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A power series beta Weibull regression
model for predicting breast carcinoma
Edwin M. M. Ortega,a*† Gauss M. Cordeiro,b
Ana K. Campelo,c Michael W. Kattand and Vicente G. Canchoe

The postmastectomy survival rates are often based on previous outcomes of large numbers of women who had a
disease, but they do not accurately predict what will happen in any particular patient’s case. Pathologic explana-
tory variables such as disease multifocality, tumor size, tumor grade, lymphovascular invasion, and enhanced
lymph node staining are prognostically significant to predict these survival rates. We propose a new cure rate
survival regression model for predicting breast carcinoma survival in women who underwent mastectomy. We
assume that the unknown number of competing causes that can influence the survival time is given by a power
series distribution and that the time of the tumor cells left active after the mastectomy for metastasizing follows the
beta Weibull distribution. The new compounding regression model includes as special cases several well-known
cure rate models discussed in the literature. The model parameters are estimated by maximum likelihood. Fur-
ther, for different parameter settings, sample sizes, and censoring percentages, some simulations are performed.
We derive the appropriate matrices for assessing local influences on the parameter estimates under different per-
turbation schemes and present some ways to assess local influences. The potentiality of the new regression model
to predict accurately breast carcinoma mortality is illustrated by means of real data. Copyright © 2015 John
Wiley & Sons, Ltd.

Keywords: beta Weibull distribution; breast cancer; cure fraction; likelihood function; long-term survivor;
mastectomy; power series distribution

1. Introduction

Cancer is an important public health concern around the world. Statistics on cancer are crucial for estimat-
ing its prevalence, incidence, and mortality/survival rates. An overview of descriptive epidemiological
data on this disease is a first step to appreciate control measures and preventive interventions in a global
context of progressive cancer burden. It is noteworthy that breast cancer is the most common malignancy
as well as the primary cause of death among women globally. In particular, the American Cancer Soci-
ety’s estimates for breast cancer in the USA for 2013 are as follows. Approximately 232,340 new invasive
cases of breast cancer will be diagnosed in women and 2240 in men. The women diagnosed with breast
cancer in its earliest stages actually have a 5-year survival rate of over 98%. One in eight women (12%)
are expected to have this diagnosis in her lifetime. It is also likely that there will be a number of 64,640
new cases of carcinoma in situ, which is noninvasive and is the earliest form of breast cancer. Additional
information relating to mortality predicts 39,620 deaths of US women compared to 410 US men because
of breast cancer. There are more than 2.8 million ‘breast cancer survivors’ in the USA. It is often taken
that ‘cure’ is related to survival beyond 5 years. Therefore, prevalence is generally related to the num-
ber of people alive who have had cancer diagnosed within the last 5 years. This latter statistic is harder
to obtain because it depends on medical practice, and it includes people who are still being treated or,
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at least, being followed up medically for the disease. Surgery is the most common treatment for breast
cancer. There are several kinds of surgery. The surgeon usually removes one or more lymph nodes from
under the arm to check for cancer cells. If cancer cells are found in the lymph nodes, other cancer treat-
ments will be needed. At any stage of disease, care is available to control pain and other symptoms, to
relieve the side effects of treatment, and to ease emotional concerns.

Regression models for survival data with a surviving fraction (also known as cure rate models or long-
term survival models) play an important role in reliability and survival analysis. These models typically
assume that all units under study are susceptible to an event of interest and will eventually experience it
if its follow-up is sufficiently long. However, there are situations for which a fraction of individuals is
not expected to experience the event of interest, that is, those individuals are cured or insusceptible. For
example, researchers may be interested in analyzing the recurrence of a disease. Many individuals may
never experience a recurrence; therefore, a cured fraction of the population exists. Cure rate models have
been applied to estimate the possibility of a cured fraction.

The literature on the subject is by now vast and growing rapidly. The books by Maller and Zhou [1]
and Ibrahim et al. [2] and the papers by Tsodikov et al. [3], Cooner et al. [4], Tournoud and Ecochard
[5], Zhao et al. [6], de Castro et al. [7], Ortega et al. [8], Rodrigues et al. [9], Rodrigues et al. [10], and de
Castro et al. [11] and Perdona and Louzada-Neto [12] represent only some examples. Two formulations
of cure rate models have received attention in the literature, namely the mixture cure model [13, 14] and
the promotion time cure model [15]. There is a basic distinction between them. While in the mixture
cure modeling, the unknown number of causes of the event of interest is assumed to be a binary random
variable on {0, 1}, in the promotion time cure modeling, this number follows a Poisson distribution. In
a biological context, the idea behind these assumptions lies within a latent competing cause structure, in
the sense that the event of interest can be the death of a patient or a tumor recurrence, which can happen
because of unknown competing causes. These latent competing causes can be assigned to metastasis-
component tumor cells left active after an initial treatment [11]. A metastasis-component tumor cell is
a tumor cell having the potential of metastasizing [15]. If death or tumor recurrence did not occur, one
can consider the patient to be cured. In this paper, the unknown number of tumor cells left active after
the surgery having potential for metastasizing is modeled by a discrete power series (PS) distribution,
whereas the cancer recurrence time for each cell follows the beta Weibull (BW) distribution [16–18].
This distribution is very suitable to model the four most common types of the hazard rate function (HRF).
Then, the proposed cure rate model can be seen as a general model encompassing the mixture cure
and promotion time cure models. Also, an advantage of our modeling is that the PS distribution is very
flexible, including some important special cases, such as the Bernoulli (the mixture model), geometric,
logarithmic, negative binomial, and Poisson (the promotion time cure model), which can be tested for
choosing the best fitted special model of the proposed model.

The effectiveness of a parametric model depends on the proper choice of the parametric distribution.
Traditionally, the exponential model with cure fraction, which takes an exponential distribution for the
time to event, has been among the most popular choices, partly because of its simplicity. However, the
Weibull cure fraction model, a generalization of the exponential, is more flexible and has been shown to fit
the data well in many applications. We define a new wider regression model called the power series beta
Weibull (PSBW) model with cure fraction to predict survival time in women who had been treated with
mastectomy and axillary lymph node dissection. The proposed regression model includes the traditional
cure models as special cases. Further, we examine statistical inference aspects using asymptotic likelihood
theory and formulate the PSBW model with prognostically significant explanatory variables.

After modeling, it is important to check some assumptions in the model and conduct a robustness
study in order to detect influential or extreme observations that can cause distortions in the results of
the analysis. Numerous approaches have been proposed in the literature to detect influential or outlying
observations. An efficient way to detect influential observations was proposed by Cook [19]. He sug-
gested that more confidence can be put in a model that is relatively stable under small modifications.
We develop a similar methodology to detect influential subjects in the PSBW regression model with
long-term survivors.

The paper is organized as follows. In Section 2, we define the new model. Special cases are dis-
cussed in Section 3. We provide in Section 4 an extended characterization of the new model as a link to
Laplace and probability generating function (PGF) forms of the model. Parametric inference is addressed
in Section 5 based on standard likelihood techniques. We perform two simulation studies in Section 6 to
examine the accuracy of the maximum likelihood estimates (MLEs) and the rejection rates of the likeli-
hood ration (LR) statistics in the Poisson beta Weibull (PBW) model. Diagnostic methods are investigated

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1366–1388
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in Section 7. An application to women with breast carcinoma [20] is discussed in Section 8. Further,
some conclusions are mentioned in Section 9. Finally, some mathematical properties of the noncured
population distribution are derived in Appendix A.

2. The power series beta Weibull model

Our model can be derived as follows. Let M be an unobserved positive integer-valued random variable
denoting the unknown number of breast tumor cells at the end of the mastectomy that can produce a
detectable cancer. We assume that the probability mass function of M is given by

P(M = m; 𝜃) =
am 𝜃

m

A(𝜃)
,m = 0, 1, 2,… , (1)

where am > 0 for m ⩾ 0, 𝜃 is called the power parameter, and A(𝜃) > 0. The PGF of M is P(z) = E(zM) =
A(z 𝜃)∕A(𝜃). Five important distributions belong to Equation (1): the Bernoulli, Poisson, logarithmic,
negative binomial, and geometric distributions. The Bernoulli distribution with success parameter 𝜃 ∈
(0, 1) is a PS distribution with A(𝜃) = (1 + 𝜃). If A(𝜃) = e𝜃 , we have the Poisson distribution with mean
parameter 𝜃. The logarithmic distribution with success probability 𝜃 ∈ (0, 1) corresponds to A(𝜃) =
− log(1 − 𝜃). If we are observing a sequence of independent Bernoulli trials, each trial having a success
probability 𝜃 ∈ (0, 1), the random number of successes until k > 0 failures has occurred follows the
negative binomial distribution with A(𝜃) = (1 − 𝜃)−k. Finally, the geometric is a special case of the
negative binomial distribution when k = 1.

