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Abstract

In this thesis we discuss the problem of lifting and stabilizing a a bar-shaped slung
load, held by two UAVs (Unmanned Aerial Vehicles) which are connected to it through
cables. A mathematical model of the system is presented. After describing the system
dynamics, we identify a set of equilibrium poses and discuss the stability of a point in
this set. Then, the Gazebo simulator is used to develop and test a controller capable
of stabilizing the system, rejecting disturbances, and following basic trajectories.
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Chapter 1

Introduction

In this thesis, we address the problem of collaborative load lifting with aerial vehicles.
Specifically, we consider a bar-shaped slung load, held by two UAVs (Unmanned Aerial
Vehicles) which are connected to it through cables.

In the first part of the thesis, a mathematical model is presented. After describing the
system dynamics, we identify a set of equilibrium poses and discuss the stability of a point
in this set. Then, in the second part of the thesis, the Gazebo simulator is used develop
and test a controller capable of stabilizing the system, rejecting disturbances, and following
basic trajectories.

Motivation

In the last few years the attention towards UAVs has risen, as they are more and more
viewed as a promising platform for performing various tasks, ranging from inspection to
aerial manipulation. Specifically, aerial manipulation involves some sort of interaction with
the environment. In order to achieve it, the vehicles are often outfitted with some sort of
gripper, robotic arm or cable. Load lifting and transportation is an essential aspect of any
aerial manipulation task.

In this thesis, we focus on the issue of stabilizing a slung load, using two UAVs in order
to achieve a greater degree of control. The study of tethered transportation is motivated by
the lower costs and lower complexity when compared to robotic arms or grippers. Moreover,
there are excellent real life examples of transport by towed cables, such as emergency rescue
or the delivery of a payload to an area or position impossible to reach with ground vehicles.

Literature review

The issues with the transportation of a slung load have been explored in several different
publications. It has been shown that it is possible, for a point mass connected to multiple
quadrotor UAVs via rigid massless links, to follow a desired trajectory while keeping the
vehicles in formation [1].

The results have then also been extended to allow trajectory tracking with a rigid body
as payload, still connected to an arbitrary number of aerial vehicles via rigid links [2].

When a slung load is supported by cables, additional difficulties arise since it then be-
comes necessary to take into consideration the tensions along the cables. This issue is
discussed in [3], where different poses of the load (a rigid body) are associated to corre-
sponding configurations of the UAVs, while respecting constraints on the tensions.
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Chapter 1. Introduction

It has also been shown that an aerial vehicle connected to a cable can be modeled as a
hybrid system [4–6]. In [4], the notion of a differentially-flat hybrid system is introduced,
and is used to plan a trajectory for the vehicle capable of minimizing the load swing.

Methods have been devised in order to guarantee that the hybrid system never switches,
thus allowing to model the cables as rigid links. A system made up of a fully actuated
UAV connected to a point mass is considered in [5], where the proposed control algorithm
guarantees that the cable is always under tensile forces, thus allowing to treat the system
as an underactuated aerial vehicle. This approach is then extended in [6], where the point
mass is connected to two aerial vehicles.

Statement of contribution
The goal of this endeavor is the stabilization of a bar shaped suspended load, connected to
two multirotor UAVs by cables.

In the mathematical model, we take into consideration the odometry measurements of
the vehicles and of the load,

x =

OO1
O2

 .
where

O odometry of the load,

O1 odometry of the first UAV,

O2 odometry of the second UAV,

and study the dynamics of the overall system by solving the associated Newton-Euler equa-
tions.

The bar is modeled as a thin rod, and its odometry measurement O includes position,
orientation, linear and angular velocities. The vehicles instead are treated as point masses,
and thus O1 and O2 only contain position an linear velocity. The underlying assumption is
that the attitude of each vehicle is handled by another layer of control.

Specifically, for each of the two UAVs, our proposed controller returns as output a
vector ui ∈ R3, which represents the total upward thrust generated by the vehicle, seen in
the external fixed reference frame. Therefore, ui contains the information on the attitude
of the vehicle; in a quadrotor, for instance, the thrust is aligned with the vertical axis of the
body reference frame. We assume then that there is an inner layer of control that adjusts
roll, pitch, yaw and rotor thrusts based on this information.

Our proposed control law uUAV computes ui through the combination of a PID position
controller and a linear oscillation damping term responsible for rejecting disturbances and
minimizing the swinging motion of the load. Note that this allows implementation with a
distributed approach: we will in fact show that, for each UAV, the controller only needs
information on its own odometry and on the odometry of the load,

ui = uUAV(O,Oi) i = 1, 2 . (1.1)

The code used in the simulations, including the Gazebo model of the system, is publicly
available at https://github.com/massimilianop/collaborative_load_lifting, where
additional materials, as well as some videos of the simulations, can be found.
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Thesis outline
The remainder of this thesis is structured as follows. In Chapter 2, we present the mathe-
matical model, and discuss the system dynamics. In Chapter 3, we define a chart to maps
a subset of the state space, which is a manifold, in the Euclidean space. In Chapter 4, we
identify a set of equilibrium configurations, and study the stability of the system through
linearization. In Chapter 5, we express the system as a Gazebo model and discuss a method
to test the controller in the simulator. In Chapter 6, we use the simulation results to design
a controller, with an emphasis on oscillation damping. In Chapter 7, we summarize the
results, and discuss directions for future research.
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Chapter 2

Mathematical model

In this chapter we present the mathematical model. After a description of the system in
terms of the chosen variables, the associated state space is characterized as a manifold in
R24. The chapter ends with an analysis of the system dynamics.

2.1 Notation

Let n ∈ N. The n-dimensional Euclidean space is denoted by Rn. The set of unit vectors
in Rn is denoted by

Sn−1 = {n ∈ Rn : ‖n‖ = 1}
where the operator ‖ ‖ denotes the Euclidean norm of a vector. The other commonly used
operators are × to denote the cross product, and the superscript ᵀ to mark the transpose
of a vector or matrix. To a much lesser degree, the operator · is used to indicate the matrix
product, but only when the absence of it may lead to ambiguity.

In general, unless explicitly stated, the following convention is used when naming vari-
ables:

v ∈ Rn a lowercase bold letter refers to a column vector,

M ∈ Rn×m an uppercase bold letter refers to a matrix,

d, L ∈ R italic letters, both uppercase and lowercase, refer to scalar values.

The null vector in Rn marks an exception to this naming convention. When there is
room for misinterpretation it is denoted as 0n but otherwise, when there are no ambiguities,
we drop the subscript in order to lighten the notation. For the same reason, the identity
matrix is referred to as I.

Reference frames
The reference frame that is fixed in R3 is denoted by xyz, where obviously x, y and z mark
the names of the three axes. The standard unit vectors associated to xyz are denoted by

e1 =

1
0
0

 e2 =

0
1
0

 e3 =

0
0
1

 .
In some sections a second frame is also introduced, and it is denoted as x′y′z′. Matrices

and vectors written with respect to the fixed coordinate frame do not present additional
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Chapter 2. Mathematical model

superscripts (e.g. v and M); when instead they are written in the coordinates of the second
reference frame, they display the superscript ′ (e.g. v′ and M′).

Let ex′ , ey′ and ez′ denote the standard unit vectors associated to x′y′z′. Then, clearly,
when expressed in the local coordinates they are

e′x′ =

1
0
0

 e′y′ =

0
1
0

 e′y′ =

0
0
1

 .
Four-quadrant inverse tangent

The inverse trigonometric functions play a key role in describing orientations in terms of
angles. Specifically, in order to compute the arctangent, we use its two-argument variant

arctan2 (x, y) =



arctan (y/x) x > 0
arctan (y/x) + π x < 0 , y > 0
arctan (y/x)− π x < 0 , y < 0
+π/2 x = 0 , y > 0
−π/2 x = 0 , y < 0

since it allows for a wider range of angles than its counterpart:

arctan : R −→
(
−π2 ,

π

2

)
arctan2 : R2\ {(x, y) : x ≤ 0 , y = 0} −→ (−π, π) .

Note that with this domain we ensure that arctan2 is continuous, which is required when
we define the chart in Chapter 3. In fact, at y = 0 there is a discontinuity for all x < 0, as
is shown in Figure 2.1.

5-5

-2

0 0

0

5 -5

2

Figure 2.1: Plot of the function arctan2
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Skew-symmetric matrix and cross product
In some parts of this thesis, the cross product is expressed as a matrix product

a × b = S(a) · b

where the skew-symmetric matrix S(a) is defined as

S(a) =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 with a =

a1
a2
a3

 .
2.2 Description of the system

The system represented in Figure 2.2 features two UAVs of masses m1 and m2 connected
to a bar-shaped load of mass mL through two cables of length L1 and L2. The relevant
system variables, all expressed in an external fixed reference frame xyz (also referred to as
global or world reference frame), are denoted as

p position of the center of mass of the load

nB unit vector associated to the orientation of the load

v linear velocity of p

ωB angular velocity of p

p1 position of the first UAV

v1 linear velocity of p1

p2 position of the second UAV

v2 linear velocity of p2.

In order to simplify the analysis, the load is modeled as a slender rod, with a thickness
that is negligible when compared to its length `.

nC2 nC1
nB

ppB2 pB1

p2
p1

L2 L1

d2 d1
vvB2 vB1

v2
v1

ωB

mL

m2
m1

JL

Figure 2.2: Representation of the system
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Chapter 2. Mathematical model

x′
y′

z′

d2 d1

p

x
y

z
nB

Figure 2.3: Diagram showing the different reference frames

Orientation of the load
Let us consider a load based reference frame x′y′z′ centered in p and such that the x′ axis
is aligned with the unit vector nB , as in Figure 2.3.

By definition the orientation of x′y′z′ is characterized by the coordinates of its standard
unit vectors ex′ , ey′ and ez′ expressed with respect to the global reference frame xyz:

R =
[
ex′ ey′ ez′

]
=
[
nB ey′ ez′

]
. (2.1)

Since the load is modeled as a one-dimensional object, its orientation is associated with
the direction of the local axis x′ and can therefore be described by the unit vector nB .

