
Università degli Studi di Padova

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE
Corso di Laurea Magistrale in Ingegneria Informatica

Machine learning techniques
for customer churn prediction

in banking environments

Relatori
Prof. Andrea Pietracaprina

Prof. Geppino Pucci

Correlatori
Ing. Massimo Ferrari
Dott. Riccardo Panizzolo
(everis Italia S.p.a.)

Laureando
Valentino Avon
Matricola 1104319

Anno Accademico 2015-2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Padua@thesis

https://core.ac.uk/display/83461632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 1

2 Classi�cation Review 7
2.1 Attribute Types . 8
2.2 Training, Validation and Test phases 9
2.3 Evaluation Metrics . 11

2.3.1 Accuracy . 11
2.3.2 Area Under the Curve 12
2.3.3 F-measure . 13

2.4 Common Problems in Classi�cation 14
2.4.1 Class Imbalance . 14
2.4.2 Curse of Dimensionality 16

2.5 Common Models . 17
2.5.1 Decision Trees . 18
2.5.2 Rule Based Classi�ers 19
2.5.3 Logistic Regression . 20
2.5.4 Random Forest . 21
2.5.5 Boosting . 22

3 Churn Prediction Review 25
Introduction . 25
3.1 Churn Prediction . 26
3.2 Problem De�nition . 32
3.3 Data Collection . 34
3.4 Dataset Structure . 36

3.4.1 Static and Longitudinal Attributes 36
3.4.2 Dataset Frameworks 38
3.4.3 Labelling the Dataset 42

3.5 Preprocessing . 43
3.5.1 Outlier Detection . 43
3.5.2 Missing Values Treatment 44

3

3.5.3 Feature Selection . 45
3.5.4 Overcome Class Imbalance 47

3.6 Models . 47
3.6.1 Standard Popular Models 48
3.6.2 Comprehensible Models 48
3.6.3 Clustering Classi�cation 53
3.6.4 Hybrid Neural Networks 54
3.6.5 Hierarchical Multiple Kernel Support Vector Machine

(H-MK-SVM) . 55
3.6.6 Improved Balanced Random Forests (IBRF) 57

4 Practical Problem Description and Data Preprocessing 59
4.1 Introduction . 60
4.2 Dataset Structure . 60
4.3 Dataset Creation . 61

4.3.1 Data Quality Check . 62
4.3.2 Dimensionality Reduction 63
4.3.3 Feature Extraction . 63
4.3.4 Labelling the Records 66

4.4 Preprocessing Phase . 75
4.4.1 Feature Selection . 75
4.4.2 Sampling . 77
4.4.3 Outlier Analysis . 77

4.5 Final Summary . 78

5 Churn Prediction Model Development and Experimental Val-
idation 81
5.1 Modelling Phase . 82

5.1.1 Undersampling and Oversampling 83
5.1.2 Outlier Removal . 85
5.1.3 Easy Ensemble Technique 86
5.1.4 Boosting . 88

5.2 Results . 90
5.3 Improved Results . 94

6 Conclusions 97

A Dataset Attributes 101

4

Chapter 1

Introduction

In an era of mature markets and intensive competitive pressure, it is funda-

mental for companies to manage relationships with their customers, in order

to increase their revenues. In business economics, this concept is known

as the "Customer Relationship Management" (CRM), which is a business

strategy that aims at ensuring customers' satisfaction. The companies which

successfully apply CRM to their business nearly always improve their reten-

tion power, that is, the probability that a customer will not leave. In fact,

a high retention power avoids useless waste of money, since acquiring new

customers can cost �ve times more than satisfying and retaining existing

customers [14]. This led companies to put a lot of e�ort in understanding

and analyzing their customers' behavior, in order to identify with adequate

advance which clients will leave. In particular, these customers are subjected

to several rectifying actions (e.g. promotions or gifts) for their retention.

The phenomenon related to the customers abandonment is commonly

called customer churn, while the churners identi�cation process is usually

1

called customer churn prediction. In this thesis we focus on the �rst phase

only, that is, the correct identi�cation of the customers who will leave the

company (namely the "churners").

In this project, we studied the customer churn phenomenon in collabo-

ration with Everis Italia, which is a consulting company located in Milano.

More precisely, all the practical work has been done in the context of a cur-

ricular internship. In particular, we studied the behavior of about 730000

customers in banking environments, aiming to prove to the banks that pre-

dicting customer churn through the use of machine learning techniques is

feasible, that is, identifying customers who will leave with quite good pre-

cision, avoiding unnecessary costs. Moreover, this thesis seeks to convince

banks that a data driven product is valuable and competitive with the tra-

ditional ones, which do not use machine learning techniques.

Technically speaking, we chose to model the churn prediction problem as

a standard binary classi�cation task, labelling each customer as "churner" or

"non-churner".

Since the bank database contains raw data, we put a lot of e�ort in cre-

ating a standard dataset, which can be given as input to common machine

learning algorithms. In fact, the database contains many records per cus-

tomer, in order to track the customers' operations and movements over time.

A standard classi�cation dataset, instead, describes each customer with a

unique record, which summarizes his/her characteristics with a set of fea-

tures. For this reason, we aggregated the data related to each customer

through some summary functions, such as the mean or the sum, in order to

compress all his/her records into a single one. In particular, we computed

2

these functions on di�erent periods of time, in order to keep track of cus-

tomers' movements over time, yet maintaining a single record per customer.

An important byproduct of our study is that we formally de�ned who is

a "churner", accordingly to the bank needs. In fact, several de�nitions can

be applied to label a customer as "churner", such as a customer who closes

all the bank accounts or a customer who has a very low balance and does not

make transactions for a long time. In particular, we labelled as churner at a

given calendar month a customer who actually leaves during the subsequent

month, in order to predict enough in advance which customers will leave. In

this way banks have the chance to apply some rectifying actions useful for

retaining their customers.

Furthermore, we presented a non-standard validation approach, which

provides a closer estimate to the real business performances of a classi�er. In

particular, we subdivided the available data temporally, in order to evaluate

the performances of a classi�er on future data. This validation procedure

is more penalizing than the standard one, which consists in randomly parti-

tioning the data among observations. In fact, the behavior of the customers

who leave changes over time, hence a model evaluated with the standard val-

idation approach results in optimistic estimated performances, because it is

evaluated on churners with behavioral characteristics similar to the ones con-

tained in the training set. For this reason, the predictivity results obtained

in this project appear to be much lower than those commonly reached in the

literature. In fact, to the best of our knowledge, no work in the open liter-

ature has evaluated the classi�ers with a temporal approach, thus resulting

in optimistic performances which are severely misleading for the business.

3

In any case, domain knowledge ensures us that our results are considered

standard in banking environments.

We predicted the customer churn event using di�erent version of C5.0, an

algorithm which implements the decision tree model. In particular, C5.0 was

designed to work with large datasets and it was optimized to minimize the

training time. More precisely, we evaluated the C5.0 on di�erent preprocessed

training sets, which were created by employing the undersampling technique

(used to balance the number of records belonging to the positive and the

negative class) and the outlier removal (to smooth out noise in the data).

We tested an easy ensemble of C5.0 also, which is basically a classi�er built

through the use of a peculiar technique that, in some cases, allows to enhance

the overall predictive accuracy. In particular, the easy ensemble of C5.0

resulted the best model of all tried in this thesis.

The obtained results con�rm that machine learning techniques can be

e�ectively applied to predict customer churn in banking environments, that

is, succeeding in forecasting which customers will leave in the near future

with high precision (i.e. avoiding false positive costs). Hence, more in-depth

studies may be worth pursuing.

The remainder of the thesis is structured as follows. In the �rst chapter,

we present a high-level review of classi�cation, highlighting some general

machine learning techniques, which have been successfully applied in the

literature to solve churn prediction problems. In the second chapter, instead,

we show a review of several ad hoc algorithms and techniques proposed in the

literature, which were developed speci�cally for predicting customer churn.

In the third chapter, we describe the practical problem that we faced, showing

4

the preprocessing actions used to generate a standard and clean dataset from

the raw data. In particular, we show a non-trivial way to label the records,

accordingly to the bank needs. Moreover, we present the aforementioned non-

standard dataset partitioning (i.e. the generation of the training set and the

test set), which takes into account the time dependencies inherent in customer

churn, in order to avoid unrealistic model performance estimations. Finally,

in the fourth chapter we present the tested machine learning techniques, the

�nal implemented solution and the achieved results. The thesis ends with

a chapter discussing some concluding remarks highlighting the �nal model

which we chose to achieve our purposes, and providing directions for future

work which may be useful to improve the predictive accuracy.

5

6

Chapter 2

Classi�cation Review

Data mining is a very useful tool for many di�erent tasks. In this chapter we

de�ne the classi�cation task, which will be used to model the churn prediction

problem, and some common techniques to evaluate it. Classi�cation is a

predictive task, which means that it is used to model prediction problems

and to make forecasts. In particular, the classi�cation assumes that the

event we want to predict is represented by a �nite and discrete domain of

possible outcome values (i.e. classes). If this is not the case, then the problem

becomes a regression task.

De�nition 1 (Classi�cation Task) Given a dataset T = {t1, t2, ..., tN} of

N records, where each ti ∈ T consists of m attributes A1, ..., Am with domains

D1, ..., Dm (i.e. t(Aj) ∈ Dj ∀j = 1...m), and a a class attribute C, such that

ti(C) ∈ Γ (the �nite and discrete domain of classes), the classi�cation task is

to build a function f : D1 ×D2 × ...×Dm → Γ, which is called classi�cation

model or classi�er.

If Γ is a continue domain, the problem is called Regression. ti is usually

7

called record, example or instance. Aj is called attribute, feature or predictor.

C is called class, target attribute or category.

2.1 Attribute Types

Attributes are pieces of information which are related to the class to predict.

They can assume various forms, but generally they are categorized in four

types. The attribute type depends on di�erent properties, as explained in

Table 2.1.

= 6= < > +/− ×/÷ Examples
Nominal yes Sex, Marital Status
Ordinal yes yes Price (low, medium, high)
Interval yes yes yes Date, Temperature in Celsius
Ratio yes yes yes yes Lengths, Temperature in Kelvin

Table 2.1: Attribute Properties

The values of a nominal attribute are just di�erent names, i.e., nominal

attributes provide only enough information to distinguish one object from

another (= 6=). The values of an ordinal attribute provide enough informa-

tion to order objects (< >). For interval features, the di�erences between

values are meaningful, i.e., a unit of a measurement exists (+/−). For ratio

attributes, both di�erences and ratios are meaningful (×/÷).

Nominal and Ordinal attributes are called Categoric or Qualitative, while

Interval and Ratio attributes are called Numeric or Quantitative. This cat-

egorization is explanatory: the management of data heavily depends on the

attribute type.

8

2.2 Training, Validation and Test phases

Given a set of historical data, it is possible to build a statistical model on it,

using a speci�c algorithm. This phase is called the "training phase", which

trains a classi�er to �t the data (i.e. the training set). In this phase, models

usually optimize a loss function, which empirically represents the model in-

capability to �t the training set. Although a good score on the training set is

desirable, it does not give information about the model predictive capability.

In fact, we do not know if the model has learned useful patterns or just noise.

A model that gets low error on the training set and fails to make good pre-

dictions is said to be in over�tting. Over�tting is a serious problem: a model

which seems very accurate but in fact fails when new data comes to evalua-

tion. There are lots of reasons that cause over�tting, such as noisy data or

small training set size. There are several approaches to recognize if a model

over�ts. The common procedure evaluates model predictions on new data,

which were not used in the training phase. If the error made on new data

is comparable to the training error, then the model has successfully learned

some non random patterns. Otherwise, if the error made on new data drasti-

cally diverges from the training error, the model has just memorized records

and fails to generalize. Typically, the training error is always smaller than

the error made on new data: the model is trained on the training set, hence

it was optimized on these data. All of this highlights the importance of such

procedure, which allows to estimate real model performance. This phase is

called the validation phase. Another fundamental purpose of this phase is

the parameter tuning. The parameter tuning consists in setting the model

9

parameters properly in order to minimize the error. The error estimation

should not be done using the training set, because this would give a biased

feedback. Instead, the error estimation should be done using a validation set

to get a reliable estimate of model performance.

Typical validation approaches are the Holdout method and the k-Fold

Cross Validation. The �rst method randomly splits the initial data in a

training and in a validation set. The training set is then used to build a

model, which is then evaluated on the validation set. The second method,

instead, partitions the initial data in k disjoint sets (i.e. the folds). k-1 folds

are then used as the training set and the remainder one as the validation

set. Iterating this procedure k times, each fold is used exactly once for

validation and k-1 times for training the model. The model performance is

then estimated with the mean of the k errors.

If the validation set is used to optimize the model parameters or to choose

the best classi�er for the problem, the estimated error will be optimistic.

Therefore, another set of new data should be available to estimate the real

model performance (i.e. the test set). This last phase is called the test phase.

The test set should not be used to make choices or optimizations, otherwise

the estimated error would still be optimistic.

It is important to notice that over�tting is not the only cause of bad

predictions. There exists another undesirable phenomenon, which is called

under�tting. Under�tting explains why a classi�er gets a high error both on

training and validation sets. This occurs when a model can not capture the

underlying trend of the data, because it is too simple to �t the data properly.

In this case, it is necessary to add new features or to use di�erent classi�ers,

10

in order to avoid under�tting.

2.3 Evaluation Metrics

In the previous section, we showed that a model a�ected by over�tting or

under�tting makes "poor" predictions. To specify what is meant by poor

predictions, it is necessary to introduce some formal metrics that measure the

performance of a classi�er. To optimize a classi�er, it is important to specify

at the beginning which metric will be used, in order to �x the optimization

objective for the entire analysis. Sometimes the metric is given by design

speci�cations, sometimes not. If the metric is not given, data analysts have

to choose the proper metric according to the problem.

2.3.1 Accuracy

Accuracy is one of the most common metrics used in data science, because of

its intuitiveness and simplicity. Accuracy simply measures how many records

the classi�er predicts correctly. The formula is very straightforward and it is

also easy applicable to multi class problems.

Accuracy = number of correct predictions
total number of records to be predicted

This formula highlights that accuracy attributes the same relevance to each

class. If some outcomes are more relevant than others, that is, we are more

interested in predicting correctly some classes rather than others, then accu-

racy does not give a reliable metric of model's performance.

11

2.3.2 Area Under the Curve

The Area Under the Curve (AUC) is another popular metric in machine

learning and data mining. It is only applicable for binary classi�cation tasks

(i.e. the outcome has only two possible values). The two classes are usually

called positive and negative classes in this context. In this case, it is possible

to de�ne some quantities based on the predicted class versus the real one, as

shown in Table 2.2. In particular, we de�ne:

True Positive Rate = TP
TP+FN

False Positive Rate = FP
FP+TN

The true positive rate measures the fraction of positive records correctly

classi�ed by the model as positive ones. Instead, the false positive rate

measures the fraction of negative records misclassi�ed as positive ones.

