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ABSTRACT: We present Brownian dynamics simulations of
initially knotted double-stranded DNA molecules untying in
elongational flows. We show that the motions of the knots are
governed by a diffusion−convection equation by deriving
scalings that collapse the simulation data. When being
convected, all knots displace nonaffinely, and their rates of
translation along the chain are topologically dictated. We
discover that torus knots “corkscrew” when driven by flow,
whereas nontorus knots do not. We show that a simple
mechanism can explain a coupling between this rotation and
the translation of a knot, explaining observed differences in
knot translation rates. These types of knots are encountered in nanoscale manipulation of DNA, occur in biology at multiple
length scales (DNA to umbilical cords), and are ubiquitous in daily life (e.g., hair). These results may have a broad impact on
manipulations of such knots via flows, with applications to genomic sequencing and polymer processing.

Knots are commonly encountered and manipulated in
everyday experiences such as tying one’s shoelaces or

untangling spontaneously knotted strings.1 Formally defined
only for closed rings, the topologies of “open” knots (referred
to hereafter simply as knots) are often unambiguous (e.g.,
shoelaces and neckties) and can be closed and algorithmically
defined.2−4 At microscopic scales, chromosomal knots are
modified by topoisomerases during cell division5 and are
thought to participate in gene regulation.6 Knots are found in
proteins7,8 and viral capsid DNA,9,10 likely with yet to be fully
understood functions. It has been mathematically proven that
knots become asymptotically likely as the length of a polymer
increases,11 a fact that explains their ubiquity.
Due to the emerging significance of knotted polymers, a

growing body of simulation literature is devoted to their
study.12,13 For instance, while the topology of a ring is fixed, an
open polymer can spontaneously form and untie knots.14 The
probability of forming such knots can be nonmonotonic when
the polymer is confined in slits15,16 or tubes,17 and increasing
the stiffness of a polymer can similarly influence the knotting
probability in unintuitive ways.18,19 Such knots can substantially
affect the mechanical properties20,21 and rheological behavior22

of a polymer, and the probability of forming knots has been
used to infer the effective diameter of DNA molecules.23

Recently, simulations have shown dramatic slowing of
processes wherein a knot is driven along a chain such as
entropic ejection of DNA from a viral capsid24 and the
translocation of single-stranded DNA (ssDNA)25 and poly-
peptides26 through pores.
Common nanofluidic experiments have led to the sponta-

neous formation of knots in DNA by collision with channel
defects27 or the application of moderate electric fields28,29

during electrophoresis. More broadly, the growing library of

methods to manipulate DNA molecules in nanofluidic devices
has enabled fundamental research about single polymer
molecules.30,31 These studies inform important applications
such as genomic sequencing via nanopore translocation32 or
direct linear analysis.33 Thus, (un)tying knots in polymers is of
interest in its own right. To this end, knots have been
intentionally tied with optical tweezers in actin filaments21 and
double-stranded DNA (dsDNA).34 Impressively, simulations
reproduced the sizes and diffusion coefficients of dsDNA knots
within a factor of 2.35

In this Letter, we use simulations to investigate the transport
of a knot on a dsDNA molecule that has been extended by an
elongational flow. We show that such flows cause the knot to be
driven off the chain and untied, and we elucidate the relevant
length and time scales for this process by examining the
diffusion−convection equation. We observe that knots of
different topologies translocate at different rates when strongly
driven by the external flow. We show the different rates of knot
translations are explained by a rotational mode of motion,
available to torus knots,36 that facilitates the translation of the
knot, providing unique mechanistic insight.
We have used a Brownian dynamics approach to simulate

dsDNA, which has been extensively parametrized by
others.35,37,38 The dsDNA molecule is represented by a fine-
grained bead−spring model with np = 5 stiff bonds per
persistence length, lp = 50 nm. Screened Debye−Hückel
interactions are used to model the long-range electrostatics of
DNA−DNA interactions, and all simulations used an ionic
strength of I = 10 mM, leading to a Debye length κ−1 ≈ 3 nm
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and a effective chain diameter of w ≈ 16 nm.23,39,40 These
values were chosen to be representative of common low-salt
conditions in microfluidic dsDNA experiments. An external
planar elongational flow of the form u(ri) = ε̇(x ̂ − y)̂·ri was
considered, where ε ̇ is the strain rate and ri is the position of the
ith bead. We neglected interbead hydrodynamic interactions in
this work, so the drag force on the ith bead is simply Fi

d =
ζb[u(ri) − (dri/dt)] where ζb is the drag coefficient of a single
bead. The Weissenberg number, Wi = ε̇λ, is the appropriate
dimensionless group for such flows. The DNA longest
relaxation time, λ, was determined by fitting the long-time
decay of the squared end-to-end distance of an initially
stretched chain to a single exponential. See the Supporting
Information (SI) for additional simulation details, including
considerations of how the addition of intrabead hydrodynamic
interactions and DNA torsional rigidity could alter the results of
the simulations.
In Figure 1a, a snapshot of the 31 knot (Alexander−Briggs