Inertia of the load
The inertia tensor of the slender rod, expressed in the local reference frame x′y′z′, is the
constant matrix

J′L = J`

ε 0 0
0 1 0
0 0 1

 = 1
12 mL`

2

ε 0 0
0 1 0
0 0 1

 (2.2)

where 0 < ε � 1 ensures that J′L is invertible. The matrix can also be expressed in the
global reference frame xyz:

JL = R J′L Rᵀ (2.3)
where R is the rotation matrix defined in (2.1).

Anchoring points
Consider the diagram in Figure 2.3. Since the dimensions of the object along the y′ and
z′ axes are assumed to be negligible, then clearly every point of the body can be described
just by its coordinate along the x′ axis.

In particular, in the local reference frame, the anchoring points between load and cables
are denoted by their coordinates d1 and d2, according to

p′Bi = di e′x′ i = 1, 2 .

From this characterization, it is trivial to express the anchoring points in the global
reference frame:

pBi = p + dinB i = 1, 2 . (2.4)
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2.3. State space

The linear velocities associated to the anchoring points are easily obtained by computing
the time derivative of (2.4):

vBi = v + diωB × nB i = 1, 2 . (2.5)

2.3 State space

The overall state of the system takes into account all the system variables, and is defined
as the 24-dimensional vector

x =



p
v

nB
ωB

p1
v1
p2
v2


∈
(
R3)8

. (2.6)

The control input is described by the pair

u =
[
u1
u2

]
∈
(
R3)2 (2.7)

where

u1 ∈ R3 is the total upward force generated by the first UAV

u2 ∈ R3 is the total upward force generated by the second UAV.

Note that the full pose of the load appears in (2.6), while instead the UAVs are characterized
only by information related to their position. As stated in the introduction, the underlying
assumption is that the internal controller of the UAVs handles their orientation, adjusting
the roll, pitch, yaw and rotor thrusts of each vehicle in order to obtain the desired force ui.

When defining the state space, it is fundamental to study the various restrictions acting
upon the elements stacked in (2.6). As discussed in [5, 6], the quadrotors-load system can
be modeled as a hybrid system, exhibiting two behaviors. When neither of the cables are
under tension the load behaves like a free falling object, while the UAVs behave as standard
unconstrained aerial vehicles. When instead one or both cables are under tension, one or
two kinematic constraints are introduced in the system, stating that the distance between
pi and pBi is constant and equal to the length Li of the taut cable.

In this work, the system is analyzed under the assumption that both cables are always
taut, and therefore the cables are modeled as rigid links, each introducing a kinematic
constraint in the state space. In light of these observations, the state space shapes up to be
a manifold Ω ⊂

(
R3)8, and the following restrictions hold:

Ω =
{

x as in (2.6) : ‖nB‖ = 1
nB ⊥ωB

‖pi − pBi‖ = Li i = 1, 2
(pi − pBi) ⊥ (vi − vBi) i = 1, 2

}
.

(2.8a)
(2.8b)
(2.8c)
(2.8d)
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Chapter 2. Mathematical model

v⊥
i

v
‖
i

vi

v
‖
Bi

v⊥
Bi

vBi

pBi

pi

pi − pBi

Figure 2.4: Graphical representation of restriction (2.8d)

Condition (2.8b) is a consequence on the implicit assumption that the bar does not spin
around itself. It is actually possible to prove that if the vector field describing the system
dynamics belongs to the tangent space, then the component of ωB parallel to nB is constant
and equal to its initial value, which can be assumed to be zero.

Restrictions (2.8c) and (2.8d) together enforce the condition that both cables behave as
rigid links.

In particular, (2.8d) states that if pi and pBi move then their distance remains constant.
This concept is clarified in Figure 2.4: let the velocities be decomposed as

vi =v‖i + v⊥i
vBi =v‖Bi + v⊥Bi

where v‖i and v‖Bi are parallel to pi−pBi, while v⊥i and v⊥Bi are perpendicular to pi−pBi.
Then it is easy to see that

(2.8d) holds ⇐⇒ v‖i = v‖Bi ,

which means that ‖pi − pBi‖ remains constant.
Note that if the cables are considered rigid links, then they can each be associated to a

unit vector:

nCi = pi − pBi
‖pi − pBi‖

= pi − pBi
Li

i = 1, 2 . (2.9)

Using (2.9) it is possible to express the relation between load and UAV positions for
states x ∈ Ω:

pi = p + dinB + LinCi i = 1, 2 . (2.10)
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2.4. Tangent space

2.4 Tangent space

In order to derive the tangent space of Ω at x ∈ Ω, it is helpful to express the restrictions
(2.8) on the elements in Ω as scalar products:

nᵀ
B nB = 1

nᵀ
B ωB = 0

(pi − pBi)ᵀ (pi − pBi) = L2
i i = 1, 2

(vi − vBi)ᵀ (pi − pBi) = 0 i = 1, 2 .

(2.8a revisited)
(2.8b revisited)
(2.8c revisited)
(2.8d revisited)

This way, the restrictions on the elements of the tangent space can be computed as time
derivatives of the scalar products above. The tangent space of Ω at x ∈ Ω is thus defined
as the set

TxΩ =
{
δx ∈ R24 : (δnB)ᵀ nB = 0

(δωB)ᵀ nB + (δnB)ᵀ ωB = 0
(δpi − δpBi)ᵀ (pi − pBi) = 0 i = 1, 2
(δvi−δvBi)ᵀ(pi−pBi)+(vi−vBi)ᵀ(δpi−δpBi) = 0 i = 1, 2

}
(2.11a)
(2.11b)
(2.11c)
(2.11d)

where each element in TxΩ is a stacked vector with the following structure

δx =



δp
δv
δnB
δωB

δp1
δv1
δp2
δv2


and where the auxiliary values δpBi and δvBi are defined according to

δpBi =δp + di δnB i = 1, 2
δvBi =δv + di (δωB × nB + ωB × δnB) i = 1, 2 .

2.5 Dynamic equations

The dynamic equations are associated to the time derivative of the state. Let x ∈ Ω and
u ∈

(
R3)2, then the open loop vector field is defined as

ẋ =



ṗ
v̇

ṅB
ω̇B

ṗ1
v̇1
ṗ2
v̇2


= f(x,u) , (2.12)
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u2 u1

−T2 nC2 −T1 nC1

T2 nC2 T1 nC1

−m2g e3 −m1g e3

−mLg e3

Figure 2.5: Representation of the forces acting on the system

where, by the definition of time derivative
ṗ = v
ṅB = ωB × nB
ṗi = vi i = 1, 2

and where the accelerations v̇, ω̇B , v̇1 and v̇2 must be such that, based on the schematic
representation in Figure 2.5, the following system of equations holds:



m1v̇1 = u1 − T1 nC1 −m1g e3

m2v̇2 = u2 − T2 nC2 −m2g e3

mLv̇ = T1 nC1 + T2 nC2 −mLg e3

d (JLωB)
dt

= d1 nB × T1 nC1 + d2 nB × T2 nC2 .

(2.13a)
(2.13b)
(2.13c)

(2.13d)

Notice how the dynamics of the load, being a rigid body, are described by the Newton-
Euler equations (2.13c) and (2.13d).

In particular, (2.13d) can be simplified by taking into account the structure of the inertia
tensor. Let us rewrite it as

d

dt
(JLωB) =

∑
τ (2.13d revisited)

where the term on the right side of the equation is used to indicate the sum of all torques.
Then, by (2.3) the time derivative yields

d

dt
(JLωB) = d

dt
(R J′L RᵀωB)

= S(ωB)R J′L RᵀωB −(((((
((((R J′L Rᵀ S(ωB)ωB + R J′L Rᵀω̇B (2.14)

where the cancellation is possible since S(ωB) · ωB is equal to the null vector.
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2.5. Dynamic equations

Recall that the inertia tensor J′L, defined in (2.2), is a diagonal matrix and can therefore
be rewritten as

J′L = J`

ε 0 0
0 1 0
0 0 1


= J` I + (ε− 1) J` e1eᵀ

1 . (2.15)

Then, by plugging (2.15) in equation (2.14) we obtain

d (JLωB)
dt

=(((((
(

J` S(ωB)ωB+ (ε−1) J`S(ωB)Re1eᵀ
1RᵀωB+J` ω̇B+ (ε−1) J`Re1eᵀ

1Rᵀω̇B

= J` ω̇B + (ε− 1) J`
(
��

���ṅB nᵀ
B ωB + nB nᵀ

B ω̇B

)
which allows to rewrite (2.13d) as

J` ω̇B + (ε− 1) J` nB nᵀ
B ω̇B = d1 nB × T1 nC1 + d2 nB × T2 nC2 . (2.16)

Without additional knowledge on the vector field, the values T1 and T2 of the tensions
along the cables that appear in (2.13) and (2.16) are unknown. Their explicit expressions
T1(x,u) and T2(x,u) can be computed by guaranteeing that

ẋ = f(x,u) ∈ TxΩ ∀ x ∈ Ω , ∀ u ∈
(
R3)2

. (2.17)

This is done in two steps. First we show that if ẋ ∈ TxΩ then each of the tensions
corresponds to a well defined and specific function, T1 = T1(x,u) and T2 = T2(x,u);
second, we verify that the vector field ẋ = f(x,u) associated to those particular tension
functions indeed belongs to TxΩ for all values of x ∈ Ω and u ∈

(
R3)2.