Positive Negative
(Actual) (Actual)

Positive True Positive False Positive
(Predicted) (TP) (FP)

Negative False Negative True Negative
(Predicted) (FN) (TN)

Table 2.2: Binary Confusion Matrix

The AUC measures the area under the Receiver Operating Characteristics

(ROC) curve, which is a curve created by plotting the true positive rate

versus the false positive rate at various threshold settings. Intuitively, the

12

AUC indicates how well a classi�er is able to discriminate the two classes.

The AUC plays an important role in imbalanced datasets, which means that

the two classes are not equally present. For example, an imbalanced dataset

contains the 95% of negative records and the 5% of positive ones. This is

a well known problem in machine learning and it is explained in subsection

2.4.1. The AUC is useful in this case because allows to know how well the

model understands the positive class, which is di�cult to learn given its

scarcity. Contrariwise, accuracy gives poor feedback of model performance:

because of the scarcity of the positive class, a classi�er can get a very high

accuracy simply ignoring the positive class (i.e. classifying all records as

negative).

2.3.3 F-measure

Another important evaluation metric is the F-measure. The de�nition of F-

measure relies on other two metrics: recall and precision. Recall is the true

positive rate. Precision, instead, is calculated according to Table 2.2 as:

Precision = TP
TP+FP

A high precision means that all the predicted positive records are very likely

to be positive, that is, the model makes very few errors on the positive class.

Usually a model with a high precision is able to catch only a little portion of

positive records, because the error must be limited. A high recall, instead,

means that the model is capable to classify correctly a lot of positive records,

but it probably makes some errors in order to catch all the possible positive

records. These considerations suggest that precision and recall are inversely

13

related: a high precision implies a low recall and a high recall implies a

low precision. Since it is desirable to have good precision and recall, they

can be merged in a single metric to make clearer and easier the process of

optimization. In fact, maximizing a unique function is more intuitive rather

than having two or more optimization objectives. This metric is the F-

measure, which is the harmonic average of precision and recall. Speci�cally,

let be r = recall and p = precision. Then,

F-measure = 2rp
r+p

Notice that F-measure is high if and only if both precision and recall are

high. As well as the AUC, this metric is useful in evaluating models that

deal with imbalanced datasets.

2.4 Common Problems in Classi�cation

In this section we explain two typical problems that often occurs in data

mining and some solutions to cope with them.

2.4.1 Class Imbalance

Class imbalance is a common problem in data mining. In the literature, it

is usually de�ned in a binary classi�cation context to make the issue clearer.

Lets consider a binary classi�cation task as explained in subsection 2.3.2.

The class imbalance problem occurs if the dataset used for the analysis is

unbalanced, which means that the number of negative records is much higher

than the number of positive records. This disproportion leads classi�ers to

14

ignore the rare class, that is, classifying all the records as negative, because

this would imply a high accuracy. This problem is much more relevant if

the rare class is more important than the negative one. In fact, the negative

class has usually poor interest in being predicted, while the rare class often

represents a very signi�cant event. This means that the cost of misclassifying

a positive record is higher than the cost of other errors. Moreover, the positive

class is more prone over�tting given its scarcity. All of this makes learning

from imbalanced datasets challenging. A lot of solutions have been proposed

in the literature, but they can be summarized in three important groups:

• Undersampling

• Oversampling

• Synthetic Minority Over-sampling Technique (SMOTE)

Undersampling

The undersampling technique consists in randomly removing some negative

records from the dataset, in order to balance the classes proportion. This

allows to reduce the dataset size and consequently the computational time,

but it may lead to an unrepresentative dataset, because a lot of information

is thrown away. To decrease the loss of information, it is possible to create

N di�erent undersampled datasets, in order to cover all the initial data, on

which to build N models. Then the predictions of the N models are merged

with some chosen criteria.

15

Oversampling

The oversampling technique addresses the class imbalance problem by repli-

cating the positive records, in order to give them more importance. Adding

records leads to a bigger dataset, hence the computational time increases.

Moreover, if the dataset has some outliers, then the oversampling will am-

plify their e�ect.

SMOTE

SMOTE is a more sophisticated technique than oversampling and under-

sampling. In particular, SMOTE synthesizes arti�cial positive records with

a linear combination of some real positive ones. Moreover, SMOTE also ap-

plies undersampling to the negative class to balance the proportion without

generating too many arti�cial records. In practice, SMOTE is very powerful

and decreases the chance that a model over�ts the rare class.

2.4.2 Curse of Dimensionality

The curse of dimensionality is another big problem in data mining. As we

increase the number of features to describe the phenomenon of interest, the

number of records needed to �ll the feature space grows exponentially. This

means that, to achieve good predictions with a high dimensional dataset, we

need plenty of data. Moreover, the concept of euclidean distance vanishes in

high dimensional space, because the instances tend to be very sparse. It is

also more di�cult to make hypothesis and exploratory data analysis when

the number of features is too high. Although it is very common to have a lot

16

of features, sometimes only a subset of them is relevant, thus it is possible

to reduce the feature space in order to improve the overall performance.

This idea is the basic concept that motivates the development of feature

selection algorithms, which try to avoid the curse of dimensionality while

also removing noise from data. These algorithms are heuristics, because

it can be easily shown that optimal feature selection requires exponential

computational time.

Random Feature Selection

One of the simplest algorithm for selecting the most important features is the

Random Feature Selection technique. In particular, this procedure consists

in randomly selecting a subset of features, which is then utilized to train a

classi�er. The model just trained is evaluated on the validation set, in order

to estimate its performance and, thus, the features predictive power. This

procedure is iterated a number of times, with di�erent random choices, in

order this procedure to select the most promising subset of attributes.

Once a given subset is chosen, it is also possible to "lock" the selected

variables and incrementally add an additional random feature, trying to im-

prove the results just obtained.

2.5 Common Models

In previous sections we have described the classi�cation task and its typical

problems but have not shown how to build a classi�er yet. This section de�nes

some common classi�cation techniques that will be used in this thesis.

17

2.5.1 Decision Trees

Decision trees are one of the most popular learning tools in data mining. They

are very popular because they generate an easy-to-interpret model, which

reveals the most relevant features. The model generated is a tree structure

in which each internal node represents a "test" on a particular feature. The

test outcomes split records in subsets, which create new nodes in the tree

structure. Once a particular criteria is reached, a node stops splitting itself

and becomes a leaf. A leaf is often labeled with the majority class, that is,

the most frequent class in the leaf. Each path from the root to a leaf describes

a rule. A record which satis�es all the conditions of one rule is labelled with

the relative leaf label. This learning algorithm is powerful, because it can

catch non-linear relationships between features, maintaining representation

simplicity. A popular algorithm which implements the decision tree model

is the C4.5 software. In particular, it exists also an enhanced version, called

C5.0. The C5.0 classi�er features a more e�cient strategy for producing

decision trees than the C4.5 algorithm, both with respect to memory and to

computational costs [8]. Moreover, it is optimized to treat with big amount

of data and with missing values. Unfortunately, a decision tree classi�er is

unstable: a small changes in the data can heavily modify the tree structure

and the relationships generated, hence the computational time can vary a lot

and sometimes this could be ine�cient. The instability makes decision trees

prone to over�tting, although there exist some techniques to avoid it. In

particular, random forest leverages on this very instability to create a more

stable and accurate model, as explained in subsection 2.5.4.

18

2.5.2 Rule Based Classi�ers

A rule based model is a classi�er which represents the relationships be-

tween features and classes through a set of If-Then rules. More precisely,

the model is R = (r1 ∨ r2 ∨ ... ∨ rk), where each ri is a rule. A rule ri is

made by a set of requirements conditioni and a class yi, graphically repre-

sented by ri : (conditioni) =⇒ yi. The requirements are composed by some

logical comparisons, combined by an AND logical operator. In particular,

conditioni = (A1op2V1) ∧ (A2op2V2) ∧ ... ∧ (AloplVl), where Ai is a feature

value, Vi is a constant and opi is an operator, such as "<" or "=".

If a record correctly �ts all the requirements of a rule, then we say that

the record triggers the rule. Instances could trigger more than one rule at

a time, hence it is necessary to give a priority to the rules, placing them

in hierarchical order. Typically, the �rst rules are more relevant than the

latter ones. The rules order is signi�cant: once a record triggers a rule, it is

labelled with the related outcome. Therefore, the �rst rule triggered in the

hierarchical order is the one that will label the record.

The procedure used to train a rule based classi�er depends on the im-

plementation. An e�ective learning algorithm is the Repeated Incremental

Pruning to Produce Error Reduction (RIPPER).

RIPPER implements the above interface as follows:

• the hierarchical order is established by the class frequencies, i.e., rules

which concern rare classes are the most relevant ones;

• RIPPER learns one rule using a greedy approach. Iteratively, it creates

step by step the requirements set, adding each time the most relevant

19

condition, which maximizes an optimization function (i.e the foil infor-

mation gain). Since long rules do not make sense and lead to over�tting,

RIPPER is also designed to prune rules;

• the algorithm stops learning the rules for one speci�c class in two dif-

ferent cases:

� each training record of that class triggers at least one rule, or

� the rule set size, which represent that class, is too big.

2.5.3 Logistic Regression

The logistic regression is a classi�cation model and it was developed in order

to extend the linear regression model which is, instead, a regression model

(i.e. the outcome is continuous). Although linear regression can be adapted

for the classi�cation task, it gives poor results. Therefore, researchers have

developed the logistic regression model to study the relationships between a

binary outcome (0 or 1) and features. The intuition behind logistic regression

is pretty simple. Since we need a binary outcome, we could do the following:

• Map the linear regression predictions in [0, 1]

• Interpret the new result as the probability of having 1 as outcome

• Predict 1 if the probability is greater than a chosen threshold, otherwise

predict 0

This makes logistic regression a powerful classi�er, because it allows to

specify the algorithm precision through the probability threshold. In partic-

ular, setting a high threshold leads to predict 1 only if we are very con�dent.

20

Conversely, a low threshold decreases the precision, but increases the recall.

Typically, if the problem has equally relevant classes, the threshold is set to

0.5. Usually, the function used to map linear regression predictions in [0, 1]

is the logistic function (also called the sigmoid). This function was chosen

mainly because its peculiar characteristics, which �t the problem require-

ments well. The sigmoid function is the following:

Sigmoid(z) = 1
1+e−z

The sigmoid transformation changes the model representation, therefore it

is necessary to de�ne a particular loss function in order to train the logistic

regression. In particular, the loss function returns a small error if the sigmoid

shows the probability of being 1 for an instance, coherently with the real

record class. Otherwise it returns a high error. For example, if the real

outcome is 0, the loss function returns a high error as the sigmoid tends to

1. The logistic regression is widely used in data mining, because it is easy

to use and it can catch non-linear relationships in the data, thanks to the

sigmoid transformation.

2.5.4 Random Forest

Random forest is an ensemble learning algorithm. An ensemble is a set

of di�erent classi�ers merged together to make a more powerful model. In

particular, random forest is based on the bagging technique, which is a sta-

tistical method to create some di�erent training sets starting from a single

one. Random forest builds on each training set a decision tree, using just

a subset of random features for each classi�er. Since decision trees are very

21

unstable, building them on di�erent training sets with random features will

lead to very diverse classi�ers. This allows to lower the correlation among

the models, hence increasing the overall performance. In fact, to classify

a record, random forest merges all the decision trees with a voting system:

each tree votes a class for the record and then random forest chooses the most

voted one as the �nal outcome. The voting system averages decision trees

predictions, which are a�ected by high variance, therefore the results re�ect

in an increased accuracy, even with large sets of data. This also means that

random forest is less prone to over�tting than a single decision tree, because

it averages the tree predictions, leading to more robust results. Moreover,

it has only few parameters to set up, which is always desirable. The main

disadvantage of this approach is the computational time, which increases

proportionally with the number of trees.

2.5.5 Boosting

Boosting is a machine learning ensemble meta-algorithm (i.e. usable with all

classi�ers), which usually helps to improve the performances of weak mod-

els. In particular, boosting sequentially trains many classi�ers, taking into

account those errors that each model made at every step. This means that,

at each iteration, boosting trains a new classi�er, which tries to �x the errors

made by the previous trained model. In this way, boosting usually improves

the overall performances, �tting better and better the training set. In par-

ticular, this technique initially assigns equal weight to every record of the

training set. Then, a classi�er is trained and the weights are recomputed,

22

penalizing those records which are misclassi�ed by the model. Thereafter,

a new classi�er is trained taking into account the modi�ed weights. Notice

that too many iterations of boosting can lead to over�tting, resulting in de-

graded performances. For this reason, the number of iterations have to be

tuned during the validation phase.

Sometimes, simple classi�ers cannot solve hard learning problems, be-

cause of their excessive simplicity. Boosting addresses this issue training

iteratively many weak models to create a strong classi�er, which usually

enhances the overall predictive accuracy.

A popular boosting algorithm is Adaboost, which sequentially trains sim-

ple decision trees (called Decision Stumps) composed of just one split [31].

23

24

Chapter 3

Churn Prediction Review

Introduction

In this chapter we de�ne the concept of customer churn and the main is-

sues related to it (Sections 3.1 and 3.2). In particular, we show a data

mining based approach to cope with this problem. All the di�erent phases

of this approach are shown, presenting some literature results. In Section

3.3 we highlight the most important aspects involved in collecting data for

the churn prediction problem, while in Section 3.4 we show how to build a

proper dataset, presenting three frameworks proposed by Lee et al. [38]. In

Section 3.5 we show preprocessing actions typically taken to improve predic-

tive accuracy, such as feature selection, missing value treatment and outlier

detection. Finally, in Section 3.6 we show some ad hoc classi�ers, which have

been developed to manage customer churn. In particular, we present: Ant-

Miner+, Active Learning Based Approach (ALBA), Fuzzy C-Means, Hybrid

Neural Networks, Hierarchical Multiple Kernel Support Vector Machine and

25

Improved Balanced Random Forests.

3.1 Churn Prediction

The customer churn, also known as customer attrition, refers to the phe-

nomenon whereby a customer leaves a service provider. Typically, the cus-

tomer churn is calculated as a relative number in percentage (i.e. the churn

rate). There are several ways to calculate the churn rate. It is usually ex-

pressed as follows:

• Fix a conventional period of time as a month or a year;

• Count the number of customers lost in this period;

• Divide this quantity by the number of customers that the �rm had at

the beginning of this period.

New costumers acquired during the selected period of time are not con-

sidered. Indeed, the churn rate estimation should not be altered by the

acquisition of new customers in the same period of time. Conversely, losses

of new customers in this period of time may be considered or not, depending

on whether the churn rate should counts all the losses during the period. If

the losses of new customers are included, then the churn rate measures the to-

tal number of customers who have left the company. Otherwise, it measures

how many of the initial customers have left. This is a �rm's decision.

Some studies con�rmed that acquiring new customers can cost �ve times

more than satisfying and retaining existing customers [14]. As a matter of

26

fact, there are a lot of bene�ts that encourage the tracking of the customer

churn rate, for example:

• Marketing costs to acquire new customers are high. Therefore, it is

important to retain customers so that the initial investment is not

wasted;

• It allows to calculate customer lifetime value;

• It has a direct impact on the ability to expand the company;

• It allows to identify whether the current actions made by the �rm are

improving the customer churn or having a negative impact.