Let 𝜇′
r = E(Mr) be the rth ordinary moment of M for r ⩾ 0. The moments of M satisfy the recur-

rence equation 𝜇′
r+1 = 𝜇′

1𝜇
′
r + 𝜃d𝜇′

r∕d𝜃 (for r ⩾ 0). In particular, 𝜇′
1 = 𝜃A′(𝜃)∕A(𝜃) and Var(M) =

𝜃2 {A′′(𝜃)∕A(𝜃) − [A′(𝜃)∕A(𝜃)]2}. The moment generating function and cumulant generating function of
M are M(t) = E(etM) = A(𝜃et)∕A(𝜃) and K(t) = log[A(𝜃et)∕A(𝜃)], respectively. The cumulants of M
obey a simple recurrence equation 𝜅r+1 = 𝜃 d𝜅r∕d𝜃 for r ⩾ 1.

The time for the jth breast carcinoma cell to metastasize is denoted by Zj, j = 1,… ,M. We assume
that, conditional on M, the random variables Zj’s are independent identically distributed with cumulative
distribution function (CDF) F(t) and survival function S(t) = 1 − F(t). Further, we consider that the Zj’s
are independent of M. The observable lifetime of the mastectomized women can be defined by

T = min{Z1,… ,ZM}, (2)

under the hypothesis that P(T = ∞|M = 0) = 1. The BW distribution is considered for the random
variables Zj’s. The assumption of independence and identical distribution to the Zj’s is surely a strong
one, but it favors simplicity and analytical tractability at the expense of a more general formulation, as
remarked by Yakovlev and Tsodikov [15]. Despite this shortcoming, these models have been proven
useful in applications to cancer data analysis.

Under this setup, the survival function of T is given by

Spop(t) = P(T ⩾ t) =
∞∑

m=1

P(T > t|M = m)

= P(M = 0) +
∞∑

m=1

P[min{Z1,… ,Zm} > t|M = m]P(M = m)

= P(M = 0) +
∞∑

m=1

P[Z1 > t,… ,Zm > t|M = m]P(M = m)

= P(M = 0) +
∞∑

m=1

P[Z1 > t]m P(M = m) =
∞∑

m=0

S(t)m P(M = m) = GN(S(t)),

where GN()̇ is the PGF of the M, latent random variable with distribution given in Equation (1), so that
the survival function of T is given by

Spop(t) =
A[𝜃S(t)]

A(𝜃)
, t > 0. (3)
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Hereafter, the model (3) is called the PS cure rate model. The cure fraction is given by

p0 = lim
t→∞

Spop(t) =
A(0)
A(𝜃)

=
a0

A(𝜃)
> 0.

The probability density function (PDF) corresponding to Equation (3) can be expressed as

fpop(t) = −
dSpop(t)

dt
= A′[𝜃S(t)]

A(𝜃)
𝜃 f (t), (4)

where A′(𝜃S(t)) = A′(z) ∣z=𝜃S(t) and f (t) = −dS(t)∕dt denotes the (proper) density function of the cancer
recurrence time Z in Equation (4). Note that fpop(t) is not a proper PDF, because Spop(t) is not a proper
survival function. Further, the HRF corresponding to Equation (4) is given by

hpop(t) =
A′[𝜃S(t)]
A[𝜃S(t)]

𝜃 f (t). (5)

In model (5) solely, when M has a Poisson distribution with parameter 𝜃, we can verify that hpop(t)
is multiplicative in 𝜃 and f (t) and thus has the proportional hazards structure when the covariates are
modeled trough 𝜃.

The proper survival function for the noncured population (i.e., the individuals at risk at time t), say
Snc(t), is given by Snc(t) = P(T > t |N ⩾ 1). Then, it can be expressed as

Snc(t) =
A(𝜃S(t)) − a0

A(𝜃) − a0
, t > 0. (6)

We note that Snc(0) = 1 and Snc(∞) = 0 so that Snc(t) is a proper survival function.
There is a mathematical relationship between the model (3) and the mixture cure rate model [13, 14].

We can write

Spop(t) =
a0

A(𝜃)
+
(

1 −
a0

A(𝜃)

)
Snc(t),

where Snc(t) is given by Equation (6). Thus, Spop(t) is a mixture cure rate model with cure fraction equal
to p0 = A(𝜃(1 − p))∕A(𝜃) and survival function Snc(t) for the noncured population. These results imply
that every mixture cure rate model corresponds to some model of the form (3) for any 𝜃 and any survival
function S(⋅).

By differentiating Equation (6), the proper density function for the noncured population reduces to

fnc(t) =
A′(𝜃S(t))
A(𝜃) − a0

𝜃 f (t) = J(𝜃) fpop(t), t > 0, (7)

where J(𝜃) = A(𝜃)∕[A(𝜃) − a0]. We derive expansions for the new proper density function which do not
depend on complicated functions. In Appendix A, we obtain explicit expressions for the moments.

Standard lifetime distributions usually present very strong restrictions to produce bathtub curves and
thus appear to be unappropriate for interpreting data with this characteristic. In the last years, new
extended classes of the Weibull distribution for modeling bathtub HRFs were developed. Mudholkar et
al. [21] pioneered the exponentiated Weibull, Lai et al. [22] introduced the modified Weibull, Famoye
et al. [16] and Lee et al. [17] presented the BW, and Silva et al. [23] defined the beta modified Weibull
distributions. Further, Cordeiro et al. [18] investigated several mathematical properties of the BW dis-
tribution, which is a highly flexible lifetime distribution because it takes lower and higher skewness and
kurtosis values. This distribution can accommodate the most important types of the HRF (i.e., increasing,
decreasing, unimodal, and bathtub) depending on its parameter values, and thus, it becomes an important
model to be fitted to a wide variety of lifetime data.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1366–1388
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In order to provide more flexibility to model (3), we consider that the time Z to the recurrence of the
breast cancer has the BW density function given by

f (z; 𝜸) = c
𝜏c B(a, b)

zc−1 exp
[
−b
( z
𝜏

)c] {
1 − exp

[
−
( z
𝜏

)c]}a−1
, (8)

where 𝜸⊤ = (a, b, c, 𝜏)⊤ is the parameter vector; a > 0, b > 0, and c > 0 are shape parameters; 𝜏 > 0
is a scale parameter; and B(a, b) denotes the beta function. The CDF corresponding to Equation (8) is
given by

F(z; 𝜸) = I
1−exp

[
−
(

z
𝜏

)c](a, b), (9)

where Iy(a, b) = By(a, b)∕B(a, b) denotes the incomplete beta function ratio and By(a, b) is the incomplete
beta function.

The main motivation for using the BW model (8) is that it extends some important distributions pre-
viously considered in the literature. In particular, it contains as special cases the exponentiated Weibull
[21] for b = 1, beta exponential [24] for c = 1, exponentiated exponential [25] for b = c = 1, generalized
Rayleigh [26] for b = 1 and c = 2, Weibull for a = b = 1, among others.

It is important to emphasize that most BW mathematical properties are manageable using modern
computer programs with numerical and analytic capabilities. Therefore, they may turn into adequate tools
comprising the arsenal of applied statisticians [18]. For example, the rth generalized moment of Z for a
real noninteger a > 0 is given by

E(Zr) =
𝜏r Γ(r∕c + 1)

B(a, b)

∞∑
j=0

(−1)j

(b + j)r∕c+1

(
a − 1

j

)
. (10)

If a > 0 is an integer, the index j in the sum stops at a − 1. For a = b = 1, Equation (10) gives precisely
the rth Weibull moment.

The moment generating function of Z can be expressed in closed form for special cases using the
Meijer-G and Wright generalized hypergeometric functions [18]. Extreme values, mean deviations, Bon-
ferroni and Lorenz curves, moments of order statistics and L moments, reliability, and Rényi and Shannon
entropies for the BW distribution are also derived by Cordeiro et al. [18].

