

 Universidade de São Paulo

2015-11

Particle-based fluids for viscous jet buckling

Computers and Graphics,Amsterdam : Elsevier,v. 52, p. 106-115, nov. 2015
http://www.producao.usp.br/handle/BDPI/51268

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Outros departamentos - ICMC/Outros Importação - 2015

http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/51268

Special Section

Particle-based fluids for viscous jet buckling

Luiz Fernando de Souza Andrade a, Marcos Sandim a, Fabiano Petronetto b, Paulo Pagliosa c,
Afonso Paiva a

a Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, Brazil
b Universidade Federal do Espírito Santo, Vitória, Brazil
c Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil

a r t i c l e i n f o

Article history:
Received 29 November 2014
Received in revised form
24 June 2015
Accepted 17 July 2015
Available online 8 August 2015

Keywords:
SPH fluids
Jet buckling
Viscous liquids
CUDA
Computer animation

a b s t r a c t

In this paper, we introduce a novel meshfree framework for animating free surface viscous liquids with
jet buckling effects, such as coiling and folding. Our method is based on Smoothed Particle Hydro-
dynamics (SPH) fluids and allows more realistic and complex viscous behaviors than the previous SPH
frameworks in computer animation literature. The viscous liquid is modeled by a non-Newtonian fluid
flow and the variable viscosity under shear stress is achieved using a viscosity model known as Cross
model. We demonstrate the efficiency and stability of our framework in a wide variety of animations,
including scenarios with arbitrary geometries and high resolution of SPH particles. The interaction of the
viscous liquid with complex solid obstacles is performed using boundary particles. Our framework is
able to deal with different inlet velocity profiles and geometries of the injector, as well as moving inlet
jet along trajectories given by cubic Hermite splines. Moreover, the simulation speed is significantly
accelerated by using Computer Unified Device Architecture (CUDA) computing platform.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A daily life example of viscous jet buckling is the coiling and
folding of a thin thread of syrup or honey falling onto a spoon. The
characteristic motion of a jet buckling is controlled by the balance
among inertia, gravity and viscous forces that arise from the
compressive stress caused by the impact of the fluid on a rigid
surface. In the last years, Smoothed Particle Hydrodynamics (SPH)
[1] has become a popular numerical meshfree tool for visually
realistic animation of liquids [2]. However, simulating the complex
free surface of a viscous jet buckling in an efficient and realistic
way remains a big challenge for the previous SPH frameworks in
computer animation. The difficulties are related to proposing a
variable viscosity model which has a non-linear dependence of the
fluid's shear rate, proposing an accurate and stable SPH approx-
imation for viscous acceleration which involves second order
derivatives of each component of the velocity field, and enforcing
boundary conditions suited to SPH.

In this paper, we present a novel meshfree technique based on SPH
fluids for simulating viscous jet buckling behaviors. Our technique
allows a wide range of realistic viscous effects of the free surface of
liquids, such as coiling and folding, as shown in Fig. 1. In order to
capture the viscous behavior that is characteristic of jet buckling, the
time interval between two consecutive frames needs to be very short,
as discussed in Section 3.3, thus increasing the number of time-steps

of the simulation total time. Since the computation in each time-step
is highly intense, but can be performed in parallel and independently
for each SPH particle, the problem can be suitably mapped to graphics
processing units (GPUs). We use the Computer Unified Device
Architecture (CUDA) by NVIDIA due to its efficiency, object-oriented
programming capability, easy integration with the development
environment we have used, and availability of a lot of libraries and
demos which accompany the CUDA toolkit. The adequacy of using
CUDA for standard SPH fluids can be demonstrated by other imple-
mentations reported in the literature [3,4]. In summary, the main
contributions of this paper are:

Variable viscosity model: The viscous liquid is modeled as a non-
Newtonian fluid flow and the variable viscosity is governed by a
rheological model known as Cross model [5].

SPH viscous acceleration: We introduce a stable and robust SPH
approximation of fluid's viscous acceleration using derivative
operators of first order.

SPH boundary particles: Our framework allows us to impose
boundary conditions on complex geometries to simulate rigid
obstacles using boundary particles.

SPH jet buckling on CUDA: Using CUDA enables the animation of
jet buckling scenes involving hundreds of thousands of SPH
particles in affordable computational times, notably when com-
pared to sequential processing, as showed by the experiments
presented in Section 4, freeing the CPU for other tasks.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

http://dx.doi.org/10.1016/j.cag.2015.07.021
0097-8493/& 2015 Elsevier Ltd. All rights reserved.

Computers & Graphics 52 (2015) 106–115

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2015.07.021
http://dx.doi.org/10.1016/j.cag.2015.07.021
http://dx.doi.org/10.1016/j.cag.2015.07.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.07.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.07.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.07.021&domain=pdf
http://dx.doi.org/10.1016/j.cag.2015.07.021

1.1. Related work

In order to better contextualize our approach and highlight its
properties, we organize the existing frameworks for animating
viscous jet buckling into two main groups, Eulerian mesh-based
and Lagrangian meshfree-based methods.

