Kaehler, 2008] separate
classifiers as generative and discriminative. Simplest way of interpreting is that generative
approach models the cause of data (likelihood) while the discriminative models what data
cause (probability). In Table 3.1 an overview over popular discriminative and generative
classifiers used in computer vision may be seen.

1in some cases semi-supervised i.e. lack of some input data and/or mislabeled data

38

Ta
bl

e
3.

1:
C

om
pa

ris
on

of
ge

ne
ra

tiv
e

an
d

di
sc

rim
in

at
iv

e
cl

as
sfi

er
s

A
lg

or
it

hm
M

od
el

ty
pe

Fe
at

ur
e

re
pr

es
en

ta
ti

on
T

ra
in

in
g

ty
pe

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es

K
-m

ea
ns

G
en

er
at

iv
e

C
lu

st
er

re
gi

on
s

ov
er

de
fin

ed
di

st
an

ce
m

et
ric

.
N

um
be

r
of

cl
us

te
rs

is
pr

e-
de

fin
ed

by
us

er
/e

xp
er

t.

U
ns

up
er

vi
se

d

R
es

ul
tin

g
re

gi
on

s
ca

n
be

us
ed

as
sp

ar
se

hi
st

og
ra

m
bi

ns
to

re
pr

es
en

t
da

ta
.

G
oo

d
ex

pe
rt

ise
m

ay
de

fin
e

th
e

be
st

K
-n

um
be

r
or

el
bo

w
m

et
ho

d.
G

ua
ra

nt
ee

d
co

nv
er

ge
nc

e.

C
lu

st
er

re
gi

on
s

ar
e

no
n-

G
au

ss
ia

n,
th

ei
rf

or
m

at
io

n
is

de
pe

nd
en

t
on

di
st

an
ce

m
et

-
ric

an
d

ad
ju

st
ed

we
ig

ht
in

g.

N
äı

ve
Ba

ye
s

C
la

ss
ifi

er
G

en
er

at
iv

e
G

au
ss

ia
n

di
st

rib
ut

ed
an

d
st

at
ist

ic
al

ly
in

de
pe

nd
en

t
fro

m
ea

ch
ot

he
r.

Su
pe

rv
ise

d

C
an

ha
nd

le
m

ul
tip

le
cl

as
se

s
in

co
nt

ra
st

to
ot

he
r

bi
na

ry
cl

as
sifi

er
s.

W
or

ks
ve

ry
we

ll
on

sm
al

lt
ra

in
in

g
da

ta
se

ts
.

In
ge

ne
ra

l,
fe

at
ur

es
ar

e
no

t
st

at
ist

ic
al

ly
in

de
pe

n-
de

nt
(i.

e.
pr

es
en

ce
of

ey
e

fe
at

ur
e

im
pl

ie
sf

ac
e

fe
at

ur
e)

D
ec

isi
on

tr
ee

s
D

isc
rim

in
at

iv
e

Fe
at

ur
es

ar
e

th
re

sh
ol

ds
at

tr
ee

no
de

s
us

ed
to

tr
ai

n
th

e
tr

ee
(le

ft-
rig

ht
br

an
ch

se
pa

-
ra

tio
n)

.

A
ll

tr
ai

n-
in

g
ty

pe
is

su
pp

or
te

d.
Ve

ry
fa

st
.

A
dd

iti
on

al
va

ria
bl

e
pe

rfo
r-

m
an

ce
m

ea
su

re
te

ch
ni

qu
es

ne
ed

to
be

us
ed

w
he

n
ha

v-
in

g
la

rg
ef

al
se

po
sit

iv
er

at
es

.
Bo

os
tin

g
(g

ro
up

of
K

cl
as

sifi
er

s)
D

isc
rim

in
at

iv
e

Ea
ch

cl
as

sifi
er

us
es

a
sim

pl
e

de
ci

sio
n

tr
ee

w
ith

th
re

sh
-

ol
ds

as
fe

at
ur

es
in

tr
ai

ni
ng

.

A
ll

tr
ai

n-
in

g
ty

pe
is

su
pp

or
te

d.
Eff

ec
tiv

e
on

la
rg

e
tr

ai
ni

ng
da

ta
se

ts
.

Te
nd

st
o

ge
ne

ra
te

la
rg

ec
la

s-
sifi

er
s.

N
eu

ra
ln

et
wo

rk
s

D
isc

rim
in

at
iv

e

R
aw

in
pu

t
da

ta
ar

e
tr

an
s-

fo
rm

ed
in

hi
dd

en
la

ye
rs

as
fe

at
ur

es
;s

yn
ap

se
s

re
pr

es
en

t
th

e
we

ig
ht

ed
m

ap
pi

ng
of

in
-

pu
ts

.

Su
pe

rv
ise

d

H
ig

h
pe

rfo
rm

an
ce

.
C

an
m

ap
an

y
hi

gh
er

or
de

r
po

ly
-

no
m

ia
l

eq
ua

tio
ns

.
In

cr
ed

i-
bl

y
fa

st
if

us
ed

offl
in

e
fo

r
pr

ed
ic

tio
ns

.

Si
ze

of
tr

ai
ni

ng
se

t
is

a
tr

ad
eo

ff
to

tim
e

ne
ed

ed
to

pe
rfo

rm
on

lin
e

le
ar

ni
ng

–
de

pe
nd

en
t

on
pr

oc
es

sin
g

po
we

r
of

un
de

rly
in

g
ha

rd
-

wa
re

.
Tr

ai
ni

ng
do

es
no

t
al

-
wa

ys
co

nv
er

ge
.

Su
pp

or
t

ve
ct

or
m

ac
hi

ne
s

D
isc

rim
in

at
iv

e

R
aw

in
pu

t
da

ta
ar

e
tr

an
s-

fo
rm

ed
by

ke
rn

el
fu

nc
tio

ns
–

ak
a

sim
ila

rit
y

m
ea

su
re

s.
T

ha
t

is
a

m
ap

pi
ng

in
re

sp
ec

t
to

al
re

ad
y

kn
ow

n
la

nd
m

ar
ks

(s
up

er
vi

sio
n

po
in

ts
in

da
ta

sp
ac

e)
.

Su
pe

rv
ise

d

Su
pp

or
ts

ve
ry

la
rg

e
tr

ai
n-

in
g

da
ta

se
ts

.
H

as
hi

gh
pe

r-
fo

rm
an

ce
an

d
th

e
so

lu
tio

n
is

fo
un

d
(b

as
ed

on
tr

ai
ne

d
m

od
el

)
in

po
ly

no
m

ia
lt

im
e.

H
as

to
ha

ve
a

ba
la

nc
ed

ra
-

tio
of

po
sit

iv
e

an
d

ne
ga

tiv
e

in
pu

t
da

ta
(o

r
ba

la
nc

ed
ra

-
tio

of
cl

as
s

re
pr

es
en

ta
tiv

es
in

m
ul

ti-
cl

as
s

tr
ai

ni
ng

).

39

3.1.4.1 Boosting

Boosting is a method of constructing a robust classifier on the basis of a linear combina-
tion of simpler, possibly biased, classifiers. Discrete AdaBoost, a binary category-based
boosting algorithm by Freund [Freund, 1995] [Freund and Schapire, 1999], uses a combi-
nation of T classifiers called hypotheses ht in order to make weighted predictions upon
samples x:

H(x) = sign

(
T∑
t=1

αtht(x)
)

(3.1)

Hypotheses are linear predictors, so called “weak” classifiers such as decision trees and
the perceptron learning rule. They are chosen from a domen H, which is given beforehand
the training process as a finite set of predictors. During training, the user provides number
of weak learners T . The training process proceeds iteratively from t = 1:T with a chosen
hypothesis in each iteration which satisfies the equation

ht = argmin
hj∈H

εj =
m∑
i=1

Dt(i) [yi 6= hj(xi)] (3.2)

where the error ε is upper bounded as εj ≤ 0.5 meaning that ht only needs to perform
better than random. m is the number of training samples. In this way, AdaBoost builds
sequentially a set of “better than random” classifiers. Dt is a discrete distribution function
which starts as a uniform distribution in first iteration (D1(i) = 1/m) and changes as:

Dt+1(i) = Dt(i)e−αtyiht(xi)

Zt
(3.3)

Here, newly chosen hypotheses compensate for misclassified samples from previous
iterations as the exponential component assures increase (decrease) in weight of wrongly
(correctly) classified examples:

e−αtyiht(xi) =

< 1, yi = ht(xi)
> 1, yi 6= ht(xi)

(3.4)

Zt(α) is a convex, differentiable and monotone function (in terms od a discrete function
through iterations) which is set as:

Zt = 2
√
εt(1− εt) (3.5)

εt = 1
2 | {H(xi) 6= yi} | (3.6)

In an iteration t > 1, Zt acts as a normalization factor so that Dt+1 is a distribution.
Finally, αt is set to greedily minize Zt:

αt = 1
2 log

(
1 +∑m

i=1 Dt(i)ht(xi)yi
1−∑m

i=1Dt(i)ht(xi)yi

)
(3.7)

Authors in [Jones and Snow, 2008] use AdaBoost for pedestrian detection in road
surveillance. Generic object recognition with a binary multilayer AdaBoost network is per-
formed in [Zhang et al., 2005]. In [Opelt et al., 2006b] and [Opelt et al., 2006a], binary

40

AdaBoost is used for generic object recognition, where boosting automatically performs
the feature selection. An extension to multiple classes and incremental learning is intro-
duced in [Opelt, 2006] and [Opelt et al., 2006c]. Boosting of gradient features to detect
vehicles in road scenes is used in [Khammari et al., 2005], and [Acunzo et al., 2007]uses a
boosted classifier for illumination condition detection (e.g., day and night).

3.1.4.2 Support vector machines

Generative model, in order to infer well the probability of occurence of an object has to
be provided with all (or close to all) instances of the object which may appear during
prediction. However, given our applicative domain, training a generative model is hardly
possible and that is the reason why a discriminative model such as SVM is chosen.

In order to model well the features of a given class versus all other classes (1 vs all
classification), an SVM relies on calculating a separating hyperplane given by θ, which
delimits n-dimensional space of m samples2. Thus during training, it has for its goal thus
to minimize the objective function given as:

min
θ

C
m∑
i=1

[
yicost1(θTK(q, xi)) + (1− yi)cost0(θTK(q, xi))

]
+ 1

2

n∑
i=1

θ2
j (3.8)

Here C is the regularization parameter which influences the separating margin quality
(bigger it is, bigger is the margin). Cost functions guarantee following relations:

cost0 : θTK(q, x) ≤ −1 (3.9)

cost1 : θTK(q, x) ≥ 1 (3.10)

and K(q, x) stands for kernel trick function. In case of linear kernels K(q, x) = x. In
this case the positive and negative examples in dataset are linearly separable. However,
on more complex datasets a similarity function transformation known as kerneltrick has
to be performed (i.e. an RBF like Gaussian is most often used - Figure 3.33). SVM
parameters will be described in more detail in subsection 6.2.3.

Although in literature AdaBoost and SVM classifiers tend to perform similarly, in this
thesis linear SVMs are chosen for detection-by-identification tasks. Firstly, AdaBoost’s
decision making architecture breaks down to decision tree stumps, which can be efficiently
implemented on a reconfigurable hardware by making use of LUTs. Main problem being
here is that for complex datasets, such as obstacle detection in urban environments, the
number of stumps is quite large and that leads to huge resource consumption of these
configurable slices, which are majorily used for accelerator’s logic implementation such as
state machine. On the other hand linear SVMs’s decision making is a dot-product matrix
operation whose implementation in both embedded software and hardware is thoroughly
studied in literature.

3.1.4.3 Application in computer vision

Classification techniques used in computer vision may be categorized as4:
2each sample xi contains its label yi
3image courtesy of Czech Technical University, Prague
4text in italics denotes I/O data

41

Figure 3.3: i) AdaBoost’s linear kernel vs ii) SVM’s Gaussian kernel: an example over a
complex, linearly non-separable dataset.

• Top-down classification
Frame → Foreground estimation → Mask → Features grouping → Silhouette list
→ Classifier → Object list

• Bottom-up classification Frame→ Patch detector (descriptor)→ Patch list→ Patch
classifier → identified object → Grouping (Hough voting) → Object list

In this thesis we will focus our efforts on bottom-up approach.

3.2 Complete real-time video analytics systems

3.2.1 Non-embedded solutions
3D convex hull matching. An RT system called SCOCA is introduced in
[Messelodi et al., 2005] to track and classify 8 vehicle classes at road intersections.
3D conveh hull models are used to initialize an object list for every fifth frame based
on the convex hull overlap of model projection and motion map. Camera calibration is
required for this operation. A feature tracker follows the detected objects along some
frames before a new initialization takes place. The tracker is used to speed up the
operation, because the 3-D operation would not be fast enough to operate on every frame
in real-time. The objects are classified into eight classes based on a two-stage classifier.
The first stage evaluates the convex hull, whereas the second layer uses pixel appearance
(color) for classes with similar convex hull. The performance is evaluated on 45 min of
video data from two different sites. The total classification rate is given with 91.5% for
the test data of the authors.

3D model matching against GMM silhouettes. 89.8% classification accuracy on
1 hour video. The work in [Buch et al., 2008], [Buch et al., 2010], and [Buch et al., 2009c]
builds on this approach and uses a GMM to compare motion silhouettes with 3-D models
for the classification of five types of road users. An appearance model of 3-DHOG is

42

introduced in [Buch et al., 2009a] and [Buch et al., 2009b]. This approach integrates
local patch features with 3-D models.

Perspective normalised frame difference. 94.7% accuracy on 24 hour video
to detect parking events. A system for detecting parked vehicles is introduced in
[Park et al., 2007]. Camera homography is used to generate a normalized ground plane
view. Based on a frame-differencing motion map, parking-in and parking-out conditions
are calculated. A state machine is used to track the speed changes of vehicles until
stopping to generate these conditions. The system is evaluated with 24 h of video data
from two different sites. A detection rate of 94.7

3D model matching against motion mask from multiple camera with
calibration [Atev et al., 2005] and [Atev and Papanikolopoulos, 2008]. 85% of 273
vehicles succesfully detected at 35fps with road coordinates. Multiple cameras, calibrated
according to [Masoud and Papanikolopoulos, 2004] with road primitives, are used to
identify 3-D ground plane locations of vehicles by projecting all foreground masks to the
road plane.

3.2.2 Embedded solutions
Embedded solutions to road obstacles detection are found mainly in automotive industry,
under Collision Avoidance projects of leading car manufacturers as Audi, BMW, VW,
Volvo, . . . However, in order to better their performance, these hazzard avoidance systems
integrate multiple sensors along with a camera: radar, laser, . . . In this industry, MobilEye
[MobilEye, 2009] has developed its leading camera-based only obstacle avoidance solution.

MobilEye’s SeeQ2TM is a stand-alone camera and vision processing module for au-
tomotive applications. It offers an embedded processing platform for computationally in-
tensive real-time visual recognition and scene interpretation applications. The SeeQ2TM

board includes the MobilEye EyeQ2TM, a powerful vision processor, a high dynamic range
CMOS image sensor, Flash and SDRAM memories, CAN and GPIO interfaces for the
peripherals. This vision system on a chip (VSoC) supports Lane Detection and Road Ge-
ometry estimation, Vehicle Detection, Intelligent Headlight Control, Traffic Sign Recogni-
tion and Pedestrian Detection. The Advance Warning System (AWS) is designed to alert
the driver of potential collision situations and unintentional lane departure and increase
awareness to dangerous situations during driving.

EyeQ2TM vision processor, manufactured by STMicroelectronics, processes up to two
monochromatic images from 640x480 (VGA) CMOS image sensor at a rate of 60fps. It
includes two floating point, hyper-thread (4 threads) 64bit RISC 34KMIPS CPUs running
at 324MHz. And five ASICs called Vision Computing Engines (VCE):

• Classifier Engine

– Image scaling and pre-processing units
– Pattern classifier units
– Tracker Engine
– Image warping and motion analysis unit

43

• Pre-process Window

– Image Convolver and image pyramid units
– Computes vertical and horizontal edge maps

• Filter Engine

– Features based classifier unit

• Disparity Finder Engine

– Stereo engine
– Programmable search, 2 pixel/clock

• Three Vector Microcode Processors (VMPs)

– A generic Very Long Instruction Word (VLIW), Single Intruction Multiple
Data (SIMD) vector processing unit without cache.

This smart-camera solution, operating at 5 VDC input voltage and dissipating only
3W, is encassed within a 65mm x 33mm x 10mm box weighing 20g (nominally). A
performance evaluation is given in [Raphael et al., 2011]. Camera-only detection error
was overall 9% and 11% for vehicles detected within 0-60 meter and 60-90 meter ranges,
respectively.

3.3 Visual EKF-SLAM
As described in Subsection 1.1, methods that use Visual SLAM for localization may be
classified according to several criteria. Here, only Filtering-based (and specifically EKF-
based) methods are considered, like in [Zhang and Vela, 2015b, Bresson et al., 2014], be-
cause they are more adapted for embedded systems with limited resources. Several
real-time optimization-based methods have been proposed, but either they are not ro-
bust [Klein and Murray, 2007] (indoor use, i.e. augmented reality), or they require a
huge computing power [Mur-Artal et al., 2015a] or they are specific for drone appli-
cations [Forster et al., 2014]. Then according to features extracted from images, most
methods exploit only interest points (Harris, SIFT, SURF, Speeded Up Robust Features
(SURF), Binary Robust Independent Elementary Features (BRIEF), Oriented FAST and
Rotated BRIEF (ORB) to name but a few); [Zhang and Vela, 2015a] compares several
methods proposed for point detection and characterization, in this thesis only Harris
points are used.

Finally according to sensor configuration, the SLAM function could acquire images
from monocular, bi-cam or stereovision sensors. The latter allows to acquire depth im-
ages, but only in the sensor’s vicinity e.g. ∼8m, for a 40cm stereo baseline. Three-
dimensional (3D) landmarks are directly created as Euclidean points. Points further
away from the sensor are never considered. Monocular or bearing-only SLAM uses
a single camera, so that only 2D features can be observed. Such features cannot be
added directly in a 3D-parameterized map. Either landmark initialization is delayed
[Davison, 2003b], while waiting for other observations from different viewpoints so that

44

a 3D point could be triangulated, or it is undelayed using a specific parametrization
[Solà et al., 2011, Civera et al., 2006]. The latter allows us to exploit landmarks further
from the camera, e.g. on top of the horizon line. Bicam-SLAM combines both approaches,
allowing landmarks to be created using features obtained from the two images, and from
one camera only. In this thesis only monocular SLAM is used with undelayed landmark
initialization , so that this method could be executed on an embedded system with limited
size and resources - such as a smartphone.

3.3.1 Monocular SLAM implementations
RT-SLAM [Roussillon et al., 2011] is a generic Open Source software implementation of
our state of the art visual bearing-only SLAM algorithm, based only on one camera to ob-
serve the environment, and on an IMU to estimate motions. The map contains Anchored
Homogeneous Point (AHP) landmarks [Solà et al., 2011] which is a seven-dimensional
landmark parametrization. AHP landmark parameterization is shown to increase filter’s
consistency, achieving more robust and accurate localization and mapping. A prede-
fined number of landmarks from the map is observed and positions are corrected after
each frame acquisition. The choice is made by applying the one-point Random Sample
Consensus (RANSAC) [Fischler and Bolles, 1981]. Active search strategy is used for ini-
tialization of new ones. Authors [Roussillon et al., 2011] report real-time performance at
60Hz when having 20 consecutive landmark corrections and 5 initializations per EKF
loop on an Intel i7 processor (only one core is used).

C-SLAM [Gonzalez et al., 2011] presents a C programming language version of RT-
SLAM that implements a simplified SLAM application respecting the DO-178 norm re-
quired on airborn system. It uses a constant speed robot motion function and Inverse-
Depth Point landmark parameterization [Montiel, 2006]. C-SLAM was implemented
in [Botero et al., 2012], on an embedded architecture based on a Virtex5-Virtex6 FPGA
couple [Xilinx, 2011]; it runs at 24Hz when having 20 IDP landmarks in the map and cor-
recting 10 of them in each frame. The advantage gained by this architecture lies on the
co-design possibility, with a hardware-level implementation of image processing functions
at pixel frequency: Harris point extraction and active search strategy.

In a recent study [Vincke et al., 2012a], a visual EKF-SLAM algorithm is analysed in-
depth and a multiprocessor-based embedded solution is proposed on Texas Instrument’s
SoC OMAP4430 platform. It contains dual core ARM Cortex-A9 integrating two SIMD
NEON coprocessors, a GPU PowerVR, and 1GB DDR2 RAM. For peripherals an extero-
ceptive sensor (a low cost webcam) and an ATMegaI68 microcontroller which controls two
odometers are connected. Frames have been grabbed at 30fps with 640×480 resolution.
Odometers data were sampled at 30Hz. Map contains 50 IDP landmarks, all of which
are observed and corrected. Number of initialized new landmarks in a loop is also set
to 50. Their sw/hw co-design methodology is explained in great detail in [Vincke, 2012].
Reported mean processing frequency per frame acquired is 38Hz, which makes their em-
bedded SLAM run in real time.

3.3.2 FPGA-based SLAM implementations
A power-efficient FPGA-based embedded EKF block accelerator is also proposed in
[Bonato et al., 2008]. Their SLAM is a 2D EKF-SLAM application that satisfies real-

45

time constraints (14Hz execution frequency in this case) with approximately 1.8k land-
marks contained in their map which are represented in Euclidean parametrization (two-
dimensional state size). All of them are observed and corrected. They do not report
on initialization and matching techniques and neither mention whether they use sensors
besides a camera.

A recent work on front-end feature extraction implementation for SLAM on an
FPGA using bundle adjustment for localization may be found in [Nikolic et al., 2014].
Comparison with our work will be given in Subsection 4.4.1. To the best of our
knowledge, however, there is no single FPGA implementation of both front-end
and back-end parts of a visual SLAM application. Finally, some authors pro-
posed FPGA implementations of matrix multiplication or inversion, using different
strategies [Sarraf et al., 2007, Qasim et al., 2010, Tiwari et al., 2013]; the Parallel in-
put/Multiple Output strategy proposed in this last paper, is very similar to our systolic
array architecture.

46

Chapter 4

EKF-SLAM HW/SW co-design:
part I

Contents
4.1 Modeling . 45
4.2 Hardware specification before partitioning 47

4.2.1 System Cost Measure Definition 47
4.2.2 Update Specifications . 49

4.3 Iterative prototyping . 50
4.3.1 First iteration: software-only prototype 51
4.3.2 Second iteration: Front-end hardware accelerator 52
4.3.3 Third iteration: Back-end hardware accelerator 56
4.3.4 Fourth iteration: Front-end hardware accelerator 58

4.4 Final hardware prototype . 61
4.4.1 Experimental results and discussion 62
4.4.2 Comparison with state of the art 63

4.5 Conclusion . 64
4.5.1 Towards EKF-SLAM at 100Hz 65

47

SLAM application used in this thesis is an upgraded version of C-SLAM. It is a
monocular SLAM fusing IMU data for motion prediction, correcting 20 AHP interest
points. Active search strategy is used as well to match the observed points and initialize
new ones (5 per frame). This number is obtained by experimentation for one application
on a robotic platform: C-SLAM behaviour was satisfactory when having set parameters
in this manner. IMU data are used in order to reduce uncertainty on landmarks tracking
during interest points matching. With this algorithmic optimization and for speed issues,
one-point RANSAC is replaced by random choice when initializing new points in the map.