Inserting the BW survival function in model (3), we obtain the PSBW model with long-term survivors
given by

Spop(t; 𝜃, 𝜸) =
A

{
𝜃

[
1 − I

1−exp
[
−
(

t
𝜏

)c](a, b)
]}

A(𝜃)
, t > 0. (11)

The PDF corresponding to Equation (11) reduces to

fpop(t; 𝜃, 𝜸) =
c 𝜃 tc−1 A′

{
𝜃

[
1 − I

1−exp
[
−
(

t
𝜏

)c](a, b)
]}

𝜏c B(a, b)A(𝜃)

× exp
[
−b
( t
𝜏

)c]{
1 − exp

[
−
( t
𝜏

)c]}a−1
.

(12)

Equation (12) refers to the PSBW model with long-term survivors in competing-risk structure. It is very
flexible to accommodate increasing, decreasing, bathtub, and unimodal hazard rates. The PSBW model
is also suitable for testing goodness of fit of some special models.

Several methods of introducing one or more parameters to generate new distributions that provide ade-
quate fits to real data have been investigated recently in the statistical literature. Among these methods, the
compounding of some discrete and important lifetime distributions has been in the vanguard of lifetime
modeling. We can propose some new distributions for long-term survivors from Equations (3) and (4).
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3. Special power series beta Weibull models

Here, we present some specific compounding models that arise from our general formulation. Particularly,
we consider situations for which M follows the binomial, Poisson, logarithmic, negative binomial, and
geometric distributions.

• The Bernoulli beta Weibull (BeBW) model
If A(𝜃) = 1+𝜃, then M has the Bernoulli distribution with success parameter 𝜃∕(1+𝜃). The Bernoulli
exponentiated Weibull model is a submodel when b = 1. For c = 1, we obtain the Bernoulli beta
exponential model. If b = 1, in addition to c = 1, it yields the Bernoulli exponentiated exponential
model. For a = b = 1 and a = b = c = 1, it gives the Bernoulli Weibull and Bernoulli exponential
models, respectively. The cure rate is p0 = (1 + 𝜃)−1 for 𝜃 > 0. The BeBW density function is
given by

fpop(t; 𝜃, 𝜸) =
𝜃

(1 + 𝜃)
c tc−1

𝜏c B(a, b)
exp
[
−b
( t
𝜏

)c] {
1 − exp

[
−
( t
𝜏

)c]}a−1
. (13)

• The PBW model
If A(𝜃) = e𝜃 , then M has the Poisson distribution with mean 𝜃, and the PBW survival function
becomes

Spop(t; 𝜃, 𝜸) = exp

{
−𝜃 I

1−exp
[
−
(

t
𝜏

)c](a, b)
}
. (14)

The Poisson exponentiated Weibull model is also a submodel of Equation (14) when b = 1. For
c = 1, we obtain the Poisson beta exponential model. If b = 1, in addition to c = 1, it reduces to the
Poisson exponentiated exponential model. The Poisson Weibull (PW) model pioneered by Chen et
al. [27] arises when a = b = 1. For a = b = c = 1, we obtain the Poisson exponential model. The
cure fraction is given by p0 = e−𝜃 . The PBW density function reduces to

fpop(t; 𝜃, 𝜸) =
𝜃 c

𝜏c B(a, b)
tc−1 exp

[
−b
( t
𝜏

)c] {
1 − exp

[
−
( t
𝜏

)c]}a−1

× exp

{
−𝜃
[

1 − I
1−exp

[
−
(

t
𝜏

)c](a, b)
]}

.

(15)

After some algebraic developments, the proper density function of the population at risk for the
PBW model (15) can be expressed as

fnc(t; 𝜃, 𝜸) =
c 𝜃 exp

{
1 − 𝜃

[
1 − I

1−exp
[
−
(

z
𝜏

)c](a, b)
]}

tc−1

𝜏c B(a, b)[1 − exp(−𝜃)]

× exp
[
−b
( t
𝜏

)c] {
1 − exp

[
−
( t
𝜏

)c]}a−1
,

(16)

where 𝜸⊤ = (a, b, c, 𝜏)⊤. Equation (16) can be widely used for modeling survival data. Plots of the
population density functions (13) and (15) for some parameter values are displayed in Figure 1(a)
and (b), respectively.

• The logarithmic beta Weibull (LBW) model
If M has the logarithmic distribution, A(𝜃) = − log(1−𝜃), then we obtain the LBW survival function.
The logarithmic exponentiated Weibull model is a special model when b = 1. For c = 1, we obtain
the logarithmic beta exponential model. If b = 1, in addition to c = 1, it reduces to the logarithmic
exponentiated exponential model. For a = b = 1 and a = b = c = 1, we obtain the logarithmic
Weibull and logarithmic exponential distributions, respectively.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1366–1388
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Figure 1. (a) Plots of the Bernoulli beta Weibull population density function for some values of a, c, and 𝜃 with
b = 2.0 and 𝜏 = 1.5. (b) Plots of the Poisson beta Weibull population density function for some values of a, c,

and 𝜃 with b = 2.0 and 𝜏 = 1.5.

The cure fraction is p0 = 1∕log(1 − 𝜃), and the LBW density function reduces to

fpop(t; 𝜃, 𝜸) =
−𝜃 c tc−1 exp

[
−b
(

t
𝜏

)c] {
1 − exp

[
−
(

t
𝜏

)c]}a−1

𝜏c B(a, b) log(1 − 𝜃)
{

1 − 𝜃
[

1 − I
1−exp

[
−
(

t
𝜏

)c](a, b)
]} . (17)

• The negative binomial beta Weibull (NBiBW) model
For the negative binomial distribution, A(𝜃) = (1−𝜃)−k, and then, we obtain the NBiBW model. The
negative binomial exponentiated Weibull model is a special model when b = 1. For c = 1, we obtain
the negative binomial beta exponential model. If b = 1, in addition to c = 1, it gives the negative
binomial exponentiated exponential distribution. For a = b = 1 and a = b = c = 1, we obtain the
negative binomial Weibull and negative binomial exponential distributions, respectively.

The cure fraction is given by p0 = (1 − 𝜃)k for 0 ⩽ 𝜃 < 1. The NBiBW density function can be
expressed as

fpop(t; k, 𝜃, 𝜸) =
k𝜃(1 − 𝜃)kc tc−1 exp

[
−b
(

t
𝜏

)c] {
1 − exp

[
−
(

t
𝜏

)c]}a−1

𝜏c B(a, b)
{

1 − 𝜃 I
1−exp

[
−
(

t
𝜏

)c](a, b)
}k+1

. (18)

Plots of the population density functions (17) and (18) for some parameter values are displayed
in Figure 2(a) and (b), respectively. These plots indicate great flexibility of these distributions.

• The geometric beta Weibull (GBW) model
For the geometric distribution, A(𝜃) = (1 − 𝜃)−1, which leads to the GBW model. The geometric
exponentiated Weibull model is also a special case when b = 1. For c = 1, we obtain the geometric
beta exponential model. If b = 1, in addition to c = 1, it reduces to the geometric exponentiated
exponential distribution. For a = b = 1 and a = b = c = 1, we have the geometric Weibull and
geometric exponential distributions, respectively. The cure fraction is given by p0 = 1−𝜃. The GBW
density function is given by

fpop(t; 𝜃, 𝜸) =
𝜃(1 − 𝜃)c tc−1 exp

[
−b
(

t
𝜏

)c] {
1 − exp

[
−
(

t
𝜏

)c]}a−1

𝜏c B(a, b)
{

1 − 𝜃 I
1−exp

[
−
(

t
𝜏

)c](a, b)
}2
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Figure 2. (a) Plots of the logarithmic beta Weibull population density function for some values of a, c, and 𝜃 with
b = 2.0 and 𝜏 = 1.5. (b) Plots of the negative binomial beta Weibull population density function for some values

of a, 𝜃, and k with b = 2.0, c = 2.5, and 𝜏 = 1.5.

The problems related to identifiability in survival models with cure fraction have been discussed by
several authors, among them, [28–30]. Based on these authors and following the proof of Theorem 6.2
in [30], we can conclude that the PSBW model with explanatory variables associated to the parameter 𝜃
is identifiable as well as its special cases.