notation) on an extended DNA molecule at flow strength

Wi = 16 is shown. The “knotted” region, identified algorithmi-
cally (see SI), is shown in red and the unknotted region in blue.
The knot, initially centered in the internal chain coordinates, is
ultimately driven to the end of the chain where it unties, shown
in the snapshots in Figure 1b.
Following previous studies,41 the position of a knot is tracked

in an “internal” chain coordinate by measuring the length of
chain contour between the central index of the chain and the
midpoint index of the knot, a length we denote as K. This scalar
is signed: a negative sign indicates a position nearer the first
index of the chain than the last, a positive sign the converse.
The trajectory corresponding to the snapshots in Figure 1b is
plotted in Figure 1c. A knot is considered to have “untied” itself
when its boundary reaches the first or last index of the chain.
The escape trajectories of 25 initially centered 31 knots are
shown in Figure 1d. Knots escape to the left and right with
equal probability, yet after moving a finite distance from the
center, the directionality of escape is fixed. Furthermore, it is
extremely difficult for a molecule that is extended by such a flow

to form new knots. Thus, these results show the ability to guide
the topology of a polymer to an unknotted state, which may be
useful in the aforementioned applications.
We next explore the physics behind these observations. In a

statistical sense, the evolution of knot trajectories corresponds
to the evolution of an underlying probability density function,
Ψ, of knot positions. This idea can be cast in the form of a
diffusion−convection equation for a knot

∂Ψ
∂

= ∇· ∇Ψ − ∇· Ψ
t

D( ) (u )
(1)

where D is the diffusivity of the knot.
We consider the 1-D case of a knot with constant diffusivity

confined to the stretching direction of the applied elongational
flow, ux = ε̇x. We propose this scenario is the simplest
approximation of the knot motion along a chain extended by an
elongational flow (see SI). For this simplified system, the
diffusion−convection equation becomes
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Examination of eq 2 reveals the fundamental scale for time to
be ε̇−1. A length scale, l = (Dε̇−1)1/2, emerges where the
probability flux contributions due to diffusion and flow are
balanced. To the first order, the motion of the knot will be
diffusive for |x| ≪ l and follow the deterministic path of the
flow for |x| ≫ l. We independently measured knot diffusivities
from chains held at the ends by constant tension (see SI). We
found the diffusivity of the knots in this study to be
topologically dependent but not strongly influenced by tension
(and thus, Wi; see SI). Thus, the scalings depend on knot
topology alone.
We simulated the process of a knot, initially centered in the

internal chain coordinates (K(t = 0) = 0), escaping from a chain
extended by elongational flow for a variety of topologies and
flow strengths. In Figure 2a, the mean squared displacements of
knot position are plotted versus time. The scalings from theFigure 1. (a) Knotted (red) and unknotted (blue) regions of DNA

extended by elongational flow (Wi = 16) for the 31 knot. The distance
along the contour to the midpoint of the knot, K, is shown in green.
(b) Simulation snapshots of an initially centered 31 knot untying from
DNA at flow strength Wi = 16. (c) The midpoint and bounds of the
knot pictured in (b) are plotted versus strain. (d) Untying trajectories
of 25 initially centered 31 knots at flow strength Wi = 16.

Figure 2. Mean squared displacements of initially centered knots (K(t
= 0) = 0) in elongational flows. (a) Knot displacement plotted versus
dimensionless time (ζp = npζb). (b) Scaled knot displacement plotted
versus strain. The triangle represents the slope of the diffusion-
dominated mean squared displacement.
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diffusion−convection equation, ε̇−1 for time and l2 = Dε̇−1 for
length, are used to rescale the data, plotted in Figure 2b. The
collapse of the data is good, especially given the simplistic
approximations implicit in the scalings. When K/l ≪ 1, a slope
of 1 agrees with the collapsed simulation averages, indicating a
diffusion-dominated regime. When K/l ≫ 1, the trajectories
expectedly diverge from this slope, indicating the predicted
dominance of the external flow, a convection-dominated
regime. These results show an uncomplicated model can
capture the dynamics of simple knots on chains in elongational
flows. Furthermore, these results elucidate the fundamental
length and time scales of interest in a practical application
untying knotted molecules with an elongational flow.
We next explore the convection-dominated regime, i.e., K ≫

l, in greater detail for the following topologies: 31, 41, 51, 52, 61,
63, 71, 91, 1028, 111, and 15n165258.42 The mean displacements
of these knots are plotted in Figure 3a. The slope of any given
trajectory is less than that of affine deformation, indicating that
all knots lag the applied flow. The degree to which they lag the
flow, remarkably, is strongly influenced by topological class
rather than size or self-diffusion coefficient. For instance, the 41
knot, despite being the second simplest knot, moves much
slower than the larger 71 knot. The nontorus knots have
remarkably similar rates of convection despite drastically
different sizes and topologies. Moreover, the (2n + 1)1 knots,
all torus knots, convect faster than every other knot studied. As
the crossing number of the torus knots increases, the mean
displacements seem to asymptotically approach that of the
nontorus knots.
These findings indicate the torus knots access an additional

collective mode of motion while being driven along the chain.
This idea is akin to topologically controlled breathing modes
that have been described in knots under tension43 but is distinct
in that we propose driving the knot along the chain

preferentially activates this dominant mode. To visualize the
relative motion of knot segments, we examined the displace-
ments of the knot midpoint from the knot center of mass in
two axes orthogonal to the stretching direction, ΔKy and ΔKz,
where ΔKy = (r(R+L)/2 − (1/(R − L + 1))∑i=L