All these considerations are typically included in the concept of customer

relationship management (CRM), which is a business strategy that modi�es

the processes management of a company. The proper use of CRM allows a

company to improve its revenues, ensuring the customers' satisfaction (i.e.

improving customer retention)[7]. It establishes a new approach to the mar-

ket, placing the business focus on the customer rather than the product.

The companies need the CRM to manage current and potential clients with

actions and strategies aligned with the customer needs and expectations. It

is based on communication, process-integration, people and strategies. It is

subdivided in three areas [6], as shown in Figure 3.1:

• Collaborative, which establishes customized relationships with customers

by the several existing distribution channels (e.g. e-mail, telephone,

website);

27

• Operational, which refers to services that allow an organization to take

care of their customers. It provides support for various business pro-

cesses, which can include sales, marketing and service. Contact, call

centres, data aggregation systems and web sites are a few examples of

operational CRM;

• Analytical, which consists on data collection and data analysis allowing

the management of the knowledge supporting future decisions.

Figure 3.1: CRM sections

The objectives of CRM are manifold [25], but they can be summarized in

the following �ve points:

• Know current and potential customers;

• Communicate with the customers and potential consumers;

28

• Attract new customers;

• Improve customers relationships;

• Maintain the customers relationship in a long time term (Customer

Churn Management).

Therefore, the churn management is an important part of CRM. It man-

ages the most relevant aspects that may change the customers' behavior,

such as price, service quality, organization's reputation, e�ective advertising

competition and distance in terms of reachability. To handle these factors, a

company could use two di�erent approaches: reactive or proactive [9]. The

�rst one is easier and it makes use of responses to a service cancellation re-

quest made by the customer, o�ering promotions or something similar. The

second approach, in turn, can lead to two di�erent solutions: the �rm can

use an untargeted strategy o�ering promotions to all the customers (incur-

ring more costs) or it can analyse customer data over time to make churn

predictions (i.e. predict in advance if a customer will leave or not). Know-

ing in advance when a customer will leave gives much more power to the

company to lower customer churn than the other cited methods. In fact,

using predictions, the �rm has enough time to build a speci�c campaign, in

order to change the customers behavior. This can be done following three

important steps in a cyclic manner [6]:

1. Churn prediction

2. Identi�cation of the main causes of defection and related key service

issues

29

3. Development of corrective actions to improve retention

The easiest way to make churn predictions is to observe customers' be-

havior and to create, with the help of experience, some rules that classify a

customer as churner. For example, a bank could label as churner a user that

has not made transactions for a long time and that has a low account balance.

However, all these rules are created without a scienti�c method, using only

experience and intuition, so the results may be below the expectations. A

powerful method is required to make forecasts more reliable than those based

just on experience. An e�ective alternative is Data Mining, which is an auto-

matic discovery process of interesting information applied to large data stored

in appropriate repositories as databases, data warehouses or �les. One task

is to analyse historical data in order to create a mathematical model (which

conceptually represents the real world under investigation) and, later, to

make predictions on recent data based on this model. Therefore, it perfectly

�ts our objective of understanding customers data to make churn prediction.

The generation of insight is however not only due to Data Mining, but it is

a result of a more general scheme, called Knowledge Discovery in Databases

(KDD) process (Figure 3.2).

The �rm data are usually structured in large data warehouse (a central

repository of integrated data, periodically updated, used to store historical

data in order to support decisional activities). It is not feasible to apply

Data Mining techniques to such a data warehouse, because of noise, missing

values and irrelevant information. Moreover, the typically large size of the

data may result in high computation costs. To �x this, it is necessary to

select a subset of the data to work with and to preprocess it (e.g. missing

30

Figure 3.2: Knowledge Discovery in Databases scheme

value treatment, values normalization). These actions are represented by the

�rst and the second phase of KDD: Selection and Preprocessing. It is also

possible to transform the data (Transformation phase) in order to facilitate

the task of mining data, for example changing the data format. Notice that

the operation does not end after the Data Mining phase, but it continues with

an Interpretation phase. This phase allows to discern the outcome obtained

from the previous step. If some insight is discovered, then the process stops,

otherwise it returns to a previous phase in order to improve the discovery

process. This suggests that it is not feasible to mine insight if data are not

prepared properly, making the entire KDD process a really signi�cant scheme

to follow [32].

Data Mining can be useful for companies, but it is much harder to im-

plement than other empirical methods. It requires lots of knowledge and

skills and data must be managed in a proper way. If Data Mining techniques

are applied correctly, the �rm may learn something over the prediction itself,

such as the main features that characterize a customer who leaves the service.

31

In this thesis, we focus on churn prediction in a banking context using

Data Mining techniques. The aim is to predict if a customer will cease his or

her relationship with a bank. Typically, the decision to leave a bank is taken

by a customer over a long period of time, during which several implications

of the leave are carefully taken into consideration. This �slow� dynamics al-

lows the analysis to use less stringent time constraints, unlike other �elds,

such as telecommunications, where customers typically switch from one op-

erator to another in a very short period of time, thus making forecasting a

particularly di�cult task. Also, in the banking context, a slight lowering

of the customer churn rate yields a great substantial lowering of the costs

and a more sustainable CRM. For this reason, any minimal improvement is

important.

3.2 Problem De�nition

The previous section clari�es why customer churn predictions are essential

to develop an e�cient CRM. To apply data mining techniques, the problem

of forecasting customer churn has to be formalized �rst, in order to use the

proper tool. The high-level goal is pretty clear: we want to know if a bank

customer will churn or not in a certain period of time. Hence, the outcome

can assume only two values: churn or non-churn. This suggests that the

problem can be prototyped as a classi�cation task (Chapter 2), because the

outcome domain is �nite. In particular, since the outcome has only two

possible values, the churn prediction problem is a binary classi�cation task.

The decision of how long in advance we want to know if a customer will

32

churn or not, depends on the bank needs. In general, small time windows

allow to make more accurate predictions, but they also reduce the bank

reaction time for taking countermeasures. On the other hand, although large

time windows increase the time allowed for the bank reaction, they could

easily lead to wrong results given the high time distance. All of this suggests

that it is necessary to �nd a good trade o� between predictions accuracy and

the allowed reaction time. Estimating the temporal distance between the

instant when a customer start thinking about leaving the bank and when he

or she e�ectively churns, could help �nding this trade o�. The procedure to

set up the time window is explained in Subsection 3.4.3.

The concept of time is critical in churn prediction: it is necessary to model

it, otherwise the results will be poor. This additional component diverts from

the typical classi�cation task, which is de�ned as static per se. Therefore,

some tricks are often used in the literature to represent time in a static way.

As said in Chapter 2, to build a model and make predictions we need

a dataset, which represents a sample of the population we want to analyse

(i.e. the customers). The simplest choice is representing each customer with

one record, whose columns (the features) are the most important customer's

characteristics that a�ect the churn event. These features are usually selected

with the aid of domain knowledge. Feature selection is another critical point

in churn prediction, because customers' data are usually large and unaggre-

gated. For example, given the customers' transactional data, we can wonder

how to e�ectively summarize them in some features useful for the modelling

phase, such as the total number of transactions, the average amount of money

involved in transactions or the last transaction date. All the features which

33

seem useful to model the problem can be derived. However, we cannot select

too many features, to avoid the curse of dimensionality (Subsection 2.4.2).

We can conclude that the main di�culties in making churn predictions

are the following:

• �nd a trade o� between accuracy and allowed reaction time;

• model the dynamics: it is important to analyse the customers' behavior

over time, in order to model the problem successfully;

• choose a suitable feature set, so to achieve predictive accuracy and to

avoid the curse of dimensionality.

3.3 Data Collection

The data collection phase naturally consists in de�ning how to collect the

data according to the problem requirements. This procedure is highly related

to the problem we want to solve and it depends on the source of data.

Sometimes, just a bunch of data are available. For example, let us con-

sider the case in which we want to predict if a new medicine is e�ective or

not. We have only a small group on which to test the drug, therefore it

is necessary to spend a lot of time and money to increase the sample size.

In this case, the main problem is how to collect more data to improve the

analysis. On the other hand, sometimes we have plenty of data, therefore the

previous issue does not occur. In this case, the main di�culty is to collect

a representative sample of the population, avoiding as much as possible the

34

noise (i.e. outliers). Outliers detection is actually a fundamental phase in

the preprocessing step, as explained in Subsection 3.5.1.

In churn prediction problems, available data are usually large, hence we

have to select the most signi�cant subset of them. However, the records

related to customers who leave are much less than those related to costumers

who do not. Hence, a large dataset does not guarantee a su�cient number

of churn records for the analysis. As said in the previous section, time is

a critical factor in forecasting customer churn. As a matter of fact, time

also a�ects the data collection phase: to predict the customers' behavior

well, it is necessary to train classi�ers with recent data, in order to catch the

most useful patterns. In this way, we can capture the changes of customers'

behavior over time, which could be a�ected by environmental events [10, 40].

In fact, a period of �ourishing economy or a crisis can in�uence the customers'

sensitivity to leave the bank, or not. This leads to collect data during a recent

and short period of time, in order to use good data and �t actual customers'

behavior properly.

However, collecting data for a brief period of time can lead to an un-

representative dataset. Since customers who churn are much less frequent

than those who do not, the churn instances number could be insu�cient to

make useful predictions. This suggests that the time period has to be chosen

according to the bank churn rate, in order to collect enough data.

Another e�ect due to the variance among class frequencies is the gener-

ation of an imbalanced dataset [11] (Subsection 2.4.1). This makes learning

the churn class challenging. Moreover, since prediction errors on churners

are much more expensive than the others, churn prediction becomes an even

35

more di�cult problem.

Actually, it exists another protocol to collect data for the churn prediction

problem: the case-based sampling [22]. This approach includes in the dataset

all the churn records available and a random sample of non-churn instances,

in order to balance the classes proportion. In this way, the class imbalance

does not occur, making the entire analysis easier. The big disadvantage of

this method is the implicit renounce of modelling recent customers' behavior,

assuming that it does not change for the entire large period of time consid-

ered. This approach can be seen as an undersampling of all the available

data, in order to tackle class imbalance (Subsection 2.4.1).

3.4 Dataset Structure

Once the data are collected, they have to be organized and transformed in

order to de�ne a suitable set of features. This allows to produce a dataset,

which will be used to train classi�ers. In this section we show how to divide

and manage the di�erent customers' attributes. In particular, we highlights

three frameworks suggested in the literature, in order to create a proper

dataset for predicting customer churn.

3.4.1 Static and Longitudinal Attributes

Generally, customers can be characterized with di�erent types of attributes.

Features which do not vary over time are called static. For instance, some

customers' static features could be: gender, education level or social status.

In particular, education level varies very slowly or it does not vary at all,

36

therefore it is considered as static. Static attributes are easy to manage. In

fact, it is su�cient to collect them and they are almost ready to be used.

Features which depend on time are called longitudinal or dynamic at-

tributes. They describe the customers' behavior changes over time. There-

fore, they are the most powerful ingredient to predict customer churn accu-

rately [10]. Dynamic attributes are more di�cult to manage than the static

ones, because they have to be discretized, in order to represent them in a

dataset. This suggests that a sampling frequency has to be chosen. For ex-

ample, if we want to model customer's visits to the bank, we can count his or

her visits each month or every week. The sampling frequency is a fundamen-

tal decision: if it is too low the data are not enough to interpolate customers'

behavior. On the other hand, if the sampling frequency is too high, a lot

of data will be irrelevant, because longitudinal attributes might vary with

a lower rate than the sampling frequency. Moreover, having too much data

to analyse could increase complexity. Typically, demographics attributes are

considered as static, while transactional ones as dynamic [10].

The literature suggests an enhanced way to collect dynamic attributes

related to transactions. for the churn prediction problem [23], in order to

build a more accurate classi�er. In particular, instead of considering a �xed

time period in which collecting data, it is suggested to use a dynamic timeline,

as shown in Figures 3.3 and 3.4. To explain the problem, we give an example:

suppose that a classi�er is built using data of 1000 customers, of which 700

are active and 300 are known to have left. Suppose also that three months

activities are analysed (e.g. from February 2006 to April 2006). In this

case, the time period is �xed and only the activities done in this interval

37

are analysed. Imagine that a half of the 300 customers have left away in

February. This implies that the model will not be fully trained with their

data, because only one month's activity is available (it is not possible to

have customer's data after he or she churns, obviously). This problem occurs

because the time period is �xed. Therefore, the suggested solution is the

following:

1. decide the length of the time period to analyse;

2. collect data from the last transaction date of each customer, in order

to cover backwards the established period of time.

In this way, we have the guarantee that the model will be trained with proper

data.

Figure 3.3: Fixed Timeline

3.4.2 Dataset Frameworks

In this section we introduce three dynamic churn prediction frameworks pro-

posed by Özden Gür Ali & Umut Ar�türk [40], which utilize the longitudinal

nature of the customer data.

38

Figure 3.4: Dynamic Timeline

Single Period Training Data (SPTD)

The following is a framework �rst introduced by Lee et al. [38]. It is de�ned

as the "standard framework for customer churn prediction", because of its

simplicity.

The SPTD is a training set, which contains data collected in a single

contiguous time period. It represents each customer with one record, whose

dynamic features are summarized in a single value with a function, such as

the mean or the maximum value. For example, suppose that we collect data

related to withdrawal events every month. While analysing data, we see

that a customer withdraws 500$ during the �rst month, 300$ in the second

and 900$ over the third. Hence, if we choose the maximum as the summary

function, the record created to represent this customer will have 900$ as

withdraw feature value.

Typically, the SPTD is built analysing the most recent period available,

in order to catch the current customers' behavior, as explained in Subsection

3.3.

Substantially, the SPTD is a normal training set, which models dynamic

39

attributes summarizing them in a single value. Therefore, one feature is

created for each longitudinal feature. The outcome is de�ned as a binary

variable, which assumes the value 1 if a customer leaves in the period con-

sidered and 0 otherwise.

Multiple Period Training Data (MPTD)

The MPTD is a simple extension of the SPTD. In fact, as the name suggests,

a MPTD is a training set which contains several SPTDs relative to di�erent

time periods. It is de�ned as follows:

MPTD =



SPTDT

SPTDT−1

... E

SPTDt1+1

SPTDt1


T is the most recent period of time, while t1 is the oldest one. The SPTDi

denotes a SPTD built in the i-th period of time before T. This means that

the MPTD represents N di�erent periods of time for each customer, there-

fore there are N records for each customer. The MPTD labels are given in

the same way as the SPTD labels. Modelling di�erent periods of time allows

to introduce environmental variables in the dataset (matrix E in �gure). In

particular, the number of rows in E is equal to the number of periods consid-

ered in the analysis, while the number of columns is equal to the number of

environmental features previously chosen. These attributes model the envi-

ronmental factors, which a�ect customers' behavior (as explained in Section

40

3.3). The environmental variables assume the same value for all the records

in a speci�c time period. This means that only during various periods of time

the environmental predictors may assume di�erent values. Static attributes,

instead, vary among customers, but not over time. Longitudinal features

vary over time and among customers.