Eulerian mesh-based: A seminal work in computer animation
was introduced by Goktekin et al. [6]. They simulate solids and
viscoelastic fluids with a small effect of buckling using an explicit
grid-based method with viscosity transition between solid and
non-Newtonian fluid controlled by a quasi-linear plasticity model.
Batty and Bridson [7] developed an implicit and unconditionally
stable method using marker-and-cell (MAC) grid. Although this
method provides high-accuracy free surface boundary conditions,
it is limited to viscous Newtonian fluids. Bergou et al. [8] proposed
a discrete model for viscous threads using elastic rods to represent
thin Newtonian liquid jets. Despite this method's realistic results,
spurious results may occur when the jet becomes thick. Recently,
this model was extend to discrete viscous thin sheets [9]. Batty
and Houston [10] presented an adaptive tetrahedral mesh solver to
animate Newtonian liquids with high viscosity. However, the level
set surface generated by this method does not preserve temporal
coherence due to the slow motion of the liquid. In computational
physics literature, there are several papers using variations of
generalized simplified MAC (GENSMAC) method to simulate vis-
cous jet buckling in arbitrary 2D/3D domains with explicit [11–13]
and implicit [14] free surface boundary conditions.

Lagrangian meshfree-based: SPH fluids have been applied with
success in simulations of highly viscous liquids with variable
viscosity [15–19]. However, none of these methods in computer
animation have captured viscous buckling behavior. In computa-
tional physics, Rafiee et al. [20] used an incompressible version of
SPH to simulate 2D jet buckling of non-Newtonian fluids, while Xu
et al. [21,22] extended the traditional weakly compressible SPH
method to deal with 3D simulations. This paper is inspired in [21]
and it improves that work in several ways: our stable SPH
approximation of momentum equation does not require additional
terms, artificial stress and artificial viscosity, to prevent particle
clustering and unphysical behavior of free surface.

A previous version of this paper [23] focused on buckling
effects in planar boundaries only. Here, we focus on buckling
effects on arbitrary surfaces and injectors with complex geometry.
In addition to the material on jet buckling presented in Section 4,
we include a wide variety of examples using injectors with
complex geometry and with different velocity profiles at the inlet.
Moreover, we demonstrate the ability of our technique in applica-
tions with complex rigid surfaces using boundary particles.

2. Governing equations

The governing equations for simulating fluid flow are derived
from mass and momentum conservation laws. Lagrangian frame-
work describes these laws from the viewpoint of an infinitesimally
small fluid element, i.e., a particle. In this framework the mass
conservation is naturally satisfied, since the particle mass is
constant, then the total mass of the system is preserved. For
weakly compressible fluids, the momentum equation can be
written as follows:

dv
dt

¼ �1
ρ
∇pþ1

ρ
∇ � τþg ð1Þ

where t denotes the time, v the velocity field, ρ the density, p the
pressure, g the gravity acceleration vector and τ the shear stress
tensor.

Lagrangian formulation of Eq. (1) represents the acceleration of
a particle moving with the fluid flow. The term �1

ρ∇p is related to
particle acceleration due to pressure changes in the fluid. While,
the term 1

ρ∇ � τ describes the viscous acceleration due to friction
forces caused by particles with different velocities. This last term
plays a key role in viscous jet buckling animation.

Cross model

In order to animate a wide variety of buckling effects, New-
tonian and non-Newtonian fluid flows are used in this paper. In
particular, non-Newtonian fluids have non-linear dependence of
the shear stress τ with respect to the rate-of-deformation tensor
D¼∇vþ ∇vð Þ> as follows:

τ¼ ρνðDÞD with D¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 � tr Dð Þ2

q
: ð2Þ

Fig. 1. The liquid rope coiling effect: a real image of honey coiling (left), our technique with free surface (middle) and with SPH fluid particles (right).

Fig. 2. SPH particles: fluid (blue) and boundary (brown) particles. (For interpreta-
tion of the references to color in this figure caption, the reader is referred to the
web version of this paper.)

L.F.d.S. Andrade et al. / Computers & Graphics 52 (2015) 106–115 107

The Cross model [5] is one of the simplest and most used
models for shear-thinning behavior, i.e., the fluid's viscosity
decreases with increasing of the local shear rate D, thus the
kinematic viscosity ν is defined as a function of D

ν Dð Þ ¼ ν1þ ν0�ν1
1þðKDÞn; ð3Þ

where K and n are positive parameters, and ν0, ν1 are the limiting
values of the viscosity at low and high shear rates, respectively.
The units of viscosity are m2/s.

Assuming K¼0 in Eq. (3), the non-Newtonian fluid model is
simplified to a Newtonian fluid with constant kinematic viscosity
ν0.

3. Our technique

There are several SPH frameworks to animate fluid flow. In our
animation framework, we use a SPH version for weakly compres-
sible fluids [24], extended by our method. A wide description of
SPH fluids for graphics can be found in [2].

3.1. SPH fluids

The main idea of SPH in fluid flow simulation is to discretize
the fluid by a set of particles where each particle i has attributes
such as position xi, velocity vi, pressure pi, mass mi (constant

across all particles) and density ρi. A scalar or vector attribute
f i ¼ f ðxiÞ is updated using a SPH approximation

f i ¼
X
jANi

f jWhðxijÞ
mj

ρj
; ð4Þ

where j indexes the particles lying in the neighborhood Ni of the
particle i and xij ¼ Jxi�xj J . The kernel function Wh is a radially
symmetric, positive, smooth, compactly supported function and
the value h defines the region of influence of Wh. Fluid attributes
and the differential operators of the momentum equation (1) can
be approximated in a similar manner as follows.

