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Abstract Most bacteria are in fierce competition with other species for limited nutrients. Some

bacteria can kill nearby cells by secreting bacteriocins, a diverse group of proteinaceous

antimicrobials. However, bacteriocins are typically freely diffusible, and so of little value to

planktonic cells in aqueous environments. Here, we identify an atypical two-protein bacteriocin in

the a-proteobacterium Caulobacter crescentus that is retained on the surface of producer cells

where it mediates cell contact-dependent killing. The bacteriocin-like proteins CdzC and CdzD

harbor glycine-zipper motifs, often found in amyloids, and CdzC forms large, insoluble aggregates

on the surface of producer cells. These aggregates can drive contact-dependent killing of other

organisms, or Caulobacter cells not producing the CdzI immunity protein. The Cdz system uses a

type I secretion system and is unrelated to previously described contact-dependent inhibition

systems. However, Cdz-like systems are found in many bacteria, suggesting that this form of

contact-dependent inhibition is common.

DOI: 10.7554/eLife.24869.001

Introduction
To survive within complex microbial communities such as those found in the guts of animals or in

soil, bacteria have evolved, and now rely on, a sophisticated array of strategies that allow them to

compete for a limited set of resources. This constant battle for space and nutrients often involves

the secretion of diffusible antimicrobials, including small-molecule antibiotics and bacteriocins. The

secretion of these toxic compounds typically provides a fitness advantage to the producing cell by

inhibiting the growth of competing cells and, in some cases, by lysing these competitors to liberate

nutrients (Cornforth and Foster, 2013; Hibbing et al., 2010). The production of many antimicro-

bials is induced by stress signals triggered by crowding or the low availability of specific nutrients

(Rebuffat, 2011).

Bacteriocins are ribosomally-synthesized proteinaceous toxins that are also sometimes post-trans-

lationally modified (Cotter et al., 2013; James et al., 1992; Nissen-Meyer et al., 2011; Riley and

Wertz, 2002). Most small bacteriocins are secreted into the environment through a type I secretion

system (De Kwaadsteniet et al., 2006; Rebuffat, 2011). Bacteriocins can be encoded on plasmids

or in chromosomal gene clusters that generally contain all of the genes necessary for their synthesis,

modification, and secretion, along with an immunity gene that protects the producer cell from self-

intoxication. The inhibitory activity of bacteriocins can be broad- or narrow-spectrum, often deter-

mined by the nature of their cellular targets or the receptor proteins on target cells that mediate

uptake. Diverse cellular targets have been described for bacteriocins. However, many insert into the

membranes of target cells, either alone or by associating with integral membrane proteins,
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producing pores that alter cytosolic membrane permeability, causing the leakage of cellular con-

tents, loss of membrane potential, and eventual cell death (Cotter et al., 2013; Rebuffat, 2011;

Vassiliadis et al., 2011).

Producing diffusible, secreted bacteriocins may not be an efficient competitive strategy for many

bacteria, particularly in certain growth conditions. For instance, Caulobacter crescentus is an a-pro-

teobacterium that thrives in nutrient-poor aquatic conditions (Poindexter, 1981) where a secreted

bacteriocin would be quickly washed away or diluted, making it ineffective in killing neighboring cells

(Aguirre-von-Wobeser et al., 2015). Additionally, the production of a secreted toxin, or any ‘public

good’, also renders a population of cells sensitive to the proliferation of so-called cheaters that do

not pay the energetic cost of producing the toxin, but benefit from its production by others

(Riley and Gordon, 1999; Travisano and Velicer, 2004). To circumvent these limitations of secreted

toxins, some bacteria have evolved killing systems that require direct contact between a producer

and a target cell. This includes the contact-dependent growth inhibition systems found in many

Gram-negative pathogens in which a CdiA toxin is anchored to the outer membrane via a type V

secretion mechanism, and then delivered directly to a target cell (Aoki et al., 2005, 2010). Similarly,

type VI and VII secretion systems are often used to deliver toxins to direct neighbors (Cao et al.,

2016; Hood et al., 2010; Russell et al., 2014). Homologs of these proximity- or contact-dependent

inhibition systems are absent from the C. crescentus genome (Marks et al., 2010). In fact, aside

from an ability to adhere together and form biofilms, no social behavior or cell-cell interaction sys-

tem such as quorum-sensing has been previously described for Caulobacter.

Here, we describe a novel, atypical bacteriocin system in C. crescentus, now called the contact-

dependent inhibition by glycine zipper proteins (Cdz) system, that enables producing cells to kill

other cells in a contact-dependent manner. The Cdz system bears some genetic similarity to the

small unmodified two-peptide bacteriocins (class IIb) from Gram-positive bacteria. However, in sur-

prising contrast, the C. crescentus Cdz system yields no inhibitory activity in culture supernatant and

the two small proteins CdzC and CdzD are only found at very low concentrations in the supernatant.

Instead, the CdzC/D proteins remain almost exclusively cell-associated, with the CdzC protein form-

ing large heat- and SDS-stable aggregates via a glycine-zipper repeat structure often seen in amy-

loid proteins. Together, the surface-associated proteins CdzC and CdzD enable producer cells to kill

neighboring cells through direct contact. The Cdz system is massively induced upon entry to station-

ary phase and drives a nearly complete killing of any neighboring cells lacking the CdzI immunity

protein. A computational search identified homologous, but as yet uncharacterized, systems in a

range of species, including several clinically relevant pathogens. Our results suggest that contact-

dependent inhibition may be more widespread than previously appreciated and has arisen through

the modification of systems traditionally thought to produce diffusible toxins.

Results

A C. crescentus bacteriocin gene cluster is induced in stationary phase
We hypothesized that, if they exist, Caulobacter genes involved in intercellular competition would

be upregulated as cells enter stationary phase when cell density increases and nutrients become

scarce. Thus, we used RNA-Seq to compare global patterns of gene expression in a culture of wild-

type Caulobacter crescentus (CB15N) grown to mid-exponential and early stationary phase

(Figure 1A). One cluster of genes (CC0681-CC0684 in CB15; CCNA_03931-CCNA_00720 in CB15N)

was very highly upregulated, with two of the genes, CCNA_03932 and CCNA_03933, increasing

nearly 50-fold in stationary phase relative to exponential phase, reaching levels higher than all other

genes in stationary phase.

Careful inspection of this region of the genome revealed five open reading frames in two diver-

gently transcribed operons (Figure 1B). We named these genes cdzABCD and cdzI for contact-

dependent inhibition by glycine zipper proteins based on results below. The genes cdzA and cdzB

are homologous to canonical type I secretion systems. The genes cdzC and cdzD are predicted to

encode small (86 and 84 amino acids, respectively) proteins with weak similarity to bacteriocins

(using the Gene Function Identification Tool in KEGG) and N-terminal regions resembling the signal

peptides of secreted RTX proteins (Kanonenberg et al., 2013). These analyses suggested that cdzC

and cdzD may represent a previously uncharacterized two-protein bacteriocin. The cdzI gene had no
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Figure 1. The cdz gene cluster is very highly expressed in stationary phase. (A) Genome-wide RNA-seq profiles of C. crescentus CB15N grown in rich

medium to exponential (top) or stationary (bottom) phase. Expression levels (RPM) for both strands combined are plotted as a function of genomic

position. A schematic of the cdz cluster is shown beneath the RNA-seq profiles. (B) RNA-seq profile of the cdz gene cluster in stationary phase. Each

strand is shown separately. (C) Activity of a cdzC transcriptional reporter (YFP) as a function of culture density (for the corresponding growth curve, see

Figure 1—figure supplement 1). Induction is reported relative to the level when OD600 = 0.025. Data points are mean of three independent cultures;

error bars indicate standard deviation (S.D.). (D) Western blot analysis of epitope-tagged CdzC, CdzD, and CdzI in the cell pellets of supernatant taken

from cultures at the OD600 values indicated. RpoA is a loading control.

DOI: 10.7554/eLife.24869.002

The following figure supplement is available for figure 1:

Figure supplement 1. Growth curve for cells expressing a PcdzC-YFP reporter; see Fig.

DOI: 10.7554/eLife.24869.003
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obvious sequence homologs, but was predicted by TM-HMM to harbor three transmembrane

domains, and could represent an immunity gene that prevents self-intoxication by the bacteriocins

(see below).

To confirm induction of the cdz genes upon entry to stationary phase, we generated a reporter

construct in which the predicted promoter region of cdzC was fused to YFP. Cells were grown in a

rich medium from early exponential phase (OD600 ~ 0.05) into stationary phase (OD600 ~ 1.2) (Fig-

ure 1—figure supplement 1). YFP levels increased dramatically as cells exited exponential phase,

exhibiting ~10 fold induction once the culture reached an OD600 of 1.0 and ~30 fold after reaching

an OD600 of 1.2 (Figure 1C). Expression of the cdz genes may also be regulated by post-transcrip-

tional mechanisms as we noted in our RNA-Seq data that an antisense RNA overlapping the 3’ end

of the cdzCDI operon was expressed during exponential phase, but significantly less so during sta-

tionary phase.

To further examine cdz induction, we generated strains in which CdzC or CdzD harbored an epi-

tope tag, HA or V5, respectively, immediately following the putative secretion signal; CdzI was

tagged with HA at the N-terminus. Western blots of cell extracts indicated that none of these pro-

teins (CdzC, CdzD, or CdzI) were detectable in cultures grown to an OD600 of 0.1 or 0.6, but each

was easily detected once cells reached an OD600 of ~1.0 (Figure 1D), confirming their stationary

phase-dependent induction. Surprisingly, the epitope-tagged CdzC and CdzD were detected only in

cell pellets, not the cell-free supernatants, suggesting that they are not conventional, secreted bac-

teriocins and instead remain cell-associated, a possibility explored further below.

