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Abstract 
 
Bound states in the continuum are waves that, defying conventional wisdom, remain localized 
even though they coexist with a continuous spectrum of radiating waves that can carry energy 
away. Their existence was first proposed in quantum mechanics and, being a general wave 
phenomenon, later identified in electromagnetic, acoustic, and water waves. They have been 
studied in a wide variety of material systems such as photonic crystals, optical waveguides and 
fibers, piezoelectric materials, quantum dots, graphene, and topological insulators. This Review 
describes recent developments in this field with an emphasis on the physical mechanisms that 
lead to these unusual states across the seemingly very different platforms. We discuss recent 
experimental realizations, existing applications, and directions for future work. 
 
 
Introduction 
 
The partial or complete confinement of waves is ubiquitous in nature and in wave-based 
technology. Examples range from electrons bound to atoms and molecules, light confined in 
optical fibers, to the partial confinement of sound in music instruments. The allowed frequencies 
of oscillation are known as the wave spectrum. To determine whether a wave can be perfectly 
confined or not (i.e., whether there exists a “bound state” or not) in an open system, a simple rule 
of thumb is to look at its frequency: if the frequency is outside the continuous spectral range 
spanned by the propagating waves, it can exist as a bound state since there is no pathway for it to 
radiate away. Conversely, a wave state with frequency inside the continuous spectrum can only 
be a “resonance” that leaks and radiates out to infinity. This is the conventional wisdom as 
described in many textbooks. A bound state in the continuum (BIC) is an exception to this 
conventional wisdom: it lies inside the continuum and coexists with extended waves, but it 
remains perfectly confined without any radiation. As we describe in this Review, BICs can be 
found in a wide variety of material systems through confinement mechanisms that are 
fundamentally different from those of the conventional bound states. 
 
Figure 1 illustrates the general picture. Consider waves that oscillate in a sinusoidal way as e-iωt 
in time t at frequency ω. Extended waves (shown in blue) exist across a continuous range of 
frequencies. Outside this continuum lie discrete levels of conventional bound states (shown in 
green) that have no access to radiation channels; this is the case for the bound electrons of an 
atom (at negative energies), the guided modes of an optical fiber (below the light line), and the 
defect modes in a bandgap. Inside the continuum one may find resonances (shown in orange) 
that locally resemble a bound state but in fact couple to the extended waves and leak out; they 
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can be associated with a complex frequency ω = ω0 – iγ/2 where the imaginary part γ represents 
their leakage rate. (This complex frequency is defined rigorously as the eigenvalue of the wave 
equation with outgoing boundary conditions, for example see refs. 1,2.) In addition to these 
familiar types of wave states, there is the less known possibility of BICs (shown in red) that 
reside inside the continuum but remain perfectly localized with no leakage. In a scattering 
experiment, waves coming in from infinity can excite the resonances, causing a rapid variation 
with spectral line-width γ in the scattered waves. But such waves cannot excite BICs at all, as 
BICs are completely decoupled from the radiating waves and are invisible in this sense. One can 
therefore consider BIC a resonance with zero leakage and zero line-width γ = 0 (or, infinite 
quality factor Q = ω0/γ). Some authors also refer to BICs as embedded eigenvalues or embedded 
trapped modes. 
 
The possibility of BICs was first proposed in 1929 by von Neumann and Wigner3. As an 
example, the authors mathematically constructed a three-dimensional (3D) potential that extends 
to infinity and oscillates in a way tailored to support an electronic BIC. This type of BIC-
supporting systems is rather artificial and has never been realized. Since that initial proposal, 
many other distinct mechanisms leading to BICs have been identified in different material 
systems, many of which are realistic and have now been observed in experiments in 
electromagnetic, acoustic, and water waves. In recent years, photonic structures have emerged as 
a particularly attractive platform thanks to the ability to custom tailor the material and structure, 
which is often impossible in quantum systems. The unique properties of BICs have led to a wide 
range of applications from lasers and sensors to filters and low-loss fibers, with many more 
potential possibilities to be realized. 
 
Most theoretically proposed and all experimentally observed BICs are realized in extended 
structures. The reason is that in most wave systems, BICs are forbidden in compact structures, as 
we explain in Box 1. Among the extended structures that support BICs, many are uniform or 
periodic in one or more directions (e.g., x and y), and the BIC is localized only in the other 
directions (e.g., z). In such systems, the concept of BICs needs to be defined carefully: since 
translational symmetry conserves the wave vector k// = (kx, ky), a state is considered a BIC when 
it exists inside the continuous spectrum of modes at the same k// yet remains localized and does 
not radiate in the z direction; these BICs can be found at isolated wave vectors and may be 
protected by topology (see Box 2). 
 
The goal of this Review is to present the key concepts and physical mechanisms that unify BICs 
across different material systems in different types of waves. Some emphasis is placed on 
experimental realizations and applications. Section I describes BICs protected by symmetry and 
separability, section II discusses BICs achieved through parameter tuning (with coupled 
resonances or with a single resonance), and section III is on BICs built with inverse construction 
(potential, hopping rate, or shape engineering). We conclude with the existing and emerging 
applications of BICs and outlook. 
 