The MPTD contains (T − t1 + 1) times the records of one SPTD. There-

fore, this improves the predictive accuracy compared to SPTD, due to a

richer set of data [40, 30]. Moreover, the MPTD contains (T − t1 + 1) times

more observations than the SPTD, which addresses the absolute rarity prob-

lem. However, the potential lack of independence, introduced by multiple

observations of the same customer, may bias the parameter estimates and/or

arti�cially increase the signi�cance of the parameters.

SPTD+Lags

Since managing the MPTD could be di�cult and the MPTD size can lead to

a high training time, an alternative framework has been developed in order

to exploit dynamic attributes. The SPTD+lags is an extended version of

the SPTD, which is adapted to support more than just one sample for each

longitudinal attribute. Instead of describing time vertically (i.e. assigning

more than one record to each customer), it represents time horizontally. This

means that the SPTD+lags models customers' behavior over di�erent peri-

ods of time (as well as the MPTD), but across features. Substantially, the

SPTD+lags considers k periods of time in which collect information. Then,

the data collected in the di�erent time periods are summarized with a func-

tion (as in the SPTD case), creating k features for each dynamic attribute.

41

The number of time periods to consider is a design variable. Although a

large k provides more information about the customers' behavior, it signi�-

cantly increases the number of features, incurring the curse of dimensionality

problem.

3.4.3 Labelling the Dataset

In classi�cation problems, the records labels are often well de�ned. However,

this is not the case for churn prediction. In fact, sometimes customers do not

close the relationship with a bank directly, but they simply become inactive.

In this case, it is necessary to de�ne a speci�c criteria in order to distinguish

this kind of customers from the active ones. We can regard inactive customers

as customers who have left if they do not make transactions or move enough

money for too long [29]. In banking sector, a customer is usually labelled as

churner if he or she is inactive for at least six months [3].

Another problem that arises in labelling the dataset is how to de�ne

precisely which temporal instant has to be predicted. In Section 3.2, we dis-

cussed that a bank has to de�ne the reaction time required to respond to

customers' behavior. To formally implement this concept into a classi�er, it

is necessary to label the customers in the training set properly. In fact, the

labels have to be chosen according to the event we want to predict, which

de�nitely depends on the desired reaction time. For example, knowing far

in advance if a customer will leave means to focus more intensively on fore-

casting "warning" events, which are small signals of potential churn (e.g. a

complaint call to the customer service) [26]. This leads to label as churner

42

those who are involved in warning events, because of the changed prediction

target (i.e. we are interested in predicting warning events, not the churns).

Modelling the problem with labels, which represent customers who have ef-

fectively left the bank, leads to predict if a customer will leave the bank very

soon, which is almost impossible to rectify (the customer has already decided

de�nitively). However, if the bank pretends to know if a customer will leave

too much in advance, the results will be poor. This happens because warn-

ing events does not necessary imply churn ones, hence a lot of false positive

errors will arises (i.e. non-churner considered as churner).

3.5 Preprocessing

Preprocessing is an important phase of the KDD process, which prepares

data for the modelling phase. Researches have shown that preprocessing has

a signi�cant impact on the predictive accuracy [34]. Actually, data analysts

spend more time on preprocessing data than on modelling, highlighting the

relevance of this phase. The preprocessing activity has many facets [16], but

in the following we explain the most relevant ones, which are usually used in

practice in forecasting customer churn.

3.5.1 Outlier Detection

An outlier is a record which signi�cantly di�ers from typical records. This

means that it has at least one feature with an atypical value. Outliers could

be related to noisy data, but in some cases they are special records, which

diverge from normality. This suggests that the outlier concept assumes dif-

43

ferent faces depending on the problem. The outlier detection phase concerns

the search of anomalous records, which have to be removed if they represent

noise.

Typically, in churn prediction there are di�erent types of outliers. Some-

times a customer leaves for external reasons, which are out of bank control.

Natural death or moving to a foreign country (or a di�erent region) are ex-

amples of events that may result in customer churn [10, 12]. Hence, these

records have to be removed from the dataset, because they will introduce

noise.

Another type of outliers is represented by customers who open a new

account just for a particular purpose and they close it as soon as their goal is

achieved. These customers do not give additional useful information for the

churn behavior, therefore they have to be removed. Since these customers are

indistinguishable from the others, empirical methods are usually applied to

remove them from the dataset. In particular, Devi Prasad et al. [23] suggest

to ignore customers whose duration is less than six months and customers

who have made less that �fty transactions, in order to solve this problem.

Removing outliers usually results in increasing predictive accuracy, be-

cause the dataset represents better the common churn patterns.

3.5.2 Missing Values Treatment

The treatment of missing values is a fundamental step in the preprocessing

phase. However, some classi�ers do not deal with missing data. Therefore it

is necessary to apply countermeasures, in order to remove or replace missing

44

values. A missing value could have at least two meanings: the real value

is indeed not known, or a problem has occurred during the data collection

phase [24], leading to missing some data.

Since missing data are very common in data mining, many techniques

have been developed by researchers. The less sophisticated approach sim-

ply removes all the records with at least one missing value, which is �ne if

the available data are abundant. If this is not the case, it is better to re-

place missing values imputing them. The most popular method is to replace

missing data with the mean/median/mode, in order to leave untouched the

feature distribution. In predicting customer churn, both removing [35] and

imputing [10, 41] methods are used. Dirk Van den Poel et al. proposed a

peculiar technique: the "tree imputation with surrogates" [10], which im-

putes missing data based on the other features values. This approach uses a

decision tree (Section 2.5.1) to estimate the unknown values.

3.5.3 Feature Selection

As explained in Subsection 2.4.2, having a high dimensional dataset leads to

a more di�cult analysis. Fortunately, plenty of procedures were developed,

in order to reduce the dimensionality. Usually, when data are collected, we

do not really know which features will be signi�cant and which ones will

be irrelevant or noisy. Therefore, we can analyse the features importance

in predicting the event of interest just after the data collection phase. This

is the task of feature selection, whose aim is to remove irrelevant attributes

and noise, in order to improve predictive accuracy. Feature selection is also a

45

useful procedure to detect the most relevant predictors. Moreover, it favors

classi�ers interpretability because they manage only the useful features and

therefore the model will be simpler.

In the literature, there is not a peculiar procedure used for churn pre-

dictions, as far as we know. However, some feature selection techniques are

shown to predict telecom customer churn. Since the problem is in common,

even though for di�erent �elds, we show these results. Adnan Idris et al. [18]

propose two main feature selection procedures. The �rst one is the Principal

Component Analysis (PCA). PCA is a quite old statistical procedure [17],

whose aim is to remove redundancy from data. The feature space is trans-

formed into a set of linearly uncorrelated attributes, which are called the

principal components. These components try to cover the maximum vari-

ance of the dataset, minimizing the loss of information. PCA works well if

the dataset is redundant, because just a few of principals components are

su�cient to fully describe the dataset.

The second procedure proposed is the minimum-Redundancy-Maximum-

Relevance (mRMR). mRMR selects a subset of features which have a strong

correlation with the outcome, but a low dependency on each other. Therefore,

this procedure selects attributes which are mutually far away from each other,

maintaining high correlation with class labels, thus resulting into minimum

redundancy and maxim relevance. The results show that applying mRMR

gives better results of PCA in average.

Anyway, features with too many missing values should be omitted, be-

cause they will introduce noise [28, 39].

46

3.5.4 Overcome Class Imbalance

In customer churn prediction, the number of churners is usually much smaller

than the number of non-churners. This makes predicting customer churn

more challenging, due to class imbalance (Subsection 2.4.1). For this par-

ticular classi�cation task, the two most popular techniques used to endorse

class imbalance are undersampling and SMOTE [1, 11] (Subsection 2.4.1).

In fact, Verbeke et al. report that oversampling does not result in signi�cant

improvement of predictive accuracy, because it causes over�tting. However,

undersampling throws away a lot of information. An e�cient procedure

used to exploit all the available data is the easy ensemble technique [42].

This method independently creates several balanced subsets from the orig-

inal dataset with the undersampling technique. Then, for each subset it

trains a classi�er. Finally, it combines all the classi�ers with a chosen cri-

teria, such as the majority vote, in order to classify all the records. This

approach allows to cover almost all the available data of the majority class,

resulting in an increased predictive accuracy. Moreover, the algorithm can

be easily parallelized to decrease computational time, because the samples

are independent from each other. A weakness of this procedure is the lack

of comprehensibility, because it combines a lot of models, which are di�cult

to interpret as a unique mechanism.

3.6 Models

In this section we report a number of standard classi�ers, which were pro-

posed in the literature to predict bank churn events. We also show some

47

ad hoc classi�cation models, which have been developed to predict customer

churn.

3.6.1 Standard Popular Models

In the past decades researchers' focus was set on training the best classi�er

to model a problem. As a matter of fact, a lot of well known classi�ers were

applied to predict customer churn. In particular, decision trees and logistic

regression were highly used because of their comprehensibility [23, 19, 20, 27].

In fact, knowing which factors a�ect the customers' behavior is an additional

insight which could be extracted from these simple classi�ers. Another simple

model which has been used is RIPPER [12, 36]. However, comprehensibility

is usually sacri�ced, in order to achieve a high predictive accuracy with the

use of more complex classi�ers. In fact, support vector machine (SVM) and

random forest were tested, in the attempt to reach better results [37, 15, 41,

39].

In the following subsections we show a list of ad hoc proposed model,

which have been studied to obtain additional insight and predictive accuracy.

3.6.2 Comprehensible Models

Comprehensible models are really important in churn prediction, because

they give insight on which are the critical factors that a�ect customers' be-

havior. Knowing these characteristics allows to improve the CRM, thus pre-

venting future attempts to churn. Unfortunately, comprehensible classi�ers

are usually very simple, hence their predictive accuracy may be below the

48

expectations. This issue motivates the development of more complex clas-

si�ers, which are still understandable. In the following subsection we show

AntMiner+ and Active Learning Based Approach (ALBA), which are two

algorithms proposed by Wouter Verbeke et al. [2] to cope with this problem.

Ant-Miner+

Ant-Miner+ is a rule induction technique based on the principles of Ant

Colony Optimization (ACO), which is a metaheuristic inspired on the forag-

ing behavior of real ant colonies. A single ant is a simple insect with limited

capabilities, guided by straightforward decision rules. However, these simple

rules are su�cient for the overall ant colony to �nd the shortest paths from

the nest to the food source.

Ant-Miner+ arti�cially simulates the behavior of ants, which are used

to �nd the shortest path to reach a solution. More precisely, the algorithm

releases "arti�cial ants" in a directed acyclic graph (DAG), which is a repre-

sentation of the problem we aim to solve. Each attribute has to be categorical

(Section 2.1) to build a proper graph. In particular, every feature is mapped

on a set of vertices, where each vertex represents one of the possible attribute

values. Each graph edge connects two vertices related to di�erent features, in

order to create plausible paths which represent consistent decision rules. Each

ant treads the graph and if it �nds a solution, then it releases pheromone

in the travelled path, in order to guide other ants movements. However,

the pheromone evaporates over time, reducing its attractive strength if it

is not readily remarked. The pheromone concentration indicates how many

ants have chosen that speci�c trail recently. When an ant reaches a decision

49

point, it is more likely that it will choose the trail with the higher pheromone

concentration. This stochastic process is also guided by an heuristic measure,

which is problem dependent.

Ant-Miner+ uses the ACO algorithm to build a classi�cation model. In

particular, it is based on the max-min ant system, which is a modi�ed ver-

sion of the ACO. Through this system, an environment is initially de�ned

for the ants which will walk through it, such as each path corresponds to a

classi�cation rule. The ACO procedure drives the ants towards good predic-

tive rules. A peculiar characteristic of this algorithm is that it can accept

monotonicity constraint, in order to incorporate domain knowledge within

the model, making it more comprehensible. For example, the rule "if Bank

Visits <= 3 then class = non-churner" is a poor rule, as we would expect

that less frequently a customer visits the bank, most probably he will churn.

Therefore, a more reasonable rule would be "if Bank Visits > 3 then class =

non-churner" [2]. AntMiner+ allows to impose these types of constraints on

the rules, in order to implement the domain knowledge in the classi�er.

In particular, this can be done during the graph construction phase. In

fact, it is possible to remove edges in such a way that the ants cannot tread all

the graph paths, forbidding connections between vertices that would violate

the domain knowledge constraints. In this way, we can make a more rea-

sonable and comprehensible model, joining data driven patterns and domain

knowledge to predict the customer churn better.

The literature shows that this classi�er can reach a high accuracy level,

maintaining the comprehensibility required [2].

50

ALBA

ALBA is another comprehensible classi�er, which tries to achieve a high

predictive accuracy. It trains a SVM in order to catch non-linear relationships

in the data. However, the SVM creates a opaque model, which is absolutely

incomprehensible. ALBA handles this issue, exploiting the support vectors

used in the SVM in order to modify the training set in a certain way. The

modi�ed training set is then used to train a rule based classi�er (such as

RIPPER), in order to extract an accurate, but still comprehensible, rule set

[13]. In particular, the training set is modi�ed following the active-learning

paradigm, which consists in controlling the learning algorithm over the input

data on which it learns, focusing on the input space where the noise is the

highest (i.e. the regions near the SVM decision boundary).

The procedure used to modify the training set is the following. First,

ALBA trains an SVM to �t the training set and to discover the support

vectors. Once the classi�er is optimized (choosing the right parameters), it

is exploited in order to change the training set labels to clean up data [13].

In particular, we replace the records labels with the predicted outcome of the

black box classi�er. In this way, all noise concerning class labels is removed

from the data. Therefore, an arti�cial optimal decision boundary is created.

The next step consists in generating additional arti�cial records close to

the support vectors, in order to incorporate the active learning approach. In

particular, the distance of the new records is determined by the average dis-

tance from the training instances to the support vectors, scaled by a random

factor. We label the new instances automatically, forecasting them with the

51

SVM previously trained.

Finally, a rule induction algorithm is run on the entire modi�ed training

set in order to extract a comprehensible rule set. ALBA results in increased

predictive accuracy, outperforming the standard SVM classi�er [2, 13]. The

detailed procedure is shown in Algorithm 1.

Algorithm 1 ALBA
1: Let be N the training set size and n the number of features
2: Train SVM on training set
3: Replace the records labels with the SVM predicted outcome
4:

5: *** Calculate the average distance distancek
6: *** from records to support vector, in each dimension k
7: for k=1 to n do
8: distancek = 0
9: for all support vectors svj do

10: for all record d in training set do
11: distancek = distancek + |dk − svj|
12: end for
13: end for
14: distancek = distancek

#sv×N

15: end for
16:

17: *** Create T extra data instances
18: for i = 1 to T do
19: Randomly choose one of the support vectors svj
20: *** Randomly generate an extra data instance xi close to svj
21: for k = 1 to n do
22: let be rand a random number in [0, 1]
23: xi,k = sv(j, k) + [(rand− 0.5) ∗ distancek

2
]

24: end for
25: *** Provide a class label yi using the trained SVM
26: yi = SVM(xi)
27: end for
28: Run rule induction algorithm on the modi�ed training set

52

3.6.3 Clustering Classi�cation

The approach used to make predictions so far is the standard classi�cation

procedure, that is, building a model which learns from a labelled dataset, in

order to infer a relationship between data and classes. In this section, instead,

we explore another approach to learn from data: the clustering procedure.