Step 1: Tension functions
If the vector field belongs to TxΩ, then ẋ as it is defined in (2.12) must satisfy the constraints
in (2.11), which take the form

ṅᵀ
B nB = 0

ω̇ᵀ
B nB +����ωᵀ

B ṅB = 0
(vi − vBi)ᵀ (pi − pBi) = 0 i = 1, 2
(v̇i − v̇Bi)ᵀ (pi − pBi) + ‖vi − vBi‖2 = 0 i = 1, 2 ,

(2.18a)
(2.18b)
(2.18c)
(2.18d)

where the scalar product ωᵀ
B ṅB can be canceled because ωB ⊥ ṅB , and where the acceler-

ations v̇B1 and v̇B2 are obviously computed as time derivatives of (2.5):

v̇Bi = v̇ + diω̇B × nB − di ‖ωB‖2 nB i = 1, 2 . (2.19)

Note that (2.18a) and (2.18c) do not add any new information, and therefore we will
focus on restrictions (2.18b) and (2.18d). Starting with (2.18b), if we combine it with (2.16)
then the expression of the torques in the Newton-Euler equations is further simplified:

ω̇B = d1

J`
nB × T1 nC1 + d2

J`
nB × T2 nC2 . (2.20)

13



Chapter 2. Mathematical model

Moving on to (2.18d), if we plug (2.19) in it, then the constraint can be rewritten as

(
v̇− v̇i + di ω̇B × nB − di ‖ωB‖2 nB

)ᵀ
Li nCi = ‖vi − vBi‖2

i = 1, 2 (2.21)

which, trough a few simple algebraic steps, can be translated into the system
nᵀ
C1 (v̇− v̇1) + d1 nᵀ

C1 (ω̇B × nB) = 1
L1
‖v1 − vB1‖2 + d1 ‖ωB‖2 nᵀ

C1nB

nᵀ
C2 (v̇− v̇2) + d2 nᵀ

C2 (ω̇B × nB) = 1
L2
‖v2 − vB2‖2 + d2 ‖ωB‖2 nᵀ

C2nB

(2.22a)

(2.22b)

The idea now is to express the terms on the left hand side of (2.22) in terms of the
tensions T1 and T2. In particular, the first addendum nᵀ

Ci (v̇− v̇i) can be rewritten by
considering the difference between (2.13c) and (2.13a) for the first UAV, and the difference
between (2.13c) and (2.13b) for the second one, leading to:

nᵀ
C1 (v̇− v̇1) = T1

(
1
mL

+ 1
m1

)
nᵀ
C1nC1 + T2

1
mL

nᵀ
C1nC2 −

1
m1

nᵀ
C1u1

nᵀ
C2 (v̇− v̇2) = T1

1
mL

nᵀ
C2nC1 + T2

(
1
mL

+ 1
m2

)
nᵀ
C2nC2 −

1
m2

nᵀ
C2u2 .

(2.23a)

(2.23b)

Similarly, the second addendum nᵀ
Ci (ω̇B×nB) can be expressed in terms of the tensions

thanks to (2.20), leading to

nᵀ
C1 (ω̇B×nB) = (nB×nC1)ᵀ (nB×nC1) d1

J`
T1 + (nB×nC1)ᵀ (nB×nC2) d2

J`
T2

nᵀ
C2 (ω̇B×nB) = (nB×nC2)ᵀ (nB×nC1) d1

J`
T1 + (nB×nC2)ᵀ (nB×nC2) d2

J`
T2

(2.24a)

(2.24b)

The result of plugging (2.23) and (2.24) in (2.22) is a linear system in the two variables
T1 and T2. In vector form

D(x) ·
[
T1
T2

]
= d(x,u)

with

D(x) =
[mL

m1
0

0 mL

m2

]
+

[
1 nᵀ

C1nC2
nᵀ
C2nC1 1

]
+

[
d1(nB×nC1)ᵀ
d2(nB×nC2)ᵀ

]
mL

J`

[
d1nB×nC1 d2nB×nC2

]
d(x,u) =

[
mL

m1
nᵀ
C1u1 + mL

L1
‖v1 − vB1‖2 +mLd1 ‖ωB‖2 nᵀ

C1nB
mL

m2
nᵀ
C2u2 + mL

L2
‖v2 − vB2‖2 +mLd2 ‖ωB‖2 nᵀ

C2nB

]
.

The matrix function D(x) is symmetric positive definite for x ∈ Ω. Therefore, the
explicit form of the tension functions T1(x,u) and T2(x,u) is given by[

T1(x,u)
T2(x,u)

]
= D(x)−1 · d(x,u) (2.25)
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2.5. Dynamic equations

The resulting vector field is

f(x,u) =



v
1/mL T1(x,u) nC1 + 1/mL T2(x,u) nC2 − g e3

ωB × nB
d1/J` T1(x,u) nB × nC1 + d2/J` T2(x,u) nB × nC2

v1
1/m1 u1 − 1/m1 T1(x,u) nC1 − g e3

v2
1/m2 u2 − 1/m2 T2(x,u) nC2 − g e3


(2.26)

where T1(x,u) and T2(x,u) are the functions defined in (2.25).

Step 2: Proof that the vector field belongs to the tangent space
Let the vector field ẋ = f(x,u) be defined according to (2.26). In order for ẋ to belong to
TxΩ, it needs to satisfy the constraints specified in (2.18):

ṅᵀ
B nB = 0

ω̇ᵀ
B nB = 0

(vi − vBi)ᵀ (pi − pBi) = 0 i = 1, 2
(v̇i − v̇Bi)ᵀ (pi − pBi) + ‖vi − vBi‖2 = 0 i = 1, 2 .

(2.18a revisited)
(2.18b revisited)
(2.18c revisited)
(2.18d revisited)

By definition, a unit vector and its time derivative are orthogonal, so clearly (2.18a)
holds. It is equally trivial to prove that (2.18c) holds as long as x ∈ Ω, since it is the same
as restriction (2.8d) detailed in Section §2.3. Constraint (2.18b) holds since

ω̇B = d1

J`
T1(x,u) nB × nC1 + d2

J`
T2(x,u) nB × nC2

and by definition
(nB × nCi)⊥nB i = 1, 2 .

And lastly (2.18d) holds because the tension functions that appear in (2.26) were determined
by solving (2.18d) in the variables T1 and T2.
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Chapter 3

Topology of the state space

In this chapter we introduce an alternative representation of the mathematical model. In
particular, we show how an appropriate parametrization of the unit vectors allows to define
a chart that maps a subset of the manifold Ω ⊂ R24 in a subset of R18.

3.1 Local description of the manifold

The state space Ω ⊂ R24 is an 18-dimensional manifold. Thus, it is possible to describe it
with an atlas, a set of homeomorphisms that each map a region of Ω to a subset of R18.

As a preliminary step, notice that thanks to the constraints enforced by (2.8c) and (2.8d)
the position and linear velocity of the UAVs that appear in

x =



p
v

nB
ωB

p1
v1
p2
v2


∈ Ω ⊂

(
R3)8 (3.1)

can be expressed in terms of the respective cable’s unit vector and its angular velocity:

pi = p + di nB + Li nCi i = 1, 2
vi = v + di ωB × nB + Li ωCi × nCi i = 1, 2

(3.2)
(3.3)

which hints at a one to one correspondence

(pi , vi)←→ (nCi , ωCi) i = 1, 2

between a vehicle and the direction of the respective cable. Indeed, if the state were to be

17



Chapter 3. Topology of the state space

expressed as

y =



p
v

nB
ωB

nC1
ωC1
nC2
ωC2


∈
(
R3)8 (3.4)

instead of (3.1), the corresponding state space

Ωy =
{

y as in (3.4) : ‖nB‖ = 1
nB ⊥ωB

‖nCi‖ = 1 i = 1, 2
nCi⊥ωCi i = 1, 2

}
(3.5a)
(3.5b)
(3.5c)
(3.5d)

would be a manifold conceptually similar to Ω, to the point that the two representations
are easily interchangeable.

Therefore the idea is to choose an appropriate parametrization, so that a unit vector and
its angular velocity can replaced by a pair of Euler angles and their time derivatives. Note
that in this thesis work, rather then characterizing the whole atlas, we limit ourselves to
defining just one chart, providing a local description of the state space in the neighborhood
of a certain point 

03
03
e1
03

d1e1 + L1e3
03

d2e1 + L2e3
03


∈ Ω or likewise



03
03
e1
03
e3
03
e3
03


∈ Ωy .

This chart is then used in Chapter 4 when discussing the stability of the system through a
linearization process.

3.2 Parametrization of the unit vectors

In our mathematical model, we accept that the thickness of the load is negligible with
respect to its length, and a similar simplification can be reasonably done for the cable.

Therefore, rather than a full rotation matrix, their orientation can be also described
with a unit vector. In particular, we choose to define nB , nC1 and nC2 as rotations of a
standard unit vector with respect to a fixed reference frame, following the roll-pitch-yaw
convention detailed in Appendix :

nB = Rz(ψ) Ry(θ) e1 =

cos θ cosψ
cos θ sinψ
− sin θ


nCi = Ry(θi) Rx(ϕi) e3 =

cosϕi sin θi
− sinϕi

cosϕi cos θi

 i = 1, 2 .

(3.6)

(3.7)

18



3.2. Parametrization of the unit vectors

e1

ψ

x

y

z

θ

Figure 3.1: Extrinsic rotation of e1 with
respect to ψ, θ

x

y

z

θi

e3

ϕi

Figure 3.2: Extrinsic rotation of e3 with
respect to ϕi, θi

The rotations in (3.6) and (3.7) are represented in Figure 3.1 and Figure 3.2 respectively.
Note that with this choice of parametrization, when no rotations occur (null values of all
Euler angles), then nB = e1 and nC1 = nC2 = e3.

Domain of the unit vector functions

Equations (3.6) and (3.7) show that the unit vectors can be written as functions of the
Euler angles. In order to define a chart from a region of the manifold Ω to a subset of the
Euclidean space R18, the Euler angles must be mapped to the corresponding unit vector
through a continuous bijective function. This is achieved by properly choosing the range of
Euler angle values:

nB : (−π, π)×
(
−π2 ,

π

2

)
−→ S2

B = S2\


n1
n2
n3

 ∈ S2 : n1 < 0 , n2 = 0


[
α
β

]
7−→

cosβ cosα
cosβ sinα
− sin β


(3.8)

nC :
(
−π2 ,

π

2

)
× (−π, π) −→ S2

C = S2\


n1
n2
n3

 ∈ S2 : n1 = 0 , n3 < 0


[
α
β

]
7−→

cosα sin β
− sinα

cosα cosβ


(3.9)
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ψ

x

y

z

θ

S2
Bπ/2

−π/2

π
−π

Figure 3.3: Domain and codomain of nB

π

−π/2

−π
π/2

θi

ϕi

S2
C

x

y

z

Figure 3.4: Domain and codomain of nC

where, given the Euler angles (ψ, θ) or (φi, θi) used in the rotations in Figure 3.1 and
Figure 3.2, the corresponding unit vectors are unambiguously identified by

nB = nB(ψ, θ)
nCi = nC(φi, θi) i = 1, 2 .