This chapter is organised as follows: application modelling along with design con-
straints is presented in Section 4.1 after which an explanation of the model optimization
is given in Section 4.2. Afterwards, co-design iterations are described in Section 4.3. The
final prototype is shown in Section 4.4 where we compare it with state of the art.

4.1 Modeling
The dataflow model of computation aims at describing applications regarding data de-
pendencies. The application is represented as a network of actions in a direct acyclic
graph (DAG) allowing to get knowledge of intrinsic parallelism and memory requirement.
The dataflow paradigm was formally introduced by Kahn in [Kahn, 1974]. A Kahn pro-
cess network (KPN) is made of actors connected by unbounded first-in first-out (FIFO)
queues carrying data tokens - Fig. 4.1. A data token is an atomic (can not be divided)
chunk of data. An actor can thus be described as a functional process that maps a set
of tokens sequence into another set of tokens sequence. The dataflow process network
(DPN) - [Lee and Parks, 1995] - inherits its formal underpinning from Kahn process net-
works but associates a set of firing rules to each actor to give the necessary tokens input
for an actor to be triggered. This allows further analysis of the network using a set of
properties. For further compile-time analysis, the synchronous dataflow model (SDF) -
[Lee and Messerschmitt, 1987] - takes the dataflow process network semantic and restricts
its expressiveness by specifying the data production/consumption rate in an integer form
for each actor interconnection. This additional property allows to compose the topology
matrix of the SDF graph T that can be analyzed to extract scheduling informations. This
topology matrix allows to ensure the application to be deadlock free, to compute a statical
schedule of the application and to compute memory requirements at compile time.

actor0 actor1 actor3

actor2

3 2 4

4

2

2

2

3

3 -2 0 0
3 0 -2 0
0 2 0 -4
0 0 2 -4

Figure 4.1: Example dataflow graph

48

The EKF-SLAM problem can be described as the following pseudo-code:
1: for n = 0; ;n+ + do
2: image = acquire frame()
3: predict(slam, robot model);
4: i = 0;
5: j = 0;
6: lmk list = select lmks();
7: correl list = correl lmks(lmk list, frame);
8: for i = 0; i < nb correl and j < nb correct; i+ + do
9: if score(correl list[i]) > correl threshold then

10: correct slam(correl list[i]);
11: j + +;
12: end if
13: end for
14: feature list = detect features(frame);
15: j = 0;
16: for i = 0; i < grid size and j < nb init; i+ + do
17: if init lmk(feature list[i]) then
18: j + +;
19: end if
20: end for
21: end for

with collections:

• lmk list, a list of landmarks (in the SLAM terminology)

• correl list, a list of observations in the image for the SLAM landmarks

• feature list, a list of detected features in the image

and functions :

• predict(), a function that performs the prediction step of the EKF filter

• select lmks(), a function that returns a list of landmarks to be observed in the
image frame (landmarks selection)

• correl lmks(), a function that observes (matches) the selected landmarks in the
image (landmarks correlation)

• correct slam(), a function that performs the correction step of the EKF filter based
on observations of landmarks

• detect features(), a function that detects a set of features in the image (features
detection)

• init lmk(), a function that initializes detected image features as landmarks in the
EKF-SLAM map (landmarks initialization)

49

CAMERA
image_o

LANDMARKS
CORRELATION

correlation_oimage_i
landmarks_i

FEATURES
DETECTION

features_image_i

LANDMARKS
SELECTION

landmarks_oslam_i

PREDICTION

slam_oslam_i

CORRECTION

slam_o
slam_i
correlation_i

LANDMARKS
INITIALIZATION

slam_o
features_i
slam_i

Figure 4.2: The vision-based EKF-SLAM SDF model

that translate into the following SDF representation (Figure 4.2). This SLAM
algorithm is adapted to run in a SDF manner, explaining why the correction and
landmarks initialization are executed in a worst-case for loop while the pseudo-code
description would only execute these steps for a variable number of times.

This data-flow description was translated into a multi-threaded functionnal model of
the application to validate the general behavior of the application.

Scheduling of these models clearly shows that the application exhibits a single degree of
parallelism (features detection can be run in parallel with the other tasks) with minimum
impact on the application latency. Therefore, running the application in real-time requires
oversized computational resources and keeping it that way it is difficult to take advantage
of heterogeneous architectures.

Constraints intended to be imposed through design loops are: (A) software execution
time - it needs to be under 33.33ms, (B) minimal power consumption and (C) minimal
time-to-market.

4.2 Hardware specification before partitioning
This Section begins with our work concerning structural-level optimization of the appli-
cation in order of exposing an additional degree of parallelism and ends with specifying
the chosen hardware platform.

4.2.1 System Cost Measure Definition
In SDF applications, more parallelism can be exposed at the structural level by applying
re-timing techniques. Re-timing consists in adding delay tokens on the graph edges in
order to modify the application pipeline.

This modification does not affect the structural aspect of the model (way that nodes
are connected) and the latency of the schedule as the repetition vector of the graph is
preserved. Re-timing only allows to modify the schedule pipeline to take advantage of
architectures with more degree of parallelism than what the application initially exposed.

50

A B C1 1 1 1

A B
t

C

Figure 4.3: A simple dataflow graph and its one processor schedule

A B C1 1 1 1

A A

B B

C C

t

Figure 4.4: The simple dataflow graph with re-timing (delay token denoted by a red
dot) and its multi processor schedule

In that way we optimize the application’s throughput. Let’s consider a simple application
with only three nodes: Fig. 4.3.

The initial schedule of the model does not expose parallelism. This data-flow model
can be altered by adding delay tokens (pictured with a dot on the arc in the graphical
representation) to generate a schedule with a higher level of parallelism: Fig. 4.4. Adding
a single token on the edge between A and B means that B can fire before A even produced
a token, thus consuming the delay token.

This re-timing clearly exposes an application pipeline with more parallelism and allows
to optimize the throughput of the application for a multi-processor architecture. Re-
timing only affects the structural level of the application but still needs to be taken into
account when implementing the behavior of the graph’s actors.

In our 3D EKF SLAM application, re-timing was achieved by delaying the prediction,
correction and landmarks initialization tasks (from Fig. 4.2 these tasks are delayed in
Fig. 4.5).

After the re-timing, the application exposes three-degree parallelism as landmarks
correlation and feature detection can be performed in parallel of the Kalman filtering
steps. This allows to create a clear partitioning between the filtering tasks (landmarks
selection, prediction, correction, landmarks initialization) and the vision tasks (feature
detection, landmarks correlation). Re-timing may also affect SLAM’s performance but it
is necessary to meet the execution time constraint on a heterogeneous architecture. In
this case the designer should take into account the behaviour of landmarks correlation
task as its function is finding landmark correspondencies between past and current frame.
In cases of e.g. sudden changes in orientation it is highly likely that we lose large number
of landmarks. Given correction operates on landmarks from precedent frame, quality of
the prediction may be corrupted by low (or none) landmark correspondency. Thus, a
larger number of landmarks needs to be correlated.

The data parallelism inherent to the image processing could also be explored in the
case where the complete image is available for the vision processing tasks. In our case

51

CAMERA
image_o

LANDMARKS
CORRELATION

correlation_oimage_i
landmarks_i

FEATURES
DETECTION

features_image_i

LANDMARKS
SELECTION

landmarks_oslam_i

PREDICTION

slam_oslam_i

CORRECTION

slam_o
slam_i
correlation_i

LANDMARKS
INITIALIZATION

slam_o
features_i
slam_i

Figure 4.5: Re-timed application SDF model

we consider the image to be a one-dimensional stream of pixels (i.e. when interfacing
directly to the image sensor, which is the case in embedded systems). In conclusion to
this subsection, we generalize this re-timing method as:

• correction task may be any filtering technique

• features detection and landmarks correlation may be any feature detector with a
suitable correlation technique

in a filtering-based visual SLAM application.

4.2.2 Update Specifications
Avnet’s ZedBoard is chosen for prototyping our 3D EKF visual SLAM SoC because it
comes with:

• an energy-efficient multi-core ARMv7 processor (667MHz),

• a Zynq-7020 FPGA device enabling an additional degree of parallelism,

• 512MB DDR3 RAM

• a Xillinux ([Xillinux, 2010]) distribution which comes quite handy for our needs as
it allows memory-mapped and streaming interfaces between FPGA and the host
processor(s) at no additional engineering effort.

Relevant execution times of a single-threaded application on ZedBoard are presented
in Table 4.1, obtained by means of instrusive software profiling.

Timing performance of these tasks is explained in more detail in Section 4.4. A
theoretical scheduling onto three processing elements (PEs) may be seen on Fig. 4.6:
with the usual sequential schedule on top and with re-timed schedule after structural-
level optimization on bottom1. By enabling clear partition between vision and filtering
tasks, we realize the potential of real-time execution of our application on embedded
architecture with limited resources.

1Length of the bars is indicative

52

Table 4.1: vSLAM tasks execution before iterative prototyping

vSLAM task time [ms]
landmarks selection 0.8
prediction 2.5
correction 33
landmarks initialization 0.3
camera 13
landmarks correlation 12.78
features detection 219

PREDICTION LANDMARKS
SELECTIONn

LANDMARKS INITIALIZATIONn

IMAGEn

PE1

PE2

CORRECTIONn

FEATURES
DETECTIONn

n

PE3 LANDMARKS
CORRELATIONn

PREDICTION

LANDMARKS
SELECTIONn+1

n+1

IMAGEn+1

FEATURES
DETECTIONn+1

LANDMARKS
CORRELATIONn+1

PE : PROCESSING ELEMENT

LANDMARKS
SELECTIONn

LANDMARKS
INITIALIZATIONn

IMAGEn

PE1

PE2

CORRECTIONn

FEATURES
DETECTIONn

PE3
LANDMARKS
CORRELATIONn

PREDICTION

LANDMARKS
SELECTIONn+1

n
PREDICTIONn-1

CORRECTIONn-1

FEATURES
DETECTIONn+1

LANDMARKS
CORRELATIONn+1

Figure 4.6: Theoretical schedule of the SLAM aplication before and after re-timing

The following Section will explain Iterative Prototyping, the process we intend to
follow in order get visual EKF-SLAM’s performances on the ZedBoard close to theoretical
re-scheduled optimum.

4.3 Iterative prototyping
During hw/sw partitioning constraints defined in subsection 4.1 are revisited. In first
prototyping iteration the re-timing technique is applied on software. During co-synthesis,
some software modules which regroup vSLAM’s tasks functionalities may be further op-
timized according to CPU’s characteristics on heterogeneous platform (e.g. SIMD NEON
optimizations for ARM for matrix multiplication and image processing). If the constraints
are not met, new HW/SW partitioning is decided upon code profiling of the software:
tasks inducing timing bottlenecks are identified and they are next to be implemented in
hardware in the form of hw accelerators during Co-synthesis. Careful theoretical analy-
sis is performed before Hardware Description Language (HDL) coding takes place: they
must not change the behavioral characteristic of the functional block they replace and
at the same time they should have high throughput capacities and low execution times

53

IMAGEn

T1

T2
FEATURES

DETECTIONn

FPGA

LANDMARKS
CORRELATIONn

Imagen+1

FEATURES
DETECTIONn+1

LANDMARKS
CORRELATIONn+1 T : THREAD

COM

LANDMARKS
SELECTIONn

LANDMARKS
INITIALIZATIONn-1

CORRECTIONn

PREDICTION

LANDMARKS
SELECTIONn+1

n
PREDICTIONn-1

CORRECTIONn-1

Figure 4.7: Schedule of the SLAM aplication after first iteration

(latencies). Efficient communication capability with the rest of the system (loading and
storing data) is also taken into design consideration. From software development point of
view, during SW compilation we optimize it with respect to processor’s characteristics.
Chunks of code which need to be accelerated in hardware are rewritten in form of soft-
ware emulators and passed to hardware in the loop block to test the synthesized hardware
component in a code-coverage manner.

From hardware design point of view, Hardware In the Loop (HIL) technique is used
to build efficient accelerators:

• Behavioral model and Behavioral testbench are HDL codes conforming to updated
hw specifications. They are used to build a valid HDL model of accelerators (Be-
havioral model validation).

• Synthesized model is a model that meets timing and area constraints of the FPGA
device. In Synthesized model validation step we migrate the Sw testbench as a
standalone bare-metal application with wrapper functions to the Synthesized model.
If the model successfully passes extensive code coverage techniques, we have a fully
functional intellectual property (IP).

After HIL, in hw/sw integration the partitioned design gets intergrated. Here we make use
of Xillinux communication interfaces. In order to be able to use them, one must instantiate
Xilly vga, Xillybus lite, Xillybus IPs on FPGA for display, memory mapped and streaming
interfacing between Xillinux and FPGA logic. This process is repeated afterwards with
each iteration yielding new reusable IPs, until a target-compliant functional prototype
has not been reached.

4.3.1 First iteration: software-only prototype
The first partition is comprised only of software. Application is rescheduled on heteroge-
neous development board as described in previous Section (allocation of vSLAM tasks) -
Fig. 4.7.

Vision and filtering tasks are being allocated (mapped) onto two different threads,
as ZedBoard comes with a dual-core ARM host. COM stands for First In First Out
(FIFO) communication implemented between software threads. Currently there is no
task mapped on reconfigurable hardware device (FPGA), entire application is running on
the host processor. However, constraints were not met in our case after this iteration.

54

Thus we reiterate anew: as the features detection is the most time-consuming task,
the application is partitioned into hardware (feature detection on FPGA) and software
components (rest of the application).

4.3.2 Second iteration: Front-end hardware accelerator
Features from accelerated segment test (FAST) is a corner detection method that uses
basic arithmetic operations such as additions and comparisons. Hence it is an algorithm
suitable to be implemented on FPGA. It is presented in [Rosten and Drummond, 2005]
and reviewed in [Mohammad Awrangjeb and Fraser, 2012]. An efficient2 FAST imple-
mentation is given in [Marek Kraft and Kasinski, 2008]. Most often the extracted corners
are non-uniformly distributed within the image - Fig. 4.8.

Also the number of corners extracted in similar scenes to outdoors structured (un-
structured, natural) remains high (∼3000). However, an EKF-SLAM makes use of sparse
features for localization. For a good overall pose estimation, a limited number of uni-
formly spaced FAST corners (∼50) is preferred. Thus, besides the corner detector, a
second hardware acceleration of this front-end vision task is required. The technique of
dividing an image frame in a grid of cells (tiles) is called tesselation. It allows to select a
feature with highest score within a tile. C-SLAM uses a 16 × 12 grid in order to insure
this scattering.

4.3.2.1 Corner detector FAST

FAST corner detection is composed of two main steps:

• Corner score attribution of the candidate pixel p

• Corner validation of pixel p.

As here an FPGA-based implementation is considered, in further algorithmic analysis the
image acquisition process is considered to be a 1-D stream of pixels as on Fig. 4.9:

This streaming representation comes from the fact of actual image acquisition from
global shutter cameras connected directly onto the ZynQ-7020 FPGA on ZedBoard. Thus,
in first step, the candidate pixel will be referred to as the current pixel. Second step uses
a so-called Bresenham’s circle of 16 neighboring pixels to determine whether a candidate
pixel p is actually a corner or not - Fig. 4.10.

The corner score function V is thus defined as the sum of absolute differences between
the intensity of the central pixel and the intensities of the pixels forming the Bresenham’s
circle:

V = max(
∑

x∈Sbright
|Ip→x − Ip| − t,

∑
x∈SDark

|Ip − Ip→x| − t) (4.1)

where t is a threshold, Ip→x is the intensity of the segment test pixel and Ip is the pixel’s
intensity under test. Pixels forming the circle are identified by numbering from 1 to 16,
clockwise.

Corner validation step compares each pixel in the circle with the current pixel p: if a
set of N contiguous pixels in the circle are all brighter than the candidate pixel p (denoted
by Ip) plus an integer-valued threshold t or all are darker than the candidate pixel p minus

2In terms of resource consumption and performance

55

Fi
gu

re
4.

8:
FA

ST
co

rn
er

de
te

ct
io

n
re

su
lt

56

Figure 4.9: Image acquisition as a 1-D pixel stream

the threshold t, then p is a corner. In example given on Fig. 4.10 pixels 1 to 5 have the
same value as pixel p. Pixels 6 to 16 are brighter than p. As they are all contiguous, it
means that pixel p is a corner and its score is validated.

The FAST hardware implementation follows the algorithmic pattern: it is composed
of the corner score and the corner validation modules - Fig. 4.11. Both can be computed
in parallel. A block of N × N pixels stores (N − 1)lines + (N − 1)pixels in BRAM. In
that way, the modules are provided all necessary elements from current Bresenham’s circle
each clock cycle. Figure 4.12 summarizes the hardware architecture of the corner score
computation: The main hardware acceleration is provided by the adder tree instantiation
which computes pipelined additions. It allows to perform, in our case, additions of eight 8-
bit inputs per clock cycle instead of 8 clock cycles using the host processor. The validation
module computes a contiguity test by performing 8 comparisons in parallel. Thus, eight
8-bit comparators are instantiated in order to test arcs of 9 contiguous pixels (the segment
test. The 9-pixels input segment tests are given by Inputs[1 + m to 9 + m] with m ∈ [0
to 7]. The proposed global hardware architecture for the FAST algorithm is generic.
The circle size can be easily parameterized and the design can also be implemented on
a Xilinx or Altera FPGA. The size of the Bresenham’s circle is set to 16 pixels and the
contiguity test to an arc of 9 pixels, which is the most efficient configuration according to
[Rosten and Drummond, 2005].

1

5

9

13

16

P

Figure 4.10: Fast segment test. Pixels from 1 to 16 form the Bresenham circle

57

Block NxN
(7x7)

Corner
Score

Thresholder
Threshold

Central
Pixel

Circle's pixels

8 bits

CornerScore module

Score
validation

Contiguity

bright

dark

delay : 2 pclk

Output

Figure 4.11: FAST hardware architecture

4.3.2.2 Tesselation

Hardware architecture of the tesselation module is mainly based on BRAM usage for
storing the best score of each tile. As in case of the FAST implementation, tesselation
is also based on a streaming pipeline. The memory consumption (Mem) is given by the
following equation:

Mem = Cols ∗ (nbrbitY + nbrbitX + nbrbitscore) (4.2)

where Cols denotes number of columns in the grid, nbrbitY/nbrbitX stands for number
of bits for coding the Y/X tile coordinate and nbrbitscore is the number of bits for coding
the score value. In our case these values are as follows: Cols = 16, nbrbitY = 10bit,
nbrbitX = 10bit and nbrbitscore = 12bit. Tesselation requires only Mem=512 bit.

Two counters are implemented in order to be able to keep track to which tile the
current pixel belongs to. This pixel position allows to forbid the selection of corners
near the edge of the image. It also avoids to select points that BRIEF descriptor cannot
describe (neighboring pixels that are outside of the frame) - which is set to be at 4 pixels

Figure 4.12: Corner score module

58

on each side of the image. Figure 4.13 shows the grid in black with selected FAST corners
having highest scores in a particular tile. Retained corners are painted in blue. Moreover,
the latency (L) of this module is fixed and can be calculated as:

L = (IMGW/Rows+ (FASTrad))lines + 1pixel (4.3)

where IMGW is image width, Rows is the number of rows in grid and FASTrad
represents Bresenham’s circle radius. In our case: IMGW = 640, Rows = 12 and
FASTrad = 4pixels which leaves us with L = 44lines and 1pixel. This chain also provides
a fixed amount of data D:

D = (Col ∗ rows) ∗ (nbrbitY + nbrbitX + nbrbitscore) (4.4)

Settings used for the design are as follows: Col = 16, Rows = 12, nbrbitY = 10,
nbrbitX = 10 and nbrbitscore = 12 bits. It always returns to the host processorD = 768B
per frame. That amount accounts for 0.25% of the amount of data that is transferred from
a global shutter camera to host processor per standard VGA frame. After integration of
this front-end hardware accelerator, 3D EKF SLAM tasks’ timings change as on Fig. 4.14.
In conclusion to the second iteration it may be said that FAST and Tesselation hard-
ware modules once instantiated (with a fixed grid size) return always the same amount
of data to the host processor, which is suitable for minimum bus bandwidth calculation -
bus width and clock frequency, given the imposed FPS rate and latency of the rest of the
system.

4.3.3 Third iteration: Back-end hardware accelerator
The EKF-SLAM algorithm, relevant for correction task, is going to be introduced in this
subsection only briefly. Detailed theoretical overview with hardware design implementa-
tion ad experimental results will be given in next chapter.

Here, the term landmarks replaces selected FAST corners from previous subsection in
order to be coherent with SLAM’s terminology. A state-space based predictive algorithm
based on EKF [Maybeck, 1979] runs in a three-steps loop:

Figure 4.13: Tesselation on FAST corner detection result

59

IMAGEn

T1

T2

FEATURES
DETECTIONn

FPGA

LANDMARKS
CORRELATIONn

IMAGEn+1
FEATURES

DETECTIONn+1

LANDMARKS
CORRELATIONn+1

T : THREAD

COM

LANDMARKS
SELECTIONn

LANDMARKS
INITIALIZATIONn-1

CORRECTIONn

PREDICTION

LANDMARKS
SELECTIONn+1

n
PREDICTIONn-1

CORRECTIONn-1

Figure 4.14: Schedule of the SLAM application after second iteration

• Prediction of robot’s position from the motion estimates,

• Correction of the robot’s and landmarks’ positions with respect to the world refer-
ence frame (by tracking chosen landmarks) and

• Initialization of landmarks [Solà et al., 2005].

The robot is represented by a vector composed of 3D position, quaternion-based ori-
entation, 9D IMU data, 3D GPS data, and 7D landmark positions (one 7D vector per
landmark). During prediction, given a dynamic displacement model of the robot, its pose
is being estimated and relevant parts of the cross-covariance matrix (matrix of incertitudes
on the state-space related variables of the robot model) are updated. Afterwards, for each
observation, a correction loop is run where the part of cross-covariance matrix relative to
landmark’s position in reference to robot’s state vector is updated. Maximum number of
observations is chosen empirically3. An important particularity of an EKF-SLAM is the
ability of updating the whole state-space vector of the robot based on a single observation
(single landmark detection after having acquired a new frame) by means of convolving in-
novation (new landmarks’ coordinates perceived from camera after the observation) with
cross-covariance matrix.

Let us recall here that our SLAM is implemented without loop closure, so the system
position is updated from a local map, with a limited size. Landmarks are removed and
replaced by new ones in several situations. (1) They are never matched, due to environ-
mental changes (illumination, occlusions). (2) They have been selected on the surface of a
dynamic object. (3) Due to the camera motion, they are overpassed, so they could not be
observed during the next motions. Possible losses of landmarks may severely influence the
quality of motion estimation. Thus, it is preferable to have many landmarks memorized
in the map after initialization and to choose a subset of these upon which position correc-
tions are going to be made. Also, parametrization (dimensioning) of landmarks plays a
significant role in their quality [Solà et al., 2011], yielding robuster behaviour with higher
landmark state size.