4. Relationship between the long-term survivor models and frailty models

There is a relationship between the long-term survivor models and frailty models, which is now addressed.
The frailty model assumes a proportional hazards structure conditional on the random effect, W. Let W
denote a nonnegative continuous frailty variable, that is, a random variable indicating the individual level
of risk. Then, the frailty model is basically specified by the following HRF (given the frailty):

h(t|W) = W hB(t), (19)

where hB(t) is the baseline HRF that can been equal to hB(t) exp(𝐱T𝜷) in case of the proportional hazard
model. The corresponding survival function, conditional on Z, is given by

S(t|W) = P(T > t|W) = exp
{
−WHB(t)

}
= SB(t)W , (20)

where HB(t) = ∫ t
0 hB(u)du is the baseline cumulative hazard function and SB(t) is the corresponding sur-

vival function. Many published studies on these models often assume that W is a nonnegative continuous
random variable. Thus, the unconditional survival function can be expressed as

S(t) = ∫ S(t|W)𝜋(w)dw = ∫ exp
{
−WHB(t)

}
𝜋(w)dz = 𝐋(HB(t)),

where 𝜋(w) is the density function of W and 𝐋(s) is the Laplace transform of W. The most common frailty
distribution are the gamma and other positive stable distributions [31].

In some cases, it may be appropriate to consider discrete frailty distributions. Survival data containing
experimental units in the event of interest have not happened even after a long period of observation.
In this situation, these units have zero frailty, and survival models induced by frailty with continuous
distribution would not be appropriate (see [30, 31]).

Consider that the frailty variable W is a discrete random variable taking values in {0,1,…} and hav-
ing probability mass function P(W = w). The unconditional survival function S(t) can be obtained by
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summing in Equation (20) over the support of the distribution of Z, and then, it is given by

S(t) =
∞∑

w=0

SB(t)w P[W = w] = E[SB(t)W] = GW (SB(t)), (21)

where GW (s) is the PGF of W. The model (21) is the same survival model with cure fraction obtained in the
competing causes scenarios by Rodrigues et al. [9] and Tsodikov et al. [3]. Also, because limt→∞ SB(t) =
0 and limt→∞ S(t) = GW(0) = P(W = 0) > 0, Equation (21) is not a proper survival function. This
characterize the survival models with a cure fraction, where p0 = P(W = 0) denotes the proportion of
cured individuals. If W is a random variable having the PS distribution and hB(t) is the HRF of the BW
distribution, we obtain the PSBW model given in Equation (12).

5. Inference methods

We consider the situation where the survival time of the mastectomized women is not completely
observed and is subjected to right censoring. Let Ci denote the censoring time. We then observe ti =
min{Ti,Ci} and 𝛿i = I(Ti ⩽ Ci), where 𝛿i = 1 if Ti is the observed time to the event defined before
and 𝛿i = 0 if it is right censored, for i = 1,… , n. Let 𝜸 denote the parameter vector of the distribution
function of the time-to-event F(t). From n pairs of times and censoring indicators (t1, 𝛿1),… , (tn, 𝛿n), the
observed likelihood function under noninformative censoring can be expressed as [11]

L(𝜃, 𝜸) =
n∏

i=1

[fpop(ti; 𝜃, 𝜸)]𝛿i [Spop(ti; 𝜃, 𝜸)]1−𝛿i , (22)

where Spop(ti; 𝜃, 𝜸) and fpop(ti; 𝜃, 𝜸) are given in Equations (11) and (12), respectively.
In many medical problems, the lifetimes are affected by explanatory variables such as the choles-

terol level, blood pressure, and weight. Parametric models to estimate univariate survival functions for
censored data regression problems are widely used. Now, we link the parameter 𝜃i in Equation (11) to
the explanatory variable vector 𝐱i by defining 𝜃i = g(𝐱i, 𝜷), where g(⋅) is a suitable link function, for
i = 1,… , n, and 𝜷 = (𝛽1,… , 𝛽p)⊤ denotes the vector of regression coefficients. Let 𝝍 = (𝜷⊤, 𝜸⊤)⊤ be
the model parameters.

Substituting Equations (11) and (12) into Equation (22) yields the log-likelihood function

l(𝝍) = r log

[
c

𝜏c B(a, b)

]
+

n∑
i=1

𝛿i g(𝐱i, 𝜷) + (c − 1)
n∑

i=1

𝛿i log(ti) − b
n∑

i=1

𝛿i

( ti
𝜏

)c

+ (a − 1)
n∑

i=1

𝛿i log

{
1 − exp

[
−
( ti
𝜏

)c
]}

+
n∑

i=1

𝛿i log

⎧⎪⎪⎨⎪⎪⎩
A′
{

g(𝐱i, 𝜷) [1 − I
1−exp

[
−
(

ti
𝜏

)c](a, b)]
}

A(g(𝐱i, 𝜷))

⎫⎪⎪⎬⎪⎪⎭
+

n∑
i=1

(1 − 𝛿i) log

⎧⎪⎪⎨⎪⎪⎩
A

{
g(𝐱i, 𝜷)[1 − I

1−exp
[
−
(

ti
𝜏

)c](a, b)]
}

A(g(𝐱i, 𝜷))

⎫⎪⎪⎬⎪⎪⎭
,

(23)

where r is the observed number of failures and A(⋅) and A′(⋅) are given in Section 2.
The MLE of the parameter vector𝝍 can be calculated by maximizing the log-likelihood function (23).

We use the procedure NLMixed in SAS to compute the MLE 𝝍̂ . Under suitable regularity conditions, it
can be shown that the asymptotic distribution of the MLE 𝝍̂ is multivariate normal with mean vector 𝝍
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and covariance matrix −𝐋̈−1(𝝍), that is,(
𝜷
⊤
, 𝜸̂

⊤
)⊤

∼ N(p+4)
{
(𝜷⊤, 𝜸⊤)⊤,−𝐋̈−1(𝝍)

}
,

where −𝐋̈(𝝍) =
{
𝜕2l(𝝍)
𝜕𝝍𝝍⊤

}
is the (p + 4) × (p + 4) observed information matrix

𝐋̈(𝝍) =
(

𝐋𝛽j𝛽j′
𝐋𝛽j𝛾k

. 𝐋𝛾k𝛾k′

)
,

where j, j′ = 1,… , p, k, k′ = 1,… , 4. The submatrices of 𝐋̈(𝝍) can be computed numerically. We
investigate the asymptotic distribution of the MLEs using a simulation study; see Section 6.

Besides estimation, hypothesis tests can be taken into account. Let𝝍1 and𝝍2 be proper disjoint subsets
of 𝝍 . We aim to test H0 ∶ 𝝍1 = 𝝍

(0)
1 against H1 ∶ 𝝍1 ≠ 𝝍

(0)
1 , 𝝍2 unspecified. Let 𝝍̂0 maximize L(𝝍)

constrained to H0 and define the LR statistic by w = 2[l(𝝍̂) − l(𝝍̂0)], where l(⋅) is the log-likelihood.
Under the null hypothesis H0 and some regularity conditions, the statistic w converges in distribution to
a chi-square distribution with dim(𝝍1) degrees of freedom.

6. Simulating the Poisson beta Weibull model

Here, we evaluate the performance of the MLEs of the parameters of the PBW regression model with
cure rate given by Equation (14) by means of a simulation study. For each individual i = 1,… , n, an
unknown number of breast tumor cells at the end of the mastectomy that can produce a detectable cancer,
say Mi, is generated from a Poisson distribution with parameter 𝜃i = exp(𝛽1 + 𝛽1xi), where the covariate
xi is generated from a Bernoulli with probability 0.5. We take 𝛽0 = −0.5 and 𝛽1 = 0.7 so that the cure
fractions for the two levels of the covariate are p(0)0 and p(0)1 , respectively. We generate the event times
Zij, for j = 1,… ,Mi, from a BW distribution with parameters a = 2, b = 2, c = 2, and 𝜏 = 10. The
censoring times are sampled from the uniform (0, 𝜌), where 𝜌 is set in order to control the proportion of
censored observations on average to be approximately 60%.