(3.6 revisited)
(3.7 revisited)

The restrictions on the codomains of (3.8) and (3.9), pictured in Figure 3.3 and Fig-
ure 3.4, allow to identify a subset of the state space:

Ωξ =
{

x ∈ Ω : nB ∈ S2
B , nCi ∈ S2

C i = 1, 2
}
. (3.10)

Euler angles

As long as x ∈ Ωξ, the Euler angles can be expressed as functions of their respective unit
vector. This is achieved through the inverse functions of bijections (3.8) and (3.9):

AB : S2
B −→ (−π, π)×

(
−π2 ,

π

2

)n1
n2
n3

 7−→
[
arctan2(n1, n2)
− arcsinn3

] (3.11)

AC : S2
C −→

(
−π2 ,

π

2

)
× (−π, π)n1

n2
n3

 7−→
[
− arcsinn2

arctan2(n3, n1)

] (3.12)
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3.3. Parametrization of the angular velocities

where, given the unit vector, the Euler angle pairs (ψ, θ) or (φi, θi) used in the rotations in
Figure 3.1 and Figure 3.2 are unambiguously identified by[

ψ
θ

]
= AB(nB)[

ϕi
θi

]
= AC(nCi) i = 1, 2 .

(3.13)

(3.14)

Time derivatives of the Euler Angles
The time derivatives of of the Euler angles can be expressed as functions of the unit vector
and its angular velocity. By deriving (3.11), through the chain rule we obtain

d

dt
AB(n) = ∂AB

∂n · dn
dt

= ∂AB

∂n · (ω × n) (3.15)

where n is a generic unit vector and ω is its angular velocity. A similar result can be
obtained from the time derivative of (3.12).

These computations, together with the simplifications made possible by (2.8a) and
(2.8b), yield the explicit expressions

∆B : S2
B × R3 −→ R× Rn1

n2
n3

 ,
ω1
ω2
ω3

 7−→

[ ω3
n2

1+n2
2

n1ω2−n2ω1√
n2

1+n2
2

]
(3.16)

∆C : S2
C × R3 −→ R× Rn1

n2
n3

 ,
ω1
ω2
ω3

 7−→

[n3ω1−n1ω3√
n2

1+n2
3

ω2
n2

1+n2
3

]
(3.17)

and in particular, if the pairs (ψ, θ) and (φi, θi) are defined according to (3.13) and (3.14),
then clearly [

ψ̇

θ̇

]
= ∆B(nB ,ωB)[

ϕ̇i
θ̇i

]
= ∆C(nCi ,ωCi) i = 1, 2 .

(3.18)

(3.19)

3.3 Parametrization of the angular velocities

Let n designate a generic unit vector with a nonzero angular velocity ω. Then, by definition
the time derivative of the unit vector is given by

ṅ = ω × n .

Additionally, if n and ω are orthogonal, then the trio ṅ, ω and n form a basis in R3 and
the following equalities hold:

ω = n× ṅ

n = ṅ× ω

‖ṅ‖ ‖ω‖
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i

j

k

ω

ṅ

n

Figure 3.5: Diagram showing the relation between ṅ, ω and n

Therefore, because of the constraint enforced by (2.8b), ωB can be expressed in terms
of nB and ṅB , which in turn can be obtained as functions of the Euler angles:

ωB = nB × ṅB

= nB(ψ, θ)× ∂

∂t
nB(ψ, θ)

= nB(ψ, θ)× ∂nB

∂(ψ, θ) ·
[
ψ̇

θ̇

]
(3.20)

Likewise, since (2.8d) is equivalent to nCi⊥ωCi, the angular velocities of the cables can
be obtained from

ωCi = nC(ϕi, θi)×
∂nC

∂(ϕi, θi)
·
[
ϕ̇i
θ̇i

]
(3.21)

The expressions that appear in (3.20) and (3.21) allow us to define the angular velocity
functions:

ωB : (−π, π)×
(
−π2 ,

π

2

)
× R× R −→ R3([
α
β

]
,

[
α̇

β̇

])
7−→

α̇ cosα cosβ sin β − β̇ sinα
α̇ sinα cosβ sin β + β̇ cosα

α̇ cos2 β

 (3.22)

ωC :
(
−π2 ,

π

2

)
× (−π, π)× R× R −→ R3([

α
β

]
,

[
α̇

β̇

])
7−→

β̇ sin β cosα sinα+ α̇ cosβ
β̇ cos2 α

β̇ cosβ cosα sinα− α̇ sin β

 (3.23)
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3.4. Coordinate chart

3.4 Coordinate chart

The various functions delineated in the previous sections establish a one to one correspon-
dence

(nB , ωB)←→
(
ψ , θ , ψ̇ , θ̇

)
(nCi , ωCi)←→

(
ϕi , θi , ϕ̇i , θ̇i

)
i = 1, 2.

This allows us to define a chart ξ between a region of the manifold,

Ωξ =
{

x ∈ Ω : nB ∈ S2
B , nCi ∈ S2

C i = 1, 2
}

(3.10 revisited)

and a subset of R18

Ωξz =
{

z ∈ R18 : (ψ, θ) ∈ (−π, π)×
(
−π2 ,

π

2

)
(ϕi, θi) ∈

(
−π2 ,

π

2

)
× (−π, π) i = 1, 2

} (3.24a)

(3.24b)

where each element in Ωξz has the following structure:

z =



p
v
ψ
θ

ψ̇

θ̇
ϕ1
θ1
ϕ̇1
θ̇1
ϕ2
θ2
ϕ̇2
θ̇2


Specifically, the explicit expression of ξ is given by

ξ : Ωξ −→ Ωξz

p
v
nB
ωB

p + d1 nB + L1 nC1
v + d1 ωB × nB + L1 ωC1 × nC1
p + d2 nB + L2 nC2
v + d2 ωB × nB + L2 ωC2 × nC2


7−→



p
v

aB(nB)
∆B(nB ,ωB)
aC(nC1)

∆C(nC1,ωC1)
aC(nC2)

∆C(nC2,ωC2)


(3.25)

23



Chapter 3. Topology of the state space

and as for the inverse function

ξ−1 : Ωξz −→ Ωξ

p
v
ψ
θ

ψ̇

θ̇
ϕ1
θ1
ϕ̇1
θ̇1
ϕ2
θ2
ϕ̇2
θ̇2



7−→



p
v
nB(ψ,θ)
ωB(ψ,θ,ψ̇,θ̇)
p + d1 n

B(ψ,θ) + L1 n
C(ϕ1,θ1)

v + d1 ω
B(ψ,θ,ψ̇,θ̇)× nB(ψ,θ) + L1 ω

C(ϕ1,θ1,ϕ̇1,θ̇1)× nC(ϕ1,θ1)
p + d2 n

B(ψ,θ) + L2 n
C(ϕ2,θ2)

v + d2 ω
B(ψ,θ,ψ̇,θ̇)× nB(ψ,θ) + L2 ω

C(ϕ2,θ2,ϕ̇2,θ̇2)× nC(ϕ2,θ2)


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Chapter 4

Equilibria and stability

In this chapter we identify a subset of equilibrium points and compute the corresponding
UAV thrusts. Afterwards, we carry out a preliminary study on the stability of the system
in one of the accepted equilibrium configurations.

4.1 Equilibrium configurations

Given the vector field as it is defined in (2.26),

ẋ = f(x,u)

equilibrium is achieved for pairs in the set{
(x,u) ∈ Ω×

(
R3)2 : ẋ = f(x,u) = 0

}
. (4.1)

The first obvious observation is that the velocities associated to any and all equilibrium
states must be zero:

ẋ = 0 =⇒


ṗ = v = 0
ṅB = ωB × nB = 0
ṗ1 = v1 = 0
ṗ2 = v2 = 0

where the second condition, together with (2.8a) and (2.8b), implies ωB = 0.
Even taking into account all the simplifications that come from having null velocities,

finding all the pairs in (4.1) is not trivial. On the other hand, this is not necessarily part
of the goal of this thesis work, as the stabilization can be achieved in a subset of (4.1).

In fact, in a realistic scenario, the only acceptable thrusts u1 and u2 are those associated
with zero roll and pitch angles for both UAVs. Clearly, this only happens when both u1
and u2 are aligned with e3. Therefore, for the equilibrium input, we focus on the subset

ui ∈ span {e3} i = 1, 2 . (4.2)

This restriction on the thrusts gives a lot of insight on the state. Note in fact that any
and all equilibrium states associated to (4.2) must also satisfy

nCi = e3 i = 1, 2 . (4.3)

25



Chapter 4. Equilibria and stability

u2 u1

−T2 e3 −T1 e3

T2 e3 T1 e3

−m2g e3 −m1g e3

−mLg e3

Figure 4.1: Representation of the forces acting on the system when (4.2) holds and x ∈ Γ

Indeed, if (4.2) holds but (4.3) does not, then the tensions have a non compensated hor-
izontal component which pulls the UAVs, meaning that they have nonzero linear velocities
v1 and v2.

With all this information about the equilibrium states associated with vertical thrusts,
we define the subset of the state space

Γ =
{

x ∈ Ω : v = 0
nB 6= ±e3

ωB = 0
pi − pBi = Li e3 i = 1, 2
vi = 0 i = 1, 2

}
.