The clustering task is to discover patterns in an unlabelled dataset, that is,

analysing features in the absence of a prespeci�ed set of record classes. In

particular, the aim is to discover groups of similar records, which are called

clusters. Records can then be labelled according to which cluster they belong

to. In churn prediction, we want to �nd two kind of clusters in data, which

represents churners and non-churners.

Fuzzy C-Means (FCM)

Classical cluster analysis methods assign each instance to a single cluster.

The FCM disrupts this concept, allowing records to belong to many clusters

with di�erent "degrees of membership" [3]. The FCM is a modi�ed version

of the popular K-Means clustering algorithm, which creates clusters based on

the concept of distance between records and cluster centroids. In the FCM,

a cluster centroid is represented by the mean of all points, weighted by their

degree of membership.

The algorithm is an iterative procedure, which moves the centroids in

the space, in order to minimize an optimization function. Every iteration

updates the centroids position and gives to the instances a set of coe�cients,

which indicate the membership degrees for each cluster. The algorithm ends

53

if the centroids do not move more than a threshold value ε.

Dºulijana Popovi¢ et al. [3] show that FCM outperforms the classical

clustering algorithms in forecasting customer churn. In particular, their re-

sults prove that FCM is robust to outliers, which is always desirable.

3.6.4 Hybrid Neural Networks

Chih-Fong Tsai et al. [21] proposed a hybrid approach to predict customer

churn, that is, a procedure based on two or more data mining techniques. In

particular, they studied two di�erent combinations: classi�cation + classi-

�cation and clustering + classi�cation. They used as classi�er an Arti�cial

Neural Networks (ANNs), which is a model that attempts to simulate bio-

logical neural systems. In particular, these systems learn by changing the

strength of the synaptic connection between neurons upon repeated stimula-

tions by the same impulse [21]. Moreover, they employ a clustering technique

based on ANNs called Self Organizing Maps (SOM).

Their strategy is selecting the best data to train a classi�er. The �rst

phase of the two combinations essentially selects the data which will be used

in the next step.

The �rst hybrid procedure, that is, classi�cation + classi�cation, trains

two standard ANN classi�ers. First, a ANN is trained. This model will

classify only a subset of the training set correctly. Therefore, the incorrect

instances can be regarded as outliers, since the ANN model cannot predict

them accurately. Then, the correctly predicted data are used to train another

ANN, which will be used to make predictions.

54

The second hybrid procedure, that is, clustering + classi�cation, makes a

clusters analysis to select data and then builds an ANN on them. First, the

SOM is run, in order to discover clusters in the training set. After this, the

two clusters of SOM, which contain the highest proportion of the churner and

non-churner groups respectively, are selected as the clustering result. Then,

ANN is trained on these two clusters.

Chih-Fong Tsai et al. [21] evaluate the two di�erent models on real cus-

tomers' data. The results show that the Hybrid ANN outperforms the stan-

dard ANN for predicting customer churn, while the SOM does not improve

the ANN performance.

3.6.5 Hierarchical Multiple Kernel Support Vector Ma-

chine (H-MK-SVM)

A H-MK-SVM [35] is an SVM-based classi�er, which can directly deal with

longitudinal attributes. Therefore, it is a useful model in forecasting cus-

tomer churn, where the dynamic features are the most signi�cant ones. It

is an enhanced version of the multiple kernel SVM (MK-SVM), which is a

SVM that uses a linear combination of basic kernels to approximate an op-

timal kernel. The linear combination coe�cients, which weigh the kernels'

importance, has to be determined in the training phase. More precisely, the

MK-SVM is trained in two phases. In the �rst step the kernels coe�cients

are �xed and a normal SVM is trained in order to learn the standard pa-

rameters. In the second phase, the best kernel coe�cients are determined by

solving a linear program. In this way, we can classify new records through a

55

standard SVM, using as kernel the optimized linear combination of kernels.

The H-MK-SVM is an extension of MK-SVM, which has been developed

to manage dynamic features directly. In particular, the H-MK-SVM uses

two di�erent multiple kernel types: one for the static features and the other

for the longitudinal attributes. Both of them are described in the following

paragraph.

Let m be the number of static features, M the number of dynamic at-

tributes and T the number of samples belonging to each longitudinal feature.

Concerning the static attributes, a simple linear combination of m kernels

is used as kernel. For the dynamic ones, instead, a more complex kernel is

used. More precisely, this kernel is obtained in two steps. First, for each

longitudinal attribute a linear combination of T kernels, which map the T

dynamic feature time values, is created. Then, these M combinations are

linearly combined in turn to create the �nal kernel.

All the coe�cients of each combination have to be determined, in order to

train the H-MK-SVM. This could be done in three di�erent steps. The �rst

phase is the usual one, which trains a normal SVM as in the MK-SVM case.

The second phase �nds the optimal coe�cients for the static and dynamic

attributes. Finally, the last step determines the time series coe�cients, that

is, the values that weigh each point of every dynamic feature.

In practice, the H-MK-SVM outperforms the standard SVM and the MK-

SVM in predicting customer churn.

56

3.6.6 Improved Balanced Random Forests (IBRF)

Random forest is one of the most popular ensemble learning algorithm in data

mining. However, standard random forests do not work well on extremly im-

balanced dataset, such as a typical customer churn prediction dataset. In

the literature, there are two ways to adapt random forest for imbalanced

datasets [5]: balanced random forests and weighted random forests. The

�rst, simply preprocesses data, balancing them using the oversampling tech-

nique described in Subsection 2.4.1. Then it trains a random forest with the

balanced dataset. The second, instead, assigns a weight to each class, which

represents the cost of misclassi�cation for that class. Thus, the rare class

receives a larger weight, in order to heavily penalize its misclassi�cation in

the training phase.

Neither method was proved to be the best, therefore Yaya Xie et al.

[39] proposed an algorithm which combines both strategies: the improved

balanced random forests. In particular, it creates N di�erent datasets as the

standard algorithm (see Subsection 2.5.4), but each of them are generated in

a supervised way (i.e. looking at the labels), in order to deal with the class

imbalance. For each dataset, a weighted decision tree is trained, with some

peculiar weights. To classify a new record, the standard voting procedure is

used, that is, each tree votes for a class and the majority vote wins. Yaya

Xie et al. [39] show that IBRF outperforms the standard random forests

approaches, maintaining scalability and fast training time. For more details

on the workings of this technique, one may refer to Yaya Xie et al. [39].

57

58

Chapter 4

Practical Problem Description

and Data Preprocessing

In this chapter we present the customer churn analysis we made on a real

dataset o�ered by global bank. In particular, we explain the data collection,

the data aggregation and the statistical analysis used, following the same

logic discussed in Chapter 3. The entire analysis was executed avoiding

those optimizations considered not necessary, such as the extraction and

computation of complex feature to describe the customers or an e�cient

outlier analysis, since the project is a Proof Of Concept (POC). A POC is

a methodology used to demonstrate that some theoretical concepts can be

e�ciently applied to solve practical problems.

59

4.1 Introduction

The aim of this thesis is to demonstrate that forecasting customer churn

with data mining techniques is feasible. In particular, we want to prove

that these techniques are su�ciently e�ective to enhance the bank retention

power, which relies only on traditional approaches (see Section 3.1).

The bank provided us the access to a large dataset for the data analysis,

based on scrambled but consistent data. This dataset aggregated several

customers' data, therefore we initially analyzed it generating proper SQL

queries to make the entire process more e�cient and manageable.

The extracted data were subsequently analyzed with R, which is an open

source statistical software full of up-to-date data mining packages. R is a

powerful tool which allows to perform a complete data analysis and reduce

the POC costs thanks to its free license.

4.2 Dataset Structure

The bank has to track customers' data over time, in order to o�er them a

proper service. This means that each customer is described through many

records within the database for tracking his/her operations over time. This

implies that the data have to be aggregated in order to be analyzed, leading

to additional preprocessing.

In fact, each customer is described by a huge amount of records, which is

very complex to manage. For this reason, it is fundamental to decrease the

number of records which describes a customer, in order to reduce the infor-

60

mation size and the computational time required to analyze it. Therefore,

it is necessary to �nd a good compromise between the precision needed to

describe customers' behavior and the quantity of data necessary for a proper

description.

Hence, the customers' actions were initially aggregated by month to make

database operations more manageable.

More precisely, we grouped all the information we needed (i.e. demo-

graphic, transactional and balance data) within a single convenient table,

which has a composite primary key (that is, each record is uniquely identi-

�ed by this �eld) de�ned by the customer's identi�er (ID) and the month

considered.

We collected the data related to the period from January 2015 to April

2016, hence each customer is described at most through sixteen records, since

the period considered includes sixteen months.

The collected data included about a subset of about 730000 customers,

18300 of which are churners. The annual churn rate is about 2.5%, which

means that every month approximately 1500 customers leave the bank.

4.3 Dataset Creation

In this section we present how the �nal dataset was generated from the

raw data, the initial data quality check used to verify the correctness of the

collected data and a naïve outlier analysis.

Furthermore, we show how we have aggregated, adapted and labelled the

data, in order to create a standard dataset, which can be given as input to

61

data mining algorithms directly. In particular, we present a non-standard

way to separate the data into training set and test set.

4.3.1 Data Quality Check

During the dataset creation phase it is important to avoid accidental and

logic errors, otherwise the subsequent analysis will be corrupted by wrong

data. Therefore, it is fundamental to verify that the data collected from the

database are correct, since errors happen very frequently in a database of

such size.

In particular, we veri�ed some common mistakes that are usually present,

such as:

• customers who leave the bank, but have opened their �rst account after

the date of leaving;

• categorical variables characterized by di�erent values, but identical

meaning, as Male and Man for the Gender;

• transactions import of erroneous sign (e.g. a positive withdraw);

• unknown activation date (i.e. when a customer opens the �rst account);

• inconsistency between account number and the date of activation or

leaving;

• the presence of records with the same primary key (i.e. the same cus-

tomer ID and month).

62

It is important to accurately �x the mistakes in this phase, in order

to avoid the errors propagation to the next steps. In fact, the errors are

increasingly more di�cult to detect and �x as the project phases go on.

4.3.2 Dimensionality Reduction

The customers' transactional data are described through about 200 attributes,

one per operation type. Since many of them have similar meaning, they can

be grouped in order to compress the table dimensions and reduce the com-

plexity of the analysis. However, these attributes are di�cult to interpret

without any business expertise. Hence we grouped them with the help of

domain knowledge to e�ectively generate meaningful clusters.

The similar attributes of each group were aggregated applying the sum

operator, in order to identify the total amount of money moved related to the

considered type of operations. This compression allows to reduce by about

one order of magnitude the number of transactional variables, thus avoiding

the feature overgrowth in the "multi-month" attributes generation phase.

The "multi-month" features are variables synthetically created to track

customers' behavior over time (see Subsection 4.3.3 for further details).

4.3.3 Feature Extraction

Due to its nature, customers' behavior is a time varying peculiarity, hence it

requires longitudinal features to be tracked over time (Subsection 3.4.1).

In this thesis, we followed a similar approach to the one used by Lee

et al. [38] for the SPTD+Lags framework described in Subsection 3.4.2.

63

In particular, each customer is described through one record only, which

captures both static and time varying information.

Since the customers' temporal behavior is not tracked with additional

records, contrary to the original bank database in which customers' actions

are described by several records, it is possible to describe this information

with extra attributes. These new features track peculiar customers' charac-

teristics over time, evaluating them during di�erent periods of time.

We consider four di�erent periods of time on which computing dynamic

customers' features. More precisely, we considered:

• the last month available;

• the last three months available;

• the last six months available;

• the last twelve months available.

For these periods of time we separately computed the mean, sum, minimum

and maximum of each dynamic attribute, causing an overgrowth of the fea-

tures number. In fact, for each variable we generated sixteen new features,

that is, four attributes for every period of time considered. This is the princi-

pal reason why we have aggregated the transactional features (Section 4.3.2).

In fact this phase would have created too many variables, which are not easily

manageable.

Since the granularity of our data is represented by one month, the four

considered functions (mean, sum, minimum and maximum) will return the

same result if computed on a single month. For this reason it is possible

64

to maintain only one of these four results, reducing considerably the overall

number of features.

We called these new variables multi-month attributes. To clarify this pro-

cedure, we present the following example. Lets consider a customer who

leaves in October 2015 and joined the bank during January 2015. Table 4.1

represents the available data for the considered customer (ID 0001) and high-

lights in gray the period of time used to compute multi-month attributes on

six months. The card balance attribute is the time varying feature considered

in the example. This attribute measures the withdrawals and the deposits

made by the customer 0001 on a speci�c card. More precisely, the records

describe the total amount of money moved by the customer every month, al-

lowing to track his/her operations over time. Moreover, the "Churn" variable

shows if the customer left the bank in the considered month, or not.

ID Month Card Balance Churn
0001 Jan-15 -100 No
0001 Feb-15 -1000 No
0001 Mar-15 2000 No
0001 Apr-15 -150 No
0001 May-15 -150 No
0001 Jun-15 -20 No
0001 Jul-15 100 No
0001 Aug-15 0 No
0001 Sep-15 0 No
0001 Oct-15 -500 Yes

Table 4.1: Multi-month computation example

In this example, the maximum of card balance during the six months

amounts to 100e, the minimum is −500e, the mean is −95e, and the sum

amounts to −570e.

65

It is important to notice that, if the required data used to compute the

considered functions on a certain number of months are not su�cient, then,

as a convention, we approximate it using only the available data.

In this example it is not possible to compute the functions on the twelve

months, since the available data concern only ten months.

If a customer does not leave the bank, the multi-month attributes are cal-

culated starting from the available data related to the last reachable month,

that is, the last month of the considered period. For example, consider a

training set built with the data related to the period from January 2015 to

December 2015. In this case, the last reachable month for the non-churners

of this period would be December 2015.

We extracted some static features also, such as the customers' age and

his/her seniority (i.e. the number of months during which the customers stay

loyal to the bank).

4.3.4 Labelling the Records

The churn event is not well de�ned per se, therefore it is necessary to formally

specify it to correctly label the records (as said in Section 3.2).

The standard de�nition posits that a customer is a "churner" in a spe-

ci�c month if he/she closed all the bank accounts in that month. However,

observe that since the main need of a bank is to retain its customers as long

as possible, it is useless to identify customers with too short notice with

respect to their departure, since then the bank cannot rectify customers' be-

havior, as the available period of time is not su�ciently long. For this reason,

66

our analysis aims at training a classi�er able to detect customers who leave

with adequate advance. However, the standard de�nition of "churner" is not

su�cient to satisfy this requirement, since labelling the records with this def-

inition would create a classi�er useful to predict the precise instant of time

when the customer leaves, making behavioral recti�cation actions impossible

to be applied (as discussed in Subsection 3.4.3). Thus, it is necessary to

modify the standard de�nition of "churner", in order to make sure that the

classi�er will predict a time instant far enough from the real churn instant.