Table I. Maximum likelihood estimates in average (MLEA), standard deviations (SDs),
root of mean squared errors (RMSE), and empirical coverage probabilities (CPs) of the
parameters of the Poisson beta Weibull regression model.

n a b c 𝜏 𝛽0 𝛽1 p(0)
0 p0

(1)

100 MLEA 1.688 1.524 2.921 9.479 −0.495 0.705 0.539 0.293
SD 1.171 0.898 1.207 1.802 0.263 0.326 0.085 0.074
BIAS −0.312 −0476 0.921 −0.521 0.005 0.005 −0.006 −0.002
RMSE 1.211 1.016 1.518 1.875 0.263 0.326 0.085 0.0074
CP 0.926 0.917 0.928 0.969 0.948 0.960 0.939 0.945

200 MLEA 1.852 1.633 2.599 9.424 −0.499 0.705 0.543 0.294
SD 1.163 0.888 1.004 1.639 0.178 0.225 0.058 0.053
BIAS −0.148 −0.367 0.599 −0.576 0.005 0.001 −0.002 −0.001
RMSE 1.172 0.961 1.168 1.737 0.178 0.225 0.058 0.053
CP 0.956 0.958 0.962 0.946 0.937 0.958 0.949 0.955

400 MLEA 2.063 1.844 2.242 9.546 −0.505 0.707 0.546 0.294
SD 1.025 0.780 0.679 1.329 0.126 0.155 0.041 0.037
BIAS 0.063 −0.156 0.242 −0.454 −0.005 0.007 0.001 0.000
RMSE 1.026 0.795 0.721 1.404 0.126 0.155 0.041 0.037
CP 0.954 0.948 0.952 0.946 0.937 0.959 0.949 0.952

800 MLEA 2.111 1.954 2.106 9.722 −0.507 0.708 0.547 0.295
SD 0.873 0.645 0.475 1.038 0.089 0.113 0.029 0.027
BIAS 0.111 −0.046 0.106 −0.278 −0.007 0.008 0.002 0.000
RMSE 0.879 0.647 0.486 1.074 0.089 0.114 0.029 0.027
CP 0.951 0.949 0.953 0.946 0.945 0.951 0.952 0.953
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We take sample sizes of n = 100, 200, 400, and 800. For each sample size, we perform 1000 simulations
and calculate the average of the MLEs, root of mean squared errors of the MLEs, and empirical coverage
probabilities of 95% confidence intervals for the parameters in model (14). The simulation results are
given in Table I. We note that the averages of the MLEs are close to the true parameter values, the root
of mean squared errors decrease as the sample size increases, and the empirical coverage probabilities
are closer to the nominal levels when the sample size increases. Further, we examine the distribution of
the MLEs of a, b, c, 𝛽0, 𝛽1, p(0)0 , and p(0)1 and provide the plots of the empirical distributions of 𝛽0, 𝛽1,

Figure 3. QQ-normal plots for the maximum likelihood estimates of 𝛽0, 𝛽1, p0, and p1 sample size n = 200.

Table II. Empirical rejection rates of the null hypothesis
H0 ∶ a = b = 1 at a nominal significance level of 5%.

n

Censored (a, b) 100 200 400 800

30% (1.0,1.0) 0.039 0.048 0.052 0.050
(1.5,2.0) 0.189 0.417 0.608 0.857
(2.0,3.0) 0.572 0.801 0.878 0.901
(3.0,3.0) 0.867 0.903 0.921 0.938
(6.0,4.0) 0.905 0.941 0.950 0.968
(6.0,8.0) 0.923 0.967 0.979 0.979

(10.0,10.0) 0.948 0.973 0.963 0.983
(15.0,15.0) 0.990 0.999 0.999 0.999

60% (1.0,1.0) 0.028 0.046 0.048 0.051
(1.5,2.0) 0.175 0.326 0.576 0.745
(2.0,3.0) 0.443 0.726 0.836 0.885
(3.0,3.0) 0.810 0.887 0.892 0.898
(6.0,4.0) 0.835 0.915 0.919 0.929
(6.0,8.0) 0.915 0.905 0.949 0.929

(10.0,10.0) 0.936 0.943 0.951 0.955
(15.0,15.0) 0.967 0.989 0.992 0.998
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p̂(0)0 , and p̂(0)1 (for fixed sample size n = 200). The plots are displayed in Figure 3. They indicate that the
normal distribution provides a reasonable approximation to the distribution of the estimates 𝛽0, 𝛽1, p̂(0)0 ,
and p̂(0)1 .

Additionally, we conduct a simulation to investigate the null distribution of the likelihood ratio statistic
(w) to test the hypotheses H0 ∶ a = b = 1 (PW cure rate model) versus H1 ∶ a > 0 or b > 0
(PBW cure rate model). In this simulation study, we consider 30% and 60% of proportion of censored
observations approximately. Table II summarizes the results of the simulation study considering different
sample sizes. The rejection rates are closer to the 5% nominal level for large sample sizes. Also, the
chi-squared approximation for w deteriorates when the proportion of censored observations increases.
Further, the power of the LR test increases as the sample size increases.

7. Local influence

Influence diagnostic is an important step in the analysis of data, because it provides an indication of
bad model fit or of influential observations. Because regression models are sensitive to the underlying
model assumptions, generally performing a sensitivity analysis is strongly advisable. Another approach
suggested by Cook [19] considers small perturbations represented by the vector 𝝎 instead of removing
observations and is related to a particular perturbation scheme. Local influence calculation can be carried
out for models (11) and (12). If the likelihood displacement LD(𝝎) = 2{l(𝝍̂)− l(𝝍̂𝝎)} is used, where 𝝍̂𝝎

is the MLE under the perturbed model, the normal curvature for 𝝍 at the direction 𝐝, where ‖𝐝‖ = 1, is
given by C𝐝(𝝍) = 2|𝐝T𝚫T [𝐋̈(𝝍)]−1 𝚫𝐝|. Here,𝚫 is a (p+4)×n matrix, which depends on the perturbation
scheme and whose elements are given by Δji = 𝜕2l(𝝍|𝝎)∕𝜕𝜓j𝜕𝜔i (i = 1,… , n and j = 1,… , p + 4)
evaluated at 𝝍̂ and 𝝎0, where 𝝎0 is the no perturbation vector (see [19, 32, 33]). For the PSBW model
with long-term survivors, we calculate the normal curvatures C𝐝(𝜷) and C𝐝(𝜸) to perform various index
plots, for instance, the index plot of the eigenvector 𝐝max corresponding to the largest eigenvalue C𝐝max

of the matrix 𝐁 = −𝚫T [𝐋̈(𝝍)]−1 𝚫 and the index plots of C𝐝i
(𝜷) and C𝐝i

(𝜸), the so-called total local
influence (see, for example, [34]), where 𝐝i is an n × 1 vector of zeros with one at the ith position. Thus,
the curvature at direction 𝐝i takes the form Ci = 2|𝚫T

i

[
𝐋̈(𝝍)
]−1 𝚫i|, where 𝚫T

i denotes the ith row of 𝚫.
It is usual to point out those cases such that Ci ⩾ 2C̄, where C̄ = 1

n

∑n
i=1 Ci. Another influence measure

for the ith observation is Ui =
n1∑

k=1
𝜆k e2

ki, where {(𝜆k, 𝐞k)|k = 1,… , n} are the eigenvalue–eigenvector

pairs of 𝐁 with 𝜆1 ⩾ · · · ⩾ 𝜆n1
⩾ 𝜆n1+1 = · · · = 𝜆n = 0, and {𝐞k = (ek1,… , ekn)T} is the associated

orthonormal basis. Zhu and Zhang [35] studied the influence measure ui systematically under a case-
weight perturbation. Thus, this influence measure expresses local sensitivity to the log-likelihood of the
perturbations.

Consider the vector of weights 𝝎 = (𝜔1,… , 𝜔n)T . From the log-likelihood (23), under three
perturbation schemes, we derive the matrix

𝚫 = (𝚫ji)(p+4)×n =
(
𝜕2l(𝝍|𝝎)
𝜕𝜓i𝝎j

)
(p+4)×n

, j = 1,… , p + 4 and i = 1,… , n.

• Case-weight perturbation
In this case, the log-likelihood function has the form

l(𝝍|𝝎) = n∑
i=1

𝜔i𝛿i log

[
c

𝜏cB(a, b)

]
+

n∑
i=1

𝛿ig(𝐱i, 𝜷) + (c − 1)
n∑

i=1

𝜔i𝛿i log(ti)

− b
n∑

i=1

𝜔i𝛿i

( ti
𝜏

)c

+ (a − 1)
n∑

i=1

𝜔i𝛿i log[q(ti)]

+
n∑

i=1

𝜔i𝛿i log

{
A′ {g(𝐱i, 𝜷)[1 − Iq(ti)(a, b)]

}
A(g(𝐱i, 𝜷))

}

+
n∑

i=1

𝜔i(1 − 𝛿i) log

{
A
{

g(𝐱i, 𝜷)[1 − Iq(ti)(a, b)]
}

A(g(𝐱i, 𝜷))

}
,
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where q(ti) = 1− exp
[
−
(

ti
𝜏

)c]
, 0 ⩽ 𝜔i ⩽ 1, 𝝎0 = (1,… , 1)T , and 𝛿i, g(.), A(.) and A′(.) are defined

in Equation (23). Here, 𝚫 =
(
𝚫T
𝜷
,𝚫T

𝜸

)T
can be calculated numerically.