I. Bound states protected by symmetry or separability 
 
The simplest places to find BICs are in systems where the couplings of certain resonances to the 
radiation modes are forbidden by symmetry or separability. We describe them in the following. 
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Symmetry mismatch.  
When a system exhibits a reflection symmetry or rotational symmetry, modes of different 
symmetry classes completely decouple. It is common to find a bound state of one symmetry class 
embedded in the continuous spectrum of modes of another symmetry class, and their coupling is 
forbidden as long as the symmetry is preserved. 
 
The simplest example concerns sound waves in air, with a plate placed in the centerline of an 
acoustic waveguide (Fig. 2a). The fluctuation of air pressure p follows the scalar Helmholtz 
equation with Neumann boundary condition ∂p/∂n = 0 on the surfaces of the walls and of the 
plate, where n is the direction normal to the surface. The waveguide supports a continuum of 
waves propagating in x that are either even or odd under mirror reflection in y; the odd ones 
(shown in orange) require at least one oscillation in y and only exist above a cutoff frequency 
(πcs/h), where cs is the sound speed and h is the width of waveguide. Since the plate respects the 
mirror symmetry, modes localized near it are also either even or odd in y, and an odd mode 
below the cutoff is guaranteed to be a bound state despite being in the continuum of even modes 
(Fig. 2a). Parker first measured4 and analyzed5 such modes in a cascade of parallel plates in a 
wind tunnel. These modes can be excited from the near field and can be heard audibly with a 
stethoscope placed near the plate. Many subsequent works studied this plate-in-waveguide 
system, for example see refs. 6–8, as well as other obstacles with arbitrary symmetric shapes9. 
Note that obstacles that are infinitesimally thin and parallel to the waveguide are decoupled from 
the fundamental waveguide mode even without mirror-in-y symmetry10–13. 
 
Similar symmetry-protected bound states exist in canals as surface water waves14–20, in quantum 
wires21–23 where the wave function follows the scalar Helmholtz equation with Dirichlet 
boundary condition, or for electrons in potential surfaces with anti-symmetric couplings24. A 
common setup is to create a 1D waveguide or lattice array that supports a continuum of even-in-y 
extended states, and attach two defects symmetrically above and below this array to create an 
odd-in-y defect bound state; such configuration has been explored with the attached defects 
being single-mode optical waveguides25–28, mechanically coupled beads29,30, quantum dots31–41, 
graphene flakes42,43, ring structures37,44,45, or impurity atoms46,47; among these, refs. 27,28 are 
experimental realizations. When the mirror symmetry is broken, the bound state turns into a 
leaky resonance. In ref. 27, the mirror symmetry is broken by bending the defect waveguides, 
which allows coupling light into and out of the would-be BIC.  In ref. 28 (shown in Fig. 2b), a 
temperature gradient changes the material’s refractive index and breaks the mirror symmetry, 
which induces radiation in a controllable way. 
 
Symmetry-protected BICs also exist in periodic structures. We provide an example in a photonic 
crystal (PhC) slab48 where a square array of cylindrical holes are etched into a dielectric slab (Fig. 
2b). Given the periodicity in the x and y directions, the photonic modes can be labeled by their 
wave vector k// = (kx, ky). When the 180-degree rotational symmetry around the z axis (C2) is 
preserved [for example at k// = (0, 0), commonly known as the Γ point], even and odd modes 
with respect to C2 are decoupled. At frequencies below the diffraction limit of ωc = 2πc/na 
(where a is periodicity and n is the refractive index of the surrounding medium), the only 
radiating states are plane waves in the normal direction (z) with the electric and magnetic field 
vectors being odd under C2, so any even mode at the Γ point is a BIC. Away from the Γ point, 
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these states start to couple to radiation as they are no longer protected by C2. Such a 
disappearance of radiation has been observed in periodic metallic grids by Ulrich49, and was well 
documented in early theoretical works on PhC slabs50–56. Fig. 2c shows experimental data 
measured using large-area PhC slabs57. The suppressed radiation has also been characterized in 
the lasing pattern of 1D periodic gratings58,59. Such photonic BICs are commonly realized in 
silicon photonics and with III-V semiconductors, and have found applications in lasers, sensors 
and filters, as we describe more in section IV.1. 
 
In crystal acoustics, symmetry-protected BICs exist as the surface acoustic wave (SAW) in 
anisotropic solids, such as piezoelectric materials, which can be used to enhance the material 
performance beyond the typical limit of bulk materials. For example, the phase velocity V = 
ω/|k//| of a SAW is typically limited to the speed of the slowest bulk wave, since otherwise it 
becomes a leaky resonance. However, along high-symmetry directions, symmetry may decouple 
the SAW from the bulk waves, turning the resonance into a supersonic but perfectly confined 
SAW60–64, allowing higher phase velocity than the bulk limit. A related example exists in optics 
in uniform slabs with anisotropic permittivity and permeability tensors65. 
 