Density computation: We compute the density using the tradi-
tional direct summation derived from Eq. (4) with poly6 kernel
presented in [24]

ρi ¼
X
jANi

mjWhðxijÞ: ð5Þ

This form preserves mass exactly without involving kernel
derivatives.

Equation of state: In standard SPH frameworks, an incompres-
sible fluid is approximated by a weakly compressible fluid. In other
words, the pressure is computed directly from density through an
equation of state. For simplicity, we choose an equation of state
proposed by Morris et al. [25]

pi ¼ c2ðρi�ρ0Þ; ð6Þ

Fig. 3. Numerical simulation of the torus fluid spreading. The initial configuration of the torus fluid is illustrated in top-left. In top-right, we plot (loglog scales) the Cross
model with parameters: ½ν1; ν0� ¼ ½0:2;2�, n¼1 and K¼0, 1, 10 and 100. Fluid flow simulations in the same times are showed in clockwise order from top-left for the
Newtonian fluid (K¼0) and non-Newtonian fluids with increases K parameter. The colors code the viscosity νiA ½ν1; ν0� in the SPH particles. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

L.F.d.S. Andrade et al. / Computers & Graphics 52 (2015) 106–115108

where c is the speed of sound in the fluid and ρ0 is a reference
density. The values c¼

ffiffiffiffiffiffiffi
1:5

p
m=sS and ρ0 ¼ 103 kg=m3 are tuned

out to be suitable for all experiments.
Pressure acceleration: We use Müller's SPH pressure gradient with

spiky kernel [24]. The pressure acceleration for each particle is given by

� 1
ρi
∇pi ¼ �

X
jANi

mj
piþpj
2ρj

∇iWhðxijÞ: ð7Þ

This choice avoids numerical instabilities associated with particle
clustering, because the SPH gradient does not vanish when xij becomes
closer to zero.

Viscous acceleration: In order to compute the shear stress τi at
particle i in Eq. (2), we adopt the same SPH approximation as Paiva
et al. [19] for the deformation tensor Di ¼∇viþ∇v>

i with

∇vi ¼
X
jANi

mj

ρj
ðvj�viÞ � ∇iWhðxijÞ: ð8Þ

After updating shear stress at all particles, the viscous acceleration
is approximated by

1
ρi
∇ � τi ¼

X
jANi

τi
ρ2
i

þ τj
ρ2
j

 !
� ∇iWhðxijÞ: ð9Þ

3.2. Boundary conditions

We represent solid wall boundaries by using fixed virtual
particles [26]. These boundary particles perform similar to the
fluid particles and contribute to the SPH approximation of the fluid
attributes. The density of the fluid particles is extrapolated for
boundary particles using Eq. (5). Then, the pressure is computed in
the boundary particles directly from (6). The increasing pressure at
boundary particles prevents the fluid particles from penetrating
the solid walls. In order to enforce the no-slip condition, the
velocities of the boundary particles are set to zero throughout the
entire simulation. Those particles are placed outside the computa-
tional domain with particle spacing equal to the initial particle
spacing of the fluid particles. The wall boundaries are modeled by
a few layers of the boundary particles as illustrated in Fig. 2. The
particle deficiency at wall boundaries is alleviated by taking the
total width of boundary particle layers at least equal to the radius
of influence of the SPH kernel.

Another boundary condition is the stress-free condition for
momentum Eq. (1), which states that the total normal stress must
be zero at free surface. Mathematically, it can be expressed as
ð�pIþτÞ � n¼ 0, where I is the identity matrix and n is the normal
to the free surface. This condition is trivially satisfied by the SPH

gradients because the boundary integrals are ignored in the SPH
derivatives approximation [27].

3.3. Implementation

We implement our technique in Cþþ and CUDA Cþþ using the
Microsoft Visual Studio 2013 for Windows and CUDA 6.5. The input
data of the program are given in an initialization file or interactively
by the user and include: the material properties of the fluid model,
configuration of the jet (shape, position, trajectory along the simula-
tion, injection rate, maximum number of particles), and simulation
parameters (time-step δt, maximum number of steps, total time),
among others. For each time-step δt, the program updates the
particle attributes following the sequence in Algorithm 1.

Algorithm 1. Single time step of the SPH framework.