(4.4a)
(4.4b)
(4.4c)
(4.4d)
(4.4e)

where evidently (4.4d) is equivalent to (4.3).
We now compute the magnitude of the thrust vectors (4.2) associated to any and all

x ∈ Γ, and show that it is a constant that only depends on the geometric characteristics of
the system.

As can be seen in Figure 4.1, if (4.2) and (4.3) hold then all the relevant forces (i.e.
tensions along the cables, UAV upward thrusts and gravity) are aligned with e3. As a
consequence of this choice, the system of Newton equations (2.13) takes the much simpler
form 

u1 = (T1 −m1g) e3

u2 = (T2 −m2g) e3

mLg e3 = (T1 + T2) e3

0 = (d1T1 + d2T2) nB × e3

(4.5a)
(4.5b)
(4.5c)
(4.5d)

Equation (4.5d), together with condition (4.4b), allows to characterize the relation be-
tween the tensions as

T1 = −d2

d1
T2 (4.6)
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4.2. Stability in the equilibrium set

and combining this result with (4.5c) we obtain

T1 = d2

d2 − d1
mLg

T2 = d1

d1 − d2
mLg .

(4.7)

(4.8)

By plugging the values of the tensions (4.7) and (4.8) in the equations (4.5a) and (4.5b)
respectively, we finally obtain:

ueq,1 =
(
m1 + d2

d2 − d1
mL

)
g e3

ueq,2 =
(
m2 + d1

d1 − d2
mL

)
g e3 .

(4.9)

(4.10)

Notice how, as stated previously, when x ∈ Γ and (4.2), both of the thrusts have a
constant magnitude that is independent of the state.

The entire set Γ is made up of equilibrium points. Let the equilibrium input be defined
as the stacked vector

ueq =
[
ueq,1
ueq,2

]
(4.11)

then it can be proven that
f (x,ueq) = 0 ∀ x ∈ Γ .

This can be easily verified with the aid of softwares such as Wolfram Mathematica or
Matlab with its symbolic toolbox.

4.2 Stability in the equilibrium set

In this thesis work, the study of stability is divided in two stages. First, we conduct a
preliminary analysis and prove that the mathematical model can be stabilized with a basic
PD controller. Then, in Chapter 6, we switch to a more realistic model, simulated in
Gazebo, in order to develop and test a controller with improved stabilization capabilities.

As far as the preliminary analysis is concerned, we discuss the stability via linearization
of the closed loop vector field in the point

xeq =



03
03
e1
03

d1e1 + L1e3
03

d2e1 + L2e3
03


∈ Γ . (4.12)

Note that from studying the behavior of the system in xeq we are able to extend the
results to any point in the subset

Γ‖ = {x ∈ Γ : nᵀ
Be3 = 0} , (4.13)

which is comprised of the equilibrium configurations in Γ associated to a horizontal orien-
tation of the bar.
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x

z

y

x′ y′

z′

Figure 4.2: Frame xyz sees the system in xeq, while x′y′z′ sees it in a generic x ∈ Γ‖

Indeed, the set Γ‖ is defined in such a way that all its points can be traced back to
the same physical configuration of the UAVs-load system. Let us consider the Euler angles
parametrization of the equilibrium points,

ξ(x) =


p
03
ψ
θ

010

∀x ∈ Γ and in particular ξ(x) =


p
03
ψ
0

010

∀x ∈ Γ‖ . (4.14)

As long as x ∈ Γ‖, the UAVs-load system can be seen as a rigid body, whose internal
structure is not altered by translations (changes to p) nor rotations about the vertical axis
(changes to ψ). The concept that the system remains the same is also shown in Figure 4.2,
where the difference between xeq and a generic point x ∈ Γ‖ is traced back to a translation
and yaw rotation of the external reference frame.

This correlation between the points in Γ‖ implies that, if the linearized system is asymp-
totically stable at xeq, then that same control law can be used to stabilize the system around
any reference configuration xREF ∈ Γ‖.

4.3 Closed loop vector field

Let the vehicle position error and its derivative be respectively defined as

epi
= peq,i − pi i = 1, 2

ėpi
= veq,i − vi i = 1, 2

where the equilibrium values are those in (4.12):

peq,i = die1 + Lie3 i = 1, 2
veq,i = 0 i = 1, 2 .
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4.4. Linearization

In order to study the stability of the system, we introduce a simple control law, which
is then improved in Chapter 6. Consider the basic PD controller

uPD(epi
) = KP epi

+ KD ėpi
(4.15)

where KP and KD are diagonal matrices in order to allow different gains for the three axes:

KP =

kPx 0 0
0 kPy 0
0 0 kPz

 KD =

kDx 0 0
0 kDy 0
0 0 kDz

 .
The control input is given by

u(x) =
[
uPD(ep1)
uPD(ep2)

]
+ ueq (4.16)

where the PD term is used to zero the position error, and ueq contains the thrusts necessary
to lift the total mass of the UAVs and the load.

Once the control input can be written as a function of the state, the closed loop vector
field is defined as

ẋ = fCL(x) = f(x,u(x)) . (4.17)

4.4 Linearization

If we linearize the vector field (4.17) about the equilibrium point xeq, the resulting system
falls in the uncertain case of the linearization theorem.

The reason lies with the fact that the representation of the system in the state space Ω
contains some degree of redundancy. As we discussed in Chapter 3, by using an atlas every
state x ∈ Ω can be expressed in terms of the Euler angles, going from a 24-dimensional
representation to a more concise 18-dimensional one.

Other than mapping the region Ωξ of manifold Ω in a subset Ωξz of the Euclidean space
R18, the chart ξ also allows to study the system dynamics in the neighborhood of xeq:

ż = d

dt
ξ(x) = ∂ξ

∂x · f(x,u) := f̃z(x,u)

= f̃z(ξ−1(z),u) := fz(z,u)

(4.18)

(4.19)

and specifically the closed loop vector field corresponding to the PD controller (4.16) is
described by

ż = fCL
z (z) = f̃z(x,u(x))

∣∣∣
x=ξ−1(z)

. (4.20)

Indeed, if we switch to z ∈ Ωξz, the linearization theorem can be used to prove asymptotic
stability. The dynamics of the system described by the closed loop vector field (4.20) about
the equilibrium point

zeq = ξ(xeq) = 018 (4.21)
are approximated by the linear system

ż w FCL
z z (4.22)

where FCL
z is the Jacobian matrix of fCL

z (z) evaluated in zeq:

FCL
z =

[
∂

∂z fCL
z (z)

]
z=018

. (4.23)
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Change of basis

We now discuss the stability of the linearized system in the particular case where

m1 = m2

d1 = −d2

L1 = L2 .

(4.24a)
(4.24b)
(4.24c)

These additional assumptions are not especially difficult to approach in a realistic sce-
nario, and are especially advantageous for simplifying the structure of matrix FCL

z , since
they allow to decouple the dynamic equations of the linear system.

Specifically, under these conditions there exists a change of basis through which the
dynamics can be expressed through chains of integrators. Let the row vector

ek = [ 0 · · · 0 1︸ ︷︷ ︸
k

0 · · · 0︸ ︷︷ ︸
18−k

]

designate the transpose of a standard unit vector in R18. Then, the change of basis matrix
is defined as

P =



e3
e3 · FCL

z
e8
e8 · FCL

z
e1
e1 · FCL

z
e1 · FCL

z · FCL
z

e1 · FCL
z · FCL

z · FCL
z

e12 − e16
(e12 − e16) · FCL

z
e2
e2 · FCL

z
e2 · FCL

z · FCL
z

e2 · FCL
z · FCL

z · FCL
z

e7
e7 · FCL

z
e7 · FCL

z · FCL
z

e7 · FCL
z · FCL

z · FCL
z



such that P · z =



pz
ṗz
θ

θ̇
px
ṗx
p̈x...
p x

θ1 − θ2
θ̇1 − θ̇2
py
ṗy
p̈y...
p y
ψ

ψ̇

ψ̈...
ψ



with z =



px
py
pz
ṗx
ṗy
ṗz
ψ
θ

ψ̇

θ̇
ϕ1
θ1
ϕ̇1
θ̇1
ϕ2
θ2
ϕ̇2
θ̇2



.

In the new basis, the dynamics of the linear system are described by the block diagonal
matrix

P · FCL
z ·P−1 =



FCL
pz

FCL
θ

FCL
px

FCL
θ1−θ2

FCL
py

FCL
ψ

 (4.25)

where each block is in phase variable form.
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4.4. Linearization

Then, as previously indicated, the dynamics of pz, θ, px, θ1 − θ2, py and ψ are all
decoupled, and are each described by the corresponding submatrix:

FCL
pz

=
[

0 1
− 2kP z

2m1+mL
− 2kDz

2m1+mL

]
FCL
θ =

[
0 1

− 2d2
1kP z

2m1d2
1+IL

− 2d2
1kDz

2m1d2
1+IL

]

FCL
px

=


0 1 0 0
0 0 1 0
0 0 0 1

− gkP x

L1m1
− gkDx

L1m1
− 2kP xL1+2gm1+gmL

2L1m1
−kDx

m1


FCL
θ1−θ2

=
[

0 1
− 2kP xL1+gmL

2L1m1
−kDx

m1

]

FCL
py

=


0 1 0 0
0 0 1 0
0 0 0 1

− gkP y

L1m1
− gkDy

L1m1
− 2kP yL1+2gm1+gmL

2L1m1
−kDy

m1



FCL
ψ =


0 1 0 0
0 0 1 0
0 0 0 1

−d
2
1gkP ymL

ILL1m1
−d

2
1gkDymL

ILL1m1
− 2ILkP yL1+g(2m1d

2
1+IL)mL

2ILL1m1
−kDy

m1



(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

It can be proven, trough the Routh-Hurwitz criterion, that there exist positive values
of the gains that make the linearized system is asymptotically stable. Then, in light of the
observations made in Section §4.2, we conclude that the controller (4.15) can stabilize the
UAVs-load system at any and all configurations included in (4.13) .
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Chapter 5

The Gazebo simulator

In this chapter, after introducing the simulation environment, we describe the Gazebo model
of the UAVs-load system. Afterwards, we discuss a method to induce disturbances in the
simulation, in order to test the control.