Decoupling through separability.  
One may also exploit separability to construct BICs. For example, consider a two-dimensional 
(2D) system with Hamiltonian of the form: 
 H = Hx(x) + Hy(y),  (1) 
where Hx acts only on the x variable, and Hy acts only on the y variable. One can separately solve 
the 1D eigen-problems Hxψx

(n)(x) = Ex
(n)ψx

(n)(x) and Hyψy
(m)(y) = Ey

(m)ψy
(m)(y). If ψx

(n)(x) and 
ψy

(m)(y) are bound states of the 1D problems, their product ψx
(n)(x)ψy

(m)(y) is bound in both 
dimensions and will remain localized even if its eigenvalue Ex

(n) + Ey
(m) lies within the 

continuous spectrum of the extended states for the 2D Hamiltonian; coupling to the extended 
state is forbidden by separability. This type of BICs was first proposed by Robnik66 and 
subsequently studied in other quantum systems67–69 and in Maxwell's equation in 2D70–73. To 
date, separable BICs have not been realized experimentally, but there are promising examples in 
several material systems including photorefractive medium, optical traps for cold atoms, and 
certain lattices described by tight-binding models74. 
 
 

II. Bound states through parameter tuning 
 
When the number of radiation channels is small, one may completely suppress radiation from all 
the channels by tuning the parameters of a system. Generally speaking, if radiation is 
characterized by N degrees of freedom, then at least N parameters need to be tuned to achieve a 
BIC. Such suppression can be interpreted as an interference effect where two or more radiating 
components cancel each other. Below we describe three different scenarios. 
 
Fabry-Pérot BIC (through coupled resonances).  
It is well known that a resonant structure coupled to a single radiation channel (e.g., a defect 
mode coupled to a single-mode waveguide) can lead to unity reflection near the resonance 
frequency ω0 when there are no other losses; this is because the interference between the direct 
transmission and the resonant radiation completely cancel each other (for example, see ref. 75). 
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Therefore, two such resonant structures can act as a pair of perfect mirrors that trap waves in 
between them. BICs are formed when the resonance frequency or the spacing d between the two 
structures is tuned to make the round-trip phase shifts add up to an integer multiple of 2π, as 
illustrated in Fig. 3a. This structure is then equivalent to a Fabry-Pérot cavity formed between 
two resonant reflectors. 
 
Temporal coupled-mode theory76 provides a simple tool to model such BICs. In the absence of 
external driving sources, the two resonance amplitudes A = [A1, A2]T evolve in time as i∂A/∂t = 
HA with Hamiltonian77–79 
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κ ω
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⎝ ⎠ ⎝ ⎠

  (2) 

where κ is the near-field coupling between the two resonators, γ is the radiation rate of the 
individual resonances, and ψ = kd is the propagation phase shift between the two resonators (see 
Fig. 3a). The two eigenvalues of H are 
 ω± = ω0 ± κ – iγ(1 ± eiψ). (3) 
When ψ is an integer multiple of π, one of the two eigenmodes becomes a BIC with a purely real 
eigen-frequency, while the other eigenmode becomes more lossy with twice the original decay 
rate.  
 
Fabry-Pérot BICs are commonly found in systems with two identical resonances coupled to a 
single radiation channel. They exist in water waves between two obstacles80–85 as first proposed 
by M. McIver80; these are sometimes called sloshing trapped modes86. In quantum mechanics, 
they are found in impurity pairs in a waveguide20,87, time-dependent double-barrier structures88, 
quantum dot pairs connected to a wire89–93, double metal chains on a metal substrate94, or double 
waveguide bends95. In photonics, they exist in structures ranging from stacked PhC slabs96–98 and 
double gratings99,100, to off-channel resonant defects connected to a waveguide or waveguide 
array25,27,45,77,101,102. In ref. 27, light is coupled into and out of a would-be Fabry-Pérot BIC by 
bending the waveguides. Such BICs have also been studied in acoustic cavities103. 
 
A unique property of Fabry-Pérot BICs is that the two resonators interact strongly via radiation 
even when they are far apart. Such long-range interactions have been studied in cavities or qubits 
coupled through a waveguide104–106 and for two leaky solitons coupled through free-space 
radiation107. 
 
The same principle applies when a single resonant structure is next to a perfectly reflecting 
boundary (e.g. a hard wall, lattice termination, or a PhC with bandgap). For example, Fabry-
Pérot BICs exist on the surface of a photonic crystal108, and in a semi-infinite 1D lattice with a 
side-coupled defect as predicted in ref. 109 and experimentally realized in ref. 110 by Weimann 
et al using coupled optical waveguides (see Fig. 3b). This principle can also extend to polar or 
spherical coordinates111,112. 
 
Friedrich-Wintgen BIC (through coupled resonances).  
The intuitive unity-reflection explanation of Fabry-Pérot BICs can be used when the two 
resonators are far apart. However, from equation (3), one can see that a BIC can arise even with 
no separation (when d = 0). In other words, two resonances at the same location can lead to a 
BIC through interference of radiation; unity reflection is not a requirement. 
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In temporal coupled-mode theory, when two resonances reside in the same cavity and are 
coupled to the same radiation channel, the resonance amplitudes evolve with the 
Hamiltonian113,114 

 H =
ω1 κ
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Here, we consider the general scenario where the two resonances can have different resonance 
frequencies ω1,2 and different radiation rates γ1,2. The two resonances radiate into the same 
channel, so interference of radiation gives rise to the via-the-continuum coupling term 1 2γ γ . 
One finds that when 
 1 2 1 2 1 2( ) ( ),κ γ γ γ γ ω ω− = −   (5) 
one of the two eigenvalues becomes purely real and turns into a BIC while the other one 
becomes more lossy. Equation 5 was first derived by Friedrich and Wintgen115, so we name this 
type of BIC after them. Note that when κ = 0 or when γ1 = γ2, the BIC is obtained at ω1 = ω2; 
therefore, when κ ≈ 0 or γ1 ≈ γ2, this type of BICs occur near the frequency crossings of the 
uncoupled resonances. More generally, such BICs are possible when the number of resonances N 
exceeds the number of radiation channels M116,117, but the required number of tuning parameters 
also grows with M. 
 