1: Inject new fluid particles into the scene
2: for each particle i do
3: Find neighbors Ni

4: end for
5: for each particle i do
6: Update ρi using Eq. (5)
7: Update pi using Eq. (6)
8: end for
9: for each particle i do
10: Update ∇vi using Eq. (8)
11: Update τi using Eq. (2)
12: end for
13: for each particle i do
14: Compute pressure acceleration using Eq. (7)
15: Compute viscous acceleration using Eq. (9)
16: end for
17: for each particle i do
18: Update vi and xi with leap-frog scheme
19: end for

Fig. 4. Numerical simulation of the torus fluid spreading (Fig. 3 shows initial configuration of the torus fluid). Fixing K¼1, the graphs (log–log scales) illustrate the Cross
model with parameters: n¼ 10 and ½ν1; ν0� ¼ ½0:2;2� (red), n¼1 and ½ν1 ; ν0� ¼ ½0:2;20� (green), and n¼10 and ½ν1; ν0� ¼ ½0:2;2� (blue). Varying only n (first two columns), a
greater mobility in fluid is seen with n¼10 (left column) because the transition occurs sharply in cross model and therefore the lower viscosity is achieved rapidly in
simulation. Varying only ν1 and ν0 (last two columns), when the right limit v0 is greater (right column) the behavior more viscous of the fluid causes the fluid remains for a
longer time near its initial configuration. The colors code the viscosity νiA ½ν1; ν0� in the SPH particles. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

D

HV0

Fig. 5. Jet buckling setup.

L.F.d.S. Andrade et al. / Computers & Graphics 52 (2015) 106–115 109

The first task is to add new fluid particles into the scene, which
are generated by the jet inlet in CPU and then sent to a
preallocated area (enough to store the maximum number of
particles) in the global memory of the GPU. New particles are
created iff:

1. The set of particles previously generated by the jet inlet has
moved a given distance from the jet position.

2. The maximum number of particles into the scene has not yet
been reached. This limit depends on the available global
memory of the GPU.

The data structure for the particle system representing the fluid
is implemented using the Thrust library [28] and organized as a

structure of arrays (of position, velocity, density, pressure, etc.) in
order to allow coalesced access to the GPU global memory.

Following tasks are performed entirely in parallel on GPU. For
the neighbor search, we use the algorithm described in the
Particles demo in the CUDA's toolkit [29], which is based on a
subdivision of the simulation space into a regular grid of linearly
indexed cells. The algorithm relies on several CUDA kernels. The
first one calculates a hash value for each particle based on the
index of the cell containing the particle. We then use the Thrust
sorting function to reorder the particles according to their hash
values. Finally, a kernel which uses one thread per particle builds
its neighbor list by comparing the cell index of the current particle
with the cell index of the previous particle in the sorted list (see
[29] for details).

The remaining tasks in Algorithm 1 are implemented by four
CUDA kernels which also use one thread per particle. Each kernel
computes, respectively, density and pressure, deformation tensor
and shear stress, pressure and viscous accelerations, and velocity
and position of each particle. We use the leap-frog scheme to
integrate the system of differential equations provided by the SPH
approximation of (1) along the particle trajectories. The numerical
stability in this explicit time integration scheme is ensured under
time-step constraints given by Courant–Friedrichs–Lewy (CFL) and
viscous force conditions [19]

δtr0:1min
h
c
;
h2

8ν0

 !
: ð10Þ

Respecting Eq. (10), we choose δt ¼ 10�6 s in our experiments.
The free surface rendering is performed by blobs (metaballs)

from POV-Ray. The blob radius is equal to the radius of influence of
the SPH kernel used in the simulation.

4. Results and comparisons

In this section, we present the results provided by our techni-
que, including animations of viscous liquids with coiling and
folding effects. Initially, we discuss the variable viscosity effects
of non-Newtonian fluids in simulations of gravity spreading. Then,
we apply our technique to a variety of situations involving jet
buckling. All examples have been generated in a computer
equipped with a CPU Intel i5 3570 3.4 Hz with 8GB of RAM, and
a NVIDIA GeForce 650 with 384 CUDA cores and 1 GB of RAM.

Fig. 6. The formation of coils in a falling stream of viscous liquid.

Fig. 7. Jet buckling of a Newtonian fluid. In top row, the result given by an
implementation of [24] which uses the Laplacian velocity operator in the viscous
acceleration. In bottom row, we show the result achieved by our technique with the
same parameters (Cross model with K¼0).

L.F.d.S. Andrade et al. / Computers & Graphics 52 (2015) 106–115110

4.1. Torus fluid

In this first result, to demonstrate that our method can model
shear-thinning behavior using the Cross model, we performed the
numerical simulation of a torus fluid spreading on a plane surface
due to gravity (9.8 m/s2).

Fig. 3 shows the results of our method using the Cross model
with n¼ 1, ν0 ¼ 2:0, ν1 ¼ 0:2 and four values of K, namely K¼0 for
a Newtonian fluid (which corresponds to assigning a constant
viscosity at ν0) and K¼1.0, 10.0 and 100.0 for a non-Newtonian
fluid. The shear-thinning is increased at higher values of K
allowing the fluid to spread more over the surface, mainly in
direction of largest shear rate (see top view).

Another feature of the Cross model is the parameter n which
determines the rate of decay of the viscosity as a function of the
shear rate. The viscosity transition between the viscosity limits ν1
and ν0 becomes faster at high values of n. Moreover, different rates
between these limits also produce different behaviors in the
fluid flow.