Introducing larger number of higher-dimensional landmarks increases visual EKF-
SLAM’s computational complexity, having as a consequence in correction task larger
scale matrix-matrix multiplications. Thus the work in third iteration of the iterative
prototyping will focus on designing an efficient FPGA-based matrix-matrix multiplier.

3in our EKF-SLAM implementation it is set to twenty

60

IMAGEn

T1

T2

FEATURES
DETECTIONn

FPGA

LANDMARKS
CORRELATIONn

IMGn+1

FEATURES
DETECTIONn+1

LANDMARKS
CORRELATIONn+1

T : THREAD

COM

LANDMARKS
SELECTIONn

LANDMARKS
INITIALIZATIONn-1

PREDICTION

LANDMARKS
SELECTIONn+1

n
PREDICTIONn-1

CORRECTIONn-1 CORRECTIONn

Figure 4.15: Schedule of the SLAM application after third partitioning

After integration of this back-end accelerator, 3D EKF SLAM’s tasks’ timing changes
as on Fig. 4.15.

4.3.4 Fourth iteration: Front-end hardware accelerator
The goal of the fourth iteration is to compute the correlation on reconfigurable hardware.
This task is the last vision-related operation. The benefit of its integration lies in avoiding
image transfers between FPGA and host processor.

4.3.4.1 Correlation accelerator co-design

In the SLAM process, the correlation task measures the similarity between two features.
Choosing BRIEF descriptor to describe a pixel leads to using the Hamming distance
in order to correlate the two features’ descriptors, as it is a binary feature descriptor.
The first vector input is the feature’s BRIEF descriptor that we are trying to match
in the current frame (BRIEFref). The second vector represents the current BRIEF
(BRIEFcurrent). Computing Hamming distance (HDist) is shown in following equations:

tmp = BRIEFref xor BRIEFcurrent (4.5)

HDist = nOnes(tmp) (4.6)

where nOnes() counts the number of bits equal to ’1’ in tmp vector. This function is
implemented by instantiating registers in a static array where the 6-bit Hamming Distance
vector is stored (tmp is divided into n ∗ 6-bit vectors). The results are summed together
in a pipeline in order to provide the total Hamming distance. This induces a latency
of 4 clock cycles in our design which in return consumes fewer logic cells than a direct
Hamming distance instantiation. The following pseudo-code explains how the hardware
implementation executes this task in a given ROI (Region Of Interest):

1: if Xpos AND Ypos ∈ ROI then
2: HDist=nOnes(BRIEFcurrent xor BRIEFref)
3: if HDist > distance latched then
4: distance latched = HDist
5: result available =’0’
6: end if
7: else

61

8: if Xpos AND Ypos = endROI then
9: result available =’1’

10: end if
11: end if
where distance latched is set at maximum at the beginning of the ROI and then updated
at each smaller Hamming distance. Figure 4.16 shows a correlator core and the principle
of instantiating multiple cores as to be able to process n correlations in parallel (in case
of ROI overlaps). In our case, n = 20.

62

..

.. .

ROI : Region Of Interest

current BRIEF

x0
y0

ROI size

BRIEF
reference

Line
counter

Pixel
counter

Correlator core 0

Correlator core n

Hamming
Distance

Comparator
a>b?

POSITION
LATCH

BRIEF
LATCH

DISTANCE
LATCHb

a

enable
processing

control

result_available

Figure 4.16: Instantiation of a multicore correlator

Data for correlation (BRIEFref , ROIsize and X0/Y 0) and the correlation results
(X,Y , BRIEF and HammingDistance) are stored in a same BRAM which can be
read/written to both by hardware and ARM host. A signal result available is asserted
to notify the end of the computation.

After integration of this front-end accelerator, 3D EKF SLAM tasks’ timing changes
as on Fig. 4.17.

Figure 4.17: Schedule of the SLAM application after fourth partitioning

63

4.4 Final hardware prototype
This section begins with a description of our visual 3D EKF SLAM’s SoC architecture
after iterative partitioning process. Afterwards, the obtained experimental results are
being discussed and put into perspective with state of the art.

The developped hardware architecture consists of three IPs instantiated in reconfig-
urable fabric of a ZynQ-7020 device: Fast+Tesselation, EKF and Correlator. All vision
tasks and the most time-consuming task in EKF are executed on FPGA, while the rest
is scheduled on ARM under Xillinux (user space). Hardware-accelerated functions are
integrated into the embedded system in form of co-processors. In order to be able to
communicate with our IPs via Xillinux middleware (kernel space), Xilly vga, Xillybus lite
and Xillybus IPs are also instantiated on the FPGA - (Fig. 4.18).

FAST+Tesselation accelerator is interfaced with Xillinux through Xillybus FIFOs cam-
era fifo and FAST fifos which are accessed in user space through files. The first is used for
frame pixels reception, which are sent from image files in Xillinux. All the image sequence,
IMU and GPS data used by our application are pre-registered and stored in external
memory. This features detection logic runs at 89MHz, limitted by maximal throughput

Figure 4.18: Embedded SLAM’s SoC architecture

64

Table 4.2: Prototype’s resource usage with IPs’ performance

Resources instantiated %FPGA
LUTs 27256 50
Slice registers 34127 31
DSP48E 40 18
BRAM [36Kb] 51 36
BRAM [18Kb] 15 6
ARM Cortex A9 2(cores) 100
FMAX [MHz] individually integrated
FAST+Tesselation 166 89
Correlator 204 89
Eq5.7 198 96
Power consumption [W]
ZedBoard - 4.56 (0.671)

supported by Xillybus IPs. Control signals are communicated from host through Xilly-
bus lite, which serves as a memory-mapped (host to FPGA BRAM) interface. Correlator
communicates with middleware as a memory-mapped device.

Our modification to this prototyping of-the-shelf architecture was introduced in third
CO-sythesis loop by changing the devicetree.dts file so that this architecture could support
addressing through an additionally instantiated AXI4 stream bus axi interconnect 2 for
the EKF accelerator (Eq5.7). In this way we were able to set-up a new clock domain
(96MHz) and to facilitate the HIL process. An individual bus is also an imperative
because of P matrix related transfer rates - Table 5.3.

4.4.1 Experimental results and discussion
In Table 4.2 we can see the summary over Zynq-7020 device’s resource usage. BRAM’s
usage is high because apart from instantiating it for P matrix’ storage, it is also used for
implementing Xillybus FIFOs (6×BRAM36K). Maximal frequency of individual acceler-
ators is higher than actually set, because of the timing issues of the integrated bare-metal
design with Xillybus IPs. Xilinx Power Analyzer is used to mesure power consumption in
reconfigurable logic (0.671W) - this measure does not include ARM’s power consumption.
We used a multimeter in order to measure current during application execution (380mA),
and as ZedBoard consumes 12V we deduce its maximum consumption to be 4.56W. The
value is high because of other active peripherals on the board (which are not used by
SLAM application): Ethernet controller, LEDs, OLED display. . .

Performance measures in frames-per-second of different versions of our SLAM applica-
tion are given in Table 4.3. First column presents the multi-threaded SLAM before having
applied re-timing techniques, First column presents SLAM tasks execution with re-timing,
second, third and fourth columns the impact of these timings after relevant hardware ac-
celeration. Total execution time of functional blocks is measured using software-intrusive
code profiling. FIFO communication between software threads takes a lot of time (12ms).

65

Table 4.3: Execution time of SLAM functional blocks in [ms] on ZedBoard

Iteration no. I II III IV
COM 12 12 12 12
landmarks selection 0.8 0.8 0.8 0.8
prediction 2.1 2.1 2.1 2.1
correction slam 33 33 5 5
landmarks initialization 0.3 0.3 0.3 0.3
camera 13 13 13 13
landmarks correlation 8.8 8.8 8.8 0.6
features detection 140 15 15 15
FPS rate [Hz] 6 20 21 24

Also does loading frames from external memory(13ms). Although features detection task
is much faster now, huge percentage of execution time goes on FIFO communication
: 15 − (640 × 480)/89MHz = 11.55[ms]. The accelerated task correction takes only
20 × 0.25 = 5[ms], where 0.25 ms is the time needed for single landmark correction.
Thanks to multicore Correlation blockm, matching of observed landmarks takes minimal
time now.

As the target-compliant prototype lacks real-time execution because of Xillinux com-
munication interfaces, FIFO inter-thread communication and latency to fetching images
from storage medium, we conclude our approach to be validated after four iterations -
Fig. 4.19.

4.4.2 Comparison with state of the art
Three embedded FPGA-based SLAM systems exist to our knowledge: monocular 2D EKF
SLAM of [Bonato et al., 2008], works previously led in LAAS [Gonzalez et al., 2011] on
monocular 3D EKF SLAM and 3D bundle adjustment SLAM of [Nikolic et al., 2014].
However, these works do not present complete SLAM systems as they don’t implement
vision and pose estimation related accelerators on a single reconfigurable device. The first
paper does not mention what algorithm for features detection the authors use and besides
their map is 2D, which significantly downsizes the complexity of their problem compared
to ours. On the other hand, authors of the second paper use a ZynQ device for prepro-
cessing vision tasks - features detection and correlation, from multiple cameras along with
synchronization of IMU data. Moreover they mention themselves in conclusion that their
future work envisages a “SLAM in a box” module on a single embedded device, as the com-
putationally demanding bundle adjustment is ported onto power-consuming Core2Duo
host. Lastly, authors in [Gonzalez et al., 2011] implement monocular SLAM functionality
similar to ours, but they achieve same performances (24Hz) with same amount of obser-
vations and corrections although they dissipate more power (two FPGAs) and they use
lesser dimensioning of landmarks (IDP).

66

3.co-synthesis

1.Modelling

2.Hardware
specifications

5. Prototyping

Iteration 1 : Implementation of a Multi-threaded pure software
Iteration 2 : Integration of a vision accelerator for the feature detection task
Iteration 3 : Integration of a filter accelerator for the correction step of EKF-SLAM
Iteration 4 : Integration of a vision accelerator for the correlation task

Model re-timing to extract more potential parallelism

Figure 4.19: Summary over the iterative prototyping

4.5 Conclusion
In this chapter an application of a hw/sw co-design methodology on our visual 3D EKF
SLAM application is presented. At modelling phase, model-driven modelling helped us
to refine the application model before starting the work on implementation. Moreover
this development flow permits to validate the application behavior for every step before
moving to the next, resulting in a know-to-work final prototype. The performance con-
straints defined for the application were hard to meet with a naive implementation of the
EKF vision-based SLAM (especially in terms of latency) running on an embedded system.
The model-driven flow allowed to take performance into account early in the design flow
thus leading to model-level rework. It limited the number of design iterations (4 design
iterations) where an implementation-only flow would have required major rework for each
iteration and a large number of iterations before meeting the constraints. It is showed
that a SLAM paradigm may be mapped in general on three parallel executors: position
estimation, corellation and feature detection. Based on that fact, our application is chosen
to be implemented on a heterogenous (processor + FPGA) hardware development board
resulting in a SoC prototype. Performing four iterative hw/sw partitionings followed by
co-syntheses, we integrated three performing FPGA accelerators into the 3D EKF SLAM
SoC prototype: Fast feature detector with Tesselation, EKF-accelerator and landmarks
Correlator, without any algorithmic changes. The application is accelerated from initial
5Hz to 24Hz. Real-time constraint of 30Hz is not met because of timing delays in commu-
nication between software and hardware modules. Our prototype presents a behavioraly
verified and fully functional 3D EKF SLAM SoC with high processing power and low
power consumption of merely 4.56(0.671)W .

67

Figure 4.20: Expected schedule of the SLAM application after fifth partitioning

4.5.1 Towards EKF-SLAM at 100Hz
The prototyped architecture is target-compliant and satisfies real-time constraints in
terms of processing throughput. Further work takes on interfacing the ZynQ-7020 de-
vice directly with an embedded camera - Fig. 4.20, as we presumed that camera task
outputs a 1D pixel flow in our application model (data-flow). That would remove the
13ms delay, which would yield an over-performing prototype.

Once we have the embedded camera wired with the ZynQ, our prototype may be
evolved into a consumer-grade product. We intend to exploit the three developped IPs
with rescheduled EKF SLAM application in a bare-metal design where the reconfigurable
fabric would permit higher bandwidth (at least 150MHz instead of 89MHz). On the other
hand, once freed from the delays induced by FIFO software communication and Xillinux
interfaces, we estimate4 that vision tasks and filtering tasks would roughly take at most
4.1ms and 8.2 ms respectively, with filtering part being the new bottleneck. That would
roughly bring us to a monocular EKF SLAM functionality with local maps containing
20 AHP points (and observing all of them) over 100Hz rate at very low power consump-
tion, which even outperforms RTSLAM’s - [Roussillon et al., 2011] execution (when same
parameters used) on an Intel i7 core.

4estimation is made upon timings in Table 4.3

68

Chapter 5

EKF-SLAM HW/SW co-design:
part II

Contents
5.1 Algorithmic overview . 67

5.1.1 Computational bottleneck identification 68
5.2 Design considerations . 69

5.2.1 Matrix multiplication tradeoffs on FPGAs 69
5.2.2 Notion of systolic arrays on an FPGA 70
5.2.3 Computational model mapping 70

5.3 Cross-covariance matrix block accelerator 73
5.3.1 HW/SW Integration . 76

5.4 Design evaluation . 78
5.4.1 Multiplier Latency . 78
5.4.2 Resource usage . 78
5.4.3 Power consumption . 79

5.5 Experimental results . 80
5.5.1 Measured multiplication latencies 80
5.5.2 Design scalability . 81
5.5.3 Power per feature . 81
5.5.4 Future work . 81

5.6 Conclusion . 83

69

This chapter will start off with co-design of the back-end hardware accelerator for
correction task. Afterwards, an extensive evaluation of the developed accelerator will be
given in terms of resource usage, latency and power consumption.

5.1 Algorithmic overview
Equations of the EKF are given below1.
Prediction loop:

x̂(t) = f(x̂(t−1), $(t)) (5.1)

P
(t)
1 = F (t)

x P
(t−1)
1 F (t)T

x + F (t)
ω QF (t)T

ω (5.2)

P
(t)
2 = F (t)

x P
(t−1)
2 (5.3)

Correction loop:
Z(t) = H(t)P

(t)
3 H(t)T +R (5.4)

K(t) = P
(t)
4 H(t)T (Z(t))−1 (5.5)

x̂(t) = x̂(t) +K(t)(y(t) − h(x̂(t−1))) (5.6)
P (t+1) = P (t) −K(t)Z(t)K(t)T (5.7)

After each frame acquisition, the front-end process furnishes landmarks found by FAST
corner detector. Active search algorithm is used to find correspondences with observed
landmarks in the past frame. In our case, we observe and search for correspondencies
between 20 interest points. Matched points are passed through in the camera reference
frame. They are afterwards reparameterized to richer AHP representation, which is the
data type upon which our Kalman filter works. This information is stored in robot state
vector x̂ and is updated in the process within Jacobian (H) and cross-covariance (P)
transformations - Table 5.1.

An EKF loop is executed as follows: first, a prediction step is performed in order
to update the corresponding elements in P : 5.1 - 5.3. Matrices P1, P2, P3 and P4 are
sub-matrices of the cross covariance matrix P . Secondly, multiple correction loops are
run, each with respect to a single observed landmark: equations 5.4 - 5.7 (in our case
20 times). In correction loop the filter’s gain is calculated, upon which landmarks’ and
robot’s positions are being updated (along with the the entire cross-covariance matrix). It
is done in equation 5.6 where IMU odometry and GPS data are integrated in measurement
process yt (localization). Upon observed, matched and corrected landmarks all landmarks
in the map are reparameterized from AHP to three-dimensional Euclidean representation
(3D mapping). After correction loops, we are able to reduce the search space for landmarks
which we are observing in the following frame.

In Table 5.1, N stands for the total number of landmarks retained in the local map, d
is the dimension of AHP feature state size (which is seven), six is the number for GPS and
IMU related variables and r is the state-space size of our robot (which is nineteen). All
twenty landmarks in the map are observed. From that table we deduce Table 5.2 which
shows the total amount of floating-point operations that are executed in an EKF block
in function of the number of retained landmarks N in the visual map.

1In equations 5.2 and 5.7 we perform matrix calculations only on P1 and P matrices’ upper triangles
respectively, as the cross-covariance matrix P is symmetrical

70

Table 5.1: Description and matrices dimensions according to our implementation of the
EKF algorithm.

Symbol Dimension Description
x̂ (dN + r)× 1 Robot and feature positions
f - Prediction function
$ r Control law
P (dN + r)× (dN + r) Cross covariance matrix
P1 r × r Cross covariance matrix with respect to robot position
P2 r × dN Cross covariance matrix with respect to all landmarks
P3 2d× 2d Cross feature-robot covariance matrix
P4 (dN + r)× 2d Cross feature-feature and robot-robot covariance matrix
Fx r × r Jacobian to system state
Fω r × 6 Jacobian to system state perturbation
Q 6× 6 Permanent perturbation
Z 2× 2 Covariance innovation
H 2× 2d Jacobian
R 2× 2 Measurement noise
K (dN + r)× 2 Filter gain
y 2× 1 Measured output
h - Observation function

5.1.1 Computational bottleneck identification
It is shown that computational requirements for an EKF algorithm depend on the number
of features N retained in the map: LEKF = O(N2) [Thrun et al., 2005]. Highest share
of the execution time belongs to equation 5.7. Here, the upper triangle of the square
P matrix is updated during correction. This fact is confirmed after having run a code
profiling tool [Spivey, 2003] over the implemented EKF-SLAM code (which will be more
detailed in section 5.5). Thus, a significant speed-up can be made by leveraging the
P −KZKT operation in hardware.

Knowing that square matrix P is the largest data structure in SLAM algorithm in
terms of memory usage and that it is being frequently evoked for pose estimation and
state update, it is an imperative to ensure efficient data communication between the

Table 5.2: Number of floating-point operations in an EKF loop taking into consideration
symmetry of the cross-covariance matrix. Equations 5.4 - 5.7 are executed c = 20 times,

for each observation

Equation no. FLOP N=20 N=50 N=100
5.1 361 0.02 0.006 0.002
5.2 17000 1.21 0.26 0.074
5.3 4921N 6.99 3.8 2.13
5.4 c × 868 1.23 0.27 0.08
5.5 c × (420N + 1140) 13.54 6.85 3.74
5.6 c × (49N + 135) 1.58 0.8 0.44
5.7 c × (102N2 + 576N + 811) 75.43 88.01 93.54

Total 2040N2 + 25821N + 76441 100

71

Table 5.3: Transfer analysis regarding P matrix in EKF equations

%xfers on N=6 N=13 N=20
Eq5.2 1.21 0.2 0.06
Eq5.3 2.68 0.95 0.48
Eq5.4 3.95 1.4 0.7
Eq5.5 17.2 11 7.96
Eq5.7 74.96 86.45 90.8

accelerator and the rest of the system. In Table 5.3 we can see the influence of N2 in
equation 5.7 related to number of element-wise memory accesses by changing the value of
N . An accelerator which would transfer back all the results into external memory (where
program data are stored) would eventually lose its role with growing N . By storing
P matrix in on-chip memory instead of storing it in external memory and modifying
the software to access the contents of P in on-chip memory when executing equations
5.2,5.3,5.4 and 5.6 would in addition gradually increase the efficiency of the accelerator.
It is why we propose to store it on high-speed on-chip memory. In that way we could
keep the FLOPs number in equation 5.7 close to a constant value and thus rendering it
independent of N2 in terms of host processor execution time. For a generic EKF-SLAM
application, the parameter c may be varied, which also influences considerably FLOPs
number in equation 5.5. Thus, hardware acceleration of this equation will be also taken
into account.

5.2 Design considerations
This section will start with floating-point matrix multiplication considerations on an
FPGA device (latency, I/O bandwidth and storage). After having introduced a Sys-
tolic Array (SA) - based processing system on an FPGA, a processing element (PE) -
based computational flow for EKF’s equation 5.7 will be given.

5.2.1 Matrix multiplication tradeoffs on FPGAs
On a reconfigurable computing system the main tradeoff is between optimal speed and
resource utilization. Higher design speeds may be achieved at the cost of a higher re-
source usage. On the other hand, the limited number of configurable slices should be
used for parallel logic implementation. Considering applications of matrix-matrix mul-
tiplication algorithms on programmable hardware of limited size, such as FPGAs, we
have to take into account specific constraints on latency L, total storage size in words
M and memory bandwidth requirement B denoted by number of I/O operations per-
formed in each cycle. Based on a multiplication of two n-squared matrices, authors in
[Zhuo and Prasanna, 2007] explain these tradeoffs in reference to lower bound on achiev-
able latency:

L ≥ max(L1, L2) ≥ max

(
n3

p
,

n3
√
MB

)
, (M ≤ n2) (5.8)

72

where p is the number of theoretical Processing Elements (PE) that may be executed in
parallel, L1 is the latency according to computation time and L2 is the latency dependent
on I/O bandwidth. Furthermore, they conclude that an optimal latency is in this case of
order O(n2) when having p = O(n) PEs and M = O(n2) available storage size in words.
However, for large scale matrices the latency is of order O(n3

p
). This is due to the fact that

having FPGAs with limited resources it is hardly possible to instantiate that many PEs
in parallel. A recent work [Jovanovic and Milutinovic, 2012] describes an architecture of
linear array PEs, similar to those in [Zhuo and Prasanna, 2007], but achieving an optimal
latency of order O(n2) by exploiting full-duplex communication with the host processor
(no on-chip memory storage) and at the cost of having it involved during addition of
intermediary values. Our design will focus on minimal latency of matrix multiplications
in EKF equation 5.7 and on-chip memory storage.

5.2.2 Notion of systolic arrays on an FPGA
As previously explained, and especially due to available resources on the Zynq-7020 de-
vice, we chose to optimize the tri-matrix multiplications. Pipelined designs present a
suitable solution when it comes to allocating resources given the specific problem size of
our computational model. By identifying computational kernels (i.e. floating point multi-
plication, addition and subtraction) a problem-specific computational unit called PE may
be conceived. Systolic array (SA) is a form of a pipelined design consisting of a multi-
dimensional grid of interconnected PEs. Main sequential operation is being optimized
(e.g. equation 5.7 in our case) by restructuring its executional flow so that it may be
executed on parallel PEs. Besides, a central logic, called Sequencer, controls the data flow
in the grid. Advantage of a SA based computation over sequential or multi-threaded is
that the its grid is able to generate new results after each clock cycle. In consequence,
by exploiting structural properties of an SA we are able to lower the dimension of the
computational model (which is three-dimensional for n-squared matrices multiplication)
and obtain a better throughput at the cost of more complex control logic of data flows.