Examples of such BICs were first proposed in atoms and molecules118,119, and its effect has been 
observed experimentally as a suppressed autoionization in certain doubly excited Rydberg states 
of barium120. More recently, Friedrich-Wintgen BICs have been studied in continuum shell 
models121, cold-atom collisions122, 2D topological insulators with defect123, and for quantum 
graphs124, quantum billiards125, or impurity atoms126,127 attached to leads. In acoustics they have 
been studied in multi-resonant cavities103,128. In optics they have been studied in multi-resonant 
dielectric objects in microwave waveguides129,130, and the “dark state laser” described in ref. 131 
is also a Friedrich-Wintgen BIC if one were to ignore the intrinsic radiation of the micro-ring 
cavities. 
 
Single Resonance 
The preceding examples concern two (or more) coupled resonances whose radiations cancel to 
produce BICs. Meanwhile, a single resonance can also evolve into a BIC when enough 
parameters are tuned. The physical picture is similar to the previous examples; here, the single 
resonance itself can be thought of as arising from two (or more) sets of waves, and the radiation 
of the constituting waves can be tuned to cancel each other. 
 
Fig. 3c-e shows an example realized experimentally by Hsu and Zhen et al in a PhC slab132. At 
wave-vectors away from k// = (0, 0), modes above the light line (ω > | k//|c/n) radiate and form 
leaky resonances54. However, at a generic k point along the Γ-to-X direction, the resonance turns 
into a bound state, as evidenced by the diverging radiative quality factor Qr (Fig. 3d,e). The 
quality factor can be determined through the reflectivity spectrum132, or through photocurrent 
spectrum by embedding a detector in the slab133. Such BICs also exist in a linear periodic array 
of rectangles134,135, cylinders136, or spheres137, and related BICs have been found in time-periodic 
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systems138. One may analyze them through spatial coupled-wave theory139 or mode-expansion 
techniques140. While these BICs are not guaranteed to exist by symmetry, when they do exist 
they are robust to small changes in the system parameters, and their generation, evolution, and 
annihilation follow strict rules that can be understood through the concept of topological 
charges141, which also govern other types of BICs (see Box 2). One may say that such BICs are 
topologically protected and exist generically if the system parameters (e.g. the lattice spacing and 
thickness of the PhC) can be varied over a sufficient range. The topological protection of such 
BICs in a periodic structure has also been studied in quantum Hall insulators142 (see Box 2).  
 
These single-resonance parametric BICs can also exist in non-periodic structures, as shown 
theoretically in acoustic and water waveguides with an obstacle143–148, in quantum waveguides 
with impurities149–151 or bends95,152,153, for mechanically coupled beads29,30 and mechanical 
resonators154, and in optics for a low-index waveguide on a high-index membrane155. 
 
This type of BICs exist as the SAW of anisotropic solids. For example, it was predicted156,157 that 
on the (001) plane of gallium arsenide (GaAs), the leaky branch of SAW becomes a true surface 
wave (i.e. no leakage into the bulk) at a propagation direction of φ ≈ 33° (where φ is the angle 
from the [100] direction), in addition to the more well-known symmetry-protected SAW at the 
[110] direction φ = 45° (see Fig. 3f-h). The reduced attenuation near φ ≈ 33° was observed 
experimentally158,159, with data shown in Fig. 3h. Such SAWs exist in many other solids160–168 
and are sometimes called secluded supersonic SAWs161. With a periodic mass loading on the 
surface, secluded supersonic SAWs may also be found in isotropic solids169–171. This type of 
acoustic BICs was first reported in a piezoelectric material lithium niobate (LiNbO3) by 
Yamanouchi and Shibayama172, ands have later been used in supersonic SAW devices173–176, as 
we describe in section IV.2. 
 

III. Bound states from inverse construction 
 
Instead of looking for the presence of BICs in a given system, one may turn the problem around: 
start with a desired BIC, and determine what system can support this bound state and the 
continuous spectrum containing it. Such an inverse construction can be achieved by engineering 
the potential, the hopping rate, or the boundary shape of the structure. 
 