Cells harboring the cdz gene cluster can kill cells lacking it
We hypothesized that CdzC and CdzD form a two-peptide toxin that is secreted via the type I secre-

tion system CdzAB, with CdzI providing immunity against CdzC/D. To test this model and to geneti-

cally dissect the cdz system, we built an ’indicator’ strain in which cdzABCDI was deleted. We then

mixed this DcdzABCDI indicator with a ’producer’, the wild-type C. crescentus, at a ratio of 1:1 and

co-cultured the strains from early exponential phase into stationary phase. To quantify the presence

of each strain, we inserted a gentamicin-resistance cassette into the wild-type producer and a tetra-

cycline resistance cassette into the DcdzABCDI indicator; the colony-forming units of each strain

were then assessed at various time points during co-culturing (Figure 2A).

The indicator and producer strains maintained a ratio of ~1:1 throughout exponential phase, up

to a cell density of ~3 � 109 cells/mL (OD600 ~0.9), at which point the DcdzABCDI strain began to

lose viability, dropping nearly four orders of magnitude within ~7 hr. A similar result was obtained

for strains in which the antibiotic resistance cassettes were swapped (Figure 2—figure supplement

1A). As a control, we verified that the DcdzABCDI indicator strain maintained viability and a 1:1 ratio

when co-cultured with another DcdzABCDI strain harboring a different antibiotic resistance marker

(Figure 2—figure supplement 1B). Similarly, two wild-type producer strains with different antibiotic

resistance markers were maintained at a ratio of ~1:1, even in stationary phase (Figure 2—figure

supplement 1C). Finally, we found that a DcdzCDI indicator strain, grown separately and only to

exponential phase, was still killed when mixed 1:1 with a producer strain that had been grown sepa-

rately to stationary phase (Figure 2—figure supplement 1D), indicating that the producer gains the

ability to kill in stationary phase and susceptible cells need not be in stationary phase.

CdzC, CdzD, and a type I secretion system are required for killing
To further dissect the requirements for Cdz-based killing we generated a series of producer strains

and competed each against a DcdzABCDI indicator, mixing cultures at a 1:1 ratio upon entry to sta-

tionary phase (Figure 2B). The competitive index was then calculated as the ratio of indicator to pro-

ducer at the final time point relative to the same ratio at the initial time point. Producer strains

lacking cdzC, cdzD, cdzCD, or cdzCDI each failed to kill the indicator (Figure 2C), with competitive

indices of ~1 for the indicator in each case, as also seen for a producer lacking the entire cdz cluster.

For the DcdzC and DcdzD producers, full killing activity was restored when a copy of cdzC or cdzD,

respectively, was provided on a plasmid (Figure 2—figure supplement 1E). Similarly, only a con-

struct harboring both cdzC and cdzD complemented a DcdzCD strain (Figure 2D). Together, these

results indicate that both bacteriocin-like proteins, CdzC and CdzD, are required for killing.
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Figure 2. The cdz gene cluster encodes a two-peptide bacteriocin, secreted via a type I secretion system, and a small transmembrane immunity

protein. (A) Co-culture competition of wild-type C. crescentus and DcdzABCDI in rich medium. Strains were mixed 1:1 in exponential phase and co-
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Figure 2 continued on next page
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The putative secretion system formed by CdzA and CdzB was also required for a producer strain

to kill a DcdzABCDI indicator (Figure 2C–D). Canonical type I secretion systems comprise an ATP-

binding cassette that resides in the inner membrane (CdzA), an adaptor protein in the periplasm

(CdzB), and a TolC-like outer membrane protein (Kanonenberg et al., 2013). As a homolog of the

latter is absent from the cdz cluster, we suspect killing also requires one of the two TolC homologs

in the C. crescentus genome that likely associate with many different type I secretion systems.

Bacteriocin gene clusters often contain genes involved in post-translational modification of the

toxic protein precursors (James et al., 1992; Nissen-Meyer et al., 2011). To more precisely define

the bounds of the cdz genomic cluster, we made larger deletions, spanning upstream genes of

unknown function, including a predicted membrane-associated CaaX motif protease, often present

in bacteriocin clusters. However, the killing activity of strains carrying these larger deletions could be

fully complemented by introducing only cdzABCDI on a plasmid (Figure 2—figure supplement 1F)

indicating that (i) the neighboring genes are not part of the cdz system and (ii) CdzC and CdzD are

likely not post-translationally modified, although we cannot fully rule out the possibility of modifica-

tion by genes encoded elsewhere in the Caulobacter genome.

Immunity to cdz is conferred by the small transmembrane protein CdzI
To identify the putative immunity gene, which would protect a producer strain from self-intoxication,

we made several indicator strains with deletions spanning different regions of cdz and tested each

for inhibition by a wild-type producer (Figure 2E). Our results indicated that cdzI was necessary for

immunity, because any deletion including this gene led to killing by the producer, whereas the other

cdz genes were dispensable for immunity. We could not generate a strain lacking only cdzI as this

gene is essential for viability, consistent with it providing immunity to CdzC-CdzD. We also tested a

DcdzABCDI strain producing only cdzI in trans (Figure 2F). Full resistance to a wild-type producer

was seen if cdzI was driven by its native promoter (the region upstream of cdzC), or if cdzI was

driven by a vanillate-inducible promoter on a high-copy vector with cells grown in the presence of

vanillate. Taken together, these results indicate that CdzI is critical for immunity to CdzC-CdzD.

CdzC and CdzD promote lysis of target cells
The co-culture competition experiments shown in Figure 2 are consistent with the Cdz gene cluster

encoding a system that can kill cells lacking the CdzI immunity protein. To more directly assess killing

by CdzC/D-producing strains and to gain insight into the mechanism(s) of killing, we used fluores-

cence microscopy to examine co-cultured cells. We engineered a wild-type producer strain to syn-

thesize CFP and a DcdzCDI indicator to synthesize YFP. These strains were then mixed at a 1:1 ratio

in early stationary phase and co-cultured. At various time points after mixing, we imaged the co-cul-

tured cells in both the YFP and CFP channels. We also stained cells at each time point with propi-

dium iodide (PI) to label in red cells with compromised membrane integrity that are likely dead.

After 20 hr of co-culturing, >95% of the DcdzCDI indicator cells were stained by PI and thus were

likely dead. In contrast, only ~10% of wild-type producer cells were stained by PI, a frequency com-

parable to that seen when CFP-labeled WT cells were competed against YFP-labeled WT cells

(Figure 3A–B). After 20 hr, nearly all PI-positive indicator cells still had a typical, crescent-shaped

morphology and were relatively dark in phase contrast. However, by 44 hr, 30% of PI-positive cells

were no longer homogeneously dark in phase contrast, and 13% had become round, a signature of

cell lysis. By 71 hr, 70% of the indicator population was comprised of round, PI-positive cells. These

results demonstrated that Cdz producers do, in fact, kill cells lacking CdzI, leading to a loss of mem-

brane integrity and, ultimately, cell death. We verified that expression of the fluorophores did not

Figure 2 continued

the competitive index of the indicator strain in each experiment. In each panel, data points represent the mean of at least three independent

experiments; error bars indicate S.D. Induction of the Pvan promoter by vanillate is indicated by ’+ van’.

DOI: 10.7554/eLife.24869.004

The following figure supplement is available for figure 2:

Figure supplement 1. Control experiments for the genetic dissection of the Cdzc system.

DOI: 10.7554/eLife.24869.005
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Figure 3 continued on next page
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affect the outcome of the competition by swapping CFP and YFP between producer and indicator

(Figure 3—figure supplement 1A). As a control, we also verified that a co-culture of two indicator

strains expressing different fluorophores did not lead to the same pervasive cell death (Figure 3B–

C).

As noted, we also competed two wild-type producer strains that synthesize different fluoro-

phores. We found that ~10–20% of cells from each population were PI-positive by ~20 hr, with some

round cells appearing by day three (Figure 3—figure supplement 1B). The percentage of PI-posi-

tive cells was consistently higher at each time point relative to the experiment competing two

DcdzCDI indicator strains. These results suggest that producer cells harboring CdzI may still be sub-

ject to occasional CdzC/D-mediated death, possibly due to variability in the timing or extent of CdzI

production in individual cells.

Cdz-based killing requires physical contact between producer and
indicator cells
Although similar in some ways to previously described two-peptide bacteriocins (Nissen-

Meyer et al., 2011), we suspected that CdzC/D were not secreted, diffusible proteins as both were

detected by Western blot analysis in cell pellets, rather than in the culture supernatant (Figure 1D).

Additionally, we found that the supernatant from a stationary phase culture of a producer strain did

not kill a DcdzABCDI indicator strain (Figure 4A). We also tried concentrating the supernatant from

a culture of producer cells using trichloroacetic acid (TCA) or ammonimum sulfate precipitation, or

by using a centrifugal filter, but did not see any killing (Figure 4A), even though CdzC could now be

detected in the concentrated supernatant (Figure 4—figure supplement 1A). These results, along

with our initial immunoblots (Figure 1D), strongly suggested that CdzC and CdzD typically remain

cell associated and may mediate contact- or proximity-dependent killing.

To directly assess whether CdzC/D-based killing requires cell-to-cell contact, we co-cultured

strains using a split-well arrangement in which producer and indicator strains are separated by a

porous membrane (Figure 4B). In this setup, any molecules secreted into the growth medium by the

producer should be able to target the indicator, unless they form structures larger than the pore size

or adhere to the membrane. Strikingly, killing of the indicator occurred when the membrane pores

were 8 mm in diameter and able to allow the passage of whole cells, but not when the pores were

0.4 mm, which restricts the exchange of cells.