R ri)·y ̂ and L and R
denote the indices of the left and right bounds of the knot. The
projections of dimensionless versions of these quantities, ΔK̃y =
ΔKy/lp and ΔK̃z = ΔKz/lp, are plotted for the 31 and 41 knots in
Figure 3b and c, respectively. The central segment of the 31
knot follows a circular trajectory around the center of mass of
the knot, but the 41 knot shows no discernible pattern. The
rotational modes of motion become evident in the plots in
Figures 3(d−i). The 31, 51, and 71 knots demonstrate sustained
“corkscrew” rotations of the central segment where, as the knot
is driven down the chain by the elongational flow, a secondary
global rotation of the knot develops. These sustained rotations
are clearly specific to the knot, not the flow; the flow, itself, is
irrotational. These trajectories sharply contrast to those of the
41 knot where no sustained rotation of the central segment can
be seen. The 52 and 61 knots demonstrate half rotations of the
central segment, but full rotations are absent. It is here that we
make a critical mechanistic observation: all knots move via self-
reptation of segments, yet the torus knot topologies permit that
a global, sustained rotation of the knot facilitates an additional
translation of that knot down the chain. The nontorus knots
cannot access these means of transport due to topological self-
interference (see SI for videos).
We tested this mechanistic insight by predicting the chirality

of knot rotations from simplistic sketches for the 31 knot. The
31 knot exists in right- and left-handed chiralities. The sketches
in Figure 4 show that for a knot of given chirality globally
rotating the knot will produce a translational motion of the
knot along the extended chain. Conversely, when a 31 knot of
given chirality is being convected by an elongational flow, the

Figure 3. (a) Average knot displacements are plotted vs strain for various knots at flow strength Wi = 16 for knots initialized off-center (K(t = 0) =
6lp ≫ l for all topologies). The nontorus knots consist of the following: 41, 52, 61, 63, 1028, and 15n165258.

42 Displacements from the knot center of
mass of the central segment of the knot made dimensionless by lp (ΔK̃y and ΔK̃z) for the 31 (b) and 41 (c) knots in the plane orthogonal to the
extensional axis; color changes from blue to red as the knot moves off the chain. Displacements from the knot center of mass of the central segment
of the knot (ΔK̃y and ΔK̃z) in the plane orthogonal to the extensional axis plotted versus knot position (K̃ = K/lp) for the 31 (d), 41 (e), 51 (f), 52
(g), 71 (h), and 61 (i) knots. Color changes from blue to red as the knot moves off the chain. Bottom: snapshots of knots in (d−i) with central
segments highlighted in green.
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chirality of rotation that coincides with the direction of
translation can be predicted from the sketches. The colored
trajectories in Figure 4 show the displacements of the central
segments from the center of mass of knots of given chirality
(right- or left-handed) being convected by an elongational flow
off the right or left of the chain. The mechanism in the sketches
is in complete agreement with the visualized simulation results.
We have found this agreement between knot chirality, direction
of knot translation, and knot rotation to hold in all observed
simulation trajectories (∼50); i.e., knot rotation always occurs
as predicted by the sketches. These results confirm our idea
that the translational motion of torus knots is facilitated by knot
rotation. Further, this mechanism clearly extends to all of the
(2n + 1)1 family of torus knots; the addition of additional loops
in the knot does nothing to prohibit the coupling of knot
rotation and translation. The increased mobility of torus knots
appears to be quite general, having been demonstrated in
macroscopic shaking chain experiments,44 simulations of DNA
ejection from viral capsids,45 and simulations of tensioned
electrophoresing DNA.46 We postulate our mechanism
plausibly explains these results.
We have demonstrated the ability of elongational flows to

untie knotted dsDNA molecules with computer simulations.
Through scaling analysis, we revealed a critical length scale
along the molecule that separates diffusive from convective
transport of a knot in these flows. We have shown that a subset
of knots, torus knots, can move linearly via sustained global
rotation, which increases the speed at which they release from
the chain. This represents an important mechanistic insight into
the motion of driven knots, and since the mechanism is solely a
function of topology, we expect it will apply in many other
driven processes (e.g., nanopore sequencing or viral ejection of
DNA) and for other polymers. We speculate that for longer
DNA or for higher flow strengths self-jamming of knots may be
observed as has been seen in tensioned knots,26 and we hope
future work will address this notion. Simulations show knots
can jam nanopore translocation,25 and experiments suggest
jamming of knots during ultrafiltration of plasmid DNA.47

Practically, our results could guide development of microfluidic
devices that precondition molecules to unknotted states for
such applications. Finally, since the model employed is
parametrized to dsDNA at experimentally realizable conditions,
we hope future experiments will test our results.
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