Potential engineering. 
The first proposal of BICs by von Neumann and Wigner in 1929 was based on potential 
engineering3. For a desired BIC with wave function ψ and energy E > 0, one can determine the 
corresponding potential V by rewriting the Schrödinger equation (in reduced units), 

 
2

21 .
2 2

V E V E ψ
ψ ψ ψ

ψ
∇

− ∇ + = → = +   (6) 

One must choose ψ and E appropriately so that the resulting V vanishes at infinity (to support the 
continuum) and is well defined everywhere. There are many possible solutions. The example 
given by von Neumann and Wigner is ψ(r) = f(r) sin(kr)/kr with f(r) = [A2 + (2kr – sin(2kr))2]-1, 
which has an energy E = k2/2 embedded in the continuum E ≥ 0. This bound wave function and 
the corresponding potential V(r) from Equation 6 is shown in Fig. 4a for A = 25, 8k = , and E 
= 4 (note that ref. 3 contains an algebraic mistake, as noted in refs. 177,178). More examples can 
be found in ref. 178, and this procedure has been generalized to non-local potentials179 and lattice 
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systems180,181. From a mathematical point of view, this inverse construction is closely related to 
the inverse spectral theory of the Schrödinger operator182 and the Gel’fand-Levitan formalism of 
the inverse scattering problem, which can also be used to construct potentials supporting 
finite183–186 or even infinite number of BICs182,187. 
 
A related approach uses the Darboux transformation188 that is commonly used in supersymmetric 
(SUSY) quantum mechanics to generate a family of potentials that share the same spectrum. This 
transformation can be applied to a free-particle extended state to yield a different potential where 
the corresponding state keeps its positive energy (remaining in the continuum) but becomes 
spatially localized189–191. In some cases, this SUSY method is equivalent to von Neumann and 
Wigner's approach and the Gel’fand-Levitan approach192. The SUSY method has been applied to 
generate BICs in point interaction systems193, periodic Lamé potentials194, and photonic 
crystals195. The SUSY method has also been extended to non-Hermitian systems with material 
gain and loss, where BICs are found below, above, and at the exceptional point196–204. 
 
Potential engineering allows for analytic solutions of the BICs. However, the resulting potentials 
tend to be unrealistic—indeed none of these potentials has been realized experimentally so far. 
Also, perturbations generally reduce such BICs into ordinary resonances205,206. 
 
Hopping rate engineering. 
A more experimentally relevant construction is to engineer the hopping rate between nearest 
neighbors in a tight-binding lattice model. Such construction can be carried out through the 
SUSY transformation199,207 and has been realized by Corrielli et al in ref. 208 in a coupled 
optical waveguide array, where the hopping rate is tuned by the distance between neighboring 
waveguides. Intuitively, this method can also be understood as “kinetic energy engineering.” 
 
Ref. 208 considers a semi-infinite 1D lattice where the on-site energy is constant and the hopping 
rate κn between sites n and n+1 follows (Fig. 4b) 

 
,

1 ,( 1,2,3,...),n

n lN

l n lN l
l

β

κ

κ
κ

≠⎧
⎪

= ⎨ +⎛ ⎞ = =⎜ ⎟⎪
⎝ ⎠⎩

  (7) 

where N > 1 is an integer, β > 1/2 is an arbitrary real number, and κ is the reference hopping rate. 
This system supports N – 1 BICs localized near the surface (n = 1). The particular case of N = 2, 
β = 1 was experimentally realized with 40 evanescently coupled optical waveguides208. Fig. 4b 
shows the theoretical hopping rates and the BIC mode intensity |cn|2, together with the 
experimentally measured intensity when light is launched from the first site. 
 
Boundary shape engineering. 
Instead of engineering the wave equation itself, one can also engineer the boundary shape to 
achieve BICs. M. McIver first proposed such method in the context of water waves80. In ref. 80, 
two line sources are placed at distance d apart on the water surface such that kd = π, where k is 
the transverse wavenumber. Surface wave radiations from the two sources cancel, resulting in a 
spatially confined mode profile. Then, the two line sources are replaced with two obstacles 
whose boundary shapes correspond to streamlines of the mode profile that contain the two 
sources. In this way, the mode profile in the original driven system is a BIC in the new un-driven 
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system with obstacles, since it satisfies the Neumann boundary condition on the obstacle surface 
by the definition of the streamline. 
 
BICs constructed with two line sources or a ring of sources typically lead to the Fabry-Pérot 
type80,82,83,111,112 as described earlier. But this procedure can also be extended to more complex 
shapes209,210 and to free-floating instead of fixed obstacles211–213. 
 

IV. Applications of BICs and quasi-BICs 
 
The unique properties of BICs can enable a wide range of applications. Here we describe the 
applications that have already been realized, leaving the potential applications to the outlook 
section. 
 
Lasing, sensing and filtering. 
Structures with BICs are natural high-Q resonators, since the radiative Q is, in the ideal case, 
infinity. This makes them useful for many optical and photonic applications. In particular, the 
macroscopic size (on the centimeter scale or larger) and ease of fabrication make BICs in PhC 
slabs unique for large-area high-power applications such as lasers214–219, sensors220,221, and 
filters222.  
 