Our split-well experiments strongly suggested that CdzC/D-based killing requires direct cell con-

tact. On their own, these experiments do not rule out the possibility that the toxins form large

aggregates that are released from cells, but that cannot pass through the 0.4 mm filters used. How-

ever, neither CdzC nor CdzD was detected in culture supernatant (Figure 1D) and culture superna-

tant exhibited no killing activity, even if concentrated 2000X (Figure 4A). The preparation of such

cell-free supernatants required the centrifugation and pelleting of cells, which could, in principle,

also have pelleted large aggregates of toxins that had been released from cells to mediate non-con-

tact-dependent killing. To rule out this possibility, we first killed stationary phase producer cells by

boiling for 5 min before adding them, without a centrifugation step, to indicator cells. If large toxin

aggregates were present in the supernatant, the indicator should still be killed, but it was not

(Figure 4A). Similarly, we pre-treated stationary phase gentamicin-sensitive producer cells with gen-

tamicin for 4 hr before adding them to gentamicin-resistant indicator cells, again without centrifuga-

tion. As with boiled producer cells, no killing was observed. Taken all together, these results support

the conclusion that CdzC/D mediate contact-dependent killing.

Figure 3 continued

in yellow in the merged image (bottom). (B) Quantification of dead, propidium iodide-stained cells. At least 250 cells in three separate fields of view

were counted for each time point of each competition; results were averaged, with error bars indicating S.D. (C) Same as panel A but for a co-culture

competition of two indicator strains, synthesizing CFP or YFP.

DOI: 10.7554/eLife.24869.006

The following figure supplement is available for figure 3:

Figure supplement 1. Control experiments for the microscopy-based analysis of Cdz-dependent killing.

DOI: 10.7554/eLife.24869.007
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Figure 4. Cdz-mediated killing requires cell-cell contact between a producer and an indicator. (A) Survival of a

DcdzABCDI indicator when treated for 16 hr with live producer cells, producer culture supernatant, producer

culture supernatant concentrated 2000X by trichloroacetic acid precipitation, producer culture supernatant

concentrated 20X by centrifugation, producer cells that were boiled for 5 min, or producer cells treated with

gentamicin. (B) Competitive index of DcdzABCDI indicator grown in co-culture with a wild-type producer or

DcdzABCDI mock-producer using the split-well set-up shown (left). The membrane separating the two

compartments had a pore size of 8 or 0.4 mm, as indicated. (C) Flow cytometry analysis of a 1:1 mixture in

stationary phase of wt producer cells expressing Venus and DcdzABCDI indicator cells expressing TdTomato.

DOI: 10.7554/eLife.24869.008

Figure 4 continued on next page
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In some contact-dependent systems, like that mediated by type VI secretion systems, killing

occurs primarily on solid substrates, not in culture (Russell et al., 2014b). However, the Cdz system

appeared to drive cell contact-dependent killing even in culture, implying that cells must adhere

together at some frequency. The C. crescentus strains we used were derived from the strain CB15N,

which lacks the adhesive holdfast present in some Caulobacter isolates. To test whether the strains

we used form stable cell-cell associations, we used a flow cytometry-based assay previously devel-

oped for studying contact-dependent inhibition in E. coli (Ruhe et al., 2015). In brief, stationary

phase producer cells producing TdTomato and indicator cells producing Venus were mixed at a 1:1

ratio, and fluorescence measured by flow cytometry (Figure 4C). There were three types of events

detected by the flow cytometer: TdTomato+/Venus-, TdTomato�/Venus+, and TdTomato+/Venus+.

The latter, detected at a frequency of ~12% in the mixed population, likely represent cases in which

at least one producer and at least one indicator cell are closely associated during passage through

the flow cytometer. The frequency of such associated cells was not significantly different when exam-

ining mixtures of (i) two producers, (ii) an indicator and a producer, or (iii) two indicators (Figure 4—

figure supplement 1B) suggesting that cell-cell contact is not mediated by the cdz genes them-

selves but rather by other genes that the cdz system effectively uses to promote killing. Cell-cell

attachments were also seen at comparable frequencies in exponential phase cultures (Figure 4—fig-

ure supplement 1C), indicating that whatever mediates attachment is not specifically expressed in

stationary phase and so likely does not contribute to stationary phase-specific killing by the Cdz sys-

tem (Figure 2A).

CdzC and CdzD localize to the outer membrane of producer cells
Our results suggested that CdzC and CdzD are cell associated and mediate contact-dependent kill-

ing. To further characterize the subcellular localization of CdzC and CdzD, we performed cell frac-

tionation experiments on cells producing epitope-tagged variants of CdzC, CdzD, and CdzI

(Figures 1D and 5A–D). Epitope-tagged CdzC and CdzD were fully functional with respect to killing

(Figure 5—figure supplement 1A), while epitope-tagged CdzI was partially functional as an immu-

nity gene (Figure 5—figure supplement 1B). As controls for the fractionation procedure, we verified

by immunoblotting that RpoA, a subunit of RNA polymerase, was found predominantly in the cyto-

plasmic fraction; the chemoreceptor McpA was found in the total membrane and inner membrane

fractions; and RsaFa, a protein involved in S-layer production, was found primarily in the total mem-

brane and outer membrane fractions.

For HA-CdzC, there were two bands in the total membrane fraction (Figure 5A, S4C). One was

estimated to be ~10 kDa, and likely corresponds to the unprocessed form of CdzC that includes the

secretion signal peptide, while the other band likely represents the cleaved, processed form. Consis-

tent with this interpretation, the full-length form was also seen in the inner membrane fraction, but

not the outer membrane fraction, whereas the smaller form had the opposite pattern, appearing

predominantly in the outer membrane fraction. Additionally, we noticed that a substantial amount of

CdzC was also present in the stacking gel of the total and outer membrane fractions, suggesting

that it forms larger aggregates that cannot enter the running gel. The presence of these aggregates

did not depend on CdzD as they were still present in a DcdzD strain (Figure 5—figure supplement

1D). They were, however, dependent on the CdzAB secretion system. In a DcdzAB strain, CdzC was

found in the cytosolic, total membrane, and inner membrane fractions but not the outer membrane,

and no high molecular weight aggregates were seen in the total membrane fraction (Figure 5—fig-

ure supplement 1D). Additionally, in the DcdzAB strain, only the full-length form was detected.

We confirmed our results for HA-CdzC using a second fractionation method in which cell extracts

were run through a sucrose gradient (Figure 5B). Immunoblots of CdzC, along with control blots for

McpA and RsaFa, confirmed that CdzC is found in the cell membranes, with the strongest signal

seen for fractions corresponding to the outer membrane. Again, strong signal for CdzC was also

Figure 4 continued

The following figure supplement is available for figure 4:

Figure supplement 1. Control experiments for the analysis of contact-dependent inhibition.

DOI: 10.7554/eLife.24869.009
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seen in the stacking gel indicating that CdzC forms large aggregates. Density-based fractionation

methods can be misleading as insoluble cytosolic aggregates such as inclusion bodies will migrate

with the heaviest fractions, often overlapping with the outer membrane fractions. We ruled out this

possibility for CdzC by performing another fractionation experiment with a different range of

sucrose concentrations such that outer membrane proteins would separate from the heaviest frac-

tions (Figure 5—figure supplement 1E). In this experiment, CdzC was still seen in fractions corre-

sponding to the outer membrane, as judged by the location of the control protein RsaF.

Using non-denaturing conditions and native gels, we found that nearly all of the CdzC in outer

membranes remained in the stacking gel (Figure 5E), suggesting that CdzC mainly forms large
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Figure 5. CdzC and CdzD localize to the outer membranes of cells, while CdzI is an inner membrane protein. (A)

Western blots of the indicated cell fractions from a culture of cells producing HA-tagged CdzC and grown to

stationary phase. RpoA, McpA, and RsaFa serve as controls for cytoplasmic, inner membrane, and outer

membrane fractions, respectively. For HA-CdzC, the stacking gel and relevant portion of the running gel are

shown. The approximate size of CdzC bands were estimated from a molecular weight ladder run in a non-adjacent

lane on the same gel, and confirmed on 16.5% Tris-tricine gels (Figure 5—figure supplement 1C). (B) Western

blot of the indicated fractions from a sucrose gradient (25–60% w/v) based separation of the membrane fractions

from a stationary phase culture expressing HA-tagged CdzC. An approximate molecular weight ladder is shown.

RsaFa/b and McpA serve as controls for the outer and inner membranes, respectively. (C–D) Same as panel A but

for a strain producing (C) V5-CdzD or (D) HA-CdzI. (E) Western blot for HA-CdzC in Triton X-100 based cell

fractionation as in panel A, but using native gels instead of SDS-PAGE. (F) Same as panel B, but with outer

membrane fractions pooled and either treated or not with formic acid.

DOI: 10.7554/eLife.24869.010

The following figure supplement is available for figure 5:

Figure supplement 1. Epitope-tagging of CdzC and CdzD does not affect their toxicity.

DOI: 10.7554/eLife.24869.011
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aggregates. These high molecular weight (>220 kDa) aggregates of CdzC were also present in dena-

turing gels and accounted for much of the CdzC (Figure 5A–B), even though those samples had

been resuspended in 2% SDS and 100 mM ß-mercaptoethanol, and then boiled for 30 min. In fact,

we could only solubilize these CdzC aggregates by lyophilization and the harsh addition of 90% for-

mic acid (Figure 5F). Taken together, our fractionation studies indicate that CdzC predominantly

forms large, insoluble aggregates in the outer membrane compartment of Cdz-producing cells.