Authors in [Castillo-Atoche et al., 2010] present useful mapping techniques inherent
to an FPGA-based design. In order to avoid using large number of buffers due to routing
issues in a standard matrix-matrix multiplication algorithm, they propose a modified
locally recursive version upon which they map control logic onto their two-dimensional
SA. However, because of speed issues, PEs are often organized in a linear list structure
- a special case of a one-dimension systolic array in which they interconnect by short
connection wires. In general, broadcasting data on a larger grid in an FPGA using a
higher dimensional SA structure is not recommended because of speed degradation due
to the size and routing complexity of FPGA-based floating point units. In order to achieve
efficient low latency design we focus our efforts on implementing a 1-D SA.

5.2.3 Computational model mapping
The tri-matrix multiplication in equation 5.7 could be performed on hardware by taking
into account the identity: A × B = (BT × AT)T as in that way the larger matrix K
has to be transposed only once during the computation. In same manner we rewrite the
equation as:

73

P (t+1) = P (t) − (Z(t)TK(t)T)TK(t)T (5.9)
The computation model of a one-dimensional SA with even number of PEs

(p = 2k|k ∈ N \ {0}) may be described with the following pseudo-code:

Phase I: A×B
1: for i = 0; i < 7N + r; i+ = p/2 do
2: (in parallel for all x = i : 2 : (i+ p− 1), y = i : 1 : (p/2− 1))
3: PExmodp = Axmod2,0 ×B0,y + Axmod2,1 ×B1,y
4: PE(x+1)modp = A(x+1)mod2,0 ×B0,y + A(x+1)mod2,1 ×B1,y
5: end for

where A = ZT , B = KT and
Phase II: C − A×B

1: for i = 0; i < 7N + r; i+ = p do
2: for j = i; j < 7N + r; j + + do
3: (in parallel for all x = i : (i+p-1))
4: PExmodp = Cx,j − (Ax,0 ×B0,j + Ax,1 ×B1,j)
5: end for
6: end for

where C = P , A = [ZTKT]T and B = KT .
In order to minimize changes in control logic (and resources) used for hardware matrix-

matrix multiplication, the computational model used for equation 5.7 will be reused for
computing equation 5.5. Thus we rewrite it as:

K(t) = ((Z(t)−1)T (H(t)P
(t)T
4))T (5.10)

and apply the same PE-based computational model like before:

Phase I: C + A×B
1: for k = 0; k < d; k + + do
2: for i = 0; i < 7N + r; i+ = p/2 do
3: (in parallel for all x = i : 2 : (i+ p− 1), y = i : 1 : (p/2− 1))
4: PExmodp = Cxmod2,y + Axmod2,2k ×B2k,y + Axmod2,1+2k ×B1+2k,y
5: PE(x+1)modp = C(x+1)mod2,y + A(x+1)mod2,2k ×B2k,y + A(x+1)mod2,1+2k ×B1+2k,y
6: end for
7: end for

where C = KT ′ , A = H and B = P T
4 . In inner loop the variable KT ′ accumulates the

partial products of H × P T
4 . Outer loop runs d times, executing the phase I control logic

in equation 5.7. Phase II performs A × B, identicaly as in phase I in equation 5.7, only
here A = [Z−1]T and B = HP T

4 .
Our computational model (even number of PEs) builds up on the fact that the innovation
matrix Z is always square-two dimensional for a visual EKF-SLAM application. It sup-
ports varying parameters N, r and d from Table 5.1 for a different robot configuration
and landmark parametrization scheme. A PE well adapted for this task contains two
floating-point (FP) multipliers and two FP adders and is executing the operation:

C ± A×B (5.11)

74

An unidirectional SA containing four PEs may be seen on Fig. 5.1:

Figure 5.1: Our tiling of the 1-D systolic array for visual EKF-SLAM matrix
multiplications

Floating-point subtraction is performed by negating the most significant bit (MSB) of
the second operand (in IEEE FP format this negates the given number value) in addition
operation - Table 5.4. This structure yields four FP matrix multiplication results in par-
allel every clock cycle with a simple unidirectional SA-based control logic. In a standard
2-D SA, Multiplication and Accumulation (MAC) units consist of one FP multiplier and
one FP adder operators. Thus our 1-D SA with 4 PEs has the same throughput as a 2-D
SA with 4 PEs at the expense of higher resource usage (we instantiate 4 FP multipliers
in comparison) which leaves us with simpler control logic and consequentally shortens
development time. Although we may have instantiated more PEs in the 1-D SA, the
throughput already achieved of this design conforms to our real-time constraints, which
will be more detailed in section 5.5.

Functional description with allocated memory buffers of our accelerator will be de-
scribed in detail in following section.

75

Table 5.4: Control of en signals

en EKF correction function
00 Phase I eq. 5.5
1X Phase II eq. 5.5
1X Phase I eq. 5.7
01 Phase II eq. 5.7

5.3 Cross-covariance matrix block accelerator
Accelerator’s hardware architecture is given on Fig. 5.2.

The host processor (dual core ARM CortexA9) performs EKF equations 5.1, 5.2,
5.3, 5.4 and 5.6. Accelerator’s main logical component is the Main sequencer, a state
machine generic to parameters N, r and d. It also pre-buffers the input stream onto PEs
during computation of EKF equations 5.5 and 5.7 in order to provide the SA with input
data at each clock cycle, maximizing the operational throughput. Each First In First
Out (FIFO) structure contains p FIFOs of depth of ceil((7N + r)/p) 32-bit words2. P
matrix is stored in four tri-port 2W/3R Block Random Access Memories (BRAMs)3. It
is necessary to make use of tri-port BRAMs, because in equation 5.9 in phase II we have
simultaneous read and write operations with different addresses from/to on-chip memory
(pseudocode line 4: output of PExmodp is stored in Px,j). As one 1W/1R port is used for
the store operation, the multiplexed 1R port is used for fetch operation. The third 1W/1R
address line functionality is left for the host processor communication for execution of
other equations in EKF block that require parts of P matrix. Cross-covariance matrix
P uses in total ((7N + r)(7N + r))2 bytes. Because it is stored entirely in the on-chip
memory, pointer values are pre-set in program memory on each corresponding element in
the on-chip memory so the host may access elements in P.

HW functional description. We refer to chronological execution of tasks in an EKF
correction loop. From computational model described after eq. 5.10:

1. Phase I. Input sequencer fetches H matrix from input BRAM and loads it onto
FIFO1. During HP T

4 computation, H is popped into the buffer, along elements
of P T

4 by Main sequencer. Partial product matrix KT ′ = [HP T
4]′ is pushed onto

FIFO2. During inner loop computation (pseudocode line 4) elements of KT ′ are
popped and pushed as: Cxmod2,y = KT ′

xmod2,y and KT ′
xmod2,y = PExmod2,y respectively

in order to perform KT ′
k+1 = KT ′

k + [HP T
4]k. After d iterations, resulting matrix

KT ′ = HP T
4 is pushed onto FIFO2.

2. Phase II. Input sequencer fetches Z−1 matrix from input BRAM and loads it trans-
posed onto FIFO1. Main sequencer buffers the matrices in FIFO1 and FIFO2 and
pushes the resulting KT matrix onto FIFO2, to be used for update of matrix P .
Input sequencer stores transposed matrix K from FIFO2 to Input BRAM. It does it
in a circular fashion using asynchronous read/write operations on FIFO2, pushing
and popping all elements of KT .

2FIFOs are instantiated using Xilinx IP Core Generator v14.2 and physically implemented as dual-port
BRAMs.

32W/3R BRAMs are obtained by multiplexing a read port of one of 2W/2R (true dual-port) BRAM’s
ports

76

Fi
gu

re
5.

2:
Tr

i-m
at

rix
m

ul
tip

lic
at

io
n

ar
ch

ite
ct

ur
e.

77

Figure 5.3: Our SoC implementation of the 3D EKF-SLAM application

From computational model described after eq. 5.9:

1. Phase I. Input sequencer fetches Z matrix from input BRAM and loads it transposed
onto FIFO1. ZT and KT matrices are being popped from FIFO1 and FIFO2,
respectively by Main sequencer. While popping, KT elements are also being pushed
in a circular fashion as they are going to be reused later in phase II. Main sequencer
pushes the intermediary [ZT KT]T matrix in FIFO1.

2. Phase II. [ZT KT]T and KT matrices are fetched from relevant FIFOs and loaded
onto the SA. Multiplication result is stored directly into 2W/3R BRAMs.

HW/SW integration. On Figure 5.3 we present the entire Zynq-7020 SoC with our
co-processor referred to as Intellectual Property (IP). It is attached as an Advanced eX-
tensible Interface (AXI) peripheral to a dual-core ARM processor4.

Communication with host processor unfolds in four simple steps:

1. Host loads matrices H, Z−1 and Z onto a fast on-chip memory (input buffer) via
axi interconnect bus from the external DDR3 SDRAM and sends a ”go” signal to
the IP.

2. Co-processor computes equation 5.5 and asserts a ”done multiplication” signal.

3. Host fetches K matrix and computes EKF equation 5.6 in parallel with co-processor
computing EKF equation 5.7. During phase II, co-processor’s main sequencer stores
p results into same number of BRAMs, each containing the (ps+j)modp th element,

4The system is designed using Xilinx Platform Studio v14.2

78

where s is the current store cycle count and j is the number of the current row in
a (7N + r)modp cycle.

4. Co-processor asserts a ”done multiplication” signal. By polling, the host verifies end
of the execution of the operations in equation 5.7.

5.3.1 HW/SW Integration
Given that the heterogeneous platform used for co-design of Embedded SLAM prototype
is the ZedBoard development board, this accelerator is a memory-mapped AXI peripheral
to an ARM Cortex A9 host processor (Figure 4.18).

In order to support this sw/hw communication in Xillinux, first we need to declare
global variables for cross-covariance matrix P - obram, the memory-mapped co-processor
trimatrix and the input memory ibram:

//config.h
#define N 20
#define MAP_SIZE 7*N+19
#define PE 4
#define EKF 0x80000000
#define oBRAM 8192
#define TRIMAT 1024
#define iBRAM 1024
#define BYTES (PE*oBRAM+TRIMAT+iBRAM)*4

extern volatile uint* ibram;
extern volatile uint* trimatrix;
extern float** obram;

In main program thread we initialize the global variables as:

//main.c
...
#include "config.h"
int fd;
volatile uint* ibram;
volatile uint* trimatrix;
float** obram;
...
void init_ekf(){

fd = open("/dev/mem", O_RDWR);
uint map = mmap(0, BYTES, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, EKF);
obram=(float**)malloc(sizeof(float*)*MAP_SIZE);
int i,j,temp;
// OBRAM INIT
temp = ceil((double)MAP_SIZE/PE);
for(i = 0; i < temp; i++){

79

for(j = 0; j < PE; j++){
obram[i*PE+j] = map+j*oBRAM+MAP_SIZE*i;

}
}
// TRIMATRIX INIT
trimatrix = map+PE*oBRAM;
// IBRAM INIT
ibram = map+PE*oBRAM+TRIMAT;
}// end init_ekf{}
...
int main(char* args[]){
...
// sw/hw integration
init_ekf();
float** P = obram;
...
//in correct_lmk()

// copy matrices Z and K
memcpy(ibram,&Z,4*sizeof(float));
memcpy(ibram+4,&K,2*MAP_SIZE*sizeof(float));
// reset accelerator
trimatrix[0] = 0x0000ffff;
// send go
trimatrix[0] = 0xffff0000;
trimatrix[0] = 0x0000000;

...
}// end main(char* args[])

Software code is written as to support algorithmic and architectural genericity. In order
to take into account EKF parameters from equation 5.7, we define preprocessor macros
N and MAP SIZE. Macros PE, iBRAM , oBRAM and TRIMAT reflect instantiated
accelerator’s architecture. Cross-covariance matrix is stored in PE BRAMs, according to
number of 32-bit elements output in parallel from accelerator. Therefore, a single output
BRAM should contain at least (int)(((MAP SIZE × MAP SIZE)/PE) + 1) 32-bit
elements. As in Xilinx XPS we must instantiate memories in chunks of 4096B (1024 ×
4B elemets), we set oBRAM to 8192 when N is 20. Same is the reason for iBRAM , as
it contains only Z2,2 and K7N+19,2. Because the accelerator is a memory-mapped device,
it has also a minimal address space of TRIMAT × 4 bytes. For integration issues, macro
EKF represents the base address of BY TES long memory space of the entire co-processor
peripheral on the dedicated AXI bus in Xillinux.

As the accelerator IP is generic itself, this co-design technique may be migrated to
bigger reconfigurable devices if there is a demand for more processing power (PEs). Ac-
celerator is also succesfully tested as a PLB peripheral for heterogeneous designs porting
an FPGA with IBM’s PowerPC440 embedded processor.

80

Table 5.5: 1-D systolic array resource usage

Resources Add Mult Array % IP
LUTs 254 121 3000 38

DSP48E1s 2 2 32 100
Latency 9 5 14 -

FMAX [MHz] 380 368 311 -

5.4 Design evaluation
In this section we give a theoretical estimate on developed multiplier’s latency which is
later going to be compared with experimental results (in Section 5.5) in order to evaluate
the efficiency of the proposed SA-based design in terms of speed of execution. Afterwards
we present an overview over resource and power consumption of the entire co-processor
on the FPGA.

5.4.1 Multiplier Latency
After the analysis in section 5.2 we have:

L > L0 + L1 + L2 (5.12)

L1 > max

(
(d+ 1)n

p
,

n√
nB

)
(5.13)

L2 > max

(
n2

2p,
n2

√
2n2B

)
(5.14)

L1 latencies correspond to phase I and II multiplications in equation 5.5 and phase I mul-
tiplication in equation 5.7. L2 represents (ZTKT)TKT matrix multiplication latency. L0
is the latency due to processor-IP communication. Concerning the matrix multiplication
part, we have M1 =

√
n and M2 =

√
n2 because we have loaded all the corresponding

matrices into two FIFO structures so that they could be fetched at each clock cycle.
Furthermore, B = 20 owing to buffered input data and parallel storing of the results.
Thus we are able to deduce that L1 > (d+1)7N+r

4 and L2 > (7N+r)2

8 as we have p = 4
PEs. All delays greater than L1 + L2 clock cycles are due to L0 and because of pushing
input matrices Z,Z−1 and H onto FIFO1 and popping matrix K from FIFO2 by Input
sequencer.

5.4.2 Resource usage
In literature, efficient floating point units are implemented with several embedded DSP
blocks and Look Up Tables (LUTs). In Table 5.5 an overview over resource usage of the
SA-based multiplier versus IP is given. The one-dimensional systolic array consists of
8 deeply pipelined multipliers and 8 adders. In terms of logical resources, the systolic
array makes use of 38% of the entire IP while the rest is used by input sequencer, main
sequencer, buffer and other internal buffers with 32-bit delay lines. For speed issues,
embedded multipliers (DSP48E1s) are instantiated in each PE of the SA.

81

Table 5.6: Accelerator resource usage with on-chip memory

Resources [Tertei et al., 2014] This work Available
LUTs 7419 7824 53200

DSP48E1s 32 32 220
36kb BRAMs 37 21 140
FMAX [MHz] 198 177 -

In Table 5.6 we show the ratio of resource usage of the accelerator (with instanti-
ated on-chip memory) versus all available resources on Zynq-7020 device. Relevant work
[Tertei et al., 2014] is ported from Virtex5 to Zynq device for a proper comparison. Our
map containts in total a minimum of N = 20 AHP landmarks. A 36k BRAM is used for
the input BRAM. Eight 18k BRAMs are used for instantiation of the FIFO structures
(4 × 18k per FIFO) and sixteen 36k BRAMs are used to form the four memory banks5

for storing 51kB of resulting data. Optimal BRAMs consumption in function of matrices
cardinalities from Table 5.1 may be calculated as:

BRAM36k no = (M1 +M2 +M3 +M4)× 0.5 (5.15)

M1 = ceil

(
|Z|+ |Z−1|+ |H|+ |K|

512

)
(5.16)

M2 = M3 = p× ceil
(
|K|
512p

)
(5.17)

M4 = p× ceil
(

0.5× |P |
512p

)
(5.18)

where M1, M2, M3 and M4 is the number of 36kBRAMs that constitute Input BRAM,
FIFO1, FIFO2 and P matrix storage, respectively.

We conclude that the accelerator is efficient in terms of resource usage as it consumes
only 14.7% (7824 out of 53200 LUTs) of the configurable logic on the FPGA, leaving
enough resources for other modules that might be required for the rest of SLAM (accel-
eration of vision process). BRAM usage (15%) for storing the cross-covariance matrix is
minimal due to symmetry-related optimization. The speed issues are going to be detailed
in Section 5.5. Comparing to our previous work (Table 5.6), this new version of the accel-
erator is more efficient in terms of memory usage - from 26% to 15%. Higher consumption
of logical resources - from 14% to 14.7% - is due to implementation of EKF equation 5.5
on the Zynq device.

5.4.3 Power consumption
The FPGA power consumption is estimated using Xilinx XPower Analyzer tool - Table
5.7. Most of the power drain is due to dual core ARM processors (which run in low power
mode at 667MHz dissipating ∼1W). This accelerator uses less power because of lower
BRAMs usage for the same application functionality.

5A 32-bit 4096 word memory bank is implemented as 4 × 36k BRAM, instantiated in Xilinx Platform
Studio v14.2. Each memory bank holds one fourth of the P matrix

82

Table 5.7: Visual EKF-SLAM accelerator’s power distribution: comparison with the
previous version

Power consumption [W] [Tertei et al., 2014] This work
Total 1.367 1.302

Table 5.8: EKF equations cycles measured with 125 MHz counter

Equation no◦ [Tertei et al., 2014] This work No accelerator
5.1 6700 6700 6700
5.2 89000 89000 86600
5.3 507000 507000 500000
5.4 270 270 270
5.5 38800 830 38000
5.6 7500 9400 7500
5.7 11300 3770 220000

5.5 Experimental results
After having synthesized our design, it’s maximal operating frequency is 125MHz. Thus
its peak throughput is ((p× 4))FLOP × 125MHz = 2GFLOPs.

We differentiate between cases when using older version of the accelerator, the present
version and when not using it. Baseline software code executed in all three cases takes
into account the P matrix symmetry and N = c = 20 setting. Using Gprof we obtain
Table 5.8 which show the cycles duration in each EKF block equation. Some equations
take longer to execute with acceleration, which is due to the hw/sw co-design; as when
using the co-processor, P matrix is stored in on-chip memory in order to leverage the
most demanding operations. We then pay the price (though small) by having to transfer
the data accros axi interconnect bus. On the other hand, when not using the accelerator,
the 51kB matrix is stored in program memory and all P -related operations in correction
loop are done by host processor. That consumes a lot more processor time. Thus, it is
a profitable trade-off. As in this new version of the accelerator, EKF equations 5.6 and
5.7 are executed in parallel. Thus the latency may be calculated as: Lnew = eq.5.1 +
eq.5.2 + eq.5.3 + c × (eq.5.4 + eq.5.5 + max(eq.5.6, eq.5.7)); while in other two cases it
is: Lold = eq.5.1 + eq.5.2 + eq.5.3 + c × (eq.5.4 + eq.5.5 + eq.5.6 + eq.5.7)). This new
design is thus ∼2.2 times faster than the old one and ∼7.5 times faster than pure software
implementation when N = c = 20 with p = 4 PEs.

5.5.1 Measured multiplication latencies
For twenty landmark observations6:

• EKF eq. 5.5. During phase I, Input sequencer fetches H and Z−1 matrices in 2×14
and 2 × 2 clock cycles, respectively. Phase I and II computation take L1 ∼ 347
cycles (d = 7). After phase II, Input sequencer stores K matrix in 2 × 159 cycles.
Communication latency with host costs L0 ∼ 830− 697 = 133 clock cycles.

6cycles count are validated using ChipScope Pro Analyzer

83

Table 5.9: Device resources usage with Nmax = 70

Resources p=2 p=4 p=6 p=8 [Tertei et al., 2014] p=4 Available
LUTs 6268 7824 9371 10919 7529 53200

DSP48E1s 16 32 48 64 32 220
36kb BRAMs 131 21 137 138 137 140
FMAX [MHz] 177 177 164 156 180 -

• EKF eq. 5.7. Input sequencer takes 2× 2 clock cycles to fetch Z matrix from Input
BRAM. The computational latency is L1 + L2 ∼ 3752 clock cycles which leaves us
for the host processor-accelerator communication latency L0 ∼ 3770 − 3756 = 14
clock cycles.

Computational latency is close to the predicted value in subsection 5.4.1 from which we
confirm that the desing performs close to its theoretical optimum.

5.5.2 Design scalability
In general, a VSLAM application could benefit from a larger map size in an unstructured
environment. Also, the number of observed landmarks may be higher than c = 20. In
order to put our work into larger perspective, we scale-up the design for different 1-D
SA array sizes: p = {2, 4, 6, 8}. In Table 5.9 we give the synthesis results for design of
different SA sizes. We keep high dimensional landmark parametrization d = 7 and r = 19
in the robot state vector dN + r. So, the presented configurations in the table count
for largest possible map sizes Nmax, limited by number of 36k BRAMs on the Zynq-7020
device. All FMAX are greater than 125MHz, which means these co-processor designs may
be well integrated into the SoC. For comparison, our previous work is also listed. That
work permits map sizes of up to 50 landmarks, while the design presented in this thesis
allows for 70.

On Figure 5.4 the EKF block throughput is given in function of corrected landmarks
when using and when not the co-processor: for smaller maps (containing less than 21
AHP points) all landmarks are observed and corrected; for bigger map sizes there were
made only 20 correction loops. On Figure 5.5 we may see the same scheme with the
difference that all landmarks in the map are observed and corrected: c = N . Depending
on the VSLAM application, a designer may choose which one to instantiate.

5.5.3 Power per feature
In Table 5.10 power per feature benchmarking is presented for our 3D EKF SLAM appli-
cation. It contains 20 landmarks in its map and executes same amount of corrections. For
FPGA-based platforms, the developed accelerator with 4 PEs-based 1-D SA multiplica-
tion architecture is used. Nmax is the number of AHP landmarks retained in the SLAM’s
map that permit 30Hz EKF block period.

5.5.4 Future work
Having validated our design, further work encompasses optimizing the resource usage
by implementing a 2-D SA along with a more complex control logic as described in

84

10 20 30 40 50 60 70

10

20

30

40

50

60

70

80

90

100

X: 70
Y: 44.48

Map size with c=20 corrections

E
K

F
 e

po
ch

 th
ro

ug
hp

ut
 [H

z]

No acceleration
p = 2
p = 4
p = 6
p = 8
ReConFig14
Real−time constraint

Figure 5.4: EKF block throughput comparison #1

10 20 30 40 50 60 70

10

20

30

40

50

60

70

80

90

100

X: 60
Y: 30.29

Map size with c=N corrections

E
K

F
 e

po
ch

 th
ro

ug
hp

ut
 [H

z]

No acceleration
p = 2
p = 4
p = 6
p = 8
ReConFig14
Real−time constraint

Figure 5.5: EKF block throughput comparison #2

Table 5.10: Power per feature metric for visual EKF-SLAM with AHP points

Hardware platform Nmax Power [W] Power/feature
Intel i3 (2 × 1.8 GHz, 4GB RAM) ∼ 100 34 0.34

[Tertei et al., 2014] @ Zynq-7020 SoC (2 × 667 MHz) 45 1.367 0.030
This work: Zynq-7020 SoC (2 × 667 MHz) 70 1.302 0.019

85

[Castillo-Atoche et al., 2010].