A large number of surface-emitting lasers are based on symmetry-protected BICs at the Γ point, 
similar to those shown in Fig. 2c. Researchers first observed this effect via a suppression of 
radiation into the normal direction in a surface-emitting distributed feedback laser with one-
dimensional periodicity58,59. This led to PhC surface emitting lasers (PCSELs) that lase through 
BICs with two-dimensional periodicity214,215, followed by the realizations of various lasing 
patterns216,217, lasing at the blue-violet wavelengths218, and lasing with organic molecules221. The 
suppressed radiation at the normal direction means that a PCSEL can have a low lasing threshold 
but also with a limited output power. Therefore, recent designs intentionally break the C2 
symmetry to allow some radiation into the normal direction. Fig. 5a shows results from ref. 219, 
where the C2 symmetry is broken using triangular air-holes; this work achieves continuous-wave 
lasing at room temperature with 1.5 watt output power and high beam quality (M2 ≤ 1.1), while 
the threshold is still relatively low. Also, PCSELs produce vector beams223,224 with the order 
numbers given by the topological charges of the BICs141 (see Box 2), which may find 
applications in super-resolution microscopy and in table-top particle accelerators (see ref. 225 for 
a review on vector beams). 
 
Another application lies in chemical and biological sensing, particularly in optofluidic setups226. 
One sensing mechanism uses the shift of resonance frequency to detect the change of refractive 
index in the surroundings. Resonators with higher Qs enable narrower line-widths and higher 
sensitivity; researchers were able to directly visualize a single mono-layer of proteins with the 
naked eye using the high-Q resonances close to a BIC220. Another type of sensing relies on 
measuring fluorescence signals. It was shown that the spontaneous emission from organic 
molecules can be strongly enhanced and the angular distribution can be strongly modulated near 
BICs in a PhC slab, leading to a total enhancement of angular fluorescence intensity by 6300 
times221. BICs also enabled large-area narrow-band filters in the infrared regime222 due to their 
high and tunable Q factors.  
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Supersonic surface acoustic wave devices. 
BICs on the surface of anisotropic solids, such as the example shown in Fig. 3f-h, can enable 
useful acoustic devices. Fig. 5c shows a schematic setup: an interdigital transducer placed on a 
piezoelectric substrate converts the input electric signal into acoustic wave, which propagates 
through a surface acoustic wave (SAW) to the other side and gets converted back to electric 
signal on the output. While regular SAWs are subsonic whose speed is limited by the speed of 
the bulk waves, a BIC allows propagation at a much faster supersonic speed (Fig. 5d). The BIC 
propagates at a fixed direction (φ = 36° in Fig. 5g), as other directions are lossy. The spatial 
periodicity of the interdigital transducer determines the wavenumber |k//|, while the angular 
frequency of the SAW is given by ω = |k//|V, where V is the phase velocity. Such devices are 
commonly used as filters; a characteristic filtering spectrum using supersonic SAW filter on Y-X 
cut LiTaO3 is shown in Fig. 5e176. Supersonic SAW filters based on BICs are widely used in cell 
phones and cordless phones, Bluetooth devices, and delay lines173–175, due to their advantages of 
low loss, high piezoelectric coupling while reasonable temperature stability, excellent accuracy 
and repeatability, and compatibility with photolithography; see ref. 227 for more information. 
 
Guiding photons in gapless PhC fibers.  
PhC fibers can guide light in a low-index material through a photonic bandgap48, but the 
bandwidth is limited by the width of the bandgap. A type of hollow-core Kagome-lattice PhC 
fiber (shown in Fig. 5f) can provide wave guiding inside the continuum without a bandgap228,229. 
Its mechanism, referred to as “inhibited coupling” by some, is due to the dissimilar azimuthal 
dependence of the core and cladding modes: the core mode varies slowly with angle, while the 
cladding mode is fast oscillating (see Fig. 5f). While such fiber modes are not true BICs because 
there can be residual radiation (the propagation loss is typically 1 dB/m), they enable broadband 
guidance in air and have found many applications including multiple-octave frequency comb 
generations229 (shown in Fig. 5d), all-fiber gas cells230,231, particle transportation and levitation232, 
and Raman sensing233. 
 

V. Outlook   
 
As a general wave phenomenon, bound states in the continuum arise through a number of 
distinct mechanisms and exist in a wide variety of material systems. This Review has described 
the main mechanisms with examples drawn from atomic and molecular systems, quantum dots, 
electromagnetic waves, acoustic waves in air, water waves, and elastic waves in solids. 
 
We have not covered all possible mechanisms. For example, BICs in systems with chiral 
symmetry234 are distinct from the symmetry-protected BICs. In some two-particle Hubbard 
models, there are bound states that can move into and out of the continuum continuously235–238; 
the confinement requires no parameter tuning and has been credited to integrability236. Systems 
with a perfectly flat band can support localized states239,240. Localization can be induced with 
strong gain and/or loss, for example in a defect site with high loss241 and in the bulk200,202,242,243 
or on the surface244 of parity-time symmetric systems; ref. 245 realized this in a synthetic 
photonic lattice. There may also be more constructions not yet discovered. 
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Even though the very first proposal3 and a large body of theoretical works concern BICs in 
quantum systems, there has not been any conclusive observation of a quantum BIC except for the 
suppressed line-width in Rydberg atoms120. The system studied in ref. 246 is frequently mistaken 
as a BIC by others (even though the paper does not make such claim), but it is a conventional 
bound state as it lies in a band gap instead of a continuum. Ref. 247 claims a BIC in a multiple-
quantum-wells structure but with data indicating a finite leakage rate and no evidence for 
localization. The difficulty arises from the relatively few control parameters and the large 
number of decay pathways in quantum systems. Therefore, the realization of a quantum BIC 
remains a challenge. 
 