We also examined the localization of CdzD and CdzI. Immunoblots for CdzD revealed a similar

pattern as for CdzC, with both the unprocessed and mature form present in the total membrane

fraction; the mature form was also abundant in the outer membrane fraction (Figure 5C). Like CdzC,

there were also high molecular weight aggregates of CdzD in the membrane fractions. However,

these aggregates were relatively faint in the outer membrane fraction, suggesting that they had

been solubilized during the fractionation procedure. CdzI, the immunity protein, was found in the

total membrane fraction, but in contrast to CdzC and CdzD, was primarily in the inner membrane

fraction (Figure 5D), similar to the immunity proteins of many pore-forming bacteriocin systems

(Cascales et al., 2007; Lagos et al., 1999) and those associated with some membrane-targeting

contact-dependent inhibition systems secreted via type V and type VI systems (Ruhe et al., 2013;

Russell et al., 2014b).

CdzC forms large aggregates on the surface of producer cells
To assess whether CdzC forms extracellularly-exposed aggregates on the surface of intact cells, we

used immunogold labeling and transmission electron microscopy on cells producing epitope-tagged

CdzC. Signal from the gold-coupled antibodies was clearly associated with the surface of the cells,

usually within a larger matrix of extracellular material that was likely exopolysaccharide (Figure 6—

figure supplement 1A). Importantly, the immunogold signal was absent in exponential phase pro-

ducer cells (Figure 6—figure supplement 1B) when CdzC is not produced at high levels and Cdz-

producers cannot kill other cells.

To better visualize CdzC on the surface of cells, we also imaged producer strains lacking manB, a

gene required for exopolysaccharide production (Gandham et al., 2012), and rsaA, which encodes

the proteinaceous S-layer capsule (Ford et al., 2007). This strain was still competent for killing in a

contact-dependent manner (Figure 6—figure supplement 1C). In this strain, CdzC was more clearly

seen within aggregates and fibrils, ranging from 50–250 nm in diameter, that emanated from the

cell surface (Figure 6A). Label was also seen directly on the surface of cells embedded in methylcel-

lulose before imaging (Figure 6—figure supplement 1D). No gold signal was seen on the surface of

cells lacking cdzAB (Figure 6B), consistent with these genes being required for secretion of CdzC.

However, fibrils emanating from the cell were still present in the DcdzAB strain, suggesting that

CdzC associates with these fibrils, but is not their only constituent. Taken together, our cell fraction-

ation experiments and immunogold electron microscopy images support the conclusion that CdzC,

and CdzD, localize to the surface of stationary phase cells where they mediate contact-dependent

cell killing. We also confirmed localization of CdzC to the cell surface using immunofluorescence

microscopy of unpermeabilized cells. Strong signal was seen for a producer strain expressing HA-

CdzC, but not for an isogenic DcdzAB strain lacking the type I secretion system (Figure 6—figure

supplement 2).

To better understand the aggregation propensity of CdzC, we examined the primary sequence of

it and CdzD (Figure 7A). One obvious and striking feature was the abundance of glycines and small

hydrophobic residues (A, V, I), which together constitute 75% of all residues in the predicted mature

form of each protein. A span of 24 and 25 amino acids in CdzC and CdzD, respectively, was pre-

dicted to have high aggregation propensity (see Materials and methods). These regions of CdzC

and CdzD harbor extended GxxxGxxxG motifs, or ‘glycine zippers’. GxxxG motifs are found in many

class IIb bacteriocins that are thought to be secreted from cells, forming transmembrane helices in

target cells (Nissen-Meyer et al., 2011). Glycine zippers are also found in some transmembrane pro-

teins (Kim et al., 2005) and they are also thought to drive the oligomerization of certain prions and

amyloid-forming proteins, such as the Aß amyloid peptide in Alzheimer’s disease (Decock et al.,

2016; Fonte et al., 2011) and the human prion protein PrP (Kim et al., 2005). In other proteins with

glycine zipper motifs, the x in GxxxG can be any residue, with an enrichment for hydrophobic resi-

dues (Senes et al., 2000). In the case of CdzC and CdzD they were exclusively small hydrophobic

residues. These sequence characteristics are consistent with the aggregation propensity noted for
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Figure 6. CdzC aggregates on the surface of producer cells. Immunogold labelling and transmission electron microscopy of the stationary phase

producer cells indicated, each expressing an epitope-tagged CdzC. Middle and right images on each row are zoomed in regions noted on the lower

magnification images on the left. Red arrows point at examples of gold particle label. Stationary phase cells of (A) a DmanB DrsaA producer strain and

(B) a DcdzAB DmanB DrsaA strain.

DOI: 10.7554/eLife.24869.012

Figure 6 continued on next page
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CdzC, and also suggest that CdzC, and perhaps CdzD, insert into, and disrupt the integrity of, the

membranes of target cells (Figure 3).

Cdz can drive interspecies killing and Cdz-like systems are widespread
in bacteria
To determine if Cdz can inhibit other species, we carried out competitions of C. crescentus pro-

ducers against three members of the Caulobacteraceae family: Caulobacter segnis, Brevundimonas

subvibrioides sp. Poindexter, and Asticcacaulis exentricus (Abraham et al., 2014). We also tested

the ability of C. crescentus to inhibit three more distantly related members of the a-proteobacteria

and Escherichia coli (Figure 7—figure supplement 1), none of which encode a homolog of the CdzI

immunity protein. C. segnis was killed by a wild-type C. crescentus producer, but not by a Dcdz

strain. The inhibitory effect, however, was ~3 orders of magnitude weaker than that observed with a

DcdzABCDI C. crescentus indicator competed against the same producer. B. subvibrioides was also

killed by a wild-type C. crescentus producer, but not by a Dcdz strain. In contrast, A. excentricus was

not inhibited by C. crescentus, and neither were the a-proteobacteria Rhodobacter sphaeroides,

Sinorhizobium meliloti and Agrobacterium tumefaciens. Similarly, the g-proteobacterium E. coli was

not killed by C. crescentus. The Cdz-resistant species that do not encode an obvious CdzI ortholog

may avoid killing because they lack a receptor or membrane composition required for the CdzC/D

bacteriocin to act, or because they somehow avoid the cell-cell contact required for CdzC/D to kill.

We hypothesized the Cdz-like contact-dependent killing system is not unique to Caulobacter.

However, BLAST searches using CdzC and CdzD as query sequences did not identify any hits, so we

screened for potential Cdz-like systems in bacterial genomes using an algorithm based on gene clus-

ter architecture and hidden Markov models (HMM) of the toxin sequences. In brief, we constructed

a database of chromosomal regions that included type I secretion systems homologous to CdzAB.

We then evaluated all possible small proteins within ~10 kb of the secretion system for similarity to

CdzC and CdzD, using an HMM profile built from a multiple sequence alignment of CdzC, CdzD,

and two Cdz-like proteins identified manually in Bacillus sp. YP1 and Xylella fastidiosa 9a5c

(Figure 7A). The best three hits for CdzC/D-like proteins were added to the sequence alignment,

which was then used as the seed to conduct an iterative search of UniProtKB using jackhmmer

(Eddy, 2011). Two iterations produced a multiple sequence alignment of 239 unique hits, each

exhibiting several of the key features of CdzC and CdzD: (i) 60–151 residues long, (ii) a predicted

secretion leader peptide ending in G[G/A/S], (iii) one or two glycine-zipper motifs flanked, but not

interrupted, by a proline or charged residue, and (iv) a short, charged or polar C-terminal region.

Further iterations of this analysis began to identify proteins annotated as type IIb bacteriocins, so

their results were not taken into consideration.

The phylogenetic distribution of the candidate Cdz-like systems identified (Figure 7B,

Supplementary file 1) suggested that this type of contact-dependent inhibition system is wide-

spread in bacteria, particularly in g-proteobacteria. Notably, we identified several potential Cdz-like

systems in clinical isolates of human pathogens such as Klebsiella pneumoniae, Pseudomonas aerugi-

nosa, Serratia marcescens, and Burkholderia cepacia. Some plant pathogens of important agricul-

tural crops also carry Cdz-like clusters, including Xylella fastidiosa and Erwinia sp.

Unlike in Caulobacter crescentus, most of these putative contact-dependent systems were pre-

dicted to encode a single Cdz-like toxin protein, with 14% having two adjacent proteins as in Caulo-

bacter, and 5% encoding three potential toxins. The identification of immunity proteins was more

difficult than the CdzC and CdzD-like proteins, although small, predicted transmembrane proteins

were sometimes encoded near the Cdz-like systems identified bioinformatically. Many of the Cdz-

like systems identified were likely to have been horizontally acquired as they were often flanked by

Figure 6 continued

The following figure supplements are available for figure 6:

Figure supplement 1. CdzC aggregates on the surface of wild-type producer cells.

DOI: 10.7554/eLife.24869.013

Figure supplement 2. Immunofluorescence of the producer cells indicated, each expressing an epitope-tagged CdzC.