5.6 Conclusion
In this chapter an accelerator for a visual 3D EKF-SLAM application (without loop
closure) that uses seven-dimensional landmark parametrization for mobile platform lo-
calization is proposed. It is designed as an SoC on a Zynq-7020 device, yielding high
performance metrics for our EKF setting: 20 AHP landmarks in the map with all of
them being observed and corrected at a rate of at least 30Hz. It is characterised by min-
imal latency (close to theoretical optimum), low resource usage (14.7% of LUTs and 15%
of on-chip memory) and low power consumption of only 1.302W. It provides improved
power-per-feature measure of 0.019 mW/AHP with respect to previous work and an order
of magnitude improvement when executing the application on a standard personal com-
puter platform (Intel i3 architecture 3217U, taking into account only processor’s power
consumption). As it consumes small amounts of resources, other accelerators (i.e. for
feature detection and/or feature matching) or soft-core processors (i.e. MicroBlaze) may
be implemented on the FPGA.

The design is scalable, permitting map sizes of up to 70 AHP landmarks, while cor-
recting 20 out of them or maps with 60 AHP landmarks with all being corrected; all at
rates over 30Hz. Scalability of the design allows for adapting this FPGA-based design
in unstructured environments where it is potentially required to have larger map sizes
with higher amount of landmark observations and corrections for a particular visual EKF
SLAM application.

86

Chapter 6

Embedding Algorithms for Visual
Obstacle Detection

Contents
6.1 Related work and motivation 85
6.2 Proposed framework . 86

6.2.1 Appearance kernel . 87
6.2.2 Shape kernel . 87
6.2.3 Classifiers co-design . 91
6.2.4 Classifiers training . 94
6.2.5 Single scale decision making . 96

6.3 Conclusion . 100

87

Efficient navigation of an intelligent mobile vehicle in a congested unstructured envi-
ronment relies heavily on accurate obstacle detection. With the advent of high-resolution
imaging sensors providing rich contextual information, there is high demand for devel-
opment of mountable image processing hardware and software which are in their turn
restrained in terms of power consumption, processing power and on-chip memory. While
limited in physical resources, these embedded systems are required to achieve acceptable
precision/recall metrics in real-time in comparison with their state-of-the-art performing
software counterparts executed on standard personal computers.

This chapter presents a suitable framework for monocular embedded obstacle detec-
tion. The developed approach is tested on a road sequence taken from the KITTI public
data set. Results, presented and discussed in next chapter, show satisfying performance
in detection metrics over vehicle detection and real-time execution on ZedBoard-based
embedded ecosystem.

6.1 Related work and motivation
Image indexation presented in [Harzallah et al., 2009] treats obstacles from a holistic point
of view: from a sliding detection window an image patch is cropped out and put into a two-
stage hierarchical classification scheme. The first stage uses a weak and computationally
inexpensive binary classifier to reject the majority of the negative samples. The positive
candidates are passed to a second stage classification, where a computationally expensive
classifier attributes the image patch a score. This approach is repeated on detection
windows of multiple sizes (multi-scale decision making) and scores are compared. Non-
maximal suppression based on greedy search is used to discard false positives. Despite
being very performing1, this approach as-is is not embeddable because of huge runtime
memory requirements and heavy computational load. Its advantages, on the other hand,
lie in no assumptions being made about object’s location (using exhaustive sliding window
approach) and algorithmic genericity for detection of multiple obstacle classes.

In this chapter I propose a monocular, knowledge- and appearance-based framework
for building efficient embedded obstacle detection systems. Targeted hardware platforms
are emerging multi-core heterogeneous2 boards equipped with an exteroceptive sensor - a
high resolution camera. I intend to port the essence of the described approach into em-
bedded domain using parallelization techniques, rule-based binary classification, compu-
tational optimizations for classification and single-scale detection window based decision
making for accurate hypothesis verification.

Classifier performance will be evaluated based on metrics most widely used in object
detection-related literature. They may be classified into two schemes:

1. Per Window (PW) and

2. Full Image (FI).

The first method determines performance based on cropped positive and negative image
windows. This approach puts forward unitary classifier performance from overall detec-
tion system, thus making it ideal for evaluating classifier performance in a hierarchical

1won the 2007 Pascal VOC challenge
2multi-core CPU + FPGA

88

classification or boosting scheme [Dollar et al., 2012]. The FI method relies on whole
input image evaluation where objects are searched for in bounded boxes. It makes an
assumption that the classifier under evaluation performs multi-scale detection and appro-
priate non-maximal suppression (NMS). Hence, this scheme is most suitable for evaluating
a complete detection system.

6.2 Proposed framework
The essence of the proposed approach in [Harzallah et al., 2009] is to combine the local-
ization and shape characteristics in a single kernel, thus building a higher-dimensional
kernel K(u, v) which is a convolution of HoG- and BoW- kernels by multiplication:

K(u, v) = KHoG(uHoG, vHoG)×KBoW (uBoW , vBoW) (6.1)

However algorithmically well-performing, it requires a huge computational effort which
makes it difficult for embedding. Instead of augmenting the dimensionality of the problem,
shape- and appearance-related information may be encoded by a proper kernel (HoG and
BoW) and combined in a hierarchical boosting framework with stages:

• Object localization3 based on interest point characterization (appearance)

• Object classification based on gradient representation (shape)

• Decision making - NMS

which is more suitable for embedded domain. In literature, when it comes to generic
object recognition, most works make use of sliding windows technique (or its workarounds)
in order to perform foreground estimation at multiple scales (equation 6.2):

Sobj = argmaxS⊆If(S) (6.2)

where S is the subset of all rectangles of defined scales (either given as an aspect ratio n : m
or as [height, width]) in an image I. After hypothesis verification, the decision making
stage implements a non-maximal suppression technique on S in order to discard the false
positive detections, based on a confidence score after some quality function evaluation
f(S). Its main drawback lies in algorithmic complexity of O(n4) for a given image of
dimension [height, width] = [n, n] in a standard multi-scale decision making scheme.

Another hypothesis being made in this thesis is the single-scale decision making, where
the search over I is performed with a fixed-sized detection window s ∈ Sobj in order to
alleviate the algorithmic complexity: O(n4) → O(n2). Based on detection scores after
stage II, windows are either concatenated or discarded based on assumptions which are
going to be explained in more detail in the subsection 6.2.5. In following subsections each
stage is going to be explained in more detail.

3also known as foreground estimation

89

6.2.1 Appearance kernel
Interest point characterization. In the literature, a known robust feature detector and de-
scriptor is SIFT [Lowe, 2004]. Authors in [Mikolajczyk and Schmid, 2005b] show its high
repeatability rate and invariance to affine image transformations. A more recent study of
interest points characterization conducted on KITTI dataset may be found in this thesis
- [Li, 2013]. From these algorithmic performance comparisons, it may be concluded that
SIFT characterization, among others, is performing well. It is the same feature description
algorithm used in [Harzallah et al., 2009] and it will be used for proof-of-concept of algo-
rithmic performance of the proposed object detector in this thesis. Main reason behind
choosing SIFT is because this transform identifies well reproducible keypoints between
consequent frames in a streaming application, which is an essential criteria in crowded
scenery when having to track obstacles by detection.

As the first stage kernel relies on presence of feature keypoints in a given fixed-
size bounding box s, a BoW histogram will be used to encode this information. After
[Harzallah et al., 2009], a visual vocabulary C of representative 100 SIFT keypoints will
be built offline based on k-means clustering of all positive object samples in KITTI training
set (from cropped images). Afterwards, during hypothesis generation, the dimensionality
of the problem may be scaled to a mapping function mBoW :

s
SIFT−−−→ IRK×128 ||C−KP ||2−−−−−−→ IR1×100 (6.3)

where KP is the set of found SIFT keypoints, K = |KP | and the number 128 stands
for 128-dimensional4 SIFT keypoints in a given fixed-size detection window. In other
words, the object appearance represented as a collection of local featuresKP in a detection
window s is encoded into a BoW histogram of fixed size. During norm computation, BoW
histogram is computed based on Euclidean distance measure with each word in visual
vocabulary C. During histogram calculation, a candidate point is considered ambiguous
if its distance to the nearest visual word over the distance to the second nearest is less
than 0.8 (Lowe’s criteria [Lowe, 2004]).

6.2.2 Shape kernel
Gradient-based characterization. Histogram of Gradients (HoG) model may be useful in
object representation because of its invariant properties related to:

• illumination,

• contrast and

• affine transforms.

Computing the intensity difference in a color image by 2D (horizontal and vertical)
first order derivatives eliminates small changes in illumination and contrast (i.e. due
to imager noise or abrupt environmental changes). Furthermore, gradient computation
captures the intensity transition around objects’ boundaries, which results in information
retrieval about it’s structure. The pooling in the form of a histogram renders these features
robust with respect to small shifts, ameliorating deformation tolerance.

4each dimension is 4B floating-point value

90

Popular gradient-based descriptor used mostly for pedestrian detection is HoG de-
scriptor, introduced by [Dalal and Triggs, 2005]. Here, an entire object is represented by
a single feature vector as explained in 3.1.1.4. As cell dimension, number of cells within
a block, number of blocks and binning are all empirical values, a study on these variables
on a given object class needs to be performed:

Algorithm 1 Classification based empirical study on HoG parameters
Require: N SET, Sobj, B, C,D,O, object

1: Initialize X, |X| = |B| × |C| × |D| × |O|
2: Initialize EER(s, x) = 0, for all s ∈ Sobj and x ∈ X
3: [train, test] = prepare dataset(N SET, object)
4: for each s ∈ Sobj do
5: [train′ , test′] = resize(train, test, s)
6: for each b ∈ B do
7: for each c ∈ C do
8: for each d ∈ D do
9: for each o ∈ O do

10: [train HoG, test HoG] = calculate HoG(train′ , test′ , x)
11: svm tmp = svmtrain(train HoG)
12: svm pred = svmclassify(test HoG, svm tmp)
13: [TPR, TNR,EER(s, x)] = vl roc(svm pred, test HoG)
14: end for
15: end for
16: end for
17: end for
18: end for
Ensure: EER(s∗, x∗) = min(EER(s, x))|{b∗, c∗, d∗, o∗} ∈ x∗

This study aims at finding minimal equal error rate (EER) metric of a given classifier
in a PW scheme. It measures the classifier performance against an another classifier’s
(the lower the better) by identifying the point on the DET (detection error trade-off)
curve that has the same False Alarm Rate (FAR) and False Reject Rate (FRR, or missing
rate). Input sets are:

• N SET , the number of frames containing at least one whole-sized instance of defined
object class. These images are indexed from KITTI training set which counts a max-
imum of 7481 annotated frames (using Amazon’s Mechanical Turk [Turk, 2012]).

• S obj, a finite set of [width, height] scalar pairs which define the detection window
dimension.

• B,C,D,O - finite sets which define HoG parameters {block size}, {cell size},
{binning} and {orientation} respectively.

• object, the object class.

Upon B,C,D,O, a new ordered set X is defined where element xi represents a given
HoG parameter configuration. EER measure is given in matrix form, where each row
contains classifier performance for a given fixed-size detection window. Values related to

91

Table 6.1: Histogram of Gradients: an empirical study

Set Values
N SET {100, 200, 300}
Sobj {[120,60],[128,64],[136,68],[144,72],[152,76]}
B {[12,12],[10,10],[8,8],[6,6],[4,4]}
C {[4,4],[3,3],[2,2],[1,1]}
D {9,10,11,12}
O {0,1}
object {’Car’}
|samples| {1048, 2670, 3299}

HoG parameters are based on baseline HoG paper [Dalal and Triggs, 2005] and are varied
in this study. Function descriptions are as follow:

• prepare dataset() : for a given object class and number of frames, cropped images
are extracted from KITTI training set as positive samples. In order to augment the
positive sample base, mirroring technique is used. Negative samples are extracted
randomly from same frames from non-object image locations in 5 : 1 ratio with
positive samples. Afterwards, the train set is constituted by random sampling of
80% of both positive and negative samples, leaving the rest to test set.

• resize() : cropped images are resized (using bicubic interpolation) to fit the detec-
tion window size s.

• calculate HoG() : HoG descriptor calculation based on x parameters configuration.

• svmtrain() : Matlab’s function for training a linear SVM classifier with default
values, using the Sequential Minimal Optimization (SMO) [Platt et al., 1998] algo-
rithm.

• svmclassify() : Matlab’s function for generating an SVM response.

• vl roc() : an open source VLFeat’s [Vedaldi and Fulkerson, 2010] function for gen-
erating True Positive Rate (TPR) and True Negative Rate (TNR) metrics, used for
display of Receiver Operating Curve (ROC) along with EER metric.

The varying parameter varied in this study are presented in Table 6.1. The |samples|
row stands for set cardinality when N SET = 100, N SET = 200 and N SET = 300,
respectively. The lowest EER was obtained with N SET = 300. Results of that study
may be seen on Figure 6.1: Best parameter configuration are tuples x∗ = [1x1, 4x4, 11, 1]
and s∗ = [152, 76], with EER = 0.0376. From this study it may be deduced that for
vehicle detection, HoG descriptor works best on larger image patches (in comparison to
those used for pedestrian detection) that are divided into a grid of preferably small blocks
which in their turn contain small number of cells. These cells map a small number of
neighboring pixels. Higher binning value (oriented binning) suggests that HoG works
best with larger histograms for vehicle class.

Size of the HoG descriptor may be calculated as:

92

Fi
gu

re
6.

1:
Eq

ua
le

rr
or

ra
te

of
a

se
t

of
cl

as
sifi

er
s

fo
r
N
S
E
T

=
30

0

93

hist1 = 2 + ceil(−0.5 + s∗1
c∗

) (6.4)

hist2 = 2 + ceil(−0.5 + s∗0
c∗

) (6.5)

HoG size = (hist1 − 2− (b∗ − 1)) ∗ (hist2 − 2− (b∗ − 1)) ∗ d∗ ∗ b∗2 (6.6)

which gives the dimension of the shape kernel as:

s
HoG(x∗)−−−−−→ IR7942. (6.7)

6.2.3 Classifiers co-design
Having previously defined object representation kernels and detection window size s∗ for
a particular object class Car, a methodology for training proper classifiers with respect
to overall framework will be discussed in this section. Co-design metrics cover algorith-
mic performance and application latency, the latter being directly conditioned by kernel
dimensionality for a given obstacle class.
AsKHoG exhibits higher dimensionality, it will be used for hypothesis validation Stage I on
object’s localization in the image. Hypothesis verification (Stage I) will thus be performed
with KBoW . The detection pipeline relies on high precision and recall of second-stage clas-
sifier. In a hierarchical setup, stage n has to provide higher recall than precision during
object identification which implies discarding as many false positive samples as possible.
At the same time, in order that such a pipeline is executable on a physical embedded
system, it has to provide lower executional latency than stage n + 1. Finally, the last
classification stage should have both high precision and recall.

First stage classifier. As we have two stages of classification, appearance-related rea-
soning accommodates to a fact of building a weak, preferably biased over overfitted,
first-level classifier. Also, the latency in StageI may be significantly reduced if using a
linear SVM kernel for classification. Because of these issues the associated SVM(KBoW)
will not make use of a computationally expensive nonlinear kernel trick function. How-
ever, the problem complexity defined by appearance kernel KBoW sometimes may not
be learned without a nonlinear transformation. For these reasons I propose a rule-based
algorithm for linear kernel SVMs training:

where:

• positives and negatives are sets of histograms representing positive and negative
KBoW samples respectively.

• low and high are lower and upper boundaries on number of non-negative elements
in a histogram sample, upon which the problem space is downsized

• thresh is a threshold value used for admissible amount of misclassified samples after
a linear SVM training in a crossvalidation scheme

• counter is a temporary variable used for limitting the training iterations of new
SVMs if the problem is linearly separable but does not produce a well-generalizing
classifier in a crossvalidation scheme

94

Algorithm 2 Rule-based linear kernel SVM training
Require: positives, negatives

1: Initialize low = 10, thresh = 1
2: Initialize Pmin = min(nnz(positives)), Pmax = max(nnz(positives))
3: while low ! = Pmax do
4: high = Pmax
5: counter = 0
6: while thresh > 0.1 do
7: positives

′ ⊆ positives | low < nnz(positives) ≤ high
8: negatives

′ ⊆ negatives | low < nnz(negatives) ≤ high
9: [train, test] = crosstrain(positives′ , negatives′)

10: try
11: SVMlow high = svmtrain(train)
12: counter + +
13: pred = svmclassify(SVMlow high, test)
14: thresh = misclass(pred, test)
15: counter == 100 ? high−−, counter = 0 : continue
16: catch
17: high−−
18: end while
19: save svm(SVMlow high)
20: low = high
21: end while

Function descriptions are the following:

• nnz() counts the number of non-zero elements in a set of histograms

• crosstrain() shuffles randomly the input sets and divides them into train and test
subsets in 5:1 ratio respectively

• misclass() builds a confusion matrix upon predicted and true values and returns a
missclassification measure defined as:

FP + FN

TP + FP + TN + FN
(6.8)

• save svm() saves the cross-validated SVM with the information on lower (low) and
upper (high) boundaries of the solved problem to be used later during prediction in
the detection cascade

Main reasoning behind this algorithm is to downsize the training set following a cri-
terium of non-negative elements in KBoW histograms. By doing so, the training problem
gets simplified and becomes prone to linear hyperplane separation. It is only natural to
consider an object’s appearance in a detection window s when having histograms with
rich information i.e. those with large number of non-zero elements. Intuitively, regions in
image that have a uniform texture and thus low number of extracted keypoints are more
likely to belong to background. Simplified block-diagram of rule-based reasoning for first
stage classifier may be seen on Figure 6.2:

95

10 < P 10 < P < N1 N1 < P < N2 ...

No train SVM10 N1 SVMN1 N2

Y N N

N Y Y

Figure 6.2: Rule-based BoW classification.

Second stage classifier. For a second-stage classifier a PW scheme based study is con-
ducted whether to use or not a Gaussian for kernel trick function. SVM regularization
parameter C influences the margin between an SVM classifier’s separating hyperplane
to input data (positively and negatively categorized m-dimensional samples) in terms of
m-dimensional Euclidean distance. A large boundary is caused by high regularization pa-
rameter values which induces a high-variance classifier. Very large margin SVMs return
minimal training error but do not generalize well on testing data (problem of overshoot-
ing). In contrary to high-variance, an SVM classifier with small margin is biased. It has
high training error and also generalizes bad on testing data. This study thus evaluates
adequacy of using a nonlinear or linear SVM kernel with or without HoG descriptor on
vehicle image patches from KITTI dataset as described in Algorithm 3.

Algorithm 3 Classification based empirical study on SVM training parameters
Require: N SET, Sobj, x

∗, P, object
1: Initialize Y, |Y | = 2
2: Initialize EER0:3(s, y) = 0, for all s ∈ Sobj and y ∈ Y
3: [train, test] = prepare dataset(N SET, object)
4: for each s ∈ Sobj do
5: [train′ , test′] = resize(train, test, s)
6: for each σ ∈ P do
7: for each C ∈ P do
8: [train HoG, test HoG] = calculate HoG(train′ , test′ , x∗)
9: svm tmp0 = svmtrain(train′ , C)

10: svm tmp1 = svmtrain(train′ , C, σ)
11: svm tmp2 = svmtrain(train HoG,C)
12: svm tmp3 = svmtrain(train HoG,C, σ)
13: svm pred0 = svmclassify(test′ , svm tmp0)
14: svm pred1 = svmclassify(test′ , svm tmp1)
15: svm pred2 = svmclassify(test HoG, svm tmp2)
16: svm pred3 = svmclassify(test HoG, svm tmp3)
17: [TPR0:1, TNR0:1, EER0:1(s, y)] = vl roc(svm pred0:1, test

′)
18: [TPR2:3, TNR2:3, EER2:3(s, y)] = vl roc(svm pred2:3, test HoG)
19: end for
20: end for
21: EER(s, y∗) = min(EER(s, y))|{σ∗, C∗} ∈ P
22: end for

96

Table 6.2: SVM kernels: an empirical study

Set Values
N SET {100, 120, 200}
Sobj {h,w}|h = 375 ∗ (0.2 : 0.1 : 0.8), w = h ∗ (0.5 : 0.1 : 2)
P { 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30 }
object {’Car’}
|samples| {951, 1187, 2912}

It’s goal is to determine whether the performance of classification improves signifi-
cantly when using a Gaussian kernel. This kernel trick is more computationaly expensive
than a linear kernel (dot product) and computational latency at StageII may be signif-
icantly reduced in case the Gaussian function does not contribute much in algorithmic
performance. Classifiers with minimal EER value over a given detection window size s∗
are chosen and their regularization parameter value is plotted on Figure 6.3. Experimental
setup used in this study is given in Table 6.2. The difference from previous experimental
setup described in subsection 6.2.2 is only with following input sets:

• x∗ : the resulting HoG descriptor parameters from previous study and

• P : SVM training parameter values. For nonlinear Gaussian kernel function, higher
values of σ2 induce higher bias and lower values induce higher variance.

From Figure 6.3 it may be seen that C values are lower when using an SVM with HoG
descriptor for vehicle patches. Secondly, in general, regularization parameter is lower for
classifiers with linear kernels in comparison to classifiers with Gaussian kernels. Overal
EER measure for Gaussian-based classification is ∼0.11 while for linear kernel based is
∼0.14.

The conclusion drawn is that once having applied a HoG shape-based kernel, the
problem space may be better linearly separable, having in mind C values fluctuation after
this study for vehicle obstacle class on KITTI dataset. In consequence, it is a worthy
trade-off to chose a linear SVM over a nonlinear (Gaussian) given the small amount of
performance increase it provides for the classifier in contrast to computational speed-up.

6.2.4 Classifiers training
After having defined whether to use or not kernel trick functions, in this subsection the
technique for offline dataset extraction upon which final SVMs are trained will be discussed
in short. As the second stage classifier performs performance scoring, samples extracted
here with respect to this classifier are also going to be passed as positives and negatives
(see Algorithm 2) sets to first stage classifier.

Dataset extraction makes use of bootstrapping technique in the PI scheme: from a
number of N SET image frames an initial training set is built. Positive samples,
based on ground truth KITTI annotations and negative samples, from random locations
in background scenery, are extracted in ratio 8:1 respectively. High positives-to-negatives
ratio contributes to building an initially “optimistic” KHoG classifier, meaning it is more
prone to predicting positive values, thus having small precision and high recall. Once

97

Fi
gu

re
6.

3:
Le

ar
ni

ng
cu

rv
es

fo
r
S
V
M

(K
r
a
w

)
an

d
S
V
M

(K
H
o
G

)

98

Figure 6.4: Single scale detection window non-maximal suppression scheme

the classifier is trained, it is applied to new unseen N SET images in a sliding windows-
based evaluation on the detection window size s∗. All misclassified instances are added to
hard training set. First bootstrapping iteration ends by building a new cross-validated
classifier on the updated training set which is now a union set of the initial and hard
examples sets. In same manner, n − 1 more iterations are performed, each contributing
to building a classifier with higher precision than before.