• Response perturbation
Now, we consider that each ti is perturbed as tiw = yi + 𝜔iSt, where St is a scale factor that

may be estimated by the standard deviation of the observed response y and 𝜔i ∈ ℜ. The perturbed
log-likelihood function can be expressed as

l(𝝍|𝝎) = r log

[
c

𝜏cB(a, b)

]
+

n∑
i=1

𝛿ig(𝐱i, 𝜷) + (c − 1)
n∑

i=1

𝛿i log
(
t∗i
)
− b

n∑
i=1

𝛿i

(
t∗i
𝜏

)c

+ (a − 1)
n∑

i=1

𝜔i𝛿i log
[
q
(
t∗i
)]

+
n∑

i=1

𝛿i log

⎧⎪⎨⎪⎩
A′
{

g(𝐱i, 𝜷)[1 − Iq(t∗i )(a, b)]
}

A(g(𝐱i, 𝜷))

⎫⎪⎬⎪⎭
+

n∑
i=1

(1 − 𝛿i) log

⎧⎪⎨⎪⎩
A
{

g(𝐱i, 𝜷)[1 − Iq(t∗i )(a, b)]
}

A(g(𝐱i, 𝜷))

⎫⎪⎬⎪⎭ ,
where t∗i = ti + 𝜔iSy, q

(
t∗i
)
= 1 − exp

[
−
(

t∗i
𝜏

)c]
and 𝝎0 = (0,… , 0)T . The matrix 𝚫 =

(
𝚫T
𝜷
,𝚫T

𝜸

)T

is obtained numerically.
• Explanatory variable perturbation

Now, consider an additive perturbation on a particular continuous explanatory variable, say Xq,
by setting xiq𝜔 = xiq + 𝜔iSq, where Sq is a scale factor and 𝜔i ∈ ℜ. The perturbed log-likelihood
function has the form

l(𝝍|𝝎) = r log

[
c

𝜏cB(a, b)

]
+

n∑
i=1

𝛿ig
(
𝐱∗∗i , 𝜷

)
+ (c − 1)

n∑
i=1

𝛿i log(ti) − b
n∑

i=1

𝛿i

( ti
𝜏

)c

+ (a − 1)
n∑

i=1

𝛿i log[q(ti)] +
n∑

i=1

𝛿i log

{
A′ {g (𝐱∗∗i , 𝜷

)
[1 − Iq(ti)(a, b)]

}
A
(
g
(
𝐱∗∗i , 𝜷

)) }

+
n∑

i=1

(1 − 𝛿i) log

{
A
{

g
(
𝐱∗∗i , 𝜷

)
[1 − Iq(ti)(a, b)]

}
A
(
g
(
𝐱∗∗i , 𝜷

)) }
,

where 𝐱∗∗T
i 𝜷 = 𝛽1 + 𝛽2xi2 + · · · + 𝛽q(xiq + 𝜔iSq) + · · · + 𝛽pxip and 𝝎0 = (0,… , 0)T . The matrix

𝚫 =
(
𝚫T
𝜷
,𝚫T

𝜸

)T
is obtained numerically.

8. Application: breast carcinoma data

Among the several proposed risk classification schemes for predicting survival in women with breast
carcinoma, one of the most commonly used is the Nottingham Prognostic Index (NPI). The NPI is an
index, derived under a retrospective multivariate study, that is able to predict survival in patients with
breast cancer. The index is based on tumour size, lymph node stage, and histological grade and allows the
stratification of patients into three different prognostic groups. The NPI allows us to accurately predict
prognosis, and we advocate its more common use. For more details, see, for example, [36–38].

Here, the goal is to use the PSBW regression model with long-term survivors to predict breast
carcinoma mortality more accurately.

A total of n = 284 women who had been treated with mastectomy and axillary lymph node dissection
at Memorial Sloan-Kettering Cancer Center (New York, NY) between 1976 and 1979 met the follow-
ing requirements for study inclusion: confirmation of the presence of invasive mammary carcinoma, no
receipt of neoadjuvant or adjuvant systemic therapy, no previous history of malignancy, and negative
lymph node status as assessed on routine histopathologic examination.
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The data collected by Kattan [20] represent the survival times (T) until the patient’s death (73 died of
the disease) or the censoring times at the end of the study. Some explanatory variables are associated with
pathologic characteristics of the tumor. The tumor grading was performed using the standard modified
Bloom–Richardson system. The lymphovascular invasion was obtained using morphologic criteria. The
lymph node status was measured according to immunohistochemistry (IHC) and hematoxylin and eosin
(H&E) stains. The explanatory variables for each woman (i = 1,… , 284) are described as follows:

• ti: observed time (in years);
• 𝛿i: censoring indicator (0: right censored, 1: time observed);
• xi1: age (in years);
• xi2: multifocality (0: no, 1:yes);
• xi3: tumor size (in cm);
• xi4: tumor grading (0: I, 1: II, II and lobular);
• xi5: lymphovascular invasion (0: no, 1: yes);
• xi6: lymph node status (0: IHC+ IHC- and H&E-, 1: IHC+ and H&E+).

There are 74% censored observations corresponding to the women who died from other causes or were
still alive at the end of the study. Figure 4 displays the estimated Kaplan–Meier survival function with
a well-pronounced plateau, which, according to Yakovlev and Tsodikov [15], may be thought of as an
indication of the presence of a proportion of patients for whom the breast carcinoma will never recur, and
the patients can be considered as cured.

The explanatory variables are related with the parameter 𝜃 according to the following structures. For
the PBW cure rate model, we consider (i = 1,… , 284):

𝜃i = g(𝐱i𝜷) = exp(𝛽0 + 𝛽1 xi1 + 𝛽2 xi2 + 𝛽3 xi3 + 𝛽4 xi4 + 𝛽5 xi5 + 𝛽6 xi6).

For the BeBW, LBW, NBiBW, and GBW models, we consider

𝜃i = g(𝐱i𝜷) =
exp(𝛽0 + 𝛽1 xi1 + 𝛽2 xi2 + 𝛽3 xi3 + 𝛽4 xi4 + 𝛽5 xi5 + 𝛽6 xi6)

1 + exp(𝛽0 + 𝛽1 xi1 + 𝛽2 xi2 + 𝛽3 xi3 + 𝛽4 xi4 + 𝛽5 xi5 + 𝛽6 xi6)
.

We determine the MLEs of the model parameters using the NLMixed procedure in SAS. The values of
the global deviance, Akaike information criterion, and consistent Akaike information criterion statistics
are listed in Table III. The lowest values of the information criteria correspond to the PBW model, which
provides a better fit to the current data than the other models.

Further, we calculate the maximum unrestricted and restricted log-likelihoods and the LR statistics for
testing some submodels. For example, the LR statistic for testing the hypotheses H0: a = b = 1 versus
H1: H0 is not true, that is, to compare the PBW and PW regression models with long-term survivors, is
w = 2{−337.10 − (−339.45)} = 4.70 (p-value < 0.05), which yields favorable indications toward the
PBW regression model with long-term survivors.

Table IV lists the MLEs for the fitted PBW regression model. At a 5% significance level, all regression
coefficients are significant except those for the explanatory variables: age (x1), multifocality (x2), and
lymphovascular invasion (x5).

Figure 4. Kaplan–Meier curves for the breast carcinoma cohort data.
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Table III. The global deviance, Akaike
information criterion, and consistent
Akaike information criterion statistics
for some models.

Model PSBW GD AIC CAIC

BeBW 718.5 740.5 741.5
BeW 727.4 745.4 746.0

PBW 674.2 696.2 697.2
PW 678.9 696.9 697.5

LBW 693.8 715.8 716.8
LW 694.7 711.8 712.5

NBiBW 673.1 697.1 698.3
NBiW 678.9 698.9 699.7

GBW 675.5 697.5 698.5
GW 680.2 698.2 698.9

GD, global deviance; AIC, Akaike infor-
mation criterion; CAIC, consistent Akaike
information criterion; PSBW, power series
beta Weibull; BeBW, Bernoulli beta Weibull;
BeW, Bernoulli Weibull; PBW, Poisson
beta Weibull; PW, Poisson Weibull; LBW,
logarithmic beta Weibull; LW, logarithmic
Weibull; NBiBW, negative binomial beta
Weibull; NBiW, negative binomial Weibull;
GBW, geometric beta Weibull; GW, geomet-
ric Weibull.