DOI: 10.7554/eLife.24869.014

Garcı́a-Bayona et al. eLife 2017;6:e24869. DOI: 10.7554/eLife.24869 14 of 26

Research article Microbiology and Infectious Disease

http://dx.doi.org/10.7554/eLife.24869.013
http://dx.doi.org/10.7554/eLife.24869.014
http://dx.doi.org/10.7554/eLife.24869


L
M
V
F
I

R
K
E
M
Q
N
H

E
K
T
V
Q
R
N

L
I
M

T
S
A

L
V
F
I
D
M

E
A
T
N
F
K
Q

E
Q
D
K
N

I
L
V
M

D
E
N

T
E
N
K
Q
Y

V
I
M

S
E
A
K
Q
N

G
0.20

G
A

N
D
S
E
K
Q

L
E
G
M
K

V
S
G
A
T

E
R
S
K
G
Q
D
N

A
R
K
Y
Q

A
L
G

A
S
D
N
E
K
Q
M

S
V
A
G

A
S
V
G

A
V
I
G
M

L
V
G
A
I

G
A

V
A
L
G
I
M

I
V
A
T
M

G
T
A
S

A
G
W

G
A
F

V
I
A
L
F
M

L
A
G
Y
V

G
WL

S
A
G
K
H

L
V
I
A
N
M

W
V
Y
G
I
F
M

G
K
A
V
Q

G
A
R

T
A
V

Q
A
R
K
E
N

S
A
N
G
I
K
Q

G
R
K
H
Q

A
G
D
E
N

A
K
N
E
G
Q

G
S
Y
M

G
WL

G
I
R
V

L
A
V
I
M

G
R
K

V
I
F
L
G
M

GA
L
T
V
I

M

I
L
V
M

GN
G
Q
E
K
D

A
V
G
T

V
A
GGA

I
V
L
M

V
A
I

W
A
Y
F
M

GV
T
A
G

I
V
L
A
M

V
L
M
A
I

GA
V

V
I
A
M

G
V
I
A
M

G
A

A
G
L

I
V
A
M

A
I
L
G
V

Y
G
AA

D
G
K
F

A
V
L
I
Y
M

L
A
V
I

M

G
E
D
K
Y
N
Q

E
Q
W
Y
K
N
H

E
K
S
A
Q
D
R
N

V
A
G
T

S
A
T
D
E
K
Q
N

V
Y
G
I
T
M

S
N
E
D
Q

leader peptide

CdzC

CdzD

X. fastidiosa

Bacillus sp.

Aß (25-42)

-MTALAMNVRELSFEEVDEVAGANM-RAASVGVGGVAGAGAGWHAGVAVAARGAMWGARVGAIGGVGGAVAGVVLGAAIALIAYDLAE----------------------

--------MKTLTLAEIDYVSGGSE-RGAMVSGAAVAGG-VGGANYARAAIHGASWGARIGAVGGVAGIVAGALVGAAAGGILAYALYEAVDGS----------------

--------MRELTLTEIDNVSGADLGSRLNAAIVGGVAAFFAGSIWGGTRGGDGGGILGVGTIGQGVGMVYGGIVGAVGGAIAGFVLDQSVTYSYTSGFMASLFNGTFAK

MNNLENKSFEVLSDNQLELVEGG--SGYGDGVAGGLTGGAILGGVVKGAQNGAKYGRLGG---------AWGVAAGVVVGGAIGGYLGYKGA------------------

-------------------------------------------DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA-------------------------

GxxxGxxxGxxxG

0

1

2

in
fo

rm
a
tio

n
 c

o
n
te

n
t

S
accharibacter sp. A

M
169

Anoxybacillus flavitherm
us W

K1

Xylella
 ta

iw
anensis

22  Pseudomonas aeruginosa

K.quasipneumoniae subsp.quasip.

1.
5.

3 .
p

s 
a

e
ot

n
a

P

R
h
e
in

h
e
im

e
ra

 m
e
so

p
h
ila

E
rw

in
ia

 sp
. L

e
a
f5

3

R
a
o
u
lte

lla
 p

la
n
tic

o
la

 A
T

C
C

 3
3
5
3
1

S
er

ra
tia

 p
ly
m

ut
hi

ca
  2

Klebsiella
 sp. O

BRC7

Klebsiella variicola  6

Serra
tia

 m
arc

esc
ens 

10

B
u
rk

h
o
ld

e
ri
a
 c

e
p
a
c
ia

Pragia fontium

B
u
rk

h
o
ld

e
ria

 u
b
o
n
e
n
s
is

 M
S

M
B

2
2

B
u
rk

h
o
ld

e
ri
a
 a

m
b
if
a
ri
a
 I
O

P
4
0
-1

0

bacteria symbiont BFo2 of F.occidentalis

3   Acinetobacter baumannii

Xenorhabdus bovienii str. feltiae Moldova

S
e
rr

a
tia

 u
re

ily
tic

a

Brenneria goodwinii

Leminorella grimontii ATCC 33999

A
noxybacillus gonensis

B
u
rkh

o
ld

e
ria

 sp
. M

S
H

R
3
9
9
9

Anoxybacillus gonensis

S
e
rr

a
tia

 s
p
. 
T

E
L

Tatum
ella m

orbirosei

C
aulobacter crescentus N

A
1000

B
u
rk

h
o
ld

e
ria

 s
p
. A

B
C

P
W

 111

i
4

U
A .

p
s 

air
e

dl
o

h
kr

u
B

Pseudomonas chlororaphis

Pseudomonas citronellolis

Enterobacter aerogenes  3

Bacillus sp. YP1

E
rw

in
ia

 m
a
llo

tiv
o
ra

Klebsiella oxytoca  7

C
ol

w
el

lia
 p

ie
zo

ph
ila

Pseudomonas sp. AAC

B
u
rk

h
o
ld

e
ria

 s
p
. lig

3
0

P
a
n
to

e
a
 a

n
th

o
p
h
ila

2
  R

a
o
u
lte

lla
 o

rn
ith

in
o
ly

tic
a

B
u
rk

h
o
ld

e
ria

 s
p
. A

9

B
u
rk

h
o
ld

e
ri
a
 p

y
rr

o
c
in

ia

11  X
ylella fa

stid
iosa

B
u
rk

h
o
ld

e
ri
a
 c

e
p
a
c
ia

 G
G

4

0
9

0
3

3
0

N
A

S
F

C 
.

p
s 

a
e

ot
n

a
P

P
a
n
to

e
a
 v

a
g
a
n
s
 C

9
-1

E
nterobacter cloacae

S
er

ra
tia

 s
p.

K.quasipneumoniae subsp.similip.

P
a
n
to

e
a
 s

p
. 
P

S
N

IH
2

S
e
rr

a
tia

 n
e
m

a
to

d
ip

h
ila

P
a
n
to

e
a
 a

g
g
lo

m
e
ra

n
s
 E

h
3
1
8

Tha
la

ss
ot

al
ea

 s
p.

 N
D
16

A

Escherichia coli ISC56
P

a
ra

b
u
rkh

o
ld

e
ria

 xe
n
o
vo

ra
n
s L

B
4
0
0

R
h
e
in

h
e
im

e
ra

 s
p
. 
K

L
1

P
se

ud
oa

lte
ro

m
on

as
 lu

te
ov

io
la

ce
a

Pseudomonas putida

A
lte

ro
m

on
as

 s
p.

 A
LT

19
9

3   K
osakonia radicincitans

C
o
xi

e
lla

ce
a
e
 b

a
ct

e
ri
u
m

 H
T

9
9

Fra
te

uria
 a

ura
ntia

 D
SM

 6
220

E
rw

in
ia

 typ
o
g
ra

p
h
i

Pseudomonas sp. M1

Citrobacter rodentium
 ICC168

Klebsiella pneumoniae 59

B
re

vu
n
d
im

o
n
a
s sp

. B
A

L
3

Klebsiella m
ichiganensis M

5al

/

/ /

/

/

/

/
/

γ-proteobacteria

β-proteobacteria

α-proteobacteria

Firmicutes

predicted one peptide toxin

predicted two peptide toxin

predicted three peptide toxin

A

B

Figure 7. Phylogenetic distribution of putative Cdz-like systems in bacteria. (A) Multiple sequence alignment used as the seed in an iterative

computational search for Cdz-like systems (see Materials and methods). The presumed leader peptide of each sequence is indicated. Amino acid

composition is represented with colors as follows: grey, hydrophobic; glycine, green; positively charged, red; negatively charged, blue. The location of

the conserved glycine zipper region is indicated below the alignment. The Ab peptide, which also contains a glycine zipper, is shown for comparison.

The sequence logo generated from all 239 Cdz-like proteins identified is shown at the bottom. (B) Phylogenetic distribution of Cdz-like systems

identified in UniProtKB. Each branch corresponds to a unique sequence. Numbers at the tips of collapsed branches indicate the number of strains for a

given species harboring a Cdz-like system. Orange branches correspond to the Enterobacteriaceae. Predicted number of Cdz-like proteins is indicated

based on the legend at the bottom left.

DOI: 10.7554/eLife.24869.015

The following figure supplement is available for figure 7:

Figure supplement 1. Competitions between a wild-type or DcdzABCDI Caulobacter crescentus producer and the indicator species shown: Dcdz

Caulobacter crescentus, Caulobacter segnis, Brevundimonas subvibrioides, Asticcacaulis excentricus, Rhodobacter sphaeroides, Sinorhizobium meliloti,

Agrobacterium tumefaciens, or E. coli.

DOI: 10.7554/eLife.24869.016
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transposase genes, and most were present in only some isolates of a given species. Interestingly,

many of the genomic regions identified, though not the cdz cluster in C. crescentus, also include

genes involved in cell-cell adhesion such as thin aggregative fimbriae (Tafi), which could facilitate

contact-dependent delivery of the toxins.

Discussion

A novel contact-dependent killing system
Our results suggest that the Cdz system in C. crescentus represents a new type of two-peptide bac-

teriocin that differs substantially from the previously described, canonical systems involving secreted,

diffusible toxins. The small proteins CdzC and CdzD, which are both required for killing (Figure 2),

were found almost exclusively in cell pellets, not cell-free supernatants. Our cell fractionation experi-

ments indicated that CdzC and CdzD were located primarily in the outer membrane of cells, with

CdzC forming large aggregates visible by electron microscopy on the surface of cells. Consistent

with CdzC and CdzD remaining cell-associated, we found that these proteins only promoted the kill-

ing of other cells through direct physical contact; in a split-well set-up where indicator and producer

cells shared the same growth medium but could not directly interact, no killing was observed

(Figure 4B).