Fig. 4 illustrates the effect of the parameters n, ν1 and ν0 in our
method. Fixing K¼1, the left graph shows the viscosity variation
under the influence of these parameters, and on the right, fluid
flow simulations combining these parameters. All simulations
clearly depict the variable viscosity effect, typical characteristic
property of shear-thinning fluids. The first two columns show the
different shear-thinning behavior given by the variation of the
index parameter, we use n¼10 (left) and n¼1 (middle). Testing
n¼1 and ½ν1;ν0� ¼ ½0:2;2�, the fluid has a more homogeneous
behavior due to the smoothness of the viscosity function provided
by the Cross model (blue line in left graph). When the transition
occurs sharply, n¼10 (red line in left graph), we observe that the
lower viscosity value ν1 is reached quickly in the simulation, and
therefore a greater mobility in these particles is seen. The last two
columns show the different shear-thinning behavior given by the
variation of ν1 and ν0. Increasing the upper limit to v0¼20 (green
line in left graph), the fluid tends to be more viscous, remaining
close to its initial shape even after many time steps.

Figs. 3 and 4 help us to understand the shear-tinning behavior
provided by Cross model with different sets of parameters. The
results show that the Cross model determines the spatial variation

of the viscous force that reflects the behavior of the fluid flow. This
model allows a wide range of viscous effects of the free surface of
Newtonian and non-Newtonian fluids in a small set of user
parameters.

4.2. Jet buckling

The jet buckling problem has been studied in several experi-
mental and analytical investigations [30,31]. This phenomenon is
characterized by the formation of a physical instability when a
viscous fluid jet is injected with velocity V0 hits a rigid plate.

The configuration of a jet buckling problem is given by the
height H between the injector and the rigid plate and by the
diameter D of the bounding circle of the injector's cross-section in
meters (Fig. 5). In our simulations of this problem, we use values
for H, D and physical parameters consistent with the conditions
described by Tomé et al. [13].

When a stream of viscous fluid falls onto a surface, the
deceleration of the stream near impact causes the buckling effect
and the fluid starts to coil on itself. Fig. 6 illustrates the coiling
formation in our results. Note that, as the coiling develops, the
fluid tends to have a more viscous behavior at the surface, which
prevents the fluid from further spreading. Hence, when the falling
stream contacts the coils already formed, the viscosity decreases
and new coils are created.

Fig. 7 shows a comparison of our technique with the popular
SPH framework proposed by Müller et al. [24] in which the viscous
term of Eq. (1) is simplified using the Laplacian velocity operator
ν0Δv. Choosing the same parameters in both simulations, we can
verify that using the Laplacian velocity prevents the buckling
development, leading to a spurious result.

In order to illustrate the relevance of the viscosity variation in
our method, Fig. 8 shows two jet buckling with distinct behaviors
by applying Cross model in different viscosity intervals.

Despite the fact that the fluids are fairly viscous, we can note,
on the bottom of the fluid, the shear-thinning action, where the
fluid becomes less viscous, spreading and mixing.

Fig. 9 illustrates the flexibility of our framework dealing with
different inlet velocity profiles (constant or parabolic) and geome-
tries of the injector. The particles are created inside of a polygonal

Fig. 8. Jet buckling with different viscosity intervals. Our method provides different coiling effects varying the parameters of Cross model.

L.F.d.S. Andrade et al. / Computers & Graphics 52 (2015) 106–115 111

closed curve which represents a cross section of the injector. The
particles can be generated in many ways, for rectangular injectors
the particles are sampled using a simple regular grid, while in
circular injectors a uniform particle sampling can be achieved
using their polar coordinates. For injectors with arbitrary geome-
try, the ray casting algorithm is performed to determine which
particles lies inside the injector (polygon). The viscous jet with
circular and square injector and constant inlet velocity profile
(second and third rows) have the same behavior where the coiling
occurs in the axial direction. The circular injector with parabolic
velocity (first row) also defines a coiling pattern with a different
instability in axial component due to the non-constant velocity.
The star shape injector (last row) generates a folding pattern in a
preferential direction.

The shear-thinning behavior provided by inlet flow using
rectangular jets are illustrated in Fig. 10. The flow behavior of

the Newtonian fluid (using K¼0 in Cross model) is more viscous
than non-Newtonian fluid (using K¼1) due to the viscosity
variation given by our technique. It is noted that the number of
layers is reasonably pronounced in the Newtonian case and less
pronounced in the non-Newtonian case.

4.3. Moving inlet jet

Fig. 11 illustrates some ‘stitching’ patterns obtained with our
method when a viscous liquid is injected by a moving jet. The
buckling of the fluid and the motion of jet combine to give a wide
range of regular and periodic patterns, like a “sewing machine”.

Since the maximum number of particles in the scene is fixed
(as mentioned before, limited by the amount of the GPU's global
memory), we should remove from the scene a number of particles,
which can be considered as ineffective, in order to keep the

Fig. 9. Jet buckling simulations with different inlet velocity profiles and geometries of the injector (left column).

L.F.d.S. Andrade et al. / Computers & Graphics 52 (2015) 106–115112

moving jet able to generate new ones. We have adopted a view-
dependent approach to remove particles: for each particle, we use
the matrix Mvp, the combination of the view and projection
matrices derived from the virtual camera, in that order, to
compute the OpenGL normalized device coordinates (NDCs) [32]
of the particle position and then check its visibility. In OpenGL, the
NDC space is an axis-aligned cube whose vertices have all
coordinates in the range ð�1;1Þ. Given the homogeneous global
position p¼ ½x; y; z;1�> of the particle, its NDCs are ðxr=wr ;

yr=wr ; zr=wrÞ, where ½xr ; yr ; zr ;wr�> ¼Mvp � p are its clip coordi-
nates. The particle is classified as ineffective—and so marked to be
removed from the scene—when it is not visible, i.e., lies outside of
the NDC cube along the trajectory followed by the injector. The

trajectory of the injector is determined by a smooth curve using a
cubic Hermite spline and then displacing the injector's centroid
along the curve.