In this thesis we chose to predict the churn event one month in advance.

Technically speaking, we shifted the churn event one month backward, in or-

der to label as churners the customers who leave during the following month.

This means that the churn �ag (i.e. the variable which describes if a customer

churns in a speci�c month) is turned on for the penultimate record, while

the last record becomes irrelevant. In fact, the churners' data related to the

last month would introduce noise in the analysis, because these data are not

concerned with the event we want to predict (i.e. forecast which customers

will leave during the following month). This means that it is necessary to

remove those customers who join and then leave the bank in less than one

month, because there is not a su�cient period of time available to apply the

previous operations.

We present an example of the churn event shift Table 4.2. The considered

customer (ID 0001) leaves the bank during May 2015, hence the churn event

is shifted to April 2015 and the record related to May 2015 is removed from

the data.

In particular, the table on the left shows the standard churn event, while

67

the table on the right presents the shifted churn event.

ID Month Churn
0001 Jan-15 No
0001 Feb-15 No
0001 Mar-15 No
0001 Apr-15 No
0001 May-15 Yes

becomes
====⇒

ID Month Churn
0001 Jan-15 No
0001 Feb-15 No
0001 Mar-15 No
0001 Apr-15 Yes
- - -

Table 4.2: Churn Event Shift Example

The use of these new labels to train a classi�er leads to the construction of

a model capable of predicting if a customer will leave in the following month.

In fact, a classi�er will search the values of features which characterize the

behavior of the customers labelled as �churner� with the new de�nition, that

is, the customers who will leave during the following month.

Training and Test Set Partitioning

The churn prediction problem raises a non-trivial data partition issue. In

fact, the standard validation technique (Section 2.2) is not appropriate, since

it would not return a reliable estimate of the classi�er performance. This

happens because behavior of the customers who leave could change over

time, that is, the main reasons which drive the customers to leave the bank

vary over time.

Business people are interested in a model which predicts the future cus-

tomers' behavior, not the present ones, therefore the standard validation

approach does not work for this purpose. In fact, with the standard ap-

proach the classi�er would be evaluated on customers characterized by the

same behavioral features of the customers contained in the training set, hence

68

returning an erroneous model performance estimation.

The approach used to avoid this problem is to divide the data temporally.

In particular, we used the available customers' information between January

2015 and December 2015 to create the training set and those of January

2016 to generate the test set. We explain the details of this subdivision after

proving that the standard validation procedure is not appropriate for churn

prediction problems.

We tested the di�erences between the two validation procedures eval-

uating a CART classi�er trained with all the multi-month attributes and

70% of randomly chosen customers. Concerning the standard validation, we

evaluated CART on the remaining 30% of the customers, while for the non-

standard approach we evaluated the classi�er on the test set generated by

the temporal subdivision. Table 4.3 shows precision and recall performances

obtained with both validation approaches.

Standard Non-Standard
Precision 0.9672 0.0301
Recall 0.7013 0.0022

Table 4.3: Estimation of CART performances with two validation approaches

The standard validation procedure leads one to think that this CART

model is very accurate in predicting customer churn, since it correctly identi-

�es 70.1% of the churners with 96.7% of precision. Actually, the non-standard

procedure reveals that the model fails to generalize when data related to fu-

ture periods of time are used. In fact, both precision and recall values collapse

to near zero values! This proves that the standard validation approach is not

appropriate for churn prediction problems. Moreover, the non-standard vali-

69

dation procedure is far more penalizing than the standard one, since it evalu-

ates the model ability to manage with di�erent churners' behaviors compared

to those included in the training set. For this reason, the results we obtained

in this thesis are much lower than those usually reported in the literature, but

nevertheless they o�er an honest characterization of the performance that a

model would reach in real business applications. In any case, domain knowl-

edge ensures us that our results (see Section 5.1.4) are considered standard

in banking environments.

In the following we explain in details the procedure we used to create the

training set and the test set. Since we considered two di�erent periods of time

(i.e. January 2015-December 2015 for the training set and January 2016 for

the test set), we separately compute the churn labels and the multi-month

attributes on both the sets of data.

Recall that the churn event is shifted one month backward (Subsection

4.3.4), in order to guarantee an early identi�cation of churners by the bank.

From here on out in this section we refer to this shifted churn event when

we state that a customer leaves. For example, lets consider a customer who

actually leaves during October 2015. We consider September 2015 as the

month during which the customer leaves the bank. The general procedure is

the following:

• A customer is labelled as non-churner if he/she does not leave the bank

in the considered period of time.

• A customer is labelled as churner if he/she leaves the bank during the

considered period of time.

70

• The multi-month attributes speci�ed in Subsection 4.3.3 are computed

for the time subinterval de�ned as follows:

� up to the last month included in the considered period of time for

those customers who do not leave during the same period,

or

� up to the speci�c month during which the shifted churn event

happens, for those customers leaving the bank in the considered

period.

In Figure 4.1 we show a concise plot, which clari�es how we treat the

customers who leave, during the creation of the training set or test set. The

initial point represents the customers arrival, while the �nal point the shifted

churn event. In particular, in the considered period of time:

• Customer n.1 is considered as churner

• Customer n.2 is not considered at all

• Customer n.3 is not considered at all

• Customer n.4 is considered as non-churner

• Customer n.5 is considered as churner

• Customer n.6 is considered as non-churner

71

Figure 4.1: Possible churn events in a �xed period of time

The multi-month attributes related to the customers n.4 and n.6 (non-

churners) have to be computed using as the last available month the last

month of the considered period. The multi-month attributes related to the

customers n.1 and n.5 (churners), instead, have to be computed up to the

month during which the shifted churn event happens.

Customers who leave and subsequently rejoin the bank are not considered

in the �gure, because they need ad hoc reasoning, which is discussed in

Subsection 4.4.3.

In the context of this project, it is important to notice that, as the churn

event was shifted one month backward, the information related to the churn-

ers who left in January 2016 were included in the training set, while the data

related to the churners who left in February 2016 were included in the test

set. In fact, a customer who leaves during January 2016 would be labelled as

a churner of December 2015 and thus must be included in the training set.

72

At the end of this phase, the training set contains 717422 customers and

15731 of them are churners. The test set, instead, contains 709213 customers

and 1836 of them are churners. Both sets are described by 519 features and

a binary class (churner/non-churner). Table A.1 shows a summary of the at-

tributes contained in the dataset, highlighting their logical subdivision among

demographics, transactional attributes and balance features. In particular,

the demographics was composed of 7 attributes, the transactional features

amounted to 496 attributes and the balance amounted to 16 attributes. A

complete description of the attributes of the dataset can be found in Ap-

pendix A.

73

Dataset Structure

Customer Demographics
Age
...
Gender

Transactional multi-month attributes
Avg card payment - 1 month
Avg card payment - 3 months
Avg card payment - 6 months
Avg card payment - 12 months
Min card payment - 1 month
...
Sum withdrawals - 12 month

Balance multi-month attributes
Avg end balance - 1 month
Avg end balance - 3 months
Avg end balance - 6 months
Avg end balance - 12 months
Min end balance - 1 month
...
Sum end balance - 12 months

Class
Churn Flag

Table 4.4: Dataset Structure

74

4.4 Preprocessing Phase

In this section we present all the preprocessing actions we made on the train-

ing set, in order to improve the classi�er performance. In particular, we show

the feature selection phase, the sampling phase and the outlier analysis.

4.4.1 Feature Selection

The training set is quite a�ected by the curse of dimensionality (Subsection

2.4.2), which increases its complexity. Hence, it is necessary to select the most

relevant features, in order to tackle this issue and make the �nal classi�er

simpler and more generalizable. However, due to the high data dimensions,

standard feature selection approaches take too much computational time to

be e�ciently applied. Therefore, we used less sophisticated methods to speed

up the pace of the analysis.

The �rst feature selection approach that we used consists in estimating

the importance of each feature independently. More precisely, we trained

an univariate model (i.e. a classi�er that uses only one feature) for each

attribute of the training set. Every model was then evaluated on the test

set, in order to independently estimate the importance of each feature. We

tested this technique using CART as a classi�er, because its computational

time with one feature was the lowest among the models evaluated. Indeed,

it was necessary to train about 500 models to complete the process, since the

training set contained about 500 features, and a slow classi�cation algorithm

could have taken too much time to be trained 500 times. Table 4.5 shows

the average training time of univariate models depending on the algorithm

75

used.

Classi�cation Average training time
Algorithm with one feature (seconds)
CART 1.39

Logistic Regression 5.18
C5.0 11.04

Random Forest 50.47

Table 4.5: Univariate models training time

However, CART was not able to separate the two classes using only one

feature at a time. In fact, the decision tree always resulted in just a root node

which classi�ed all the records as non-churners. For this reason, we opted

for another feature selection procedure, which takes into account the depen-

dencies among the variables. In particular, we used the Random Feature

Selection technique (Subsection 2.4.2), which iteratively evaluates subsets of

randomly chosen features, in order to estimate the most promising one.

In this thesis we tested several subsets of �ve randomly chosen features,

which were then used to train a C5.0 classi�er (Subsection 2.5.1). The C5.0

was then evaluated on the test set, in order to estimate the importance of

each subset. In particular, the classi�er performances were evaluated seeking

the best compromise between precision and recall (Section 2.3), in order to

maximize the number of churners covered by the model and to minimize the

false positive errors (i.e. classify a non-churner as churner, Table 2.2).

After this phase, we locked the most promising subset and iteratively

added another feature chosen at random, in order to improve the just ob-

tained results. We stopped the process when no additional feature provided

a better separation of the two classes (i.e. it did not improve precision and

76

recall), resulting in a �nal subset with eight features in total.

4.4.2 Sampling

As said in Subsection 3.5.4, the number of churners is usually much smaller

than the number of non-churners, leading to an imbalanced training set.

This issue was also present in our analysis, since the annual bank churn

rate was about 2.5% only. For this reason, di�erent sampling techniques

were tested to balance the two classes (Subsection 2.4.1). In particular, the

most e�ective method was undersampling, which outperformed the sampling

techniques that replicates the rare class, since the latter ones resulted in over-

�tting the rare class, thus degrading the model performance signi�cantly. In

particular, the undersampling technique signi�cantly improved the results

only if combined with the outlier removal (Section 5.1.4). The best propor-

tion between classes was chosen so to optimize the classi�er performance on

the test set.

4.4.3 Outlier Analysis

Subsection 3.5.1 explains why outlier analysis is useful to improve the clas-

si�er quality. Exploring the bank database, we detected some strange cus-

tomers' behaviors, which have to be treated carefully. In particular, we

noticed that some customers, who have already left the bank in the past,

came back in subsequent time periods. These customers could be potentially

characterized by a peculiar behavior, therefore they have to be managed sep-

arately. Since the amount of these customers was very low (about 100), we

77

simply chose to remove them from the analysis, in order to avoid ine�ective

e�orts for their management.

The reasons which cause customers defection change over time quickly.

This means that the customers, who left the bank a long time ago and were

included in the training set, could potentially introduce noise in the model. In

fact, they could show a complete di�erent behavior compared to the churners

considered in the test set, who left more recently. For example, a customer

who left in March 2015 would probably show di�erent reasons for leaving

compared to a customer who left in January 2016.

This observation leads us to investigate how much the "freshness" of

churners in�uences the model performance. In particular, we discovered that

customers, who left more than seven months earlier from the considered test

set starting instant, introduce noise in the classi�er, resulting in lowered

performance (Table 5.5). For this reason, we chose to maintain only the

recent churners for training the model.

4.5 Final Summary

In this chapter we have described in details the practical problem that we

faced. Moreover, we have shown di�erent preprocessing actions, such as

dimensionality reduction and the creation of multi-month attributes, which

allowed us to create a standard and manageable dataset with one record

per customer. Furthermore, we have formally de�ned the "churner" as a

customer who leaves during the subsequent month. In particular, this new

de�nition led us to change the customers labels, shifting the churn event

78

one month backward. Moreover, we have shown a non-standard validation

approach, which estimates the ability of the model to identify the churners

in periods of time subsequent to the period related to the training set. We

have also presented the random feature selection technique, which we used to

select the most relevant attributes, in order to decrease the training time of

the classi�ers and to increase their predictive accuracy. Eventually, we have

shown both the sampling and the outlier removal actions that we applied to

the training set, in order to increase the classi�er performances.

79

80

Chapter 5

Churn Prediction Model

Development and Experimental

Validation

In this chapter we present several classi�cation models for the churn pre-

diction case study described in the previous chapter, and compare their rel-

ative performances in terms of standard metrics such as precision, recall,

speci�city, and AUC. These performances also allow us to evaluate the ef-

fectiveness of the outlier removal, undersampling and ensemble techniques.

Recall that the results we obtained in this thesis are generally much lower

than those reported in the literature, due to the more meaningful valida-

tion approach used to estimate the real business performances of the models

(Subsection 4.3.4), which di�ers from the standard approaches but provides

more meaningful estimates..

81

5.1 Modelling Phase

Customer churn turned out to be a very di�cult event to predict. In fact,

simple classi�ers, as logistic regression or CART (Subsection 2.5.1, 2.5.3), did

not reach very good results. Table 5.1 and 5.2 show the confusion matrices

related to the predictions of CART and logistic regression on the test set.

Notice that CART yields a lot of false positives compared to the number of

true positives, while logistic regression almost totally failed to predict which

customers will leave.

True Classes
Non-Churner Churner

Predictions
Non-Churner 706476 1681
Churner 901 155

Table 5.1: Confusion Matrix of CART

True Classes
Non-Churner Churner

Predictions
Non-Churner 707248 1832
Churner 129 4

Table 5.2: Confusion Matrix of Logistic Regression

The large size of the dataset made the use of models with high train-

ing times unfeasible for our purposes. In fact, algorithms such as SVM or

Adaboost did not even �nish the training process after �ve hours of computa-

tional e�ort. Table 5.3 shows the training time of several models we applied

to the training set, using only the eight selected features (as explained in Sub-

section 4.4.1). For these reasons, we aimed at a tradeo� between predictive

accuracy and training time.

82

Algorithm Time (minutes)
Logistic Regression 0.15

C5.0 0.76
CART 0.80
RIPPER 8.4

Random Forest 12.5
Adaboost NA
SVM NA

Table 5.3: Computational training time of classi�ers

We found that the best classi�cation algorithm which satis�ed these con-

ditions was C5.0, the same algorithm used in the feature selection phase. In

fact, C5.0 is suited to work with large datasets, therefore its training time is

su�ciently low to be feasible for our purposes.

We used C5.0 to train several models on di�erent preprocessed training

sets. In particular, each model has been trained using only the eight features

selected in the feature selection phase (Subsection 4.4.1).

First, we trained a C5.0 on the entire training set (i.e. not a�ected by

any preprocessing actions), in order to get a baseline score useful to �gure

out whether the classi�ers built on preprocessed training sets improve the

results, or not. In particular, the baseline scored 0.2774 in precision and

0.0414 in recall (Table 5.8).