Table IV. Maximum likelihood estimates for the
full Poisson beta Weibull regression model with
cure rate fraction fitted to the breast carcinoma data.

Parameter Estimate Standard error p-value

a 6.2829 0.5850 –
b 4.1988 0.4689 –
c 0.5221 0.0801 –
𝜏 12.2495 4.5505 –
𝛽0 −4.2533 1.1925 0.0004
𝛽1 0.0008 0.0108 0.9378
𝛽2 0.4520 0.3560 0.2053
𝛽3 0.2850 0.0974 0.0037
𝛽4 2.6132 1.0096 0.0101
𝛽5 0.4476 0.2771 0.1074
𝛽6 1.2660 0.3069 <0.0001

As suggested by a referee, we also present the results of the fit of a semiparametric mixture cure model.
These analyses are based on the paper by Corbiere and Joly [39], who used a SAS macro to estimate
this model with covariates. The macro is applied to the breast carcinoma data, whose results are given
in Table V.

The parameter estimates from the PSBW model with long-term survivors and the semiparamteric mix-
ture cure model are quite similar (Table V). Moreover, the standard errors of the MLEs from the fitted
PSBW model by using the inverse of the Hessian matrix at the parameter estimates are smaller than those
obtained from the Weibull mixture model. This fact indicates that the estimates of the PSBW model
are more precise than those of the semiparametric mixture cure model. A difference exists regarding
the significance of the covariate x5; because x5 is insignificant in the PSBW model, it becomes signif-
icant at the 5% level in the semiparametric mixture model. However, we note that in the final model

1380

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1366–1388



E. M. M. ORTEGA ET AL.

Table V. Estimates, standard errors, and p-values
for the breast carcinoma data from the semipara-
metric mixture cure model.

Parameter Estimate Standard error p-value

𝛽0 −5.6896 1.2929 <0.0001
𝛽1 −0.0021 0.0127 0.8685
𝛽2 0.6375 0.4972 0.1998
𝛽3 0.5386 0.1544 0.0005
𝛽4 3.7188 1.0444 0.0004
𝛽5 1.0938 0.3896 0.0050
𝛽6 2.4069 0.5804 <0.001

Figure 5. Index plot of 𝐝max for 𝝍 for the breast carcinoma data. (a) Case-weight perturbation; (b) Response
perturbation.

Figure 6. Index plots for 𝝍 on the breast carcinoma data (explanatory variable perturbation): (a) 𝐝max (age); (b)
𝐝max (tumor size).

presented in Table VIII, the covariate x5 is significant at the 6% significance level. Future work may be
addressed to compare advantages and disadvantages of the PSBW model with long-term survivors and
the semiparamteric mixture cure model because both models are very important for the analyses.
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Table VI. Relative changes [%], new estimates, and the cor-
responding p-values in parentheses.

Dropped observation a b c 𝜏

None – – – –
6.2829 4.1988 0.5221 12.2495

(–) (–) (–) (–)

#62 [1.2] [1.4] [0.2] [0.0]
6.3562 4.2571 0.5210 12.2543

(–) (–) (–) (–)

#103 [−0.5] [1.6] [1.1] [−0.1]
6.3136 4.1313 0.5162 12.2604

(–) (–) (–) (–)

#128 [0.4] [−1.0] [−1.0] [0.0]
6.2578 4.2417 0.5271 12.2457

(–) (–) (–) (–)

#212 [−7.1] [−8.5] [4.9] [−6.1]
6.7282 4.5574 0.4964 12.9970

(–) (–) (–) (–)

#237 [0.1] [−8.1] [−5.2] [0.4]
6.2788 4.5403 0.5495 12.1945

(–) (–) (–) (–)

#270 [−5.7] [−12.8] [−1.1] [0.0]
6.6421 4.7369 0.5281 12.2473

(–) (–) (–) (–)

Set  [3.8] [−10.2] [−12.2] [0.8]
6.0438 4.6285 0.5858 12.1546

(–) (–) (–) (–)

8.1. Diagnostics analysis

In what follows, we shall apply the local and global influence methods developed in the previous sections
for the purpose of identifying influential observations in the new regression model fitted to the dental
caries data.

The case-weight perturbation is used, and we obtain the value of the maximum curvature C𝐝max
=

1.3782. Figure 5(a) plots the eigenvector corresponding to 𝐝max and indicates that the observations ♯62,
♯212, ♯237, and ♯270 are again very distinct from the others. The influence of perturbations on the
observed survival times is now analyzed (response variable perturbation). The value of the maximum
curvature is C𝐝max

= 13.8180. Figure 5(b) displays the plots of 𝐝max versus the observation index, where
we can verify that there is no observation highlighted.

The perturbation of vectors for each continuous explanatory variable (x1 and x3) is now investigated.
The values for the maximum curvature are C𝐝max

= 1.87, C𝐝max
= 1.52, C𝐝max

= 0.0453, and C𝐝max
=

4.3832 for x1 and x3, respectively. Then, plots of 𝐝max against the index of the observations are displayed
in Figure 6(a) and (b). We note that the observations ♯62, ♯103, and ♯128 are very distinct from the others.

We now identify the characteristics of each observation in the sample. The observations ♯62 and ♯103
have the largest censoring times, and the censored observation ♯128 has the large tumor size (x3). The
observation ♯212 corresponds to the minimum lifetime, and the observations ♯237 and ♯270 have the
maximum failure times. We note that each observation detected in the influence analysis has a typical
characteristic very different from the others.

8.2. Impact of the detected influential observations

We conclude that the diagnostic analysis detected, as potentially influential observations, the following
six cases: #62, #103, #128, #212 #237, and #270. In order to reveal the impact of the six observations
on the parameter estimates, Tables VI and VII present the relative changes (RC)—in percentage—in

1382

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1366–1388



E. M. M. ORTEGA ET AL.

Table VII. Relative changes [%], new estimates, and the corresponding p-values in parentheses.

Dropped observation 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6

None – – – – – – –
−4.2533 0.0008 0.4520 0.2850 2.6132 0.4476 1.2660
(0.0004) (0.9378) (0.2053) (0.0037) (0.0101) (0.1074) (<0.0001)

#62 [−7.7] [394.9] [30.3] [10.7] [8.9] [17.0] [2.1]
−3.9260 −0.0025 0.5891 0.3156 2.3801 0.5235 1.2396
(0.0004) (0.8196) (0.0924) (0.0011) (0.0090) (0.0569) (<0.0001)

#103 [1.3] [228.4] [6.9] [0.1] [−2.2] [−17.8] [−8.0]
−4.1987 −0.0011 0.4207 0.2847 2.6718 0.5271 1,3675
(0.0005) (0.9202) (0.2391) (0.0038) (0.0088) (0.0562) (<0.0001)

#128 [−3.1] [8.8] [18.0] [−37.5] [3.6] [7.1] [−2.1]
−4.3832 0.0008 0.3705 0.3918 2.5202 0.4157 1.2922
(0.0002) (0.9428) (0.3050) (0.0014) (0.0108) (0.1347) (<0.0001)

#212 [−298.2] [−141.0] [−4.4] [4.5] [−485.6] [11.1] [3.2]
−16.9349 0.0020 0.4719 0.2722 15.3026 0.3981 1.2261
(0.9766) (0.8513) (0.1872) (0.0062) (0.9788) (0.1604) (0.0001)

#237 [−2.8] [−72.2] [−1.9] [2.1] [−0.4] [−3.4] [0.1]
−4.3710 0.0014 0.4607 0.2790 2.6232 0.4627 1.2648
(0.0003) (0.8939) (0.1976) (0.0049) (0.0104) (0.0964) (<0.0001)

#270 [−0.9] [46.8] [−1.3] [0.5] [0.6] [−3.1] [0.1]
−4.2931 0.0004 0.4578 0.2835 2.5985 0.4614 1.2653
(0.0004) (0.9671) (0.2003) (0.0040) (0.0104) (0.0973) (<0.0001)

Set  [−14.0] [601.8] [−16.5] [−46.4] [−16.9] [−20.6] [−5.8]
−4.8470 −0.0042 0.5268 0.4172 3.0546 0.5398 1.3398
(0.0008) (0.7007) (0.1367) (0.0010) (0.0183) (0.0528) (<0.0001)

Table VIII. Maximum likelihood estimates of the
parameters for the reduced Poisson beta Weibull
regression model with cure fraction fitted to the
breast carcinoma data.