5.1 The simulation environment

The choice of the simulation tools used in this thesis work is highly dependent on the need
to develop the controller within the already existing framework used in the Smart Mobility
Lab at KTH Royal Institute of Technology.

In particular, the existing library of Python controllers relied on the Robot Operating
System (ROS) to handle the communication between the workstation and the vehicle. As
for the specific version, all the implementation in this thesis work is based on ROS Indigo
Igloo, rather than the more recent ROS Kinetic Kame.

A leading factor in choosing ROS Indigo lies with its compatibility with the RotorS
package [7] developed by the Autonomous Systems Lab at ETH Zurich, which provides a
number of Gazebo models of multirotor vechicles. Specifically, the model of the AscTec
Firefly was chosen for both the aerial vehicles required for our load lifting mission.

The simulations are run in the Gazebo 2.2.6 environment, as it is the latest version
available that is compatible with ROS Indigo.

5.2 The Universal Robotic Description Format in Gazebo

The Universal Robotic Description Format (URDF) is an XML file format used to describe
the elements of a robot in ROS and, by extension, in Gazebo.

The UAVs described in the RotorS version used in the simulations are defined according
to the URDF package specifications. For this reason, the ROS implementation created
during this thesis work also follows this standard: i.e., the UAVs-load system was modeled
through a series of Gazebo compatible URDF files.

In general, the description of a robot in Gazebo is characterized by a series of links
connected by joints. As far as the links are concerned, a generic <link> element is de-
fined according to the specifics at [8]; in particular, to work in Gazebo a <link> must
include an <inertial> element, with a nonzero <mass> value and a (preferably) non singu-
lar <inertia> matrix. The <visual> and <collision> elements are not compulsory, and
respectively define the visual appearance of the link and its collision properties.
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It is very important to point out that the main reference frame of the link coincides
with the the reference frame of the associated joint. The <inertial>, <visual> and
<collision> elements can all be defined with respect to a different reference frame, whose
<origin> is expressed in the reference frame of the link. In other words, up to four different
reference frames can be associated to each link, as can be see by the example in Figure 5.1.

This is especially useful when defining the inertial properties of the link: generally the
origin of the link frame is not in the center of mass of the link, while instead it is desirable
to align the inertial frame with the center of mass.

Figure 5.1: Diagram of the different frames associated to a <link>

A <joint> element is defined according to the specifications at [9]. Essentially, a joint
in a URDF file defines a relation between a parent link and a child link, depending on the
type of said joint. Each joint is endowed with a reference frame, whose pose is expressed
in the reference frame of the parent link, while the child reference frame coincides with the
joint reference frame (as previously stated). The relation among these reference frames is
described in Figure 5.2.

Figure 5.2: Diagram of the joint reference frame, together with the parent and child link
reference frames
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5.3. URDF model of the system

5.3 URDF model of the system

At its most high level description, the model consists in a link representing the load, joined
to two links representing the cables, which are in turn joined to the respective UAV from
the RotorS package.

Clearly, for each of the cables, both the joint connected to the vehicle and the joint
connected to the load need to allow free movement in two planes at the same time, in order
to have the same degree of freedom as a rope in reality. Unfortunately, the URDF format
does not support ball joints: therefore, the desired behavior is achieved by overlapping two
continuous joints.

Note that the only way to superimpose the joints is with an auxiliary link between them:
it is in fact impossible to have two links connected by more than one joint at the same time,
because the robot must have a tree structure, in which the links are the nodes and the joints
are the edges. The tree associated of the UAVs-load system is featured in Figure 5.3.

bar

bar/joint load y 1

uav2/aux load y uav1/aux load y

uav1/aux load x

uav1/cable

uav1/aux uav y

uav1/aux uav x

type: continuous
axis: y

uav1/joint load x
type: continuous
axis: x

uav1/joint bar cable
type: fixed

uav1/joint uav cable
type: fixed

uav1/joint uav x
type: continuous
axis: x

uav1/joint uav y
type: continuous
axis: y

uav1

bar/joint load y 2
type: continuous

axis: y

uav2/aux load x

uav2/cable

uav2/aux uav y

uav2/aux uav x

uav2/joint load x
type: continuous

axis: x

uav2/joint bar cable
type: fixed

uav2/joint uav cable
type: fixed

uav2/joint uav x
type: continuous

axis: x

uav2/joint uav y
type: continuous

axis: y

uav2

Figure 5.3: Tree structure of the links (nodes) and joints (edges) in the URDF model
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Structure of the model
In our URDF model, the vehicles (defined in the RotorS package) are connected to the load
by the scripts in the file cables_and_load.xacro, which delineates the tree structure of
the system.

In order to analyze the graph in Figure 5.3, we go over the contents of cables_and_load.xacro,
from the root of the tree (the bar link) to the outermost nodes (the vehicles), with a par-
ticular emphasis on the joints and the workaround employed to duplicate the behaviour of
ball joints.

Starting from the root, two joints connect the fist set of auxiliary sphere links to the
two ends of the bar, all the while implementing rotations around the y axis:

157 <!-- y axis rotation between cable 1 and load -->
158 <joint name="bar/joint_load_y_1" type="continuous">
159 <origin xyz="${x_load/2 - sphere_radius} 0 ${z_load/2}" rpy="0 0 0"/>
160 <axis xyz="0 1 0"/>
161 <parent link="bar"/>
162 <child link="${link1}"/>
163 </joint>
164
165 <!-- y axis rotation between cable 2 and load -->
166 <joint name="bar/joint_load_y_2" type="continuous">
167 <origin xyz="${-x_load/2 + sphere_radius} 0 ${z_load/2}" rpy="0 0 0" />
168 <axis xyz="0 1 0" />
169 <parent link="bar" />
170 <child link="${link2}" />
171 </joint>

From here onwards, the same code is used for both sides. After defining a rotation
around the y axis, we define a rotation around x:

137 <!-- x axis rotation between cable and load -->
138 <joint name="${robot_namespace}/joint_load_x" type="continuous">
139 <origin xyz="0 0 0" rpy="0 0 0" />
140 <axis xyz="1 0 0" />
141 <parent link="${robot_namespace}/aux_load_y" />
142 <child link="${robot_namespace}/aux_load_x" />
143 </joint>

Recall that the joint frame and the child frame always coincide. Therefore at this point
there is a continuous joint that allows rotation about the y axis of aux_load_y, and another
continuous joint that allows rotation about the x axis of aux_load_x.

Moreover, since the origin of joint_load_x is associated to null values, parent and child
link share a reference frame, which in turn case means that aux_load_y and aux_load_x
are overlapped. This stratagem allows two continuous joints about two perpendicular axes
to superimpose, allowing rotations around x and y at the same time.

Next, aux_load_x is connected to the lower extremity of the cable link by a fixed joint.
Similarly, the upper extremity of cable is attached to aux_uav_x, again with a fixed joint:

130 <!-- Fixed joint between cable and load -->
131 <joint name="${robot_namespace}/joint_bar_cable" type="fixed">
132 <origin xyz="0 0 ${cable_length/2}" rpy="0 0 0" />
133 <parent link="${robot_namespace}/aux_load_x" />
134 <child link="${robot_namespace}/cable" />
135 </joint>
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uav1/joint load x

uav1/joint uav x

uav1/joint uav y

bar/joint load y 1

uav2/joint load x

uav2/joint uav x

uav2/joint uav y

bar/joint load y 2

Figure 5.4: Diagram showing the double continuous joints in the URDF model

123 <!-- Fixed joint between cable and UAV -->
124 <joint name="${robot_namespace}/joint_uav_cable" type="fixed">
125 <origin xyz="0 0 ${cable_length/2}" rpy="0 0 0" />
126 <parent link="${robot_namespace}/cable" />
127 <child link="${robot_namespace}/aux_uav_x" />
128 </joint>

Finally, the connection between aux_uav_x and aux_uav_y is defined by a continuous
joint that allows rotation around the x axis, while the connection between aux_uav_y and
the body frame of the aerial vehicle is handled by a continuous joint that allows rotation
around the y axis. Again, since aux_uav_x and aux_uav_y occupy the same space, the two
joints are superimposed.

108 <!-- x axis rotation between UAV and cable -->
109 <joint name="${robot_namespace}/joint_uav_x" type="continuous">
110 <origin xyz="0 0 0" rpy="0 0 0" />
111 <axis xyz="1 0 0" />
112 <parent link="${robot_namespace}/aux_uav_x" />
113 <child link="${robot_namespace}/aux_uav_y" />
114 </joint>

100 <!-- y axis rotation between UAV and cable -->
101 <joint name="${robot_namespace}/joint_uav_y" type="continuous">
102 <origin xyz="0 0 0" rpy="0 0 0" />
103 <axis xyz="0 1 0" />
104 <parent link="${robot_namespace}/aux_uav_y" />
105 <child link="${uav_body_frame}" />
106 </joint>

The global structure of the URDF model is represented in Figure 5.4, showing the
geometric shape of the links and the rotation axes of the joints. Note that the simulations
have been run with parameters that conform to the simplifications at (4.24).

5.4 Translations and rotations in the Gazebo environment

When the model is spawned in Gazebo, a local reference frame is associated to the root of
the robotic tree, which in our case is the load. This reference frame, which we name XYZ,
is represented in Figure 5.5, and is such that X is always aligned with nB .
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Figure 5.5: Local reference frame in the
Gazebo scene

Figure 5.6: Rotations in the Gazebo
scene

Among its many functionalities, the simulator allows to manipulate the robot as a whole,
through translations and rotations. The latter are pictured in Figure 5.6: in particular, we
chose to use Φ, Θ and Ψ to name rotations about X , Y and Z respectively.

It is worth pointing out that the states in

Γ‖ = {x ∈ Γ : nᵀ
Be3 = 0} , (4.13 revisited)

can all be described in terms of translations along the axes X , Y and Z, together with a Ψ
rotation.