5.1.1 Undersampling and Oversampling

As discussed in Subsection 4.4.2, we applied sampling techniques to balance

the classes. In particular, we applied both undersampling and oversampling

(Subsection 2.4.1) to �gure out which technique could potentially improve the

baseline score. Both techniques require a parameter (called p), which speci�es

83

the desired proportion between churners and non-churners in the training

set. In particular, we tuned this parameter aiming at the best compromise

between precision and recall, which were estimated on the test set. For this

purpose, we chose p = 0.03 for both undersampling and oversampling. Table

5.4 shows the performances reached using these techniques.

Undersampling
p Precision Recall

0.03 0.2490 0.0563
0.04 0.2102 0.0403
0.05 0.2215 0.0459
0.06 0.2276 0.0584
0.07 0.1970 0.0430
0.08 0.2346 0.0564
0.09 0.1816 0.0493
0.10 0.2182 0.0556

Oversampling
p Precision Recall

0.03 0.0449 0.0387
0.04 0.0242 0.0038
0.05 0.0283 0.0148
0.06 0.0265 0.0391
0.07 0.0272 0.0388
0.08 0.0225 0.0399
0.09 0.0202 0.0378
0.10 0.0183 0.0208

Table 5.4: Undersampling (left) and Oversampling (right) performances. The
�nal choice of p is highlighted in bold.

As shown by the results, undersampling outperformed oversampling in

predicting customer churn. In fact, oversampling led to over�tting the churner

class, resulting in very low precision. The undersampling, instead, increased

the recall, but lowered the precision compared to the baseline score (i.e. pre-

cision 0.2774, recall 0.0414). Hence, it is not trivial to assert if the classi�er

built with undersampling is a better model than the baseline. For this reason,

the �nal judgment depends on the bank needs, that is, if the bank prefers

better precision or better recall for its business.

We did not test SMOTE or a combination of undersampling with over-

sampling to balance the classes.

84

5.1.2 Outlier Removal

In Subsection 4.4.3 we observed that the churners who left the bank near the

beginning of the time period considered, which we refer to as early churners,

could introduce noise in the model, since the reasons which cause customers

defection change over time quickly. For this reason, we investigated the

impact of early churners on the performances of the classi�er. Table 5.5

shows the C5.0 performances obtained removing from the training set the

customers who left before the month indicated by the column "Month", and

the baseline score. AnNaN value of precision means that the model classi�ed

all the records as non-churners, resulting in zero recall and indeterminate

precision.

The removal of those customers who left before June 2015 improved the

overall results, outperforming the baseline score both in precision and recall

measures. In particular, we removed 5894 churners. This con�rms that

customers who left a long time ago exhibit a di�erent behavior compared to

the recent churners.

85

Month (2015) Precision Recall
February 0.2763 0.0387
March 0.3029 0.0507
April 0.2857 0.0142
May 0.2766 0.0142
June 0.3455 0.0566
July 0.3436 0.0545

August 0.2778 0.0136
September 0.6061 0.0109
October 0.6061 0.0109
November 0.6061 0.0109
December NaN 0

Baseline 0.2774 0.0414

Table 5.5: Old churner removal - performances

5.1.3 Easy Ensemble Technique

We continued the analysis combining the undersampling technique with the

outliers removal. In particular, we removed the customers who left before

June 2015 from the training set �rst, and then applied the undersampling

technique with p = 0.03, thus using the parameters which yielded the best

performances in the two preprocessing steps, when executed in isolation.

The model scored 0.3140 in precision and 0.0735 in recall, as Table 5.8 shows

(C5.0_US_CH).

The C5.0, combined with the undersampling technique and the outliers

removal, reached quite good results and we studied if its performance could

be improved using an ensemble technique.

The undersampling method throws away many non-churner records to

balance the classes proportion, hence we implemented an ensemble technique

which allows to maintain all the data and balance the classes proportion at

the same time. In particular, we implemented the Easy Ensemble technique

86

proposed by Xu-Ying Liu et al. [42]. This method is divided in three steps:

1. Generate N di�erent datasets through the application of the under-

sampling technique;

2. Train a classi�er on each dataset;

3. Mediate arithmetically the classi�ers predictions to make the �nal fore-

casts.

This procedure allows to cover all the available non-churner information, if a

proper value for N is chosen. In fact, given the p undersampling parameter,

it is possible to estimate a value N such that on average all the data are used.

In particular, estimating a proper N can be modelled as an extension of the

famous Coupon Collector Problem, which studies how many times we have

to buy random coupons, in order to complete the coupon collection com-

posed of n coupons. The original problem considers the case of buying only

one coupon at a time, which requires on average to pick Θ(nlogn) coupons

to complete the collection [4]. The extension considers the case of buying

batches which contain several coupons [33], as it happens in our problem.

In fact, the goal is to pick all the records at least once with N extractions

from the entire training set. Since the formula used to compute the number

of batches required to complete the coupon collection works only if applied

with small numbers, we used a numeric solution to estimate the best N . In

particular, we applied undersampling with p = 0.03 to the training set after

the outlier removal, hence generating a dataset with about 328000 records.

We simulated several random picking of 328000 records from the training set,

87

which contained 711528 observations after the outlier removal phase. The

average number of iterations required to get all the records was about 22,

with a minimum of 19 and a maximum of 30.

We tested the easy ensemble technique with di�erent N values between

10 and 35. Table 5.6 shows the precision and recall measures, which were ob-

tained evaluating on the test set several models obtained through the applica-

tion of the easy-ensemble technique with di�erent values of N . As expected,

the best performances were achieved around the estimated average number

of iterations (i.e. N = 22), while larger or smaller numbers of iterations

caused loss of precision.

N Precision Recall
10 0.3123 0.0703
15 0.3244 0.0724
20 0.3475 0.0714
22 0.3483 0.0719
25 0.3492 0.0719
30 0.3251 0.0719
35 0.3192 0.0700

Table 5.6: Easy Ensemble performances with di�erent number of iterations

5.1.4 Boosting

Another common method to improve the classi�er performance is the boost-

ing technique, as discussed in Subsection 2.5.4. The C5.0 implementation

includes the boosting technique, which requires as parameter the number of

trials. A number of trials equal to one means no boosting, while a number

greater than one speci�es how many boosting iterations are requested. We

tested this method also, but the results showed that boosting led to over�t-

88

ting, hence the boosting technique was not employed. Table 5.7 shows the

precision and recall obtained with boosting on the test set, where the �rst

row indicates no boosting (i.e. the baseline score). Notice that boosting has

never outperformed the baseline performances. We did not evaluate boost-

ing with more than nine trials, because of an excessive training time for the

classi�er.

Trials Precision Recall
1 0.2774 0.0414
2 0.2774 0.0414
3 0.0221 0.0054
4 0.0562 0.0076
5 0.0188 0.0022
6 0.1247 0.0305
7 0.0239 0.0049
8 0.0641 0.0054
9 0.0397 0.0074

Table 5.7: Boosting performances

89

Let us summarize the above �ndings. We have evaluated the perfor-

mances of C5.0 combined with undersampling, oversampling and outlier re-

moval. Oversampling did not help to improve the results, while undersam-

pling allowed to increase recall, sacri�cing a little of precision. Moreover, the

outlier removal was very e�ective in increasing the overall performances, since

it removed a lot of noise from the model. We have also tested a mixed version

of C5.0, applying both outlier removal and undersampling, resulting in quite

good precision and recall. Moreover, we have successfully improved the over-

all results through the use of the Easy Ensemble technique, which allowed to

apply undersampling while using all the available data. Eventually, we have

tried to improve the results using the built-in boosting algorithm o�ered by

the C5.0 software, but we have found that boosting led to over�tting.

5.2 Results

In this section we compare the results obtained with the classi�ers described

in Section 5.1. Table 5.8 summarizes the results obtained evaluating each

model considered on the test set, which contains 709213 customers, 1836 of

them are churners. The models considered are:

• Baseline: it is the direct application of the C5.0 algorithm, without

particular preprocessing.

• C5.0_CH: it is the C5.0 trained using only the churners who left after

May 2015.

• C5.0_US: it is the C5.0 trained on the undersampled dataset (with

90

p = 0.03).

• C5.0_US_CH: it is the C5.0 trained on the undersampled dataset (with

p = 0.03), which contains only the churners who left after May 2015.

• EE C5.0: it is the classi�er obtained through the easy ensemble tech-

nique (with p = 0.03 and N = 25), considering only the churners who

left after May 2015.

Baseline C5.0_CH C5.0_US C5.0_US_CH EE C5.0
Precision 0.2774 0.3455 0.2490 0.3140 0.3465
Recall 0.0414 0.0566 0.0563 0.0735 0.0719

Speci�city 0.9997 0.9997 0.9996 0.9996 0.9996
AUC 0.6370 0.6720 0.6233 0.6560 0.6720

Table 5.8: Classi�ers Performance

The baseline succeeded to predict the 4% of churners correctly with

27.74% of precision. These results were improved removing the old churners,

that is, the customers who left before June 2015 (Subsection 5.1.1). In fact,

the C5.0_CH scored higher precision and recall compared to the baseline,

reaching 34.6% of precision and 5.7% of recall. As shown by the results,

undersampling tended to increase the recall measure, sacri�cing a little of

precision (see baseline compared to C5.0_US and C5.0_CH compared to

C5.0_CH_US). This was expected, since undersampling leads a classi�er to

suppose that the proportion of churners is higher than the real one, because

several non-churners are removed from the training set. For this reason, a

model tends to classify a customer as churner more easily, resulting in lower

precision and, hopefully, higher recall.

91

The EE C5.0 addressed the disadvantages of undersampling, using all

the available data to improve the results. In fact, the EE C5.0 recovered the

precision lost with undersampling (C5.0_CH_US), maintaining a similar

recall at the same time. EE C5.0 correctly classi�ed 7.2% of the churners

with 34.7% of precision.

All of the models considered featured a very high speci�city (about 99.9%),

which is the fraction of non-churners correctly predicted. This means that al-

most all the non-churners were precisely identi�ed. In fact, due to the heavy

classes disequilibrium, a generic model tended to classify all the records as

non-churners, in order to minimize the errors, thus resulting in high speci-

�city. However, a high speci�city was fundamental to reduce the bank costs

related to false positive errors. In particular, low recall combined with high

speci�city is reasonable in banking environments, since customers labelled

as churners can be retained without wasting money on many non-churners,

increasing the bank pro�ts.

The AUC values of all models were also quite similar, reaching a maximum

of 67.20% with C5.0_CH and EE C5.0.

Tables 5.9, 5.10 and 5.11 present the confusion matrices of the C5.0_CH,

the C5.0_CH_US and the EE C5.0. The EE C5.0 resulted to be the best

model, since it scored both high precision and high recall, compared to the

other classi�ers.

True Classes
Non-Churner Churner

Predictions
Non-Churner 707180 1732
Churner 197 104

Table 5.9: Confusion Matrix of C5.0_CH

92

True Classes
Non-Churner Churner

Predictions
Non-Churner 707082 1701
Churner 295 135

Table 5.10: Confusion Matrix of C5.0_CH_US

True Classes
Non-Churner Churner

Predictions
Non-Churner 707128 1704
Churner 249 132

Table 5.11: Confusion Matrix of EE C5.0

It must be observed that the values of precision and recall featured by

our best models are lower than those reported by churn prediction studies

found in the literature. However, it is important to remark that unlike those

studies, we employed a non standard validation approach which provides a

much more meaningful estimate of the e�ectiveness of the model in realistic

scenarios. In fact, Fan Li et al. [36] reached 88.3% of precision and 79.9% of

recall using a Ten-fold Cross Validation (Section 2.2) to evaluate RIPPER.

Dr. U. Devi Prasad et al. [23] reached 91.2 % of precision and 61.2% of recall

using an Holdout approach (Section 2.2) to evaluate CART. Recall that we

obtained similar results using an Holdout approach to evaluate CART in

Subsection 4.3.4. These performances are useful to measure the ability of

classi�ers to understand the old reasons of abandonment, but they do not

estimate the capability of models to predict future customers' behavior.

93

5.3 Improved Results

All the results showed in the previous section were calculated evaluating

the models performances on the data related to the customers' behavior of

January 2016, which included the information of the customers who left in

February 2016, due to the churn event shift, as explained in Subsection 4.3.4.

However, it is possible that some non-churners of January 2016 left in the

subsequent months, namely, March and April 2016. This means that those

customers potentially have already exhibit a churner behavior in the test set,

because they left shortly after.

Since a bank is interested in predicting as soon as possible which cus-

tomers will leave, the non-churners who left in March and April 2016, and

labelled as churner by a classi�er, could be considered as correct predictions.

Thanks to this, the bank can spend more time in rectifying these customers'

behavior, increasing the probability of retention. Recall that the original test

set considered as churners only those customers who left in February 2016

even though, as explained before, they appear as they had left in January

2016.

We took into account the possibility that a customer shows the churner

behavior many months before the period during which he/she actually leaves,

and so we studied how many non-churners, classi�ed as churners of February

2016, actually left during March or April 2016. We considered the EE C5.0

classi�er only, since it was the most promising model.

It turned out that 107 of 249 non-churners classi�ed by the EE C5.0 as

churners actually left the bank during March or April 2016. This means

94

that these customers had already shown a churner behavior during February

2016, allowing the EE C5.0 to identify them earlier. This capability of the

model is an important value added for the bank, because the bank applies the

rectifying actions to all the customers identi�ed as churners by the classi�er.

Hence the bank can make even more pro�ts, retaining also the customers

who have already shown a churner behavior, but will leave only in subsequent

months.

Table 5.3 shows the precision, recall and AUC metrics obtained consider-

ing the customers who left in March and April 2016 as churners in the test

set.

Precision 0.6273
Recall 0.1230

Speci�city 0.99980
AUC 0.6970

Table 5.12: Recti�ed EE C5.0 Performance

The performances got signi�cant improvements, resulting in about dou-

bled precision and recall. In fact, the classi�er reached about 62.7% of pre-

cision and 12.3% of recall.

95

96

Chapter 6

Conclusions

The objective of this thesis has been to assess, on a case study, to what extent

customer churn in a banking environment can be predicted using data mining

techniques. Speci�cally, we aimed at predicting in advance which customers

are likely to leave a bank with quite good precision, avoiding costs related to

false positive errors (i.e. non-churners classi�ed as churners).

In the �rst chapter we have presented several data mining tools, which

are already consolidated in the literature, and some typical issues related to

classi�cation tasks, such as the class imbalance and the curse of dimension-

ality.

In the second chapter we have explained why predicting customers' be-

havior is a fundamental process to increase bank pro�ts. Moreover, we have

addressed the most relevant issues related to the churn prediction problem

and several ad hoc solutions proposed in the literature. Furthermore, we

have presented several classi�ers developed in the literature for predicting

customer churn, such as ALBA and IBRF. However, these peculiar models

97

have not been developed as open softwares, therefore we could not use them

in our project. In fact, an implementation from scratch would have taken too

much time, leading to additional costs that a POC project cannot support.