4.4. On complex surfaces

Boundary particles can be used to represent not only the limits
of the domain (ground or fluid container walls) but also the
surface of solid objects which exert repulsive forces on fluid
particles. Fig. 12 shows viscous liquid jet in a complex object
modeled with boundary particles. On the left figure the injector is
static while on the right figure the inlet jet is moving over a
trajectory given by a smooth curve. In this simulation we can see

Fig. 10. Effect of the variable viscosity in our technique. At top, the simulation of a Newtonian fluid (K¼0) defines well-defined fluid layers, while a non-Newtonian fluid
(K¼1) the fluid layers are mixed due to the shear-thinning.

Fig. 11. Stitching patterns of a viscous thread poured by a moving jet.

L.F.d.S. Andrade et al. / Computers & Graphics 52 (2015) 106–115 113

that the viscous fluid breaks apart in many pieces due to complex
surface and moving injector. Moreover, the new layer of the fluid
injected into the scene interacts with the fluid already deposited
on the surface. The result shows an excellent agreement in terms
of viscous fluid properties and ease of treating complex simula-
tions with SPH method.

In our implementation a surface is entered as a triangle mesh
from which we should generate, in a preprocessing step, layers of
fixed boundary particles. There are several methods to sample
particles on a mesh. The platform of open source SPH codes, e.g.,
SPHysics [33], provides a preprocessor [34] that allows users to use
Blender (http://www.blender.org) to create the meshes represent-
ing the surfaces of the entire scene. Next, each mesh face is
subdivided until the newly created vertices on the face are
distributed such that the length of any mesh edge does not exceed
a given threshold d0 (usually the initial fluid particle spacing). The
scene domain is then discretized in a uniform cubical grid with
cells of size d0, and the positions of the vertices resulting from
faces subdivision are extrapolated onto—and therefore aligned to—
the vertices of the grid. As a consequence, the higher the curvature
of a significant region of a surface, the finer the grid resolution
necessary for the whole scene. An alternative method, proposed in
[35], consists in constructing a signed distance field in a narrow
band near the triangle mesh. The distance field is computed on a
voxel grid of resolution equivalent to d0. On each triangle, particles

are randomly positioned in a number that depends on the
triangle's area, d0, and a user defined density. Only initialized,
the particles can float along the vertices of the voxel grid according
to a version of the mechanism for sampling implicit surfaces with
particles presented in [36].

Since we need to generate more than one layer of boundary
particles (see Fig. 2), we have adopted a different approach which
does not require a 3D grid. Firstly, we use MeshLab (http://www.
meshlab.sourceforge.net) to refine the input triangle mesh so that
the length of the any resulting edge approximates d0, the initial
fluid particle spacing. Next, we use the open source mesh
generator Gmsh [37] (http://www.geuz.org/gmsh) to create the
additional particle layers. The method implemented in Gmsh is
based on the advancing front scheme proposed in NETGEN [38].
Taking the boundary triangles of the refined surface mesh as the
initial front, the method relies on constraint rules to generate new
internal vertices (distant � d0 from the front) which are combined
with the boundary triangles to form tetrahedral elements. The
boundary particles are positioned at the newly created vertices,
and the external faces of the newly created tetrahedrons, if any,
become the next front. The process is repeated until we get a
number of layers whose thickness is at least the radius of influence
of the SPH kernel.

4.5. Comparison between CPU and GPU

Table 1 compares the performance of our implementation
running a dam break sequentially on CPU and in parallel on
GPU. The parameters of the Cross model are K¼1, n¼1,
ν0 ¼ 0:05, and ν1 ¼ 0:005. The first column is the number of
particles; the columns labeled CPU and GPU show the simulation
times, in seconds, for 1000 steps on CPU and GPU, respectively; the
column Speedup is the relation CPU/GPU; and the column Effi-
ciency is the speedup divided by the number of CUDA cores used
in the experiment (384). Though the low efficiency, the speedup of
about 27 for the number of particles varying between 64 K and
256 K justifies the use of the GPU: keeping that speedup, the CPU

Fig. 12. Animation of a viscous liquid pouring on the Stanford Bunny modeled with 51k boundary particles. The jet buckling effect becomes more prominent when the
injector is placed in a fixed position (top row) rather than in movement (bottom row).

Table 1
Performance statistics.

Part. CPU (s) GPU (s) Speedup Efficiency

1 K 7.20 1.03 7.0 1.8%
4 K 35.66 2.40 14.9 3.9%
16 K 156.42 6.81 23.0 6.0%
64 K 682.00 25.80 26.4 6.9%
128 K 1374.86 51.35 26.8 7.0%
256 K 2887.20 104.84 27.6 7.2%
1 M – 444.93 – –

L.F.d.S. Andrade et al. / Computers & Graphics 52 (2015) 106–115114

http://www.blender.org
http://www.meshlab.sourceforge.net
http://www.meshlab.sourceforge.net
http://www.geuz.org/gmsh

time for the simulation of 1 M particles (not measured in our test)
would be about � 3:3 h, against � 7:4 min on GPU.