6.2.5 Single scale decision making
Third stage of the hierarchical object detection framework has for its goal to perform
non-maximal suppression (NMS) based on responses from linear HoG-SVM classifier -
Figure 6.4. In this figure, real location of the object obj within image I is given in image
coordinates by [objx1 , objy1 , objx2 , objy2]. The matrix of sliding windows based responses,
defined as scoremap, is built after stage II. Its dimension is conditioned by horizontal
stride ∆x and vertical stride ∆y as:

scoremapX = floor
(
IW
∆x

)
− floor

(
s∗W
∆x

)
+ 1 (6.9)

scoremapY = floor

(
IH
∆y

)
− floor

(
s∗H
∆y

)
+ 1 (6.10)

Task of NMS is to infer an ensemble ens of overlapping detection windows s∗ by means
of windows concatenation and supression logic that maximizes the Jaccard index defined
as:

J(obj, ens) = obj ∩ ens
obj ∪ ens

(6.11)

In the scope of implementing this NMS functionality in a single-scale search space,
two sequential tasks have to be solved:

1. Obstacle localization

2. Final detection window size adjustment

As we are dealing with model-based object classification, NMS may be used in two dif-
ferent scenarios: for image indexation (content retrieval) where the location of an object

99

given by its template has to be identified or in a more general object recognition scheme
where an object may appear at different scales and viewpoints. For first application,
we propose using subtractive clustering [Yager and Filev, 1994] to solve the NMS prob-
lem. On Figure 6.5 proof-of-concept detection pipeline on two template-based obstacle
instances may be seen. Second stage SVM classifier responses are binarized after applying
a threshold. Subtractive clustering regroups binary SVM responses based on a predefined
radius r, yielding close to optimal responses. Threshold and radius are empirical values
tuned after applying a PI based cross-validation scheme. However, this thesis focuses more
on general object recognition problem. Here I introduce cumulativefunctions for obsta-
cle localization and a probabilisticmodel reasoning for ensemble dimension adjustment -
Algorithm 4.

Algorithm 4 Cumulative functions based single scale non-maximal suppression
Require: scoremap, s∗,∆x,∆y, t0:3

1: Initialize H, |H| = scoremapX
2: Initialize V, |V | = scoremapY
3: Initialize obstacles, obstacles ∈ {∅}
4: Initialize ensembles, ensembles ∈ {∅}
5: H = sum columns(scoremap)
6: if max(H) > t0 then
7: x1 = 0
8: x2 = 0
9: for x = 0 : scoremapX − 1 do

10: if x > x2 then
11: if H(x) > t0 then
12: x1 = x
13: x2 = x
14: x+ +
15: while H(x) > t0 do
16: x2 = x
17: x+ +
18: end while
19: V = sum rows(scoremap(:, x1 : x2))
20: if max(V) > t1 then
21: y1 = 0
22: y2 = 0
23: for y = 0 : scoremapY − 1 do
24: if y > y2 then
25: if V (y) > t1 then
26: y1 = y
27: y2 = y
28: while V (y) > t1 do
29: y2 = y
30: y + +
31: end while
32: confidence matrix = scoremap(y1 : y2, x1 : x2)
33: confidence score = sum(confidence matrix)

nnz(confidence matrix)
34: if confidence score > t2 then
35: X1 = x1 ∗∆x
36: X2 = x2 ∗∆x+ s∗W37: Y1 = y1 ∗∆y
38: Y2 = y2 ∗∆y + s∗H39: obstacles.append([X1, Y1, X2, Y2, confidence score])
40: end if
41: end if
42: end if
43: end for
44: end if
45: end if
46: end if
47: end for
48: end if
Ensure: ensembles = depth first search(obstacles, t3)

100

Fi
gu

re
6.

5:
Su

bt
ra

ct
iv

e
cl

us
te

rin
g

in
a

te
m

pl
at

e-
ba

se
d

N
M

S
in

fe
rr

in
g

101

Cumulative H and V functions are discrete functions calculated as sums along columns
and rows of the scoremap matrix, respectively. Identifying continous sections in H and V
above threshold values t0 and t1 results in assumptions on obstacle boundaries, given that
we have good HOG-SVM performance. However, these assumptions are corroborated iff
scores of overlapping detection windows satisfy the condition on line 34 in Algorithm 4,
a threshold value t2 defined in a Bayesian scheme. In machine learning, besides discrimi-
native models (such as an SVM), generative probabilistic models attain very good perfor-
mance as they infer upon model statistics. A basic representative - a Näıve Bayes classifier
- tends to maximize the equation (as summarized in [Bradski and Kaehler, 2008]):

P (object | features0:n−1) = P (object)×
n−1∏
i=0

P (featuresi | object) (6.12)

in a model-based classification scheme. Probability of detecting an object in an image
depends on prior probability P (object) and detected constituant features (likelihood the
product part on the right hand part of the equation 6.12). In our case, as we work
with regressional models, we define a confidence score P (object | s0:n−1) upon obstacle
boundaries assumptions similarly as in Bayesian scheme:

P (object | s0:n−1) = 1
n

n−1∑
i=0

f(si | object) (6.13)

as here P (object) is implied given the use of sliding windows approach. Furthermore,
threshold t2 is thus given by:

T = argmax(pdf({f(test positives)})) (6.14)

where pdf is a probability density function built upon SVM-HoG predictions in a PI
evaluation in crossvalidation scheme for its random variable. The threshold t2 = T is
thus its mode measure, giving us an intuition over acceptable confidence score values
for windows concatenation/rejection. Also it is good starting point for tuning threshold
values t0:2. As objects that are considerably bigger than the detection window size tend
to generate multiple overlapping (already) adjusted detection boxes, a depth first search
algorithm additionaly concatenates all which overlap more than a given threshold t3.
Usually it is set to 10%. That is the final adjustment for definitive response from our
hierarchical object detection system.

102

6.3 Conclusion
The summary of the proposed approach may be seen on Figure 6.6:

Figure 6.6: Block diagram of the proposed framework.

The hypothesis being made in this chapter is that the information relative to the pres-
ence of the object, searched for in a detection window of a fixed size, can be described by
using a robust interest point detector with a region descriptor. The encoded information
is then put into a Bag ofWord (BoW) representation. This vector-histogram is classified
using a linear Support Vector Machine (SVM) classifier (end of Stage I). If the first stage
classification yields a positive value, second stage verifies the shape of the obstacle can-
didate using a tuned Histogram of Gradients descriptor with its proper linear SVM. If
the supposition is validated, a positive confidence score is assigned to the bounding box
location (end of Stage II). The third stage reasons on obtained scores and performs non-
maxima suppression. Remaining positive candidate windows are concatenated if there is
a significant overlap between them (end of Stage III). After the final decision has been
made, an obstacle is considered to be within its adjusted bounding box dimensions. The
whole obstacle detection by identification pipeline is run on a frame by frame basis without
making any data correspondences between frames.

103

Chapter 7

Towards Real-Time Visual Vehicle
Detection

Contents
7.1 Software architecture . 102

7.1.1 Concurrence . 104
7.2 Algorithmic Evaluation . 105

7.2.1 Estimation of vehicles detection on an embedded platform . . . 108
7.3 Conclusion . 110

105

Migrating object recognition algorithms on systems of limited size, such as MAVs
and intelligent vehicles, is most often done by developing dedicated hardware ac-
celerators on FPGAs [Advani et al., 2015], [Chang et al., 2013], [Wilson et al., 2014],
[Hahnle et al., 2013]. Their convenient size, powerful parallel processing capabilities and
low power drain (∼5W vs ∼300W for an average GPU) allow for efficient embedded sys-
tems development. Nowadays, the embedded industry is shifting towards issuing hetero-
geneous hardware architectures which port besides an FPGA (which already comes with
a multi-core hard processor such as ARMv7) also an embdedded GPU [Xilinx, 2015]. In
this chapter, given the maturity of the FPGA-based keypoint detector accelerators, an
efficient software architecture will be proposed for real-time vehicles detection that is to
be executed on a multi-core hardware platform. Afterwards, an evaluation of our single
scale object detection framework on KITTI dataset for vehicles tracking will be shown
and discussed.

7.1 Software architecture
Main bottleneck of any vision-based object recognition application are feature detectors.
In reference to the proposed framework in previous chapter, feature detectors referred
to are SIFT and HoG. They may algorithmically execute in parallel, as they appear in
different stages in the processig pipeline. However, every scale-invariant feature detector
algorithm firstly downsamples the image in log2 based scale-space (so-called “image pyra-
mids” or “octaves”). Then, in each octave, it builds a gradient image in which it searches
for maximal values. All values that are above a certain threshold (referred most often to
as “contrast”) are candidates for keypoints. In Figure 7.1 a creation of SIFT keymap may
be seen, where each detected SIFT keypoint is saved in an image-size matrix of values 0-99
(the size of BoW vocabulary). Keypoints that are extracted from within multiple octaves
are represented with bigger radii and are mapped in keymap with miltiple codewords, i.e.
the SIFT keypoint with biggest radius is a maximum present in 5 octaves. The drawback
of these algorithms in relation to subwindow search post processing logic is that they a
priori do not allow for parallel execution of subwindow search tasks, eventually imposing
accumulation of latencies of both stages I and II. In order to avoid this accumulation of
latencies we propose to divide the input image on subimages upon which kepoints extrac-
tion algorithm is to be run - Figure 7.2. Based on last two figures, it may be said that
image is divided into overlapping subimages of size [XSIFT , YSIFT], spaced horizontally
by ∆Dx and vertically by ∆Dy. These values are defined based on empirical studies as:

[XSIFT , YSIFT] = [2a, 2b] (7.1)

where
a = floor(log2(positives∗x)) + 1 (7.2)
b = floor(log2(positives∗y)) + 1 (7.3)

and
[∆Dx,∆Dy] = [0.9 ∗XSIFT , 0.9 ∗ YSIFT] (7.4)

In equations 7.2 and 7.3 the positives∗ variable stands for a positive sample from dataset
that has an interest point at highest scale-space over all interest points extracted in all
positive samples. Feature detectors often compensate for edges within an image (in order

106

Fi
gu

re
7.

1:
Pa

rt
ia

lS
IF

T
K

EY
M

A
P,

af
te

r
ha

vi
ng

ap
pl

ie
d
K
B
o
W

on
ex

tr
ac

te
d

SI
FT

ke
yp

oi
nt

s

107

Figure 7.2: Parallelization of stages I and II

not to count in false interest points which appear close to image boundaries) because of
incomplete pixel neighborhood. That is why a 10% overlap is used between subwindows
- equation 7.4. Following these equations, algorithmic performance in stage I is being
preserved. The smaller rectangle is the detection window with size s∗ and [∆x,∆y] are
defined by horizontal and vertical strides.

7.1.1 Concurrence
Within the hierarchical object detection framework we define the following tasks:
• in Stage I : IP extract, build keymap and SVM1 for interest keypoint extraction,

BoW kernel computation and linear SVM dot-product calculation

• in Stage II : get HoG and SVM2 for HoG kernel computation with its respective
linear classifier and

• in Stage III : NMS for H and V functions based final detection window size adjust-
ment

As said in previous subsection, this software model may exhibit a minimal two-level paral-
lelism, that is tasks in Stage I and II may run on two physical threads in parallel. A profil-
ing1 of this tasks based on a test video sequence2 and on ZedBoard platform may be seen on

1average time consumption in milliseconds
2road sequence and experimental setup will be more detailed in proceeding subsection

108

Figure 7.3: Tasks timing in hierarchical detection pipeline

Figure 7.3. We made use of NEON instruction-optimized OpenCV3.0.0 [OpenCV, 2015]
libraries for feature detection and matching. Algorithms used for IP extract task are de-
tailed in subsection 7.2.1. It may be seen that most time is spent on classical dot-product
vector-matrix operations, which may be significantly accelerated by a GPU-based (e.g.
Nvidia’s Jetson board) or equivalent FPGA-based (e.g. Xilinx Ultrascale) acceleration,
depending on designer’s choice of the embedded platform. On Figure 7.4 we emphasize
duration of all other tasks than vector-matrix multiplication. Kernel computation in Stage
II takes in average more than twice the time than feature detection, which leaves us for
the timing bottleneck of the whole hierarchical detection pipeline to be the IP extract
and get HoG tasks (given that dot-product calculation is performed using off-the-shelf so-
lutions supported by board vendors). Given our parallelization principle, this bottleneck
is surmountable either as a software-only solution on i.e. quad-core platforms (platforms
that provide higher number of physical threads, enabling at same time code optimiza-
tions in forms of vectorial instructions) or as a hardware solution where kernel(s) are
implemented as co-processors, or a combination of two.

7.2 Algorithmic Evaluation
Our framework has been tested on road sequences in urban environments taken from the
KITTI public data set [Geiger et al., 2012]. Here, a typical city road sequence contain-
ins ∼600 frames with ∼60 vehicles. The experimental setup is presented in Tables 7.1
- 7.5. In first table, bootstrapping iterations may be seen with growing number of hard
negative samples. Classifier dimension denotes number of identified support vectors (over
all samples in training set) lying on the separating hyperplane: greater it gets, higher is
the dot-product induced computational latency. In second table, rule-based classification
training results may be seen, based on 60190 samples generated after bootstrapping step
(see previous table). Table 7.3 shows implementation details over interest keypoints ex-

109

Figure 7.4: Tasks timing without linear SVMs computation

Table 7.1: Stage II training

Bootstrap No. positives No. negatives Classifier dimension
Init 22768 2846 [569/25614]× 7942
RTR1 +0 +34110 [2857/59724]× 7942
RTR2 +0 +466 [3049/60190]× 7942

Table 7.2: Stage I training

No. classifiers Costliest classifier dimension P
11 [1033/13482]×100 [42 → 56]/69

110

Table 7.3: Stage I implementation

[s∗x, s∗y] [XSIFT , YSIFT] [∆x,∆y] N IP
eval avg.no.|KP | N s∗

eval

[152,76] [256,128] [8,8] 12 108 5206

Table 7.4: Stage II implementation

avg.overlap avg. NHoG
eval

73% 509

traction and sliding windows processes. Number of keypoints extraction subimages N IP
eval

may be calculated as:

N IP
eval =

(
floor

(
IW

∆Dx

)
− floor

(
XSIFT

∆Dx

))
∗
(
floor

(
IH

∆Dy

)
− floor

(
YSIFT
∆Dy

))
(7.5)

and the same principle applies to number of sliding windows evaluations in the image:

N s∗

eval =
(
floor

(
IW
∆x

)
− floor

(
s∗x
∆x

))
∗
(
floor

(
IH
∆y

)
− floor

(
s∗y
∆y

))
(7.6)

Average number of interest keypoints (avg. no. |KP |) found in an extraction subimage
influences the need of writing efficient software code for keymap-based histogram han-
dling (Figure 7.1 and equation 6.3) : bigger the average number of keypoints, it is more
necessary. In this implementation, for vehicles class of objects, average 103 keypoints do
not present a demanding computational effort for this implementation. In fourth table,
average number of HoG kernel evaluations NHoG

eval in Stage II is given, along with average
overlap percentage based on adjacent detection windows in which HoG descriptor is com-
puted (either in ∆x or ∆y sliding direction). This overlap percentage denotes the number
of overlapping windows over number of all windows in Stage II. Higher overlap percentage
decreases the computational load, as calculating this gradient vector is a compositional
operation3. Finally in the last table, threshold values for non-maximal suppression in
Stage III are presented. Number of final, adjusted size-detection windows, passed for
concatenation is denoted with NDFS

eval . It is worth noting that an initial detection window
based search space in an image of dimension [IW , IH] = [1242, 375] of N s∗

eval = 5206 eval-
uations in Stage I is filtered to NHoG

eval = 509 in Stage II and finally reduced to a mere
number of NDFS

eval = 14 adjusted windows in Stage III, in average.
For the sake of a fair comparison with performing state-of-the-art object detection

techniques, we will give two separate evaluations of the proposed framework: over one
3HoG vector descriptor is basicaly a concatenation of gradients values computed on evenly spaced

groups of pixels

Table 7.5: Stage III implementation

t0 t1 t2 t3 NDFS
eval

0.3 0.1 1.1 0.1 14

111

road sequence and over the whole testing dataset for tracking. On both sequences we
perform tracking by detection, using the Matlab open-source code provided by KITTI
staff, based on [Geiger et al., 2014]. The evaluation pipeline is as follows4:

1. Our software implementation performs object detection independently in each frame

2. Inter-frame detected object’s position estimation is made by a Kalman filter, fol-
lowing data association via the Hungarian method. For each detection a tracklet is
initialized.

3. In following frames, tracklets are associated between themselves via the Hungarian
method. Only tracklets that are at least three frames long are considered.

Evaluation over a city road sequence. Detection results only may be seen here
[Tertei et al., 2016a], and this video [Tertei et al., 2016b] shows them coupled in a track-
ing scheme. From the first video we count true positives as: i) detections which have an
overlap of at least 50% with ground truth and ii) they have been redetected in at least
three consecutive frames. All vehicle types: cars, vans and trucks are counted as ground
truth. These criteria encompass requirements for our future work on tracking by detec-
tion. We calculate the misclassification rate to be 15/555=27%. By lowering the stride
parameter from 8 to 4, the misclassification rate drops to 9% at cost of smaller precision
and higher recall of the classifier.

Evaluation over KITTI’s tracking testbed. Tracking results, based on our detection
framework have been submitted to the KITTI’s server for a more objective and severe
evaluation. Our single-scale based reasoning has 48% precision with a smaller recall rate.
Also, its multiple object tracking precision (MOTP [Bernardin and Stiefelhagen, 2008])
metric is 65%. We provide three videos in order to briefly discuss the issue:

1. Video showing high precision and recall [Tertei et al., 2016c], low amount of false
positives and no false negatives.

2. Mediocre precision and recall: [Tertei et al., 2016d]. Higher amount of false nega-
tives and inconsistent frame-to-frame tracklet association (many are reinitialized on
the same object).

3. High precision and recall [Tertei et al., 2016e].

7.2.1 Estimation of vehicles detection on an embedded
platform

Given that the aforementioned SIFT keypoints calculation took ∼4 seconds on dual-core
i3 platform @ 1.8GHz, it cannot be considered for real-time interest point characteriza-
tion. Instead, faster feature detectors with binary pixels neighborhood description should
be used. However, in order of maintaining application performances with SIFT, firstly
multi-scale feature detectors should be used in combination with suitable rotation- and
scale-invariant descriptors. Authors in [Leutenegger et al., 2011] introduce Binary Ro-
bust Invariant Scalable Keypoints (BRISK). They make use of multi-scale Adaptive and

4our contribution lies in the first stage
552 cars and 3 vans

112

Generic Accelerated Segment Test (AGAST [Mair et al., 2010]) feature detector and show
detailed comparisons with SIFT and SURF. They conclude very similar performances in
cases when applying small scale-space image transformations on criteria of keypoints re-
peatability, which is essential for interest points based logic in Stage I of our application.
Similar experimental evaluations are performed within a relatively novel binary descriptor
- Fast Retina Keypoint (FREAK [Alahi et al., 2012]). Keypoints neighborhood descrip-
tions are matched via Hamming distance instead of Euclidean distance. FREAK descrip-
tion is presented on the basis of multi-scale AGAST detector, which is the same keypoint
characterisation method we intend to use when reproducing our application’s algorithmic
performances while embedding the detection application. In order to do so, one needs
to close the performance gap between baseline SIFT evaluation and AGAST-FREAK
evaluation by respecting some constraints:

• Determination of contrast threshold that influences average number of generated
interest keypoints. It is not at all straightforward how many feature points ex-
tracted in average in a subimage contribute to a quality appearance kernel. In
lack of an analytical solution, the performance evaluation should be based on pre-
dictions of trained SVMs in rule-based classification scheme. As it is shown in
[Leutenegger et al., 2011], the performance function based on different number of
keypoints is monotone, which helps a lot in an empirical search for optimal contrast
value, which should be varied accordingly.

• Determination of maximum and minimum values defining scale-space. For example,
when choosing the right configuration for multi-scale AGAST, number of scale-
spaces is determined after equation 7.1.

These performance-equivalence relations are based on empirical evaluation metrics pre-
sented in papers [Leutenegger et al., 2011] and [Alahi et al., 2012]. Timing estimation
concerns the ordering of physical threads and tasks:

• Thread1 (T1) should execute tasks IP extract and build keymap in parallel with

• Thread2 (T2) which executes SVM1 and get HoG tasks.

• Remaining tasks should sequentially be executed after Thread1 and Thread2 pass
first [XSIFT , YSIFT] subimage on a single thread (T3).

In order to insure real-time performance, the dot-product and get HoG tasks should
be executed on the device. In a given heterogeneous system, the device could be either an
embedded GPU (e.g. Nvidia Jetson board) or an FPGA. Hereby detailed computational
latency may be expressed as:

L = max(LT1, LT2) + LT3 < 100ms (7.7)

where 100ms is the real-time constraint of 10Hz. Overall dot-product SVM1 computa-
tional complexity expressed in FLOPs may be calculated after Tables 7.2 and 7.3 as:

NFLOPSV M1 = 5206× (2 ∗ 100− 1) ∗ 1033 ∗ 1 = 1070181802 (7.8)

and the same for SVM2 is deduced after Tables 7.1 and 7.4 as:

NFLOPSV M2 = 509× (2 ∗ 7942− 1) ∗ 2857 ∗ 1 = 23097265079 (7.9)

113

Both configurable and fixed embedded hardware architectures must comply to these
computational efficiency constraints. For fixed hardware, i.e. with an embedded GPU,
minimal latencies can be calculated as:

LT2 = NFLOPSV M1

MAXGFLOPS

(7.10)

LT3 = NFLOPSV M2

MAXGFLOPS

(7.11)

In case of Nvidia’s Jetson board, MAXGFLOPS > 300/s [NVIDIA, 2015a] which leaves
LT2 < 3.57ms and LT3 < 77ms. This board features also an off-the-shelf GPU implemen-
tation for HoG. For a reconfigurable hardware, same timing performances may be met
by developing a fixed-point multiplication architecture for dot-product operations and by
using the architectural concept for efficient HoG described in [Hahnle et al., 2013]. We
note that, under these achievable timing constraints, Thread2 takes less time to execute
than Thread1, so it is worth also launching Thread3 (if the hardware platform supports
that many physical threads) in order to better meet real-time application performance.

7.3 Conclusion
In this chapter a software implementation of single-scale model-based detection frame-
work is presented. It is evaluated on KITTI urban road sequences with vehicles types
of obstacles. This approach permits higher execution times than standard multi-scale
detection schemes on mobile processing devices while retaining good detection perfor-
mance, making it a suitable solution for object detection tasks on both contemporary and
emerging embedded hardware. Future work encompasses improvements in algorithmic
performance. More hard positive samples in the form of object’s truncated representation
in a given fixed detection window should be included. This way we should be able to
better performances of both first and second stage classifiers.