In the third chapter we have described the structure of the dataset made

available to us and the peculiar characteristics of the speci�c problem we

faced during the POC project. In particular, we have addressed the critical

points, such as the dataset creation and preprocessing phases, showing the

implemented solutions also.

In the fourth chapter we have described which classi�ers we trained

to forecast customer churn, highlighting the best model found. Moreover,

we have shown the reached results and compared the models performances

among them. In particular, the EE C5.0 turned out to be a powerful classi�er

for forecasting customers' behavior, reaching a su�cient precision and recall

for our purposes to con�rm the POC. Therefore, further studies to explore

the real model potential may be worth considering.

Future studies should focus on seeking new discriminating features, which

might allow to characterize the customers' behavior and separate the two

customers classes better. For example, one possibility is to create multi-

month attributes on shorter periods of time, in order to describe customers

movements more accurately. Another possibility is to compute value varia-

tions of each attribute over time, rather than using the static values per se.

In fact, high variations may be very informative about relevant customers

movements.

It is important to notice that in this thesis we have used only the balance,

demographic and transactional data. Hence, a future study may collect more

98

customers' information to better understand the reasons of abandonment.

Moreover, we have labelled a customer as churner in a given month if he/she

left during the subsequent month. Since this event could turn out to be too

di�cult to be e�ciently predicted, it would be interesting to test di�erent

churn event de�nitions, in order determine any signi�cant di�erences among

the various results.

In conclusion, we have seen that predicting customer churn is a very

challenging task due to its temporal characteristic, which increases the overall

data analysis complexity. In fact, a standard procedure to model time events

in classi�cation tasks does not exists yet, making time varying problems

widely discussed and studied in the literature. However, we have proved that

data mining tools can help banks to understand their customers' behavior,

con�rming that further studies may be worth considering.

99

100

Appendix A

Dataset Attributes

In this appendix we report the dataset we used in this thesis. In particu-

lar, Table A.1 shows the attributes and their domain (Section 2.1). For the

sake of simplicity, each multi-months attribute stands for all the di�erent

versions of it, that is, those calculated on 1 month, 3 months, 6 months and

12 months. For example, Avg card payment represents the average of Card

Payment computed on 1 month, 3 months, 6 months and 12 months.

Name Domain

Customer Demographics
Age Quantitative
Gender Qualitative
Seniority (years) Quantitative
Postal province Qualitative
Postal region Qualitative
Birth province Qualitative
Birth region Qualitative

Transactional multi-month attributes
Avg card payment Quantitative

101

Avg salary pension Quantitative
Avg forms Quantitative
Avg titles Quantitative
Avg bank transfer Quantitative
Avg capital gain Quantitative
Avg insurances Quantitative
Avg closures Quantitative
Avg payment fee Quantitative
Avg services Quantitative
Avg stamps Quantitative
Avg consumptions Quantitative
Avg prepaid recharge Quantitative
Avg transfers Quantitative
Avg deposits Quantitative
Avg withdrawals Quantitative
Avg checks emission Quantitative
Avg promotion Quantitative
Avg credit Quantitative
Avg debit Quantitative
Avg number of accounts Quantitative
Avg number of transactions Quantitative
Avg gcca Quantitative
Avg gca Quantitative
Avg cc Quantitative
Avg ca Quantitative
Avg to Quantitative
Avg cp Quantitative
Avg money moved Quantitative
Avg salary �ag Quantitative
Avg transactions �ag Quantitative
Min card payment Quantitative
Min salary pension Quantitative
Min forms Quantitative
Min titles Quantitative
Min bank transfer Quantitative
Min capital gain Quantitative
Min insurances Quantitative
Min closures Quantitative
Min payment fee Quantitative
Min services Quantitative
Min stamps Quantitative

102

Min consumptions Quantitative
Min prepaid recharge Quantitative
Min transfers Quantitative
Min deposits Quantitative
Min withdrawals Quantitative
Min checks emission Quantitative
Min promotion Quantitative
Min credit Quantitative
Min debit Quantitative
Min number of accounts Quantitative
Min number of transactions Quantitative
Min gcca Quantitative
Min gca Quantitative
Min cc Quantitative
Min ca Quantitative
Min to Quantitative
Min cp Quantitative
Min money moved Quantitative
Min salary �ag Quantitative
Min transactions �ag Quantitative
Max card payment Quantitative
Max salary pension Quantitative
Max forms Quantitative
Max titles Quantitative
Max bank transfer Quantitative
Max capital gain Quantitative
Max insurances Quantitative
Max closures Quantitative
Max payment fee Quantitative
Max services Quantitative
Max stamps Quantitative
Max consumptions Quantitative
Max prepaid recharge Quantitative
Max transfers Quantitative
Max deposits Quantitative
Max withdrawals Quantitative
Max checks emission Quantitative
Max promotion Quantitative
Max credit Quantitative
Max debit Quantitative
Max number of accounts Quantitative

103

Max number of transactions Quantitative
Max gcca Quantitative
Max gca Quantitative
Max cc Quantitative
Max ca Quantitative
Max to Quantitative
Max cp Quantitative
Max money moved Quantitative
Max salary �ag Quantitative
Max transactions �ag Quantitative
Sum card payment Quantitative
Sum salary pension Quantitative
Sum forms Quantitative
Sum titles Quantitative
Sum bank transfer Quantitative
Sum capital gain Quantitative
Sum insurances Quantitative
Sum closures Quantitative
Sum payment fee Quantitative
Sum services Quantitative
Sum stamps Quantitative
Sum consumptions Quantitative
Sum prepaid recharge Quantitative
Sum transfers Quantitative
Sum deposits Quantitative
Sum withdrawals Quantitative
Sum checks emission Quantitative
Sum promotion Quantitative
Sum credit Quantitative
Sum debit Quantitative
Sum number of accounts Quantitative
Sum number of transactions Quantitative
Sum gcca Quantitative
Sum gca Quantitative
Sum cc Quantitative
Sum ca Quantitative
Sum to Quantitative
Sum cp Quantitative
Sum money moved Quantitative
Sum salary �ag Quantitative
Sum transactions �ag Quantitative

104

Balance multi-month attributes
Avg end balance Quantitative
Min end balance Quantitative
Max end balance Quantitative
Sum end balance Quantitative

Class
Churn Flag Qualitative

Table A.1: Dataset Structure

105

106

Bibliography

[1] Verbeke W. & Dejaeger K. & Martens D. & Hur J. & Baesens B., New

insights into churn prediction in the telecommunication sector: A pro�t

driven data mining approach, 2012.

[2] Wouter Verbeke & David Martens & Christophe Mues & Bart Bae-

sens, Building comprehensible customer churn prediction models with

advanced rule induction techniques, 2011.

[3] Dºulijana Popovi¢ & Bojana Dalbelo Ba²i¢, Churn prediction model in

retail banking using fuzzy c-means algorithm, 2008.

[4] Vassilis G. Papanicolaou & George E. Kokolakis & Shahar Boneh,

Asymptotics for the random coupon collector problem, 1998.

[5] C. Chen & A. Liaw & L. Breiman, Using random forest to learn imbal-

anced data, 2004.

[6] Francis Buttle, Customer relationship management: Concepts and tech-

nologies, 2009.

[7] Ling R. & Yen D. C., Customer relationship management: An analysis

framework and implementation strategies, 2001.

107

[8] Prof. Nilima Patil & Prof. Rekha Lathi & Prof. Vidya Chitre, Com-

parison of c5.0 & cart classi�cation algorithms using pruning technique,

2012.

[9] Tim Coltman, Why build a customer relationship management capabil-

ity?, 2007.

[10] Dirk Van den Poel & Bart Larivière, Customer attrition analysis for

�nancial services using proportional hazard models, 2004.

[11] J. Burez & D. Van den Poel, Handling class imbalance in customer churn

prediction, 2009.

[12] M. Rajeswari & T. Devi, Design of modi�ed ripper algorithm to predict

customer churn, 2015.

[13] David Martens & Bart Baesens & Tony Van Gestel, Decompositional

rule extraction from support vector machines by active learning, 2009.

[14] Aurélie Lemmens & Sunil Gupta, Managing churn to maximize pro�ts,

2013.

[15] Shouwei Li & Mingliang Wang & Jianmin He, Prediction of banking

systemic risk based on support vector machine, 2013.

[16] Elsevier Inc., Data mining: Concepts and techniques, 2012.

[17] Pearson K., On lines and planes of closest �t to systems of points in

space, 1901.

108

[18] Adnan Idris & Muhammad Rizwan & Asifullah Khan, Churn prediction

in telecom using random forest and pso based data balancing in combi-

nation with various feature selection strategies, 2012.

[19] M Chandar & A Laha & P Krishna, Modeling churn behavior of bank

customers using predictive data mining techniques, 2006.

[20] Ding-An Chiang & Yi-Fan Wang & Shao-Lun Lee & Cheng-Jung Lin,

Goal-oriented sequential pattern for network banking churn analysis,

2003.

[21] Chih-Fong Tsai & Yu-Hsin Lu, Customer churn prediction by hybrid

neural networks, 2009.

[22] Tom Au & Shaomin Li & Guangqin Ma, Applying and evaluating models

to predict customer attrition using data mining techniques, 2003.

[23] Dr. U. Devi Prasad & S. Madhavi, Prediction of churn behavior of bank

customers using data mining tools, 2012.

[24] DJ Hand & HJ Adèr & GJ Mellenbergh, Advising on research methods:

A consultant's companion, 2008.

[25] Ed Thompson & Scott D. Nelso, How to develop a crm strategy, 2004.

[26] NGData, Predicting & preventing banking customer churn by unlocking

big data, 2013.

[27] Teemu Mutanen & Jussi Ahola & Sami Nousiainen, Customer churn

prediction - a case study in retail banking, 2003.

109

[28] S.B. Kotsiantis & D. Kanellopoulos & P.E. Pintelas, Data preprocessing

for supervised leaning, 2006.

[29] A. Kalja & H.M. Haav & T. Robal, Modelling customer churn using

segmentation and data mining, 2014.

[30] Perlich C. & Provost F. & Simono� J. S., Tree induction vs. logistic

regression: A learning-curve analysis, 2003.

[31] Yoav Freund & Robert E. Schapire, A short introduction to boosting,

1999.

[32] Usama Fayyad & Gregory Piatetsky-Shapiro & Padhraic Smyth, The

kdd process for extracting useful knowledge from volumes of data, 1996.

[33] Wolfgang Stadje, The collector's problem with group drawings, 1990.

[34] Sven F. Crone & Stefan Lessmann & Robert Stahlbock, The impact of

preprocessing on data mining: An evaluation of classi�er sensitivity in

direct marketing, 2006.

[35] Zhen-Yu Chen & Zhi-Ping Fan & Minghe Sun, A hierarchical multi-

ple kernel support vector machine for customer churn prediction using

longitudinal behavioral data, 2012.

[36] Fan Li & Juan Lei & Ying Tian & Sakuna Punyapatthanakul & Yanbo J.

Wang, Model selection strategy for customer attrition risk prediction in

retail banking, 2011.

110

[37] Zhao Jing & Dang Xing-hua, Bank customer churn prediction based on

support vector machine: Taking a commercial bank's vip customer churn

as the example, 2008.

[38] Yen-Hsien Lee & Chih-Ping Wei & Tsang-Hsiang Cheng & Ching-

Ting Yang, Nearest-neighbor-based approach to time-series classi�cation,

2012.

[39] Yaya Xie & Xiu Li & E.W.T. Ngai & Weiyun Ying, Customer churn

prediction using improved balanced random forests, 2009.

[40] Özden Gür Ali & Umut Ar�türk, Dynamic churn prediction framework

with more e�ective use of rare event data: The case of private banking,

2014.

[41] Benlan He & Yong Shi & Qian Wan & Xi Zhao, Prediction of customer

attrition of commercial banks based on svm model, 2014.

[42] Xu-Ying Liu & Jianxin Wu & Zhi-Hua Zhou, Exploratory undersampling

for class-imbalance learning, 2009.

111

112

Ringraziamenti

Desidero ringraziare i Professori Andrea Pietracaprina e Geppino Pucci per

avermi dato la possibilità di lavorare su un progetto innovativo e interessante,

guidandomi con pazienza e attenzione nel percorso della tesi.

Voglio ringraziare Everis Italia per avermi permesso di lavorare su un pro-

getto di scala nazionale, durante il quale ho imparato molto, sia per quanto

riguarda la parte tecnica, sia su come funziona realmente un'azienda.

Ringrazio di cuore l'ing. Massimo Ferrari, che ha seguito il percorso della

mia tesi dall'inizio alla �ne con costante attenzione, guidandomi nella real-

izzazione di questo interessante progetto. Grazie davvero per la tua disponi-

bilità.

Desidero ringraziare il dott. Riccardo Panizzolo per avermi insegnato

molti strumenti importanti relativi all'analisi dei dati e applicati ad una

realtà aziendale.

Ringrazio di cuore Martina per avermi aiutato nella realizzazione di questo

progetto durante la mia permanenza in Everis, condividendo con me buona

parte del suo tempo e facendomi sentire sempre a mio agio, sempre pronta

ad aiutarmi. Alla �ne, tra i vari imprevisti e i pranzi insieme, ne abbiamo

passate tante insieme. Grazie Marti!

113

Voglio inoltre ringraziare tutto il team di Everis per il tempo passato

insieme. In particolare, ringrazio Alessandro, Marianna, Luca, Quan e Silvia.

Con grande a�etto desidero ringraziare tutta la mia famiglia, mamma

Nicoletta, papà Stefano e mio fratello Nicola. Grazie per avermi permesso di

studiare e per tutto il sostegno e amore che mi avete sempre dato. Vi voglio

bene.

114

	Introduction
	Classification Review
	Attribute Types
	Training, Validation and Test phases
	Evaluation Metrics
	Accuracy
	Area Under the Curve
	F-measure

	Common Problems in Classification
	Class Imbalance
	Curse of Dimensionality

	Common Models
	Decision Trees
	Rule Based Classifiers
	Logistic Regression
	Random Forest
	Boosting

	Churn Prediction Review
	Introduction
	Churn Prediction
	Problem Definition
	Data Collection
	Dataset Structure
	Static and Longitudinal Attributes
	Dataset Frameworks
	Labelling the Dataset

	Preprocessing
	Outlier Detection
	Missing Values Treatment
	Feature Selection
	Overcome Class Imbalance

	Models
	Standard Popular Models
	Comprehensible Models
	Clustering Classification
	Hybrid Neural Networks
	Hierarchical Multiple Kernel Support Vector Machine (H-MK-SVM)
	Improved Balanced Random Forests (IBRF)

	Practical Problem Description and Data Preprocessing
	Introduction
	Dataset Structure
	Dataset Creation
	Data Quality Check
	Dimensionality Reduction
	Feature Extraction
	Labelling the Records

	Preprocessing Phase
	Feature Selection
	Sampling
	Outlier Analysis

	Final Summary

	Churn Prediction Model Development and Experimental Validation
	Modelling Phase
	Undersampling and Oversampling
	Outlier Removal
	Easy Ensemble Technique
	Boosting

	Results
	Improved Results

	Conclusions
	Dataset Attributes