There have been other reports of possible, cell-associated bacteriocins (Banerjee et al., 2013;

Barbour and Philip, 2014; Burmølle et al., 2006; Daba et al., 1994; Dang and Lovell, 2016;

Tahara and Kanatani, 1997; Yang et al., 1992), but these prior cases are unlikely to represent con-

tact-dependent killing systems. In most of these cases, significant killing activity was also found in

cell-free supernatants and the bacteriocins were typically easily detected in supernatants, suggesting

they are primarily secreted into the environment and not exclusively cell-associated as with CdzC

and CdzD. Additionally, to the best of our knowledge, there has not been a direct demonstration

that these previously described bacteriocins localize to the outer membranes of producing cells, or a

test of whether their activity requires, or is enhanced by, cell-cell contact.

The Cdz system is very strongly upregulated upon entry to stationary phase and appears to be

active only during this stage of growth as an indicator strain could be maintained at a 1:1 ratio with

a producer strain throughout exponential phase, but was rapidly killed in stationary phase

(Figure 2A). These observations suggest that Caulobacter cells may produce and use the Cdz sys-

tem to kill neighboring cells as a means of scavenging for nutrients when they become scarce. The

Cdz system was capable of killing other Caulobacter cells lacking the CdzI immunity protein and at

least two other members of the Caulobacteraceae family, but not more distantly related a-proteo-

bacteria or the g-proteobacterium E. coli. A narrow spectrum of action is common for bacteriocins

and may enable targeting of the most similar competitors within a given niche (Riley, 2011). Produc-

ing a toxin that remains cell-associated may be critical to an aquatic, oligotrophic bacterium like

Caulobacter as a fully secreted, diffusible toxin would be quickly flushed away, providing no benefit

to a producer cell. We speculate that CdzC/D, and possibly all contact-dependent inhibition sys-

tems, represent a means of ensuring benefit to producer cells, preventing the futile release of poten-

tially costly toxins. Contact-dependent systems may also help avoid exploitation by ‘cheater’ cells in

a population that do not pay the cost of producing a toxin while benefitting from a secreted, public

good (McNally et al., 2017).

Mechanism of secretion and toxin delivery
To the best of our knowledge, the Cdz system is the first contact-dependent inhibition system

described involving a type I secretion system, as most rely on type V-based systems also known as

two-partner secretion systems, or on type VI secretion systems (Russell et al., 2014b; Willett et al.,

2015). The type V-based systems are found in the contact-dependent inhibition system first identi-

fied in uropathogenic E. coli and subsequently found quite broadly in other Gram-negative bacteria

(Anderson et al., 2012; Aoki et al., 2005, 2010). In that system, the CdiA and CdiB proteins use

the Sec complex for translocation across the inner membrane. CdiB is then inserted into the outer

membrane where it promotes the assembly of CdiA proteins on the cell surface, with subsequent

delivery of the C-terminal toxin domain of CdiA to target cells (Willett et al., 2015). CdiA also

seems to directly promote the cell-cell adhesion needed for contact-dependent inhibition. In the
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case of Cdz, cell-cell attachment is not mediated by genes encoded within the cdz gene cluster, as

both WT and DcdzABCDI strains showed similar frequencies of cell-cell adhesion by flow cytometry

(Figure 4, S3). Thus, Cdz toxin delivery likely takes advantage of an adhesion system encoded else-

where in the genome. Transmission electron microscopy with immunogold labeling indicated that

CdzC associates with fibrils on the surface of stationary phase cells. What genes encode these fibrils

and whether they mediate attachment remains to be determined. Also of note is that type I systems

usually partner with an outer membrane TolC-like channel to mediate the secretion of proteins into

the extracellular milieu (Kanonenberg et al., 2013). How the CdzA/B system manages to retain

CdzC/D in the outer membrane following secretion is not yet clear and will require future studies.

Mechanism of killing by CdzC and CdzD
Our fluorescence microscopy studies (Figure 3) suggest that CdzC/D kill cells lacking the immunity

protein CdzI by forming pores in the membrane of target cells, a common mechanism of action for

bacteriocins (Rebuffat, 2011). When killed, indicator cells became permeable to propidium iodide,

a strong indicator that inner membrane integrity had been compromised. These cells eventually lost

their characteristic rod-shape, suggesting a complete loss in cell envelope integrity. Consistent with

CdzC/D being a membrane pore-forming toxin, the immunity protein CdzI was found primarily in

the inner membrane, where it may directly antagonize CdzC/D function. Whether CdzC and CdzD

are transferred to a target cell or whether they kill while remaining associated with the producer cell

is not yet clear.

CdzC forms large aggregates that appear critical to its toxic activity. These aggregates are stable

against SDS and heat, dissolvable only through harsh formic acid treatment. This propensity to

aggregate likely stems from the extensive hydrophobicity of CdzC, including an extended glycine

zipper region with almost entirely hydrophobic residues within each repeat (Figure 7A). Glycine zip-

pers are often found in amyloid proteins (Chang et al., 2010; Kim et al., 2005) that form insoluble

aggregates like those seen for CdzC. The GxxxG motif in CdzC and CdzD have also been seen in

bacteriocins thought to kill target cells by inserting into their membranes (Kim et al., 2005). Thus,

the extended glycine zipper region of CdzC may mediate both its aggregation on the surface of pro-

ducer cells and its insertion into the membrane of target cells. In this vein, we note that some anno-

tated type IIb bacteriocins harbor GxxxG motifs (Nissen-Meyer et al., 2011) and may, like CdzC,

form large aggregates on the surface of producing cells to drive contact-dependent killing; however,

as noted earlier, no such analyses have been reported for bacteriocins. The Cdz system may repre-

sent a special sub-class of type IIb bacteriocins or a new class.

CdzD has a similar set of sequence characteristics as CdzC, including the glycine zipper repeats

with almost entirely hydrophobic residues. However, CdzD aggregates appear to be less stable as

they were easily solubilized in our cell fractionation studies. However, CdzD and CdzC were both

fully required for killing (Figure 2). CdzD could help promote CdzC secretion or it may seed CdzC

aggregates, although CdzC still formed very high molecular weight aggregates in a DcdzD strain

(Figure 5—figure supplement 1D). Alternatively, CdzD may participate only in the ’warhead’, or

pore-forming element, of a CdzC-driven aggregate, creating a pore alone or in combination with

CdzC. Notably, CdzC and CdzD need to be secreted to be active as a strain lacking the secretion

system, CdzAB, was fully viable. It is possible that CdzC and/or CdzD must be modified upon secre-

tion. Although the cdz gene cluster does not encode any obvious modification enzymes, as is often

the case for bacteriocin gene clusters (James et al., 1992; Nissen-Meyer et al., 2011), CdzC and

CdzD may at least need to have their leader peptides removed for full activity as toxins or possibly

to aggregate, with only aggregates being active.

CdzC was associated with fibrils on the surface of fixed cells, although CdzC is likely not the only,

or even primary, component of these fibrils. As already noted, these fibrils may mediate cell adhe-

sion, with the Cdz system effectively using them for toxin delivery. Associations between bacterio-

cins and fibrils have been reported previously. The pore-forming microcin MccE492 from Klebsiella

pneumoniae RYC492 is thought to form amyloid-like, but non-toxic fibrils on the surface of cells in

stationary phase (Bieler et al., 2005). The toxic form of MccE492 is non-aggregated and diffusible,

such that its inhibitory activity is seen only in the supernatants of exponential phase cells. In Staphy-

lococcus aureus, phenol soluble modulins (PSM), which share some similarity to eukaryotic anti-

microbial peptides, form amyloid-like fibrils required for biofilm stabilization. When purified, some

PSM variants have antibacterial activity (Cogen et al., 2010; Schwartz et al., 2012).
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An association between small antimicrobial proteins and amyloid formation has also been

described in the case of several eukaryotic peptides. En route to forming mature fibers, many amy-

loid proteins pass through a toxic oligomeric stage that forms pores in membranes (DePas and

Chapman, 2012). The most notable examples are the human major prion protein PrP and the amy-

loid-beta (Aß) peptide that accumulates in Alzheimer’s disease, which has a glycine zipper region

similar to those in CdzC and CdzD (Figure 7A). The small hydrophobic residues in the zipper region

of the Aß peptide are thought to promote ß-aggregation by creating a ‘steric-zipper’ (Chang et al.,

2010). A leucine substitution in one of the glycine residues is sufficient to significantly alter cytotoxic-

ity and oligomer formation by the Aß peptide (Decock et al., 2016; Fonte et al., 2011).

Cdz-like bacteriocins may be widespread in proteobacteria
Collectively, our studies point to the existence of a new family of contact-dependent bacteriocins,

secreted via a type I secretion system. This family appears to be relatively widespread, particularly in

proteobacteria, with each system containing one to three small (~5–10 kDa) glycine zipper-based

toxins. Many of these systems appear to have been horizontally acquired as even closely related spe-

cies sometimes lack an orthologous copy. Additionally, many of these putative Cdz-like systems are

part of, or adjacent to, genomic islands that include genes often associated with recent lateral trans-

fers, such as transposases, CaaX proteases, and fimbrial adhesins.

In some cases, closely related species or strains do have orthologous Cdz-like systems, although

the similarity is usually highest for the secretion systems, with substantial variation between the Cdz-

like proteins. This type of inter-strain variation has been observed in other types of contact-depen-

dent systems where they may impact self/non-self recognition, thereby playing a critical role in shap-

ing community structure (Alcoforado Diniz and Coulthurst, 2015; Anderson et al., 2012;

Russell et al., 2014a, 2014b).

