UNIVERSITI TEKNOLOGI MARA

THE EFFECT OF ACTIVATED CHARCOAL ON IN VITRO GROWTH AND DEVELOPMENT OF RICE (*Oryza sativa* L.) MATURE SEED

MOHAMAD RIZAL BIN MOHAMAD

Final Year Project Report Submitted in Partial Fulfilment of the requirements for the Degree of Bachelor of Sciences (Hons.) Plantation Technology and Management

Faculty of Plantation and Agrotechnology

JANUARY 2015
CANDIDATE’S DECLARATION

I declare that the work in this Final Year Project was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. The Final Year Project report has not been submitted to any academic institution or non-academic institution for any degree or qualification.

In the event that my Final Year Project is found to violate the conditions mention above, I voluntarily waive the right of conferment of my bachelor degree to be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Candidates : MOHAMAD RIZAL BIN MOHAMAD
Candidate’s ID No. : 2012673314
Programme : Bachelor of Science (Hons.) Plantation Technology and Management
Faculty : Plantation and Agrotechnology
Title : The Effect of Activated Charcoal on In Vitro Growth and Development Of Rice (Oryza sativa L.) Mature Seed
Signature of Candidate :
Date : 25th January 2015
ABSTRACT

Rice (*Oryza sativa* L.) is a monocot plant, one of the world’s most important cereals crop and a staple food. More than half of world’s population eat rice as a important staple food and mostly from developing countries. The increasing demand of rice cause by global population lead researcher to find suitable method to cultivate rice than traditional breeding. As a result, biotechnology effort has become significant. In order to improve the paddy quality and increase rice production, the biotechnology is use as a micropropagation method. However there is problem to avoid abnormality of growth and development of explant. Thus, the aim of the experiment for this research project is to determine the effect of activated charcoal on *in vitro* growth and development of rice mature seeds. It is important to study the influence and the most effective concentration of activated charcoal that support growth and development of rice mature seeds by *in vitro*. It can help researcher and producer to regenerate healthy plantlets and thus reduce a cost of production. Dehusked mature seeds were cultured in MS media supplemented with different concentration of activated charcoal (0.0, 0.5, 0.75, 1.0 and 2.0 g/L) combination with constant concentration of BAP and NAA. A Complete Randomized Design (CRD) with 5 replications was used in this study. As a result, the higher concentration of activated charcoal (2.0 g/L) is required for development of healthy plantlet from the mature seed. The successful regeneration of full-fledge plant achieved in this study can be used as new *in vitro* protocol for rice (*Oryza sativa* L.) production industry and useful for plant breeders for improving rice cultivars.
ACKNOWLEDGEMENTS

Alhamdulillah is the first expression that leaves my lips when I am writing this dissertation, all commendations ought to go to ALLAH for providing for me quality and quietness to the culmination of this proposal. Numerous individuals additionally have assumed an essential part in the consummation of this postulation. Anyway, let my much obliged go to a couple of individuals that can apply just as well for the others.

My supervisor, Madam Noer Hartini Binti Dolhaji who acknowledged me as her understudy therefore opened an entryway for me to study about Biotechnology and initiated charcoal. Her direction, exhortation and comprehension were priceless and I likewise thank her for generous tolerating my lack of awareness and my endeavors, which has been an incredible support for my benefit. My much appreciated goes to Miss Fatimah Binti Abdol Latif, lecturer of Faculty Agrotechnology and Plantation, who guided me through all the tissue culture parts of this work actually like managing a visually impaired individual. I might want to broaden my gratitude to all laboratory assistant in Tissue Culture Lab UiTM Jasin Melaka who had in somehow helped me by giving some assistance when required.

My deepest appreciation devotes to family, who had held my hands through this excursion. In spite of the fact that Biotechnology is such an outsider subject to them and they could not stand the thought that researcher are more imperative than architects in this world. Regardless their adoring backing has no limit, kept me going at the roughest times, and made my life more genuine and great.
TABLE OF CONTENTS

ABSTRACT ... iv
ABSTRAK ... v
ACKNOWLEDGEMENTS ... vi
TABLE OF CONTENTS .. vii
LIST OF TABLES ... ix
LIST OF FIGURES ... x
LIST OF ABBREVIATION .. xi

Chapter One INTRODUCTION 1
1.1 Background of Study .. 1
1.2 Problem Statement .. 3
1.3 Significant of Study ... 3
1.4 Objective of the Study .. 3

Chapter Two LITERATURE REVIEW 4
2.1 Description of *Oryza sativa* L. 4
 2.1.1 Taxonomic classification of paddy 4
 2.1.2 Plant morphology .. 5
2.2 Malaysian Rice Production ... 5
2.3 Plant cultivation ... 6
2.4 *In vitro / in vitro* propagation 7
 2.4.1 Mature embryo of rice .. 8
 2.4.2 MR 219 .. 9
 2.4.3 Plant growth regulator 9
2.5 Activated charcoal ... 10

Chapter Three METHODOLOGY 12
3.1 Material ... 12
 3.1.1 Raw materials .. 12
 3.1.2 Chemicals ... 12
 3.1.3 Apparatus ... 12
3.2 Method ... 13
 3.2.1 Surface sterilization of explant 13
 3.2.2 Preparation of culture medium 13
 3.2.3 Culture and growth condition 14
3.3 Parameters .. 14
 3.3.1 Number of leaves ... 14
 3.3.2 Number of roots .. 14
 3.3.3 Height of the plants (cm) 14
 3.3.4 Length of the roots (cm) 14
3.4 Experimental Design ... 15
 3.4.1 Experimental Layout 15
3.5 Schedule of work .. 16
3.6 Statistical Analysis .. 17
3.7 Hypothesis .. 17