114

Chapter 8

Conclusion

The problems addressed in this thesis concern two basic perception functionalities in a
navigational pipeline in mobile robotics: localization and obstacle detection. Moreover,
the key issue in this domain, besides algorithmic performance, is level of autonomy of
the mobile platform which directly calls for efficient embedded design of these functional
blocks. This thesis describes and evaluates an efficient FPGA-based hardware accelerator
for solving localization task and proposes a model-based obstacle detection framework
to be executed on multi-core heterogeneous1 hardware platforms. Navigation based on
visual odometry with obstacle detection may be used in all indoors/outdoors and both
natural and structured environments for different kinds of applications: AGVs, UGVs,
MAVs, intelligent vehicles and even augmented reality with a device (tablet, smart phone)
moved by a human.

Firstly, knowledge from state-of-the-art in the domains of robot localization techniques
and model-based obstacle detection in computer vision is put forward. For localization,
an introduction into SLAM was shown with accent on monocular visual filtering SLAM
implementations, which are more suitable for VO functionality on compact systems than
Optimization techniques. Obstacle recognition process is presented, based on sliding
windows exhaustive approach which has for its advantage that it does not make a priori
assumptions on environment or camera intrinsics and extrinsics. For designing adequate
embedded systems, hardware/software co-design methodology is explained.

Going further through chapters 4 and 5, step-by-step implementation of co-design
of CSLAM algorithm into SoPC architecture is covered. During this process, FPGA
accelerators in form of EKF, FAST and Correlator2 co-processors are designed, integrated
and validated on ZedBoard heterogeneous3 platform running Xillinux operating system.
Profiling the accelerated application, it is shown that CSLAM may be run on ZedBoard
at 100Hz, implementing both front-end and back-end tasks and consuming less than 5W.
Main research highlights regarding EKF co-processor are as follow:

• Exploiting cross-covariance matrix symmetry greatly reduces computational and
resource costs,

1multi-core CPU + FPGA
2FAST corner detector and BRIEF Correlator hardware accelerators are developed by a fellow PhD

student in RAP group in LAAS-CNRS
3CPU + FPGA

115

• It should be stored in BRAM for efficient execution of VO on heterogeneous plat-
form,

• EKF innovation matrix dimension allows for simple systolic array based computa-
tional designs,

• Our innovation supports observations of 60 AHP landmarks in real time on Zynq-
7020 device

• Accelerator is generic regarding system state size - other sensors may be added/re-
moved, and feature state size - up to seven-dimensional and

• Proposed hardware accelerator for EKF VO functionality is platform independent.

For model-based obstacle detection, categorical object classifiers are trained and tested
based on a suitable annotated database - KITTI. In chapter 6 a single-scale detection
window based object localization framework is proposed. Its main components are i) Stage
I appearance kernel, ii) Stage II shape kernel and iii) Stage III non-maximal suppression
or final detection window adjustment reasoning. In order to define adequate feature
space representations of obstacles with corresponding discriminative (SVM) classifiers
in first two stages, algorithmic performance regarding classification accuracy vs kernels
dimensionality co-design is presented:

• First study is conducted to determine an optimal detection window size for a given
object type. It is based on EER metric of test responses from object representation
with higher dimension (which is shape kernel in case of vehicles, calculated by HoG
descriptor) coupled to an SVM classifier with default training parameters,

• Second study investigates whether to use non-linear kernel trick for SVM classifi-
cation in second, scoring stage in the framework. It is important to relieve here as
much computational effort as possible given the large dimensionality of shape kernel
and in our case we chose using linear SVM kernel (dot-product operation).

• Third trait is definition of boosting-like cascade which we call Rule-based classifica-
tion in order not to use non-linear kernel tricks in first stage of the framework, as
it is applied most often in sliding windows mode. The rule defines a variable upon
which a complex, linearly non-separable, training set may be divided into subsets
upon which dot-product SVM may be successfuly trained. In our case the variable
presented number of non-zero elements in positive samples dataset.

Afterwards, a Bayesian scheme is developed further acted on scoring responses from second
stage: all overlapping detection windows with high scores are concatenated, others (if
present) are rejected. Based on a final confidence score, resulting detection window size
is determined.

Lastly, in Chapter 7, a case-study of the proposed framework is given on vehicles type
of obstacles. It shows good algorithmic performance based on MOTP metric, and future
work on its amelioration is mentioned. A software architecture that enables concurrent
execution of interest points extraction and visual vocabulary matching (keypoints ectrac-
tion part of Stage I) along with HoG and dot-product computations for classification with
consequent non-maximal suppression (classification part of Stage I, all Stages II and III)

116

is described. Based on profiling results on ZedBoard, tasks partitioning on at least two
physical threads-enabling hardware platform (either reconfigurable i.e. Xilinx Ultrascale
or not i.e. Nvidia Jetson boards) for real-time object detection on an embedded platform
is explained.

This work enabled several scientific communications:

Science Citation Indexed international journal

1. Tertei D. T., Piat J., and Devy M. (201?). FPGA design of EKF block accelerator
for 3D visual SLAM. International Journal of Computers and Electrical Engineering
(CAEE). DOI: 10.1016/j.compeleceng.2016.05.003.

International conference

1. Tertei D. T., Piat J., and Devy M. (2014). FPGA design and implementation of
a matrix multiplier based accelerator for 3D EKF SLAM. In Proc. Conference on
ReConFigurable Computing and FPGAs (ReConFig).

A fast visual EKF-SLAM gives rise to more robust egomotion estimation as the number
of observed points in its sparse map may be considerably increased. Optimization methods
correct travelled trajectories by means of loop closure i.e. by using non-linear optimization
techniques (such as bundle adjustment) upon all last camera poses when revisiting a
known location. However in order to do so efficiently, they need a preferably large number
of previously saved keypoints at those camera poses for matching purposes. The proposed
embedded architecture for VSLAM in this thesis allows for implementation of loop closure
within EKF based Filtering methods on an embedded system too, refining current robot’s
pose based on past camera poses.

Single scale model-based obstacle detection framework presents a viable basis for im-
plementing complete embedded obstacle detection systems, depending on the environment
type: structured on unstructured with given obstacle classes i.e. pedestrians, cars, trucks,
vans, bicycles and road signs for an urban environment. Final responses on particular
obstacle class and location within an image would be determined based on classifiers’
confidence score. This complete embedded obstacle recognition system would, in such
a manner, provide the mobile platform with necessary information for safe navigation
in crowded environments: i) either on the “per frame” basis where the whole detection
pipeline is run independently in each frame; ii) either by using the acquired information
from within previous frame in a “tracking” fashion in current frame so as to reduce com-
putational effort in case of large numbers of obstacle classes. As a mobile robot may be
equipped also with other exteroceptive sensors such as lasers, RGBD, and/or LIDARs
besides camera(s), this information may be fused with the proposed embedded detection
system where hypothesis verification is being reinforced by additional sensorial input.
This is of particular interest in cases where obstacles are in nearest viccinity of the mobile
robot so they cannot be physically perceived in full (in a holistic manner) on camera(s),
such as when navigating in a winyard besides agricultural staff or on an airport during pre
take-off inspection because of frequent near field-of-view crossovers (in camera(s) frames)
by operators and technicians.

In context of performing SLAMMOT on an embedded platform, an integration of
these two functional blocks proposed may be envisaged also as subject of future research.

117

Their combination would permit a more stable navigation, knowing that dynamical ob-
jects in the scene may be recognized by the detection block: after foreground subtraction,
the VSLAM component may initialize and observe only points that belong to static back-
ground, which is a presumption upon which SLAM paradigm works. Mobile robots that
don’t perform obstacle detection during visual odometry compensate by initializing and
observing large amounts of landmarks for statisticaly proper egomotion estimation in re-
turn. That solution is not practical when it comes to embedded systems because of high
computational load due to image processing tasks.

In same context, besides instantly eliminating moving obstacles, the model-based ob-
stacle detection component also identifies stationary obstacles (i.e. parked vehicles, bicy-
cles, etc.) which is of particular interests for navigation in urban environments. In that
manner when revisiting known places, a more robust, non-corrupted (obstacle-free), loop
closure may be performed.

Contributions of the thesis should reflect in all the industries which make use of au-
tonomous navigation:

• mobile robotics,

• automotive industry,

• surveillance and inspection

• space industry

and sincerely I hope it will serve as reference for SoPC design of future navigational
applications for other researchers or roboticians.

118

Bibliography

[Acunzo et al., 2007] Acunzo, D., Zhu, Y., Xie, B., and Baratoff, G. (2007). Context-
adaptive approach for vehicle detection under varying lighting conditions. In Proc.
IEEE Intelligent Transportation Systems Conference.

[Advani et al., 2015] Advani, S., Tanabe, Y., Irick, K., Sampson, J., and Narayanan,
V. (2015). A scalable architecture for multi-class visual object detection. In 25th
International Conference on Field Programmable Logic and Applications (FPL).

[Afonso et al., 2011] Afonso, G., Ben Atitallah, R., Loyer, A., Dekeyser, J., Belanger,
N., and Rubio, M. (2011). A prototyping environment for high performance recon-
figurable computing. In Proc. of IEEE International Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), Montpellier, France.

[Agarwal et al., 2004] Agarwal, S., Awan, A., and Roth, D. (2004). Learning to detect
objects in images via a sparse part-based representation. IEEE Trans. Pattern Anal.
Mach. Intell.

[Alahi et al., 2012] Alahi, A., Ortiz, R., and Vandergheynst, P. (2012). FREAK: Fast
Retina Keypoint. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[Atev et al., 2005] Atev, S., Arumugam, H., Masoud, O., Janardan, R., and Pa-
panikolopoulos, N. P. (2005). A vision-based approach to collision prediction at traffic
intersections. In IEEE Trans. Intell. Transp. Syst.

[Atev and Papanikolopoulos, 2008] Atev, S. and Papanikolopoulos, N. P. (2008). Multi-
view 3-D vehicle tracking with a constrained filter. In Proc. IEEE ICRA.

[B. Leibe and Schiele, 2004] B. Leibe, A. L. and Schiele, B. (2004). Combined object cat-
egorization and segmentation with an implicit shape model. In Proc. ECCV Workshop
Stat. Learn. Comput. Vis.

[Balboni et al., 1996] Balboni, A., Fornaciari, W., and Sciuto, D. (1996). Tosca: A prag-
matic approach to co-design automation of control-dominated systems. In De Micheli,
G. and Sami, M., editors, Hardware/Software Co-Design, volume 310 of NATO ASI
Series, pages 265–294. Springer Netherlands.

[Ballard, 1981] Ballard, D. H. (1981). Generalizing the hough transform to detect arbi-
trary shapes. Pattern Recognition.

119

[Bay et al., 2006] Bay, H., Tuytelaars, T., and Gool, L. V. (2006). SURF: Speeded-up
robust features. In Proc. ECCV.

[Belongie et al., 2002] Belongie, S., Malik, J., and Puzicha, J. (2002). Shape Matching
and Object Recognition Using Shape Contexts. IEEE Transactions on Pattern Analysis
and Machine Intelligence.

[Bernardin and Stiefelhagen, 2008] Bernardin, K. and Stiefelhagen, R. (2008). Evaluating
multiple object tracking performance: the CLEAR MOT metrics. EURASIP Journal
on Image and Video Processing.

[Bertozzi and Broggi, 1998] Bertozzi, M. and Broggi, A. (1998). Gold: A parallel real-
time stereo vision system for generic obstacle and lane detection. IEEE Transactions
on Image Processing.

[Betge-Brezetz et al., 1996] Betge-Brezetz, S., Hebert, P., Chatila, R., and Devy, M.
(1996). Uncertain map making in natural environments. In IEEE International Con-
ference on Robotics and Automation.

[Betke et al., 1996] Betke, M., Haritaglu, E., and Davis, L. (1996). Multiple vehicle de-
tection and tracking in hard real time. In IEEE Intelligent Vehicles Symposium (IV).

[Bezati et al., 2014] Bezati, E., Thavot, R., Roquier, G., and Mattavelli, M. (2014). High-
level dataflow design of signal processing systems for reconfigurable and multicore het-
erogeneous platforms. Journal of Real-Time Image Processing, 9(1):251–262.

[Bonato et al., 2008] Bonato, V., Marques, E., and Constantinides, G. (2008). A Floating-
Point Extended Kalman Filter Implementation for Autonomous Mobile Robots. Journal
of VLSI Signal Processing.

[Borgefors, 1988] Borgefors, G. (1988). Hierarchical chamfer matching: A parametric edge
matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence.

[Botero et al., 2012] Botero, D., Piat, J., Devy, M., and Boizard, J. (2012). An fpga
accelerator for multispectral vision-based ekf-slam. Proc. IROS Workshop on Smart
CAmeras for roBOTic applications (SCaBot), Vilamoura (Portugal).

[Botero-Galeano, 2012] Botero-Galeano, D. (2012). Development of algorithms and archi-
tectures for driving assistance in adverse weather conditions using FPGAs. PhD thesis,
INSA de Toulouse.

[Bradski and Kaehler, 2008] Bradski, G. and Kaehler, A. (2008). Learning OpenCV:
Computer vision with the OpenCV library. ” O’Reilly Media, Inc.”.

[Bresson et al., 2014] Bresson, G., Feraud, T., Aufrere, R., Checchin, P., and Chapuis,
R. (2014). Real time monocular slam with low memory requirements. IEEE Intelligent
Transportation Systems Transactions and Magazine.

[Bruhn et al., 2005] Bruhn, A., Weickert, J., and Schnorr, C. (2005). Lukas/Kanade
meets Horn/Schunck: Combining local and global optic flow methods. International
Journal of Computer Vision.

120

[Buch et al., 2009a] Buch, N., Cracknell, M., Orwell, J., and Velastin, S. A. (2009a).
Vehicle localization and classification in urban CCTV streams. In Proc. 16th ITS WC.

[Buch et al., 2008] Buch, N., Orwell, J., and Velastin, S. A. (2008). Detection and clas-
sification of vehicles for urban traffic scenes. In Proc. Int. Conf. VIE.

[Buch et al., 2009b] Buch, N., Orwell, J., and Velastin, S. A. (2009b). Three-dimensional
extended histograms of oriented gradients (3-DHOG) for classification of road users in
urban scenes. In Proc. BMVC.

[Buch et al., 2010] Buch, N., Orwell, J., and Velastin, S. A. (2010). Urban road user
detection and classification using 3-D wireframe models. IET Comput. Vis.

[Buch et al., 2009c] Buch, N., Yin, F., Orwell, J., Makris, D., and Velastin, S. A. (2009c).
Urban vehicle tracking using a combined 3-D model detector and classifier. Knowledge-
Based and Intelligent Information and Engineering Systems.

[Canny, 1986] Canny, J. (1986). A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

[Castellanos et al., 1997] Castellanos, J., Tardos, J., and Schmidt, G. (1997). Building a
global map of the environment of a mobile robot: The importance of correlations. In
IEEE International Conference on Robotics and Automation.

[Castillo-Atoche et al., 2010] Castillo-Atoche, A., Torres-Roman, D., and Shkvarko, Y.
(2010). Towards real time implementation of reconstructive signal processing algorithms
using systolic array coprocessors. Journal of Systems Architecture, pages 327–339.

[Chang et al., 2013] Chang, L., Hernandez-Palancar, J., Sucar, L. E., and Arias-Estrada,
M. (2013). FPGA-based detection of SIFT interest keypoints. Machine Vision and
Applications.

[Cheeseman et al., 1987] Cheeseman, R., Smith, R., and Self, M. (1987). A stochastic
map for uncertain spatial relationships. In International Symposium on Robotic Re-
search.

[Cheng, 1995] Cheng, Y. (1995). Mean shift mode seeking and clustering. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence.

[Choset and Nagatani, 2001] Choset, H. and Nagatani, K. (2001). Topological simulta-
neous localization and mapping (SLAM): toward exact localization without explicit
localization. In IEEE Transactions on Robotics and Automation.

[Civera et al., 2006] Civera, J., Davison, A. J., and Montiel, J. M. (2006). Unified Inverse
Depth Parametrization for Monocular SLAM. In In Proceedings of Robotics: Science
and Systems. Citeseer.

[Cornelis et al., 2008] Cornelis, N., Leibe, B., Cornelis, K., and Gool, L. V. (2008). Three-
dimensional urban scene modeling integrating recognition and reconstruction. Int. J.
Comput. Vis.

121

[Crandall et al., 2005] Crandall, D., Felzenszwalb, P., and Huttenlocher, D. (2005). Spa-
tial priors for part-based recognition using statistical models. In Proc. IEEE Conf.
Comput. Vis. Pattern Recog.

[Creusen et al., 2009] Creusen, I., Wijnhoven, R., and de With, P. H. N. (2009). Applying
feature selection techniques for visual dictionary creation in object classification. In
Proc. Int. Conf. IPCV Pattern Recog.

[Csorba, 1998] Csorba, M. (1998). Simultaneous localisation and map building. PhD
thesis, Univeristy of Oxford.

[Dalal and Triggs, 2005] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients
for human detection. In Proc. IEEE Comput. Soc. Conf. CVPR.

[Daugman, 1985] Daugman, J. (1985). Uncertainty Relation for Resolution in Space,
Spatial Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical
Filters. J. Optical Soc. Am.

[Davison, 2003a] Davison, A. (2003a). Real-time simultaneous localisation and mapping
with a single camera. In IEEE International Conference on Computer Vision.

[Davison, 2003b] Davison, A. J. (2003b). Real-time simultaneous localisation and map-
ping with a single camera. In Proc. Ninth IEEE International Conference on Computer
Vision - Volume 2, ICCV ’03.

[Dissanayake et al., 2001] Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H.,
and Csorba, M. (2001). A solution to the simultaneous localization and map building
(slam) problem. IEEE Transactions on Robotics and Automation.

[Doersch and Efros,] Doersch, C. and Efros, A. Improving the hog descriptor.

[Dollar et al., 2012] Dollar, P., Wojek, C., Schiele, B., and Perona, P. (2012). Pedes-
trian detection: An evaluation of the state of the art. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 34(4):743–761.

[Engel et al., 2014] Engel, J., Schöps, T., and Cremers, D. (2014). Lsd-slam: Large-scale
direct monocular slam. In Computer Vision–ECCV 2014, pages 834–849. Springer.

[Fei-Fei and Perona, 2005] Fei-Fei, L. and Perona, P. (2005). A bayesian hierarchical
model for learning natural scene categories. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR).

[Fischler and Bolles, 1981] Fischler, M. and Bolles, R. (1981). Random Sample Consen-
sus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated
Cartography. Communications of the ACM.

[Florack et al., 1994] Florack, L. M. J., t. Haar Romeny, B. M., Koenderink, J. J., and
Viergever, M. A. (1994). General intensity transformations and differential invariants.
Journal of Mathematical Imaging and Vision.

[Forster et al., 2014] Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). Svo: Fast semi-
direct monocular visual odometry. In Proc. IEEE International Conference on Robotics
and Automation (ICRA).

122

[Freeman and Adelson, 1991] Freeman, W. T. and Adelson, E. H. (1991). The Design
and Use of Steerable Filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

[Freund, 1995] Freund, Y. (1995). Boosting a weak learning algorithm by majority. In-
formation and Computation.

[Freund and Schapire, 1999] Freund, Y. and Schapire, R. E. (1999). A short introduction
to boosting. In Proceedings of the 16th international joint conference on Artificial
intelligence.

[Gabor, 1946] Gabor, D. (1946). Theory of Communication. J. IEE.

[Geiger et al., 2014] Geiger, A., Lauer, M., Wojek, C., Christoph, C., and Urtasun, R.
(2014). 3d traffic scene understanding from movable platforms. IEEE TRANSAC-
TIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI).

[Geiger et al., 2013] Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets
robotics: The kitti dataset. International Journal of Robotics Research (IJRR).

[Geiger et al., 2012] Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for
autonomous driving? the kitti vision benchmark suite. In Conference on Computer
Vision and Pattern Recognition (CVPR).

[Gonzalez et al., 2011] Gonzalez, A., Codol, J., and Devy, M. (2011). A C-embedded
Algorithm for Real-Time Monocular SLAM. In 18th International Conference on Elec-
tronics, Circuits and Systems, Beyrouth, Liban.

[Hahnle et al., 2013] Hahnle, M., Saxen, F., Hisung, M., Brunsmann, U., and Doll, K.
(2013). FPGA-Based Real-Time Pedestrian Detection on High-Resolution Images. In
Computer Vision and Pattern Recognition Workshops (CVPRW).

[Hanley and McNeil, 1982] Hanley, J. A. and McNeil, B. J. (1982). The meaning and use
of the area under a receiver operating characteristic (roc) curve. Radiology, 143(1):29–
36.

[Harris and Pike, 1987] Harris, C. and Pike, J. (1987). 3d positional integration from
image sequences. In In Proc. Alvey Vision Conference, Cambridge.England.

[Harris and Stephens, 1988] Harris, C. and Stephens, M. (1988). A combined corner and
edge detector. In Proceedings of the Alvey Vision Conference.

[Hartley and Zisserman, 2000] Hartley, R. and Zisserman, A. (2000). Multiple view ge-
ometry in computer vision. Cambridge University Press.

[Hartley and Zisserman, 2004] Hartley, R. I. and Zisserman, A. (2004). Multiple View
Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, second
edition.

[Harzallah et al., 2009] Harzallah, H., Jurie, F., and Schmid, C. (2009). Combining effi-
cient object localization and image classification. In ICCV 2009 - 12th International
Conference on Computer Vision, pages 237–244, Kyoto, Japan. IEEE.

123

[Irki et al., 2013] Irki, Z., Bendaoudi, H., Devy, M., and Khouas, A. (2013). Fpga im-
plementation of the v-disparity based obstacles detection approach. In Control & Au-
tomation (MED), 2013 21st Mediterranean Conference on, pages 1104–1111. IEEE.

[Itu and Danescu, 2014] Itu, R. and Danescu, R. (2014). An Efficient Obstacle Aware-
ness Application for Android Mobile Devices. In IEEE International Conference on
Intelligent Computer Communication and Processing (ICCP).

[Jaulin, 2011] Jaulin, L. (2011). Range-only slam with occupancy maps: A set-
membership approach. Robotics, IEEE Transactions on, 27(5):1004–1010.

[Jones and Snow, 2008] Jones, M. J. and Snow, D. (2008). Pedestrian detection using
boosted features over many frames. In Proc. ICPR.

[Jovanovic and Milutinovic, 2012] Jovanovic, Z. and Milutinovic, V. (2012). FPGA accel-
erator for floating-point matrix multiplication. IET Computers and Digital Techniques.

[Jurie and Triggs, 2005] Jurie, F. and Triggs, B. (2005). Creating efficient codebooks for
visual recognition. In Proc. IEEE Int. Conf. on Computer Vision (ICCV).

[Kaess et al., 2011] Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., and
Dellaert, F. (2011). isam2: Incremental smoothing and mapping using the bayes tree.
The International Journal of Robotics Research, page 0278364911430419.

[Kahn, 1974] Kahn, G. (1974). The semantics of simple language for parallel program-
ming. In IFIP Congress, pages 471–475.

[Kalman, 1960] Kalman, R. (1960). A new approach to linear filtering and prediciton
problems. Basic Engineering.