5.5 Characterization of the swinging motion of the load

When directing the vehicles towards any target configuration, it is immediately apparent
that moving the UAVs-load system almost always implies some kind of swinging motion
by the slung load. Therefore, the reliability of the controller is tied with its capability of
counterbalancing this behavior.

Thus, it is appropriate to categorize the disturbances that can affect the bar. This is
made possible by the concept that any swinging dynamic of the load can be traced back to
a combination of three basic oscillatory motions, which in the interest of clarity we name
S1, S2 and S3, and which are represented in Figures 5.7, 5.8 and 5.9 respectively.

Note that this particular subdivision is prompted by simulation results, as each of these
oscillations is the consequence of what could be considered an elementary motion of the
system. In particular,

S1 is observed with translations along Y (or with non-destabilizing Φ rotations),

S2 is observed with translations along X (or with non-destabilizing Θ rotations),

S3 is observed with Ψ rotations.

38



5.5. Characterization of the swinging motion of the load

Figure 5.7: Schematic representation of S1, from test_1.launch

Figure 5.8: Schematic representation of S2, from test_2.launch

Figure 5.9: Schematic representation of S3, from test_3.launch
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URDF model Launchfiles
uav1/joint_uav_x j_uav1_x
uav2/joint_uav_x j_uav2_x
uav1/joint_uav_y j_uav1_y
uav2/joint_uav_y j_uav2_y
uav1/joint_load_x j_bar1_x
uav2/joint_load_x j_bar2_x
bar/joint_load_y_1 j_bar1_y
bar/joint_load_y_2 j_bar2_y

Table 5.1: Joint names used in the URDF model and in the launchfiles

Testing the model against disturbances

In order to reproduce these disturbances in Gazebo in a repeatable manner, three separate
launchfiles were created: test_1.launch, test_2.launch and test_3.launch, respectively
meant to induce S1, S2 and S3.

In each of these tests, the URDF model is spawned in a configuration outside of the
equilibrium set. Specifically, the initial pose of the load is the source of the disturbance,
while the UAVs are placed in a the neighborhood of their target position. This is done to
prevent any disturbance other than the one we are specifically trying to induce.

The exact initial configurations of the model in the three tests are described in the
following excerpts of code. Note that the joint names are different from those used in the
URDF model: the correspondence is shown in Table 5.1.

The initial conditions described in the launchfiles are represented in Figures 5.10, 5.11
and 5.12 for test_1.launch, for test_2.launch and test_3.launch respectively.

test_1.launch
69 <!-- Initial joint values for the robot -->
70 <arg name="j_uav1_x" value="-0.5"/>
71 <arg name="j_uav2_x" value="-0.5"/>
72 <arg name="j_bar1_x" value="0.5"/>
73 <arg name="j_bar2_x" value="0.5"/>
74 <arg name="j_uav1_y" value="0.0"/>
75 <arg name="j_uav2_y" value="0.0"/>
76 <arg name="j_bar1_y" value="0.0"/>
77 <arg name="j_bar2_y" value="0.0"/>

pREF
i

j bar1 x
j bar2 x

j uav1 x
j uav2 x

Figure 5.10: Initial conditions in test_1.launch, right side view
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5.5. Characterization of the swinging motion of the load

test_2.launch
69 <!-- Initial joint values for the robot -->
70 <arg name="j_uav1_x" value="0.0"/>
71 <arg name="j_uav2_x" value="0.0"/>
72 <arg name="j_bar1_x" value="0.0"/>
73 <arg name="j_bar2_x" value="0.0"/>
74 <arg name="j_uav1_y" value="-0.5"/>
75 <arg name="j_uav2_y" value="-0.5"/>
76 <arg name="j_bar1_y" value="0.5"/>
77 <arg name="j_bar2_y" value="0.5"/>

pREF
1pREF

2

j bar2 y

j uav2 y

j bar1 y

j uav1 y

Figure 5.11: Initial conditions in test_2.launch, front view

test_3.launch
67 <arg name="yaw" value="0.36"/>
68
69 <!-- Initial joint values for the robot -->
70 <arg name="j_uav1_x" value="-0.5"/>
71 <arg name="j_uav2_x" value="0.5"/>
72 <arg name="j_bar1_x" value="0.5"/>
73 <arg name="j_bar2_x" value="-0.5"/>
74 <arg name="j_uav1_y" value="0.0"/>
75 <arg name="j_uav2_y" value="0.0"/>
76 <arg name="j_bar1_y" value="0.0"/>
77 <arg name="j_bar2_y" value="0.0"/>

pREF
1

pREF
2

yaw

(a) Top view

pREF
1 pREF

2

j bar1 x j bar2 x

j uav2 xj uav1 x

(b) Side view

Figure 5.12: Initial conditions in test_3.launch
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Chapter 6

Control strategy

In this chapter we use insight from the Gazebo simulations to design and test a controller,
with an emphasis on counteracting the swinging motion of the load. Two oscillation damping
methods are proposed and put to comparison.

6.1 Control based on the position errors of the vehicles

In Chapter 4 we concluded that the system could be stabilized at any point

xREF =



pREF

0
nREF
B

0
pREF

1
0

pREF
2
0


∈ Γ‖ ⊂ Ω (6.1)

by a standard PD control on the position error of each vehicle,

epi = pREF
i − pi i = 1, 2

ėpi = −vi i = 1, 2 .
(6.2)
(6.3)

However, the linearization approach is limited by the fact that the asymptotic stability
is only proven for an unknown neighborhood of the equilibrium point. It provides no
measurement on the entity of disturbances that the controller can handle, not to mention
the fact that it does not guarantee that the vehicles are capable of transporting the load
along a trajectory.

Therefore, the next step is to test the performances of the controller in the Gazebo envi-
ronment, specifically using the previously discussed launchfiles test_1.launch, test_2.launch
and test_3.launch.

Note that the controller undergoing the tests is a revised version of (4.15), with the
addition of an integral gain in order to remove the steady state error in the altitude:

uPID(epi) =KP epi + KI

∫
epi + KD ėpi (6.4)
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Chapter 6. Control strategy

with matrix gains

KP =

kPx 0 0
0 kPy 0
0 0 kPz

 KI =

0 0 0
0 0 0
0 0 kIz

 KD =

kDx 0 0
0 kDy 0
0 0 kDz

 .
In the simulations launched by test_1.launch, test_2.launch and test_3.launch,

the system exhibits unstable behavior, with both the load and the vehicles unable to con-
verge to the desired configuration. The error measurements are shown in Figures 6.4, 6.5
and 6.6, at the end of the chapter.

6.2 Oscillations damping methods

The tests show that a controller only based on the position error of the vehicles is insufficient
when the load undergoes significant disturbances. It is apparent that a better control
strategy requires a method to compensate the oscillations of the bar.

In this thesis, two different solutions are proposed. Albeit distinct, they both stem from
the same key insight: an error in the pose of the load (including any undesired swinging
motion) can be described as an error in the position and velocity of the anchoring points
pB1 and pB2.

Method 1: Compensating the velocities vBi of the anchoring points
Let us think of two ends of the bar as two separate swinging objects: while this is not
entirely accurate (the dynamics of points pB1 and pB2 in general are not decoupled), it
helps in understanding the intuition behind this method.

Indeed, if we consider pBi to be a point mass attached to a moving pivot pi through a
rigid link, then any unwanted motion of the suspended mass can be compensated by moving
the pivot accordingly. The concept is the same behind the stabilization of a pendulum with
a moving pivot, and is applied every day in construction sites around the world when lifting
heavy loads with a crane.

The control law must therefore contain a term that makes each UAV follow the motion
of the respective anchoring point, as in Figure 6.1:

uOD(vBi) = KV vBi (6.5)

where KV is a diagonal matrix

KV =

kV x 0 0
0 kV y 0
0 0 kV z

 .
Method 2: Correcting the misalignment between pi and pBi

When the load is oscillating, one or both of the anchoring points are not aligned with the
respective UAV position, resulting in nCi 6= e3.

Then, a possible control approach consists in making each UAV follow the respective
anchoring point, in an attempt to correct the misalignment. Let the error and its time
derivative be defined as:

epBi
= pBi + Lie3 − pi i = 1, 2

ėpBi
= vBi − vi i = 1, 2

(6.6)
(6.7)
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6.3. Implementation of the controller

vBi

pBi

pi

vBi

Figure 6.1: Compensating vBi

pBi

pi

epBi

pBi + Lie3

Figure 6.2: Realigning pi with pBi

then the oscillations are damped through a PD controller which forces the UAV to realign
with the respective anchoring point, as in Figure 6.2,

uOD(epBi
) = CP epBi

+ CD ėpBi
(6.8)

where CP and CD are diagonal matrices

CP =

cPx 0 0
0 cPy 0
0 0 cPz

 CI =

cDx 0 0
0 cDy 0
0 0 cDz

 .

6.3 Implementation of the controller

The controller is implemented with a distributed approach. Each vehicle runs the controller
independently from the other, and only needs information related to its own odometry

Oi =
[
pi
vi

]
and the odometry of the load

O =


p
v

nB
ωB

 .
Notice how, with this choice of notation, the state of the system defined in (2.6) can be
rewritten as

x =

OO1
O2

 .
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The reference trajectory consists only in a series of poses for the load, each described by
the pair pREF and nREF

B , rather than the full state

xREF =



pREF

0
nREF
B

0
pREF

1
0

pREF
2
0


∈ Γ‖ . (6.1 revisited)

As a matter of fact, for any state in Γ ⊃ Γ‖, there is a one to one correspondence between
the pose of the load and the vehicle positions: given the reference pose of the bar, then the
corresponding vehicle positions are

pREF
i = pREF + dinREF

B + Lie3 i = 1, 2 . (6.9)

and vice versa, given a pair of UAV positions, the pose of the load is uniquely identified bynREF
B = pREF

1 − pREF
2 − (L1 − L2) e3

d1 − d2

pREF = pREF
i − Li e3 − di nREF

B i = 1, 2 .