Parameter Estimate Standard error p-value

a 117.83 0.6867 –
b 69.4666 0.6032 –
c 0.1082 0.0183 –
𝜏 12.2310 3.6079 –
𝛽0 −4.1218 1.0468 0.0001
𝛽3 0.2984 0.0942 0.0017
𝛽4 2.6146 1.0104 0.0102
𝛽5 0.5102 0.2711 0.0609
𝛽6 1.2050 0.3012 <0.0001

the parameter estimates of the systematic components for the mean and dispersion, respectively, after
dropping one of the six cases with outstanding influence and also when all of them are dropped at once
(represented by the set  = {62, 103, 128, 212, 237, 270}) and the new parameter estimates. We also
present the corresponding p-values (in parentheses) for the new estimates in these tables. The RC of each
estimate is defined as RC𝜃j

= [𝜃j − 𝜃j(I)]∕𝜃j × 100%, where 𝜃j(I) denotes the MLE of 𝜃j, for j = 1,… , k
(where k is the total number of parameters), after the set I of observations has been removed.

We have no convergence problems to compute the figures of these two tables: the MLEs of the param-
eters for the BW model (Table VI) and the estimates of the regression parameters (Table VII). We note
that the results are very close with the simulation results given in Section 6. The figures in these tables
reveal that the significance (or insignificance) of the model parameters is not modified when the observa-
tions #22, #119, #220, #431, and #458 or the set  is removed from the data; that is, these cases do not
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change the inference on the parameters of the PBW regression model. We can conclude that this model
with long-term survivors is robust to potential influential points.

Further, we seek a parsimonious regression model for these data. The MLEs of the parameters for the
reduced PBW regression model with long-term survivors fitted to these data are listed in Table VIII.

We now estimate the cure rate (p0). Note that

𝜃̂ = 1
417

417∑
i=1

𝜃̂i = 0.4491,

where

𝜃̂i = exp(−4.1218 + 0.2984xi3 + 2.6146xi4 + 0.5102xi5 + 1.2050xi6), (24)

and then p̂0 = e−𝜃̂ = 0.6382.
The regression structure (24) and the p-values in Table VIII suggest that the tumor size, tumor grading,

lymphovascular invasion, and lymph node status as defined earlier are significant prognostic variables for
assessing mortality risk in women with breast carcinoma. In order to assess if the model is appropriate,
Figure 7 displays the empirical survival function and the estimated marginal survival functions given by
(14) from the fitted reduced PBW model with long-term survivors.

Figure 7. Kaplan–Meier curves (solid lines), the estimated Poisson beta Weibull survival functions and the
estimated cure fraction for the breast carcinoma data.

Figure 8. Kaplan–Meier curves stratified by explanatory variable and estimated survival functions to the breast
carcinoma data: (a) x4 (tumor grading); (b) x5 (lymphovascular invasion); (c) x6 (lymph node status).
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Table IX. Estimated cure probabilities for four mastectomized women.

Patient Tumor size Tumor grade Lymphovascular Staining p̂0

A 2.2 0 1 0 0.94
B 2.2 0 1 1 0.84
C 2.2 1 1 0 0.49
D 2.2 1 0 1 0.24

Figure 9. Estimates of recurrence free probability curves for the patients A, B, C, and D.

We fit the PBW regression models with long-term survivors for each explanatory variable. In
Figure 8(a)–(c), we plot the empirical survival function and the estimated survival function (14) for each
explanatory variable. We conclude that the PBW regression model provides a good fit to these data.

Clearly, Equation (24) reveals that the estimates of the cure probability for breast carcinoma in women
can be very different depending upon the values of the explanatory variables associated with the tumor
biopsy. We consider four hypothetical women A,B,C, and D who underwent postmastectomy with val-
ues for the explanatory variables given in Table IX. For example, for woman A, tumor size = 2.2,
tumor grade = 0, lymphovascular = 1, and lymph node status = 0; and for woman D, tumor size = 2.2,
tumor grade = 1, lymphovascular = 0, and lymph node status = 1, we obtain very different cure
probabilities, namely 0.94 for woman A and 0.24 for woman D.

Finally, using Equation (14), we obtain Spop(t; 𝜷̂, 𝜸̂). Figure 9 displays the plots of the recurrence free
probability estimates for the hypothetical women described earlier. These last analyses can only be per-
formed using the PSBW model with long-term survivors, because the semiparametric mixture cure model
is much more complicated to do this type of analysis. It represents an advantage of the PSBW model with
long-term survivors over the semiparametric mixture cure model.

9. Concluding remarks

In this paper, we propose a new PSBW regression model with cure rate to estimate breast carcinoma mor-
tality versus time and cure probability for women who had been treated with mastectomy and axillary
lymph node dissection. The unknown number of competing causes that can influence the survival time
is assumed to follow a PS distribution. Further, the time of the left breast carcinoma cells after the mas-
tectomy to metastasize is assumed to have the BW distribution. This distribution is more flexible than
other existing models to estimate the effects of the explanatory variables on the survival function and on
the proportion of the cure population. Some specific compounding regression models are special cases of
our general formulation. Several pathological explanatory variables are taken into account to explain the
breast cancer recurrence as, for example, age, multifocality, tumor size, tumor grading, lymphovascular
invasion, and lymph node status. The composing model leads to more precise estimates of the effects of
the explanatory variables on the recurrence times. The maximum likelihood estimation procedure yields
efficient estimators of the regression parameters, and asymptotic tests can be performed for the param-
eters using likelihood ratio statistics. We conclude that the tumor size, tumor grading, lymphovascular
invasion, and lymph node status are significant prognostic variables for determining survival time and
mortality risk in women with breast carcinoma.
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Appendix A: Some properties

Here, we demonstrate that the noncured density function fnc(t) can be expressed as a linear combination
of exponentiated-G (‘Exp-G’ for short) densities, where the weighted coefficients depend only on the
probabilities of M. For an arbitrary baseline CDF G(t) = 1−S(t) and a discrete random variable M defined
by the PGF P(z) in Equation (1), the unified PDF for the noncured population is given by Equation (7).
From now on, a random variable Za has the Exp-G distribution with power parameter a > 0, say Za ∼Exp-
F(a), if its PDF and CDF are given by

ha(x) = a f (x)Fa−1(x) and Ha(x) = Fa(x),

respectively.
The noncured distribution is now represented by the random variable V . By differentiating A(𝜃) in

Equation (7), expanding the resulting binomial and substituting
∑∞

j=0

∑j
m=0 by

∑∞
j=0

∑∞
m=j, we can write

after lengthy algebra

fnc(t) =
∞∑

j=0

vj hj+1(t), (A.1)

where hj+1(t) denotes the Exp-F(j + 1) PDF with power parameter j + 1 (for j ⩾ 0),

vj =
(−1)j

(j + 1)[A(𝜃) − a0]

∞∑
m=j

(m + 1) am+1 𝜃
m+2

(
m
j

)
and the am’s are the probabilities of the discrete distribution (1).

So, several mathematical quantities (such as ordinary and incomplete moments, generating function,
and mean deviations) for the noncured population (V) can be obtained from Equation (A.1) by knowing
those of the Exp-G distribution. The structural properties of the exponentiated distributions have been
studied by many authors in recent years (see, for example, [24]). Equation (A.1) is the main result of this
section.

Hereafter, let Yj ∼Exp-Weibull(j + 1). We provide two explicit expressions for the moments of
the PSBW distribution. A first formula for the rth moment of V can be immediately obtained from
Equation (A.1) as

E(Vr) =
∞∑

j=0

vj E(Yr
j ).

The quantity E(Yr
j ) is determined from Equation (10) with b = 1 and a = j + 1. Then,

E(Vr) = 𝜏r Γ(r∕c + 1)
∞∑

n=0

(−1)n qn

(n + 1)r∕c+1
, (A.2)

where qn =
∑∞

j=0

vj

j+1

( j
n

)
for n ⩾ 0.

A second formula for E(Vr) can be derived in terms of the quantile function of Z, say QBW(u). We can
write from Equation (4)

E(Vr) =
∞∑

j=0

(j + 1) vj 𝜏(r, j), (A.3)

where

𝜏(r, j) = ∫
∞

0
tr G(x)j dG(x) = ∫

1

0
QBW(u)r ujdu,

and QBW(u) is the inverse function of F(z; 𝜸) = I
1−exp

[
−
(

z
𝜏

)c](a, b) = u.

Equations (A.2) and (A.3) are general formulae for the moments of the noncured PSBW distribution.
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