5. Concluding remarks

In this paper, we introduced a novel SPH-based technique for
animating free surface viscous liquids with jet buckling. Unlike the
previous SPH frameworks, our technique allows visually realistic
viscous behaviors, such as coiling and folding. The technique relies
on the SPH approximation of a non-Newtonian fluid, where the
variable viscosity is ruled by the Cross model. We extend the
previous version of this paper [23] to animate viscous jet bucking
on complex surfaces using boundary particles. The effectiveness of
the technique is demonstrated on a wide range of examples which
match with the physics intuition, leading to an efficient and
attractive scheme for animation. Moreover, simulation time is
considerably improved by using CUDA computing platform.

One limitation of our technique is that its results depend of the
time-step size, the condition (10) may not permit large time-steps
in the simulation, thus resulting a time consuming animation.

A natural direction for future work is to extend our technique
to deal with truly incompressible fluid flows.

Acknowledgments

A previous version of this paper was presented at Sibgrapi 2014
[23]. The authors are partially supported by FAPESP (Grants #13/
19760–5 and #14/09546–9) and CNPq. We would like to thank the
anonymous reviewers for their valuable comments and sugges-
tions. The real image of honey (Fig. 1) was provided by Domiriel1

under Creative Commons license.

Appendix A. Supplementary material

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.cag.2015.07.021.

References

[1] Liu GR, Liu MB. Smoothed particle hydrodynamics. World Science; 2005.
[2] Ihmsen M, Orthmann J, Solenthaler B, Kolb A, Teschner M. SPH fluids in

computer graphics. In: Eurographics 2014—state of the art reports; 2014. p.
21–42.

[3] Herault A, Bilotta G, Dalrymple RA. SPH on GPU with CUDA. J Hydraul Res
2010;48:74–9.

[4] Krog ØE, Elster AC. Fast gpu-based fluid simulations using sph. In: Applied
parallel and scientific computing. Springer; 2012. p. 98–109.

[5] Cross MM. Rheology of non-newtonian fluids: a new flow equation for
pseudoplastic systems. J Colloid Sci 1965;20(5):417–37.

[6] Goktekin TG, Bargteil AW, O'Brien JF. A method for animating viscoelastic
fluids. ACM Trans Graph 2004;23(3):463–8.

[7] Batty C, Bridson R. Accurate viscous free surfaces for buckling, coiling, and
rotating liquids. In: Proceedings of the 2008 ACM SIGGRAPH/eurographics
symposium on computer animation; 2008. p. 219–28.

[8] Bergou M, Audoly B, Vouga E, Wardetzky M, Grinspun E. Discrete viscous
threads. ACM Trans Graph 2010;29(4) 116:1–116:10.

[9] Batty C, Uribe A, Audoly B, Grinspun E. Discrete viscous sheets. ACM Trans
Graph 2012;31(4) 113:1–113:07.

[10] Batty C, Houston B. A simple finite volume method for adaptive viscous
liquids. In: Proceedings of the 2011 ACM SIGGRAPH/eurographics symposium
on computer animation. SCA'11; 2011. p. 111–8.

[11] Tomé MF, Mckee S. Numerical simulation of viscous flow: buckling of planar
jets. Int J Numer Methods Fluids 1999;29(6):705–18.

[12] Tomé M, Filho A, Cuminato J, Mangiavacchi N, Mckee S. GENSMAC3D: a
numerical method for solving unsteady three-dimensional free surface flows.
Int J Numer Methods Fluids 2001;37(7):747–96.

[13] Tomé M, Grossi L, Castelo A, Cuminato J, Mangiavacchi N, Ferreira V, et al. A
numerical method for solving three-dimensional generalized Newtonian free
surface flows. J Non-Newton Fluid Mech 2004;123(2–3):85–103.

[14] Oishi CM, Tomé MF, Cuminato JA, McKee S. An implicit technique for solving
3d low Reynolds number moving free surface flows. J Comput Phys 2008;227
(16):7446–68.

[15] Clavet S, Beaudoin P, Poulin P. Particle-based viscoelastic fluid simulation. In:
Proceedings of the 2005 ACM SIGGRAPH/eurographics symposium on com-
puter animation; 2005. p. 219–28.

[16] Keiser R, Adams B, Gasser D, Bazzi P, Dutré P, Gross M. A unified lagrangian
approach to solid-fluid animation. In: Symposium on point-based graphics
2005; 2005. p. 125–34.

[17] Paiva A, Petronetto F, Lewiner T, Tavares G. Particle-based non-newtonian fluid
animation for melting objects. In: Sibgrapi 2006 (XIX Brazilian symposium on
computer graphics and image processing). IEEE; 2006. p. 78–85.

[18] Solenthaler B, Schläfli J, Pajarola R. A unified particle model for fluid–solid
interactions. Comput Anim Virtual Worlds 2007;18(1):69–82.