(6.10a)

(6.10b)

Control law
Given the aforementioned odometry measurements and the target position pREF

i , each UAV
is controlled according to

uUAV(O,Oi) = ueq,i + uPID(pREF
i ,Oi) + uOD(O,Oi) . (6.11)

The proposed control law is made up of three terms. The equilibrium term ueq,i is
responsible for generating enough thrust to lift the system. It is a constant and is defined
according to (4.9) or (4.10) for the first and second UAV respectively.

The position controller uPID, defined in (6.4), is tasked with generating an input that
brings the UAV from its current position pi to the target one pREF

i .
Last, the oscillation damping term uOD is a function of the odometry measurements,

and can either be (6.5) or (6.8).

Remapping of nREF
B and collision avoidance

The Gazebo simulations show that the controller, as it is defined in (6.11), is incapable of
properly handling big differences between the current and desired orientation of the load.
Specifically, high values of ∣∣ψREF − ψ

∣∣ ,
which involve a yaw rotation of the bar, can lead to the UAVs moving towards each other
as if trying to switch places, rather then following along a safe circular trajectory.

Therefore, before determining the target positions pREF
1 and pREF

2 , the difference be-
tween current and desired bar orientation is verified, and if necessary nREF

B is recomputed
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6.4. Plots of the test results

α
nB

n⊥
B

nREF
B

nREF
B

Figure 6.3: Graphical representation of (6.12)

according to

nREF
B =


nREF
B if nᵀ

BnREF
B ≥ cosα

nB if nᵀ
BnREF

B ≤ −0.99
cosαnB + sinαn⊥B else

(6.12)

where α is the maximum angle allowed between the current value of nB and the desired
value nREF

B .
The algorithm, which is also represented in Figure 6.3, forces the vehicles to follow

intermediate trajectories. Indeed, if the angle between nB and nREF
B is greater than α, then

nREF
B gets remapped to a unit vector whose angle with nB is exactly α; otherwise, if the

angle is lesser than α, nREF
B remains unchanged.

Note that (6.12) rejects angles close to ±π, since the controller in this case cannot decide
whether to move clockwise or counterclockwise, leading to an ambiguity.

Comparison of the damping methods
The performances of the control law (6.11) are tested in the Gazebo simulator, for both
the oscillation damping methods. The results of test_1.launch, test_2.launch and
test_3.launch show that the propose controller is capable of stabilizing the system against
disturbances. The error measurements are shown in Figures 6.7, 6.8 and 6.9.

Specifically, the second method appears to be overall faster and more reliable. Further
simulations confirm that it also fares better in following trajectories.

6.4 Plots of the test results

We close this chapter with the plots featuring the error measurements recorded when testing
the controllers. For each test, we show four plots: one for the position error of each UAV,
and two for the load.

In particular, note that the error on the pose of the load is described in terms of pB1
and pB2, rather than p and nB , as the resulting plots are arguably more readable. The
goal is to check whether or not the bar converges to the desired pose, and for any trajectory
x(t) ∈ Ω {

p(t) −→ pREF

nB(t) −→ nREF
B

⇐⇒

{
pB1(t) −→ pREF

B1
pB2(t) −→ pREF

B2

where obviously

pREF
Bi = pREF + dinREF

B i = 1, 2 .
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Figure 6.4: Results of test_1.launch with PID control on the position error
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Figure 6.5: Results of test_2.launch with PID control on the position error
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Figure 6.6: Results of test_3.launch with PID control on the position error
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Figure 6.7: test_1.launch, comparison between the oscillation damping methods
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Figure 6.8: test_2.launch, comparison between the oscillation damping methods
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Figure 6.9: test_3.launch, comparison between the oscillation damping methods
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Chapter 7

Conclusions

In this thesis, we address the problem of collaborative load lifting in two main steps. First,
we develop a mathematical model, and use it to understand the system dynamics and
isolate a set of safe equilibrium configurations. Then, we bring this model in the Gazebo
environment, and use the initial simulation results as a base for developing an improved
controller, which is then tested again against disturbances.

We propose two distributed variants of the control law, using different damping methods,
which are then compared. The results of the tests on the simulator favor one method over
the other, but in general both are shown to be able to achieve convergence to the desired
state xREF, provided that it belongs to a specific subset of equilibrium points,

Γ‖ = {x ∈ Γ : nᵀ
Be3 = 0} . (4.13 revisited)

Future developments
The natural follow-up of this endeavor involves testing the proposed controller with real
life drones. In particular, see how well the oscillation damping capabilities translate into
reality.

There are some evident challenges in this new goal. First of all, in the simulator our
control law uses exact odometry measurements, which are not always easily achievable in
the real world. Even with a motion capture system in place, there is still a degree of
uncertainty in the measurements; therefore a first development would involve testing the
robustness of the controller, in order to measure how truly reliant it is on the precision of
the odometry detection.

Recall that the system is modeled as a bar tethered to two UAVs. However, a difficulty
arises when using cable or rope, since the Gazebo model treats the connection between UAV
and load as a rigid link. Thus, tests should focus on evaluating if the oscillation damping
methods still work when using actual rope. A possible solution may involve combining the
results of [5, 6] with our control strategy.

Lastly, yet another direction may involve exploring the situation where the equations
of the linear system cannot be decoupled, and see whether our control approach can be
generalized.
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Appendix

Rotation matrices

Consider a rigid body, and its local reference frame x′y′z′. By definition the orientation
of x′y′z′ (and therefore of the body) is characterized by the coordinates of its standard unit
vectors ex′ , ey′ and ez′ expressed with respect to the global reference frame xyz:

R =
[
ex′ ey′ ez′

]
(1)

which is called a rotation matrix. Note that, being made up of standard unit vectors, each
rotation matrix must satisfy the following constraints:

eᵀ
x′ex′ = 1 eᵀ

x′ey′ = 0 eᵀ
x′ez′ = 0

eᵀ
y′ey′ = 1 eᵀ

y′ez′ = 0
eᵀ
z′ez′ = 1

that make the matrix orthogonal. In particular, we only consider rotation matrices that
belong to the special orthonormal group:

Rᵀ = R−1 det(R) = 1 ,

where the positivity of the determinant is linked to the frame being right handed.

Elementary rotations
An elementary rotation occurs when x′y′z′ only rotates about one of the axes of the world
reference frame xyz:

Rx(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


Rz(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1



(2)

(3)

(4)

Three angle representation
A rotation matrix gives a redundant description of orientation. It has nine elements and
needs to satisfy six constraints, leaving three free parameters.
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Appendix . Rotation matrices

A representation of orientation in terms of three independent parameters constitutes a
minimal representation. It can be obtained using a set of three Euler angles (and therefore
three elementary rotations), according to the following theorem.

Euler’s Theorem. Any two independent orthonormal reference frames xyz and x′y′z′ can
be related by a sequence of no more than three elementary rotations, as long as no two
successive rotations are about the same axis.

Roll-Pitch-Yaw convention
In this thesis, we use the following sequence of rotations as a convention:

1. a rotation of and angle ϕ around the x axis of the world reference frame

2. a rotation of and angle θ around the y axis of the world reference frame

3. a rotation of and angle ψ around the z axis of the world reference frame.

The resulting rotation is obtained through pre-multiplication

R = Rz(ψ) ·Ry(θ) ·Rx(ϕ) (5)

since the rotations are with respect to a fixed reference frame.

58



Bibliography

[1] T. Lee, K. Sreenath, and V. Kumar, Geometric Control of Cooperating Multiple Quadro-
tor UAVs with a Suspended Payload, in Proceedings of the IEEE Conference on Decision
and Control, vol. 5510-5515, Florence, Italy, Dec. 2013.

[2] T. Lee, Geometric Control of Multiple Quadrotor UAVs Transporting a Cable-Suspended
Rigid Body, Proceedings of the IEEE Conference on Decision and Control, pp. 6155-
6160, Dec. 2014.

[3] N. Michael, J. Fink, and V. Kumar, Cooperative Manipulation and Transportation with
Aerial Robots, in Proc. Robotic Science and Systems, 2009.

[4] K. Sreenath, N. Michael, and V. Kumar Trajectory Generation and Control of a Quadro-
tor with a Cable-Suspended Load - A Differentially-Flat Hybrid System, in IEEE Inter-
national Conference on Robotics and Automation, Karlsruhe, Germany, pp. 4873-4880,
May 2013.

[5] P. Pereira, M. Herzog, and D. Dimarogonas, Slung Load Transportation with a Single
Aerial Vehicle and Disturbance Removal, in Mediterranean Conference on Control and
Automation, pp. 671-676, 2016.

[6] P. Pereira, and D. Dimarogonas, Control Framework for Slung Load Transportation with
Two Aerial Vehicles, manuscript, 2017.

[7] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating System (ROS): The
Complete Reference (Volume 1), Springer International Publishing, 2016.

[8] http://wiki.ros.org/urdf/XML/link

[9] http://wiki.ros.org/urdf/XML/joint

59

http://wiki.ros.org/urdf/XML/link
http://wiki.ros.org/urdf/XML/joint

	1 Introduction
	2 Mathematical model
	2.1 Notation
	2.2 Description of the system
	2.3 State space
	2.4 Tangent space
	2.5 Dynamic equations

	3 Topology of the state space
	3.1 Local description of the manifold
	3.2 Parametrization of the unit vectors
	3.3 Parametrization of the angular velocities
	3.4 Coordinate chart

	4 Equilibria and stability
	4.1 Equilibrium configurations
	4.2 Stability in the equilibrium set
	4.3 Closed loop vector field
	4.4 Linearization

	5 The Gazebo simulator
	5.1 The simulation environment
	5.2 The Universal Robotic Description Format in Gazebo
	5.3 URDF model of the system
	5.4 Translations and rotations in the Gazebo environment
	5.5 Characterization of the swinging motion of the load

	6 Control strategy
	6.1 Control based on the position errors of the vehicles
	6.2 Oscillations damping methods
	6.3 Implementation of the controller
	6.4 Plots of the test results

	7 Conclusions
	Appendix
	Bibliography