The Cdz-like systems we identified bioinformatically are not restricted to organisms from a spe-

cific ecological niche and instead appear to be present in a range of bacteria with diverse lifestyles.

Of particular interest are the Cdz-like systems present in clinical isolates of human pathogens. The

importance of outcompeting commensal bacteria to establish or maintain an infection has been pos-

tulated for several pathogens (Hecht et al., 2016; Russell et al., 2014b) and the Cdz-like systems

identified in pathogens (Figure 7) could play such a role. Characterizing these systems and showing

whether they indeed mediate contact-dependent inhibition is an important future goal.

Final perspective
Caulobacter is a well established model for understanding cell-cycle regulation in bacteria. Consider-

ably less attention has been placed on understanding how it thrives in nutrient-poor aquatic condi-

tions, and no social behaviors or quorum-sensing systems have been described to date. Here, we

identified an atypical, but potentially widespread bacteriocin-like system that likely enables Caulo-

bacter to compete with other strains and some other species, by killing nearby cells lacking the Cdz

system. The Cdz contact-dependent inhibition system presumably also allows Caulobacter to avoid

the dilemma of producing an expensive common good that could get easily washed away in aquatic

environments or that would render a population susceptible to cheaters. Finally, the discovery of the

Cdz system, which uses a type I secretion system, expands the repertoire of contact-dependent inhi-

bition mechanisms and suggests that such systems may be even more widespread than previously

appreciated.

Materials and methods

Bacterial strains and growth conditions
All oligonucleotides, strains and plasmids used in this study are listed in Supplementary files 2,

3, and 4, respectively, along with details of how each strain was constructed. E. coli strains were

grown at 37˚C in LB medium. A. excentricus was grown in PYE at 24˚C. A. tumefaciens, S. meliloti,

and R. sphaeroides were grown in LB at 30˚C for propagation and plating experiments, and in PYE

for competitions with C. crescentus. C. crescentus, C. segnis and B. subvibrioides strains were grown

at 30˚C in PYE. Except when specified otherwise, stationary phase cells and culture supernatants

were harvested 4 hr after reaching an OD600 of 0.85. Media were supplemented, as necessary, with
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a final concentration of 500 mM vanillate (pH 7.5 stock in water), 1 mM IPTG, or 100 mM cumate (4-

isopropylbenzoic acid, stock in 100% ethanol) to induce expression from the Pvan, Plac, and PPQ5

promoters, respectively. Antibiotics were used at the following concentrations (liquid/solid media for

E. coli; liquid/solid media for C. crescentus; in mg/ml): oxytretracycline (12/12; 1/2), kanamycin (30/

50; 5/25), gentamycin (15/20; NA/5). For C. segnis and A. tumefaciens, plates were supplemented

with 50 mg/ml kanamycin. For S. meliloti, plates were supplemented with 200 mg/ml neomycin.

Competition experiments
For time courses of competitions between different strains (Figure 2A), exponential phase cultures

of each strain were diluted to OD600 = 0.025 and incubated at 30˚C for 30 min (min) before mixing

at a 1:1 ratio by volume. Every hour aliquots were taken and 10-fold serial dilutions (10 mL each)

spotted on PYE plates containing antibiotics appropriate for selection of each competitor; colony

forming units (CFU) were counted after two days. For end-point competitions (Figure 2C–F), each

competitor was grown separately to an OD600 = 0.85, at which point they were mixed at a 1:1 ratio

by volume. For strains harboring Pvan constructs, vanillate was added 5 hr prior to mixing strains.

CFUs for each competitor were quantified as described above at the time of mixing, and then 4 and

16 hr in competition. The competitive index was calculated by taking the ratio of the two strains at

the final time point, normalized by the ratio of the two strains at t = 0 (see Figure 2B). To test the

effect of growth phase on killing, each competitor strain was grown separately until exponential

phase (OD600 = 0.2) or stationary phase (OD600 = 1). For competitions, 10 mL of the exponential

phase culture were pelleted (6000 x g, 2 min) and cells were resuspended in 1 mL of the stationary

phase culture.

Testing for inhibitory activity in culture supernatants
To test the effects of cell-free supernatant on an indicator strain, the supernatant from a stationary

phase culture of a producer strain was recovered by pelleting cells twice in succession at 13,000 x g

for 2 min and filtering through a low protein binding 0.45 mm HT Tuffryn membrane (Pall Life Scien-

ces). This filtered supernatant was used to resuspend stationary phase indicator cells pelleted by

centrifugation, and their survival was quantified after incubation at 30˚C for 4 or 16 hr. As a control,

supernatant from an indicator strain was tested, allowing us to quantify background rates of cell

death in stationary phase under the experimental conditions used.

To concentrate supernatants from stationary phase cultures of producer strains, we used tri-

chloroacetic acid (TCA) precipitation of total protein in culture supernatants using an adaptation of a

published protocol (Koontz, 2014). In brief, 2 L of culture supernatant was centrifuged twice at

13,000 x g for 10 min to remove cells. Samples were then resuspended to a final concentration of

10% (w/v) TCA and incubated at room temperature for 20 min followed by incubation at �20˚C
overnight. Samples were then centrifuged at 15,000 x g for 20 min. Pellets were washed three times

with 7 mL of �20˚C acetone, vortexing to resuspend and incubating 2 hr (first wash) or 30 min (sec-

ond and third wash) at �20˚C, and then centrifuging at 15,000 x g and incubating at 4˚C for 10 min.

The final pellet was air-dried and resuspended in PYE, and tested by immunoblotting. To test the

activity of the TCA-precipitated proteins in liquid culture, the bulk protein pellet was resuspended in

2 mL of supernatant from a stationary phase indicator culture in PYE and mixed with indicator cells

to test their survival.

Bulk precipitation of proteins in culture supernatants using ammonium sulfate was done following

a procedure outlined previously (Simpson, 2006). The starting sample was 50 mL of stationary phase

culture supernatant, which was filtered using a 0.22 mm Steriflip PES vacuum filter (EMD Millipore).

After ammonium sulfate addition up to 85% saturation at 0˚C and 1 hr equilibration, samples were

pelleted at 17,000 x g for 1 hr. Pellets were then resuspended in 500 mL of 10 mM Tris-HCl pH 7.4

and desalted using an Illustra NAP-5 column (GE Healthcare) following the manufacturer’s protocol.

Eluate was concentrated to 150 mL using an Amicon Ultra-4 3 K centrifugal filter (EMD Millipore)

spun at 7500 x g for 10 min.

To rule out the possibility that large diffusible aggregates present in the supernatant were pellet-

ing with the cells during centrifugation steps, we performed competitions in which the stationary

phase producer cells were killed by heating for 5 min at 98˚C, or 4 hr of treatment with 4 mg/ml gen-

tamicin, prior to mixing without centrifugation to an equal volume of stationary phase indicator
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carrying a gentamicin resistance cassette. Indicator survival was quantified after incubation for 16 hr

at 30˚C.

Split-well competition experiments
Sterile single-well Millicell hanging inserts with a PET membrane (Millipore, 0.4 or 8 mm pore size)

were placed into 6-well polystyrene plates to split the well into upper and lower chambers. Only

three wells per plate were used to prevent cross-contamination between adjacent wells. Each com-

petitor strain was grown separately to OD600 = 0.85 and 3 mL added to the top or bottom of the

split-well. Plates were covered with a lid and incubated at 30˚C with shaking (90 rpm to prevent

splashing between top and bottom of the well) and the competition evaluated as above. For each

pair of strains, independent competitions were done with strains swapped between upper and lower

chambers, to rule out effects due to position within the well.

RNA-seq and transcriptional reporters
Exponential phase RNA-seq data (PYE) were taken from GEO sample GSM1326109 (Schrader et al.,

2014). For stationary phase, RNA-seq was performed as previously described, with a few modifica-

tions (Guo et al., 2014). Caulobacter cells were grown in PYE to OD600 = 1.4 and 2 mL of cells were

harvested in the presence of 1 mL 95% ethanol/5% phenol and frozen in liquid nitrogen. The cell pel-

let was extracted by hot phenol method (Masse et al., 2003) and ribosomal RNA removed with the

MICROBExpress kit (Life Technologies). tRNAs were not removed to ensure recovery of small RNAs.

Samples were converted to a sequencing library by lightly fragmenting the RNA with RNA fragmen-

tation reagents (Ambion), isolating and dephosphorylating 25–50 mers with T4 PNK (New England

Biolabs), ligating linker-1 (Integrated DNA Technologies) to fragments with T4 RNA ligase II (Epi-

centre). After reverse transcription was performed with Superscript III (Invitrogen) and RT_oligo, the

RNA was hydrolyzed with NaOH, and the ssDNA cDNA was circularized with CircLigase (Epicentre).

Final sequencing libraries were PCR amplified with Phusion polymerase and adapter oligos (o231

and o230). Single-end sequencing was performed on Illumina HiSeq2000 (BioMicroCenter MIT) and

aligned to NC011916.1 (NA1000) with bowtie (Langmead et al., 2009) allowing for one mismatch.

Mapped reads were normalized by total number of reads (RPM) and displayed with IGV_2.3.40 soft-

ware using the ‘mean’ windowing function. Gene expression data are available in the Gene Expres-

sion Omnibus: GSE96582.

For time-courses of the cdzC transcriptional reporter, an overnight culture was diluted to

OD600 = 0.025 in PYE. For three replicate cultures, cells were harvested every hour and spotted into

1.5% agarose pads for imaging and fluorescence quantification with MicrobeJ (Ducret et al., 2016).

Fold induction was calculated relative to the fluorescence density at OD600 = 0.025.