[19] Paiva A, Petronetto F, Lewiner T, Tavares G. Particle-based viscoplastic fluid/
solid simulation. Comput-Aided Des 2009;41(4):306–14.

[20] Rafiee A, Manzari M, Hosseini M. An incompressible SPH method for
simulation of unsteady viscoelastic free-surface flows. Int J Non-Linear Mech
2007;42(10):1210–23.

[21] Xu X, Ouyang J, Yang B, Liu Z. SPH simulations of three-dimensional non-
Newtonian free surface flows. Comput Methods Appl Mech Eng
2013;256:101–16.

[22] Xu X, Ouyang J. A SPH-based particle method for simulating 3D transient free
surface flows of branched polymer melts. J Non-Newton Fluid Mech
2013;202:54–71.

[23] Andrade LFS, Sandim M, Petronetto F, Pagliosa P, Paiva A. SPH fluids for viscous
jet buckling. In: Sibgrapi 2014 (27th conference on graphics, patterns and
images); 2014. p. 65–72.

[24] Müller M., Charypar D., Gross M.. Particle-based fluid simulation for inter-
active applications. In: Proceedings of the 2003 ACM SIGGRAPH/eurographics
symposium on computer animation; 2003. p. 154–9.

[25] Morris JP, Fox PJ, Zhu Y. Modeling low Reynolds number for incompressible
flows using SPH. J Comput Phys 1997;136:214–26.

[26] Koshizuka S, Nobe A, Oka Y. Numerical analysis of breaking waves using the
moving particle semi-implicit method. Int J Numer Methods Fluids 1998;26
(7):751–69.

[27] Fang J, Owens RG, Tacher L, Parriaux A. A numerical study of the SPH method
for simulating transient viscoelastic free surface flows. J Non-Newton Fluid
Mech 2006;139(1–2):68–84.

[28] Hoberock J, Bell N. Thrust: A parallel template library; 2010. URL: 〈http://
www.thrust.github.io〉; version 1.7.0.

[29] Green S. Particle simulation using CUDA; 2012. URL: 〈http://www.docs.nvidia.
com/cuda/samples/5_Simulations/particles/doc/particles.pdf〉.

[30] Cruickshank JO. Low-Reynolds-number instabilities in stagnating jet flows. J
Fluid Mech 1988;193:111–27.

[31] Blount MJ, Lister JR. The asymptotic structure of a slender dragged viscous
thread. J Fluid Mech 2011;674:489–521.

[32] Shreiner D, Sellers G, Kessenich J, Licea-Kane B. OpenGL programming guide. 8
ed.Addison-Wesley; 2013.

[33] Gomez-Gesteira M, Rogers B, Crespo A, Dalrymple R, Narayanaswamy M,
Dominguez J. SPHysics—development of a free-surface fluid solver. Part 1:
theory and formulations. Comput Geosci 2012;48:289–99.

[34] Mayrhofer A, Gómez-Gesteira M, Crespo AJC, Rogers BD. Advanced pre-
processing for SPHysics. In: Proceedings of the 5th international SPHERIC
workshop; 2010.

[35] Bell N, Yu Y, Mucha PJ. Particle-based simulation of granular materials. In:
Proceedings of the 2005 ACM SIGGRAPH/eurographics symposium on com-
puter animation. SCA '05; 2005. p. 77–86.

[36] Witkin AP, Heckbert PS. Using particles to sample and control implicit
surfaces. In: Proceedings of the 21st annual conference on computer graphics
and interactive techniques. SIGGRAPH'94; 1994. p. 269–77.

[37] Geuzaine C, Remacle JFA. Gmsh: a 3-D finite element mesh generator with
built-in pre- and post-processing facilities. Int J Numer Methods Eng 2009;79
(11):1309–31.

[38] Schberl J. NETGEN an advancing front 2d/3d-mesh generator based on
abstract rules. Comput Vis Sci 1997;1(1):41–52.

1 www.flickr.com/photos/domiriel/8037182858

L.F.d.S. Andrade et al. / Computers & Graphics 52 (2015) 106–115 115

http://dx.doi.org/10.1016/j.cag.2015.07.021
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref1
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref3
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref3
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref5
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref5
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref6
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref6
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref8
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref8
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref9
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref9
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref11
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref11
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref12
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref12
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref12
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref13
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref13
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref13
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref14
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref14
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref14
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref18
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref18
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref19
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref19
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref20
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref20
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref20
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref21
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref21
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref21
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref22
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref22
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref22
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref25
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref25
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref26
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref26
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref26
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref27
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref27
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref27
http://www.thrust.github.io
http://www.thrust.github.io
http://www.docs.nvidia.com/cuda/samples/5_Simulations/particles/doc/particles.pdf
http://www.docs.nvidia.com/cuda/samples/5_Simulations/particles/doc/particles.pdf
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref30
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref30
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref31
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref31
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref32
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref32
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref33
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref33
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref33
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref37
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref37
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref37
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref38
http://refhub.elsevier.com/S0097-8493(15)00124-7/sbref38
http://www.flickr.com/photos/domiriel/8037182858