Optical systems provide a clean and versatile platform to realize different types of 
BICs27,28,49,57,110,132,208,245, due to the advanced nano-fabrication technologies that enable the 
creation of custom photonic structures. An optical BIC exhibits an ultrahigh quality factor—its 
radiative quality factor is technically infinity—which can increase the interaction time between 
light and matter by orders of magnitude. While this Review has described some applications that 
utilize the high Q, there are many more opportunities such as in nonlinearity enhancement and in 
quantum optical applications that have not been explored. The long-range interactions in Fabry-
Pérot BICs may be useful for nanophotonic circuits104 and for quantum information 
processing105,106. It has also been proposed that the light intensity may act as another tuning 
parameter in nonlinear materials, which may enable robust BICs248, tunable channel dropping249, 
light storage and release250,251, and frequency comb generation252. Finally, it was shown that 
particle statistics can be used to modify some properties of BICs253. 
 
Given the many types of BICs, a natural question is whether a common concept underlies all of 
them aside from the vanishing of coupling to radiation via interference. To this end, the 
topological interpretation of BICs (see Box 2 and refs. 141,142,254) seems promising. The 
topological arguments may guide the discovery of BICs and new ways to trap waves, which may 
also exist in quasi-particle systems such as magnons, polaritons, polarons, and anyons. Since 
BICs defy the conventional wisdom and provide new ways to confine waves, their realization in 
different material systems are certain to provide even more surprises and advances in both 
fundamental physics and technological applications. 
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Box 1 | Non-existence of single-particle BICs in compact structures.  
 
Most BIC-supporting structures extend to infinity in at least one direction. This is because BICs 
are generally forbidden in compact structures for single-particle-like systems. 
 
Consider a 3D compact optical structure in air, characterized by its permittivity ε(r) and 
permeability µ(r), and let R be the radius of a sphere that encloses the structure. For |r| > R, ε(r) 
= µ(r) = 1, so the electric and magnetic fields (E, H) follow the Helmholtz equation and can be 
expanded in spherical harmonics and spherical Hankel functions with wavenumber k = ω/c. A 
bound state must not carry radiating far field, but every term in the expansion carries an outgoing 
Poynting flux, so all terms must be zero, meaning E and H must both vanish for |r| > R. If ε(r) 
and µ(r) are neither infinite nor zero anywhere, continuity of the fields requires E and H to be 
zero everywhere in space, so such a bound state cannot exist. Ref. 255 provides a more rigorous 
proof. The same argument applies when the structure and the fields depend on two or one 
coordinates only. 
 
This non-existence theorem does not exclude compact BICs when the material has ε = ±∞, µ = 
±∞, ε = 0, or µ = 0, which can act as hard walls that spatially separate the bound state from the 
extended ones. Examples with ε = 0 are proposed in refs. 251,255,256 but are difficult to realize 
since the metal loss Im(ε) is typically significant at the plasmon frequency where Re(ε) = 0. 
 
The same argument applies to the single-particle Schrödinger equation. For an electron with a 
non-vanishing effective mass m (the m = 0 case is studied in ref. 257) in a compact and finite 
potential (V(r) = 0 for |r| > R, and V(r) ≠ ±∞ everywhere), a bound state with positive energy E > 
0 cannot exist. Similarly, this non-existence theorem can be applied to acoustic waves in air and 
to linearized water waves in constant-depth (z-independent) structures, since both systems are 
described by the Helmholtz equation. However, this theorem does not apply to water waves in 
structures with z dependence (e.g., ref. 80), which follow the Laplace equation instead. 
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Box 2 | Topological nature of BICs. 
 
Perturbations typically turn a BIC into a leaky resonance. However, some BICs are protected 
topologically and cannot be removed except by large variations of the system parameters. 
 
The topological nature of BICs in PhC slabs is described in ref. 141. For a general resonance on 
a PhC slab, the polarization direction of the far-field radiation is given by a two-dimensional 
vector E// = (Ex, Ey) as shown below in Fig. B2a. BICs do not radiate, so they exist at the 
crossing points between the nodal lines of Ex = 0 and those of Ey = 0. In the k space, the 
polarization vector forms a vortex around each BIC with a corresponding “topological charge” q; 
a few examples (q = -2, -1, and 1) are shown in Fig. B2b, as well as the case with no BIC (q = 0). 
Once any crossing (BIC) occurs, large changes in the system parameters are required to remove 
it. Since the topological charges are conserved quantities protected by the boundary 
conditions258, a BIC of this type can only be removed when it annihilates with another BIC of the 
opposite charge. 
 