[Ke and Sukthankar, 2004] Ke, Y. and Sukthankar, R. (2004). PCA-SIFT: A More Dis-
tinctive Representation for Local Image Descriptors. In Proc. Conf. Computer Vision
and Pattern Recognition.

[Khammari et al., 2005] Khammari, A., Nashashibi, F., Abramson, Y., and Laurgeau, C.
(2005). Vehicle detection combining gradient analysis and AdaBoost classification. In
Proc. IEEE Intell. Transp. Syst.

[Kim and Malik, 2003] Kim, Z. and Malik, J. (2003). Fast vehicle detection with proba-
bilistic feature grouping and its application to vehicle tracking. In Proc. 9th IEEE Int.
Conf. Comput. Vis.

[Klein and Murray, 2007] Klein, G. and Murray, D. (2007). Parallel tracking and mapping
for small AR workspaces. In Proc. 6th IEEE and ACM Int. Symp. on Mixed and
Augmented Reality. IEEE Computer Society.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Ima-
genet classification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

[Kümmerle et al., 2011] Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Bur-
gard, W. (2011). g 2 o: A general framework for graph optimization. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pages 3607–3613. IEEE.

124

[Labayrade, 2004] Labayrade, R. (2004). Détection générique, robuste et rapide
d’obstacles routiers par stéréovision embarquée. PhD thesis, Paris 6.

[Lampert et al., 2008] Lampert, C. H., Blaschko, M. B., and Hofmann, T. (2008). Beyond
sliding windows: Object localization by efficient subwindow search. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

[Lazebnik et al., 2003] Lazebnik, S., Schmid, C., and Ponce, J. (2003). Sparse Texture
Representation Using Affine-Invariant Neighborhoods. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

[Lee and Messerschmitt, 1987] Lee, E. A. and Messerschmitt, D. G. (1987). Static
scheduling of synchronous data flow programs for digital signal processing. IEEE Trans.
Comput., 36(1):24–35.

[Lee and Parks, 1995] Lee, E. A. and Parks, T. (1995). Dataflow process networks. In
Proceedings of the IEEE, pages 773–799.

[Lee and Lee, 2013] Lee, S. and Lee, S. (2013). Embedded visual SLAM: applications for
low-cost consumer robots. IEEE Robot. Automat. Mag., 20(4):83–95.

[Leibe et al., 2007] Leibe, B., Cornelis, N., Cornelis, K., and Gool, L. V. (2007). Dynamic
3-D scene analysis from a moving vehicle. In Proc. IEEE Conf. CVPR.

[Leibe et al., 2008a] Leibe, B., Leonardis, A., and Schiele, B. (2008a). Robust object de-
tection with interleaved categorization and segmentation. Int. J. Comput. Vis.—Special
Issue on Learning for Recognition and Recognition for Learning.

[Leibe et al., 2008b] Leibe, B., Schindler, K., Cornelis, N., and Gool, L. V. (2008b). Cou-
pled object detection and tracking from static cameras and moving vehicles. In IEEE
Trans. Pattern Anal. Mach. Intell.

[Leibe et al., 2005] Leibe, B., Seemann, E., and Schiele, B. (2005). Pedestrian detection
in crowded scenes. In IEEE Comput. Soc. Conf. CVPR.

[Leutenegger et al., 2011] Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011). Brisk:
Binary robust invariant scalable keypoints. In Computer Vision (ICCV), 2011 IEEE
International Conference on, pages 2548–2555. IEEE.

[Li et al., 2012] Li, S., Wang, D., Zheng, Z., and Wang, H. (2012). Multi-view vehicle
detection in traffic surveillance combining hog-hct and deformarle part models. In
Wavelet Analysis and Pattern Recognition (ICWAPR), 2012 International Conference
on, pages 202–207. IEEE.

[Li, 2013] Li, Y. (2013). Stereo vision and Lidar based dynamic occupancy grid map-
ping: Application to scenes analysis for intelligent vehicles. PhD thesis, Université de
Technologie de Belfort-Montbeliard.

[Lindeberg, 1998] Lindeberg, T. (1998). Feature detection with automatic scale selection.
Int. J. of Computer Vision.

125

[Lowe, 1999] Lowe, D. G. (1999). Object recognition from local scale-invariant features.
In Proc. ICCV.

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision (IJCV).

[Ma and Grimson, 2005] Ma, X. and Grimson, W. E. L. (2005). Edge-based rich repre-
sentation for vehicle classification. In Proc. 10th IEEE Int. Conf. Comput. Vis.

[Magnenat et al., 2010] Magnenat, S., Longchamp, V., Bonani, M., Retornaz, P., Ger-
mano, P., Bleuer, H., and Mondada, F. (2010). Affordable SLAM through the co-
design of hardware and methodology . In IEEE International Conference on Robotics
and Automation.

[Mair et al., 2010] Mair, E., Hager, G. D., Burschka, D., Suppa, M., and Hirzinger, G.
(2010). Adaptive and generic corner detection based on the accelerated segment test.
In Proceedings of the European Conference on Computer Vision (ECCV’10).

[Mallot et al., 1991] Mallot, H., Bulthoff, H., Little, J., and Bohrer, S. (1991). Inverse
perspective mapping simplifies optical flow computation and obstacle detection. Bio-
logical Cybernetics.

[Marek Kraft and Kasinski, 2008] Marek Kraft, A. S. and Kasinski, A. J. (2008). High-
speed image feature detection using FPGA implementation of fast algorithm.

[Márquez-Gámez, 2012] Márquez-Gámez, D. A. (2012). Towards visual navigation in
dynamic and unknown environment: trajectory learning and following, with detection
and tracking of moving objects. PhD thesis, Toulouse, INSA.

[Masoud and Papanikolopoulos, 2004] Masoud, O. and Papanikolopoulos, N. P. (2004).
Using geometric primitives to calibrate traffic scenes. In Proc. IEEE IROS.

[Maybeck, 1979] Maybeck, P. (1979). Stochastic models, estimation and control. Mathe-
matics in Science and Engineering.

[Messelodi et al., 2005] Messelodi, S., Modena, C. M., and Zanin, M. (2005). A computer
vision system for the detection and classification of vehicles at urban road intersections.
Pattern Anal. Appl.

[Mikolajczyk and Schmid, 2005a] Mikolajczyk, K. and Schmid, C. (2005a). A perfor-
mance evaluation of local descriptors. In IEEE Trans. Pattern Anal. Mach. Intell.

[Mikolajczyk and Schmid, 2005b] Mikolajczyk, K. and Schmid, C. (2005b). A perfor-
mance evaluation of local descriptors. IEEE TRANSACTIONS ON PATTERN ANAL-
YSIS AND MACHINE INTELLIGENCE (PAMI).

[Mindru et al., 2004] Mindru, F., Tuytelaars, T., Gool, L. V., and Moons, T. (2004). Mo-
ment invariants for recognition under changing viewpoint and illumination. Computer
Vision and Image Understanding.

[MobilEye, 2009] MobilEye (2009). SeeQ2TM.

126

[Mohammad Awrangjeb and Fraser, 2012] Mohammad Awrangjeb, G. L. and Fraser,
C. S. (2012). Performance comparisons of contour-based corner detectors.

[Montemerlo et al., 2002] Montemerlo, M., Thrun, S., Koller, D., and Wegbreit, B.
(2002). FastSLAM: A factored solution to the simultaneous localization and mapping
problem. In National Conference on Artificial Intelligence.

[Montiel, 2006] Montiel, J. (2006). Unified inverse depth parametrization for monocular
slam. In Proc. Robotics: Science and Systems (RSS).

[Mur-Artal et al., 2015a] Mur-Artal, R., Montiel, J., and Tardos, J. (2015a). Orb-slam: a
versatile and accurate monocular slam system. IEEE Transactions on Robotics (ITRO).

[Mur-Artal et al., 2015b] Mur-Artal, R., Montiel, J., and Tardos, J. D. (2015b). Orb-
slam: a versatile and accurate monocular slam system. Robotics, IEEE Transactions
on, 31(5):1147–1163.

[Negri et al., 2007] Negri, P., Clady, X., and Prevost, L. (2007). Benchmarking haar and
histograms of oriented gradients features applied to vehicle detection. In ICINCO-RA
(1), pages 359–364.

[Newcombe et al., 2011] Newcombe, R. A., Lovegrove, S. J., and Davison, A. J. (2011).
Dtam: Dense tracking and mapping in real-time. In Computer Vision (ICCV), 2011
IEEE International Conference on, pages 2320–2327. IEEE.

[Nikolic et al., 2014] Nikolic, J., Rehder, J., Burri, M., Gohl, P., Leutenegger, S., Furgale,
P., and Siegwart, R. (2014). A synchronized visual-inertial sensor system with FPGA
pre-processing for accurate real-time SLAM. In IEEE International Conference on
Robotics and Automation (ICRA).

[Nowak et al., 2006] Nowak, E., Jurie, F., and Triggs, B. (2006). Sampling strategies for
bag-of-features image classification. In Proc. European Conference on Computer Vision
(ECCV).

[NVIDIA, 2015a] NVIDIA (2015a). Cuda 7.0 Jetson TX1 performance and benchmarks.

[NVIDIA, 2015b] NVIDIA (2015b). NVIDIA R© JetsonTM TX1 Supercomputer-on-
Module Drives Next Wave of Autonomous Machines.

[Opelt, 2006] Opelt, A. (2006). Generic Object Recognition. PhD thesis, Graz Univ.
Technol., Styria, Austria.

[Opelt et al., 2006a] Opelt, A., Pinz, A., Fussenegger, M., and Auer, P. (2006a). Generic
object recognition with boosting. In IEEE Trans. Pattern Anal. Mach. Intell.

[Opelt et al., 2006b] Opelt, A., Pinz, A., and Zisserman, A. (2006b). A boundary frag-
ment model for object detection. In Proc. Eur. Conf. Comput. Vis.

[Opelt et al., 2006c] Opelt, A., Pinz, A., and Zisserman, A. (2006c). Incremental learning
of object detectors using a visual shape alphabet. In Proc. IEEE Conf. Comput. Vis.
Pattern Recog.

127

[OpenCV, 2015] OpenCV (2015). OpenCV release 3.0.0. http://docs.opencv.org/3.0.0.

[Park et al., 2007] Park, K., Lee, D., and Park, Y. (2007). Video-based detection of
street-parking violation. In Proc. Int. Conf. Image Process. CVPR.

[Platt et al., 1998] Platt, J. et al. (1998). Sequential minimal optimization: A fast algo-
rithm for training support vector machines.

[Qasim et al., 2010] Qasim, S., Telba, A., and AlMazroo, A. (2010). Fpga design and
implementation of matrix multiplier architectures for image and signal processing ap-
plications. International Journal of Computer Science and Network Security (IJCSNS),
10(2).

[Raphael et al., 2011] Raphael, E., Kiefer, R., Reisman, P., and Hayon, G. (2011). De-
velopment of a Camera-Based Forward Collision Alert System. SAE Int. J. Passeng.
Cars – Mech. Syst.

[Rosten and Drummond, 2005] Rosten, E. and Drummond, T. (2005). Fusing points and
lines for high performance tracking.

[Roussillon et al., 2011] Roussillon, C., Gonzalez, A., Solà, J., Codol, J., Mansard, N.,
Lacroix, S., and Devy, M. (2011). RT-SLAM : A Generic and Real-Time Visual SLAM
Implementation. In 8th International Conference on Computer Vision Systems, Sophia
Antipolis (France).

[Rybski et al., 2010] Rybski, P. E., Huber, D., Morris, D. D., and Hoffman, R. (2010).
Visual classification of coarse vehicle orientation using histogram of oriented gradients
features. In Intelligent Vehicles Symposium (IV), 2010 IEEE, pages 921–928. IEEE.

[Sarraf et al., 2007] Sarraf, E., Ahmed-Ouameur, M., and Massicotte, D. (2007). Fpga
design and implementation of direct matrix inversion based on steepest descent method.
In Proc. 50th Midwest Symposium on Circuits and Systems (MWSCAS).

[Schaffalitzky and Zisserman, 2002] Schaffalitzky, F. and Zisserman, A. (2002). Multi-
View Matching for Unordered Image Sets. In Proc. Seventh European Conf. Computer
Vision.

[Sciuto et al., 2002] Sciuto, D., Salice, F., Pomante, L., and Fornaciari, W. (2002). Met-
rics for design space exploration of heterogeneous multiprocessor embedded systems.
In Proceedings of the Tenth International Symposium on Hardware/Software Codesign
(CODES).

[Serre et al., 2007] Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., and Poggio, T.
(2007). Robust object recognition with cortexlike mechanisms. In IEEE Trans. Pattern
Anal. Mach. Intell.

[Shaout et al., 2009] Shaout, A., El-mousa, A. H., and Mattar, K. (2009). Specification
and modeling of hw/sw co-design for heterogeneous embedded systems.

[Sivic et al., 2005] Sivic, J., Russel, B., Efros, A., Zisserman, A., and Freeman, W. (2005).
Discovering objects and their location in images. In Proc. IEEE Int. Conf. on Computer
Vision (ICCV).

128

[Solà et al., 2005] Solà, J., Monin, A., Devy, M., and Lemaire, T. (2005). Undelayed
initialization in bearing only slam. In Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2499–2504.

[Solà et al., 2011] Solà, J., Vidal-Calleja, T., Civera, J., and Montiel, J. (2011). Impact
of landmark parametrization on monocular EKF-SLAM with points and lines. Inter-
national Journal on Computer Vision.

[Spivey, 2003] Spivey, J. (2003). Fast, accurate call graph profiling. Oxford University
Computing Laboratory.

[Sérot et al., 2014] Sérot, J., Berry, F., and Bourrasset, C. (2014). High-level dataflow
programming for real-time image processing on smart cameras. Journal of Real-Time
Image Processing, pages 1–13.

[Stein, 2004] Stein, F. (2004). Efficient computation of optical flow using the census
transform. In 26th DAGM Symposium.

[Strasdat et al., 2010] Strasdat, H., Montiel, J., and Davison, A. (2010). Real-time
monocular slam: Why filter? In Proc. of IEEE International Conference on Robotics
and Automation (ICRA).

[Sun et al., 2002] Sun, Z., Miller, R., Bebis, G., and DiMeo, D. (2002). A real-time pre-
crash vehicle detection system . In Proceedings of Sixth IEEE Workshop on Applications
of Computer Vision (WACV).

[Tertei, 2013] Tertei, D. T. (2013). Histogram of Gradients descriptor applied to vehicles
detection. Report in Robotics-Action-Perception research team, LAAS-CNRS.

[Tertei et al., 2016a] Tertei, D. T., Devy, M., and Mekonnen, A. A. (2016a). Hierarchical
visual obstacle detection. https://youtu.be/742AG7GEeKw.

[Tertei et al., 2016b] Tertei, D. T., Devy, M., and Mekonnen, A. A. (2016b). Hierarchical
visual obstacle detection. https://youtu.be/yzNFrp0jME8.

[Tertei et al., 2016c] Tertei, D. T., Devy, M., and Mekonnen, A. A. (2016c). Hierarchical
visual obstacle detection. https://youtu.be/B4g35E5cp4U.

[Tertei et al., 2016d] Tertei, D. T., Devy, M., and Mekonnen, A. A. (2016d). Hierarchical
visual obstacle detection. https://youtu.be/MQLdaMO32Lg.

[Tertei et al., 2016e] Tertei, D. T., Devy, M., and Mekonnen, A. A. (2016e). Hierarchical
visual obstacle detection. https://youtu.be/cvZqbE3MuLQ.

[Tertei et al., 2014] Tertei, D. T., Piat, J., and Devy, M. (2014). FPGA design and
implementation of a matrix multiplier based accelerator for 3D EKF SLAM. In Proc.
European Conference on ReConFigurable Computing and FPGAs (ReConFig).

[Thrun et al., 2005] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics.
MIT Press.

129

[Tiwari et al., 2013] Tiwari, S., Singh, S., and Meena, N. (2013). Fpga design and imple-
mentation of matrix multiplication architecture by ppi-mo techniques. International
Journal of Computer Applications, 80(1):19–22.

[Turk, 2012] Turk, A. M. (2012). Amazon mechanical turk. Retrieved August, 17:2012.

[Ullman, 2007] Ullman, S. (2007). Object recognition and segmentation by a fragment-
based hierarchy. Trends Cognitive Sci.

[Underwood and Hemmert, 2004] Underwood, K. and Hemmert, K. (2004). Closing the
Gap: CPU and FPGA Trends in Sustainable Floating-Point BLAS Performance. In
Proc. IEEE Symp. Field-Programmable Custom Computing Machines.

[Vedaldi and Fulkerson, 2010] Vedaldi, A. and Fulkerson, B. (2010). Vlfeat: An open
and portable library of computer vision algorithms. In Proceedings of the 18th ACM
international conference on Multimedia, pages 1469–1472. ACM.

[Vincke, 2012] Vincke, B. (2012). Architectures pour des systèmes de localisation et de
cartographie simultanées. PhD thesis, Université Paris Sud and Institut d’Electronique
Fondamentale (IEF), Orsay.

[Vincke et al., 2012a] Vincke, B., Elouardi, A., and Lambert, A. (2012a). Efficient Im-
plementation of EKF-SLAM on a Multi-Core Embedded System. In IECON.

[Vincke et al., 2012b] Vincke, B., Elouardi, A., and Lambert, A. (2012b). Real time
simultaneous localization and mapping: towards low-cost multiprocessor embedded
systems. EURASIP Journal on Embedded Systems.

[Viola and Jones, 2001] Viola, P. and Jones, M. (2001). Rapid object detection using a
boosted cascade of simple features. In Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 1,
pages I–511. IEEE.

[Wijnhoven and de With, 2009] Wijnhoven, R. and de With, P. H. N. (2009). Comparing
feature matching for object categorization in video surveillance. In Proc. Adv. Concepts
Intell. Vis. Syst.

[Wijnhoven et al., 2008] Wijnhoven, R., de With, P. H. N., and Creusen, I. (2008). Effi-
cient template generation for object classification in video surveillance. In Proc. 29th
Symp. Inf. Theory Benelux.

[Wijnhoven and de With, 2007] Wijnhoven, R. G. J. and de With, P. H. N. (2007). Ex-
periments with patch-based object classification. In Proc. IEEE Conf. Adv. Video Signal
Based Surv.

[Wilson et al., 2014] Wilson, C., Zicari, P., Craciun, S., Gauvin, P., Carlisle, E., George,
A., and Lam, H. (2014). A power-efficient real-time architecture for SURF feature
extraction. In International Conference on ReConFigurable Computing and FPGAs
(ReConFig).

130

[Wu and Nevatia, 2007] Wu, B. and Nevatia, R. (2007). Detection and tracking of multi-
ple, partially occluded humans by Bayesian combination of edgelet-based part detectors.
Int. J. Comput. Vis.

[Xilinx, 2011] Xilinx (2011). All Programmable FPGAs.

[Xilinx, 2015] Xilinx (2015). UltraScale Architecture.
http://www.xilinx.com/products/technology/ultrascale.html.

[Xillinux, 2010] Xillinux (2010). Xillinux: A Linux distribution for Zedboard, ZyBo,
MicroZed and SocKit.

[Yager and Filev, 1994] Yager, R. R. and Filev, D. P. (1994). Generation of fuzzy rules
by mountain clustering. Journal of Intelligent & Fuzzy Systems, 2(3):209–219.

[Zhang and Vela, 2015a] Zhang, G. and Vela, P. (2015a). Good features to track for
visual slam. In Proc. IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR).

[Zhang and Vela, 2015b] Zhang, G. and Vela, P. (2015b). Optimally observable and min-
imal cardinality monocular slam. In Proc. IEEE International Conference on Robotics
and Automation (ICRA).

[Zhang et al., 2005] Zhang, W., Yu, B., Zelinsky, G. J., and Samaras, D. (2005). Object
class recognition using multiple-layer boosting with heterogeneous features. In IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recog.

[Zhuo and Prasanna, 2007] Zhuo, L. and Prasanna, V. (2007). Scalable and Modular Al-
gorithms for Floating-Point Matrix Multiplication on Reconfigurable Computing Sys-
tems. In IEEE Transactions on Parallele and Distributed Systems, Vol. 18, No. 4.

131

	Abstract
	Résumé
	Sažetak
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 General Introduction
	1.2 Simultaneous Localization and Mapping
	1.3 Obstacle Detection and Tracking
	1.4 Organization of the manuscript

	Chapter 2 Architectures and Algorithms for Robot Navigation
	2.1 Robot Navigation
	2.1.1 The navigation system for the AIR-COBOT robot
	2.1.2 Specifications of an embedded navigation system

	2.2 HW/SW co-design methodology
	2.3 Conclusion

	Chapter 3 State-of-the-art
	3.1 Computer vision for object classification
	3.1.1 Interest Point Detectors and Descriptors
	3.1.2 Explicit Shape
	3.1.3 Without explicit shape
	3.1.4 Machine learning for classification

	3.2 Complete real-time video analytics systems
	3.2.1 Non-embedded solutions
	3.2.2 Embedded solutions

	3.3 Visual EKF-SLAM
	3.3.1 Monocular SLAM implementations
	3.3.2 FPGA-based SLAM implementations

	Chapter 4 EKF-SLAM HW/SW co-design: part I
	4.1 Modeling
	4.2 Hardware specification before partitioning
	4.2.1 System Cost Measure Definition
	4.2.2 Update Specifications

	4.3 Iterative prototyping
	4.3.1 First iteration: software-only prototype
	4.3.2 Second iteration: Front-end hardware accelerator
	4.3.3 Third iteration: Back-end hardware accelerator
	4.3.4 Fourth iteration: Front-end hardware accelerator

	4.4 Final hardware prototype
	4.4.1 Experimental results and discussion
	4.4.2 Comparison with state of the art

	4.5 Conclusion
	4.5.1 Towards EKF-SLAM at 100Hz

	Chapter 5 EKF-SLAM HW/SW co-design: part II
	5.1 Algorithmic overview
	5.1.1 Computational bottleneck identification

	5.2 Design considerations
	5.2.1 Matrix multiplication tradeoffs on FPGAs
	5.2.2 Notion of systolic arrays on an FPGA
	5.2.3 Computational model mapping

	5.3 Cross-covariance matrix block accelerator
	5.3.1 HW/SW Integration

	5.4 Design evaluation
	5.4.1 Multiplier Latency
	5.4.2 Resource usage
	5.4.3 Power consumption

	5.5 Experimental results
	5.5.1 Measured multiplication latencies
	5.5.2 Design scalability
	5.5.3 Power per feature
	5.5.4 Future work

	5.6 Conclusion

	Chapter 6 Embedding Algorithms for Visual Obstacle Detection
	6.1 Related work and motivation
	6.2 Proposed framework
	6.2.1 Appearance kernel
	6.2.2 Shape kernel
	6.2.3 Classifiers co-design
	6.2.4 Classifiers training
	6.2.5 Single scale decision making

	6.3 Conclusion

	Chapter 7 Towards Real-Time Visual Vehicle Detection
	7.1 Software architecture
	7.1.1 Concurrence

	7.2 Algorithmic Evaluation
	7.2.1 Estimation of vehicles detection on an embedded platform

	7.3 Conclusion

	Chapter 8 Conclusion
	Bibliography