Immunoblotting
Cells were pelleted by centrifugation and resuspended in 2X SDS sample buffer, heated to 95˚C for

30 min and equivalent OD600 amounts separated on Mini-PROTEAN TGX 15-well Any kDTM Tris-HCl

gels (Bio-Rad) at 150 V using the Laemmli buffer system (Laemmli, 1970). For 16.5% tris-trisine gels

(Mini-PROTEAN, Bio-Rad), glycine was replaced in the running buffer with 0.1M tricine. Transfer was

done at 100 V for 100 min using a 0.2 mm Immuno-Blot PVDF membrane (Bio-Rad), Towbin buffer

and the Mini Trans-Blot Module (Bio-Rad). The following antibodies were used at a 1:5000 dilution:

anti-RpoA (Neoclone #W0003, mouse), anti-McpA ((Iniesta et al., 2006), rabbit), anti-RsaF

((Ford et al., 2007), rabbit), anti-HA (Cell Signaling Technology C29F4, rabbit), anti-V5 (Cell Signal-

ing Technology D3H8Q, rabbit), HRP-conjugated goat anti-rabbit (ThermoFisher), and HRP-conju-

gated goat anti-mouse (ThermoFisher). Membranes were exposed to SuperSignal West Femto

Maximum Sensitivity Substrate (Thermo Fisher) and imaged with a FluorChem M Imager

(ProteinSimple).

For non-denaturing gels, the following modifications were done: samples were resuspended in

1X sample buffer (62.5 mM Tris-HCl, pH 6.8, 20% glycerol, 0.005% bromophenol blue) and directly

loaded without heating; running buffer was 25 mM Tris, 192 mM glycine. Transfer was done in two

steps, using running buffer: 1 hr at room temperature (with ice block) with constant current 400 mA,

followed by replacement of running buffer with ice-cold fresh buffer and transfer for two more hours

at a constant voltage of 100 V at 4˚C.
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Fluorescence microscopy of competitions
For time-course imaging of competition experiments, cultures were set up as described above, with

the addition of IPTG to the starting overnight culture and to the competition flasks to induce fluores-

cent reporter expression. At each time point, cells were harvested, diluted in one volume PYE and

propidium iodide added to a final concentration of 15 mM. Cells were incubated in the dark for 15

min, spotted onto PYE 1.5% agarose pads and imaged immediately. Phase contrast and fluorescent

images were taken on a Zeiss Axiovert 200M microscope with a 63� phase or aFluar 100�/1.45 oil

immersion objective, using a digital camera (Orca-II ER; Hamamatsu Photonics) and Metamorph soft-

ware (Universal Imaging, PA). The following emission/excitation filters were used: YFP, 500/25 and

535/30m; CFP, 436/25 and 480/40; mCherry, 560/40 and 630/75. Image analysis to quantify fluores-

cent signals for each cell was calculated using MicrobeJ (Ducret et al., 2016). Three independent

replicates were analyzed, with a minimum of 250 cells per frame. Fold induction for the PcdzC-YFP

transcriptional reporter was calculated relative to fluorescence density at OD600 = 0.025. Image

overlays were generated using Fiji (Schindelin et al., 2012).

Immunogold labeling and transmission electron microscopy
Cells from a PYE culture were treated with 0.1% paraformaldehyde for 15 min and allowed to sedi-

ment for 15 min into formvar/carbon-coated nickel electron microscopy grids freshly treated with

0.2% paraformaldehyde. After 15 min blocking in 1% (w/v) BSA in PBS, grids were moved to anti-HA

antibody (1:50 dilution in blocking buffer) for 2 hr, followed by 1 hr in 6 nm Colloidal Gold secondary

antibody (Donkey Anti-Rabbit IgG from Jackson ImmunoResearch, 1:30 dilution in blocking buffer),

and then three 1 min washes in PBS. After a brief water wash, negative staining was performed using

1% uranyl acetate. Grids were blot-dried and imaged on a FEI Technai Spirit Transmission Electron

Microscope at 80 kV. For methylcellulose embedded samples, after the final water wash, grids were

incubated for 10 min in 1% neutral uranyl acetate, briefly washed in water and floated on a 0.2%

methylcellulose/3%Polyvinyl alcohol solution containing 1% uranyl acetate. Excess embedding solu-

tion was drawn off and grids were air-dried.

Immunofluorescence
Cells were labeled with anti-HA antibodies as described previously (Nomellini et al., 2010), with the

following modifications: 1 hr fixation with 2.5% paraformaldehyde at room temperature, 1 hr incuba-

tion on ice in primary antibody (2 mL antibody to 200 mL final volume, anti-HA Cell Signaling Technol-

ogy C29F4), 40 min on ice in secondary antibody (1 mL antibody to 100 mL final volume, Life

Technologies Alexa Fluor 555 goat anti-rabbit IgG), and two additional wash steps after primary and

secondary antibody incubations (done by centrifugation and resuspension in 1.5 ml PYE). After the

final wash, cells were resuspended in 100 mL Slowfade Diamond Antifade (Life Technologies) and

spotted onto 1.5% agarose pads for imaging.

Flow cytometry
Cultures were grown to OD600 = 0.6 (stationary phase) or OD600 = 0.025 (exponential phase), sup-

plemented with cumate to induce the expression of Venus or Tdtomato, and incubated for 5 hr at

30˚C with shaking. Exponential phase cells were diluted to OD600 = 0.04, and the cells expressing

Venus or tdTomato were mixed at a 1:1 ratio and cultured for 2 hr or immediately analyzed. Cells

were diluted 1:50 into PBS, homogenized by inversion, and flow cytometry performed for 50,000

cells per strain mixture, with an event rate of ~12,000 events/mL. The following settings were used

on an BD LSR-II cytometer: FITC voltage 500; PE YG voltage 500; SSC 300; FSC 324. Venus and

tdTomato were excited using 488 nm or 561 nm lasers and detected using 515/20 nm or 582/42 nm

filters, respectively. Data were visualized using FlowJo software.

Subcellular fractionation
The spheroplasting and Triton X-100 cell fractionation protocol was adapted from Gray et al.

(2011). The initial cell pellet was washed once in an equal volume of PYE by resuspension and centri-

fugation to remove supernatant protein contamination. Lysozyme was used at a final concentration

of 100 mg/ml and 10 freeze-thaw cycles were carried out, alternating between liquid N2 and 50˚C.
Lysates were treated with 5 mg/mL DNase I with 25 mM MgCl2. Incubation in 2% (w/v) Triton X
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solubilization buffer was done overnight at 37˚C with mixing. All cell fractions were mixed 3:1 with

4X SDS or native sample buffer, and the final insoluble fraction was resuspended in 1X sample

buffer.

Cell lysis and sucrose gradient separation of membrane proteins was conducted as previously

described (Anwari et al., 2010), supplementing the lysis buffer with 25 mg/mL DNase I and 10 mM

MgCl2. Total membranes were resuspended in 25 or 35% (w/v) sucrose in 5 mM EDTA, and sepa-

rated on either of two different six step sucrose gradients set up on Beckman ultra-clear tubes (14 �

89 mm): 35:40:45:50:55:60% or 45:50:55:60:65:70% (w/v) sucrose in 5 mM EDTA. 500 mL fractions

were collected using a BioComp Piston Gradient Fractionator and mixed with 4X SDS sample buffer

for immunoblot analysis.

For formic acid extractions of CdzC aggregates, outer membrane fractions determined by immu-

noblotting to contain CdzC were pooled together, mixed with 5 volumes of TEM buffer (10 mM Tris

pH 7.5, 1 mM EDTA, 10 mM MgCl2,10% glycerol) and pelleted at 221,000 x g and 4˚C for 1.5 hr

with an ultracentrifuge containing a SW41 rotor. Pellets were resuspended in 90% formic acid, frozen

in liquid N2, lyophilized and resuspended 1X SDS sample buffer for immunoblot analysis.

Computational prediction of aggregation and searches for Cdz-like
systems
The protein aggregation propensity and amylogenic regions of CdzC, CdzD and CdzI were pre-

dicted based on amino acid sequence using AmylPred 2 (Tsolis et al., 2013), WALZ (high specificity

threshold) (Oliveberg, 2010), MetAmyl (with high specificity threshold) (Emily et al., 2013) and

PASTA 2.0 (with peptides threshold) (Walsh et al., 2014). A sequence region was considered aggre-

gation prone if at least three of the above algorithms were in accordance.

To identify CdzC/D-like proteins in other organisms, a multiple sequence alignment was done

using CLUSTALW with CdzC, CdzD, and two Cdz-like proteins identified by the GFIT function of

KEGG: Bacillus sp. YP1 (QF06_18395) and Xylella fastidiosa 9a5c (XF_0262). The alignment was used

to generate a Hidden Markov Model (HMM) profile using the hmmbuild function in HMMER3

(Eddy, 2011). Separately, a blastp search was done against bacterial (taxid:2) sequences in the NCBI

non-redundant nucleotide (nr) database to identify homologs of CdzB. For 639 hits obtained, flank-

ing regions 10 kb upstream and downstream were downloaded and all possible ORFs between 60

and 200 residues were translated. This ORF list was scanned with hmmsearch using the HMM profile

built. The best three hits were added to the multiple sequence alignment. This updated alignment

was used as an input for an iterative search of the UniProtKB database using jackhmmer

(Eddy, 2011), with the bias composition filter off. After the first iteration, hits that included proline

or cysteine residues interrupting the glycine-zippers or that had spans of polar/charged residues

were filtered out before carrying out a second iteration. Results that did not have a type I secretion

system in the 10 kb flanking region were also dropped from the final list. For generation of the Cdz-

like protein phylogenetic distribution tree, taxonomic information of each hit was downloaded from

the NCBI Taxonomy Browser, and the tree generated using iTOL (Letunic and Bork, 2016).
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