 
For electrons, the topological properties of BICs was studied in the case where a two-
dimensional quantum Hall insulator is placed on top of a bulk normal insulator142. At isolated k 
points, pure surface modes embedded in the continuum of the bulk modes can be found. Their 
existence is required by the dissimilar topological invariants: the bulk band of the quantum Hall 
insulator has a non-zero Chern number, while that of the normal insulator has a zero Chern 
number (see ref. 259 for a review on Chern numbers). In fact, BICs in this electronic system can 
also be understood as topological defects, whose existence is protected by the Chern number 
difference254. 
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Figures 
 

 
Fig. 1 | General illustration of a bound state in the continuum (BIC). In an open system, the 
frequency spectrum consists of a continuum or several continua of spatially extended states 
(shown in blue) and discrete levels of bound states (shown in green) that carry no outgoing flux. 
The purple dashed line illustrates the structure that provides confinement. States inside the 
continuous spectrum typically couple to the extended waves and radiate, becoming leaky 
resonances (shown in orange). BICs (shown in red) are special states that lie inside the 
continuum but remain localized with no radiation. 
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Fig. 2 | Symmetry-protected bound states. a, An acoustic waveguide with an obstructing plate 
(shown in black) placed at the center. An odd bound state exists at the same frequency as an even 
extended state but cannot couple to it. Measuring the sound pressure near the plate reveals the 
bound state (bottom panel). b, A coupled-waveguide system with two defects placed 
symmetrically parallel to a linear array, which supports a similar odd bound state. The 
propagation constant βz plays the role of frequency. A temperature gradient can break the mirror 
symmetry via thermo-optic effect and turn the bound state into a leaky resonance (bottom panel). 
c, A photonic crystal (PhC) slab with a 180-degree rotational symmetry around the z-axis (C2). 
At the Γ point, modes that are even under C2 cannot radiate because planewaves in the normal 
direction are odd under C2. Away from the normal direction, the bound states become leaky with 
finite Qs, as confirmed by reflectivity measurements (bottom panel). Experimental data obtained 
with permission from: a, ref. 6, © 1971 Elsevier; b, ref. 28, © 2011 APS; c, ref. 57, © 2012 APS. 
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Fig. 3 | BICs through parameter tuning. a, Schematic illustration of the Fabry-Pérot BIC. Two 
resonances are coupled to one radiation channel, and each resonance acts as a perfect reflector 
near the resonance frequency ω0, so the two can trap waves in between when the round-trip 
phase shift is an integer multiple of 2π. b, Realization of a Fabry-Pérot BIC in a semi-infinite 
coupled waveguide array, where the defect waveguide (F) and its mirror image with respect to 
the end play the role of the two resonances. c-e, BIC from a single resonance in a PhC slab. c, 
Schematic of the system. d, Photonic band structure. The leaky resonance (orange line) turns into 
two BICs: one at k// = (0, 0) (due to symmetry) and the other at k// ≈ (0.27, 0) 2π/a (through 
tuning) as marked by red circles. e, Radiative quality factor Qr determined from reflectivity 
measurements. f-h, BIC from the leaky surface acoustic wave (SAW) of GaAs. f, The (001) 
surface of GaAs. g, Acoustic band structure. Radiation of the leaky SAW (orange line) vanishes 
at φ = 45° (due to symmetry) and at φ ≈ 33° (through tuning). h, Theoretical attenuation in log 
scale and measured resonance line-width in linear scale. Figures adapted with permission from: b, 
ref. 110, © 2013 APS; c-e, ref. 132, © 2013 NPG; g, ref. 157, © 1976 AIP; h, ref. 159, © 1992 
Elsevier. 
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Fig. 4 | BICs through inverse construction. a, The BIC proposed by von Neumann and 
Wigner3. A potential (left) is engineered to support a localized electron wave function (right) 
with its energy embedded in the continuous spectrum of extended states. b, Construction of a 
BIC by engineering the hopping rates in a semi-infinite lattice system. The hopping rates κn (top 
left) follow Equation 7 to support a bound state (lower left) at βz = 0, embedded in the continuum 
of the extended states (-2κ ≤ βz ≤ 2κ). This BIC is experimentally realized in an array of coupled 
optical waveguides (top right); light launched at one end of the array excites a BIC that 
propagates along the waveguides (intensity image shown in the bottom right). Figures 
reproduced with permission from: b, ref. 208, © 2013 APS.  
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Fig. 5 | Applications of BICs and quasi-BICs. a,b, Photonic crystal surface-emitting lasers 
(PCSELs). a, Schematic drawing of the setup. The lasing mode here is a quasi-BIC, since the 
180-degree rotational symmetry of the PhC is broken by the triangular air-hole shapes. b, The 
input-output curve of the PCSEL operating under room-temperature continuous-wave condition 
demonstrating a low threshold and a high output power. c-e, Supersonic surface acoustic wave 
(SAW) filters. c, Schematic drawing of the setup: two interdigital transducers are placed on a 
piezo-electric substrate along the direction of the acoustic BIC. d, Comparison between the 
phase velocities of supersonic and subsonic SAWs on Y-X cut LiTaO3. e, A characteristic 
spectrum through a supersonic SAW filter on the surface of LiTaO3. f,g, Guiding photons 
without bandgaps. f, Upper panels: scanning electron microscope (SEM) images of a hollow-
core Kagome-lattice PhC fiber. Photonic guiding in such fibers uses quasi-BICs relying on the 
“inhibited coupling” between the core and cladding modes (lower panels). g, Image and 
spectrum showing the generation and guidance of a three-octave spectral comb using the quasi-
BICs in such fibers. Figures reproduced with permission from: a,b, ref. 219, © 2014 NPG; d, ref. 
227, © 2007 Academic Press; e, ref. 176, © 2002 IEEE; f,g, ref. 229, © 2007 AAAS.  
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