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 20 

Abstract 21 
Excess journey time (EJT), the difference between actual passenger journey times and journey times 22 

implied by the published timetable, strikes a useful balance between the passenger's and operator's 23 
perspectives of public transport service quality. Using smartcard data, this paper tried to characterize 24 
transit service quality with EJT under heterogeneous incidence behavior (arrival at boarding stations). A 25 
rigorous framework was established for analyzing EJT, in particular for reasoning about passenger’ 26 
journey time standards as implied by varying incidence behaviors. It was found that although the wrong 27 
assumption about passenger incidence behavior and journey time standards could result in a biased 28 
estimate of EJT at the individual passenger journey level, the paper proposed a unified estimator of EJT, 29 
which is unbiased at the aggregate level regardless of the passenger incidence behavior (random incidence, 30 
scheduled incidence, or a mixture of both). A case study based on the London Overground network (with 31 
a tap-in-and-tap-out smartcard system) was conducted to demonstrate the applicability of the proposed 32 
method. EJT was estimated using the smartcard (Oyster) data at various levels of spatial and temporal 33 
aggregations in order to measure and evaluate the service quality. Aggregate EJT was found to vary 34 
substantially across the different London Overground lines and across time periods of weekday service. 35 
The North London Line in the AM Peak in the westbound direction had the worst service quality in terms 36 
of EJT. 37 

 38 
Keywords: excess journey time; service quality; passenger incidence behavior; smartcard data; London 39 
Overground 40 

 41 
Highlights 42 
• A rigorous framework was established for analyzing excess journey time (EJT), in particular for 43 

reasoning about passenger’ journey time standards as implied by varying incidence behaviors. 44 
• A unified estimator for aggregate EJT was proposed, which was unbiased at the aggregate level 45 

regardless of actual passenger incidence behavior. 46 
• The proposed estimator was applied to the London Overground network using Oyster smartcard data. 47 
• EJT was calculated at various levels of spatial and temporal aggregations and significant variations 48 

between lines and time periods were observed in the London Overground 49 
  50 
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1. Introduction 1 
 2 

The performance of public transport service can be viewed from different angles. The Transit Capacity 3 
and Quality of Service Manual defines service quality as “the overall measured or perceived performance 4 
of [public transport] service from the passenger's point of view"(Kittelson & Associates, 2003). It also 5 
points out that the public transport agency or operator often perceives system performance from a 6 
different perspective, one more concerned with the quality of the operations than of the service as 7 
experienced by passengers. It defines service delivery in terms of how well “an agency deliver[s] the 8 
service it promises on a day-to-day basis." In this paper, service quality will refer to the passenger's 9 
perspective on system performance while service delivery will refer to the operator's perspective.  10 

With the introduction of automatic fare collection (AFC) systems and the data they produce about 11 
individual passenger journeys, it is now possible to measure certain aspects of service quality directly. 12 
Some AFC systems (e.g. Oyster system in London) control entry to and exit from the public transport 13 
network. In this case, actual passenger journey time through the network can be measured as the 14 
difference between the timestamps of the exit and entry transactions.  15 

Direct and automatic observation of passenger journey times creates many opportunities for measuring 16 
service quality. One particular measure explored in this paper is excess journey time (EJT). At the level of 17 
a single journey, EJT is the difference between actual journey time and some pre-defined journey time 18 
standard, however that standard is defined. A positive value indicates that the journey took longer than the 19 
standard allows; a negative value indicates that it was shorter. Although actual passenger journey time can 20 
be directly captured by AFC systems, the standard cannot. The journey time standard depends on how 21 
passengers plan their arrival to public transport services. Because passengers can also arrive at certain 22 
location via public transport services, a lexical convention is established to avoid ambiguity of exposition. 23 
Passenger incidence is defined here as the act or event of being incident to a public transport service with 24 
intent to use that service (Frumin and Zhao, 2012). It is very difficult to track the incidence behavior of 25 
individual passengers. Certain simplifying assumptions on passenger incidence behavior are made to set 26 
the appropriate standard for passenger journey time. However, in reality, passenger incidence behavior is 27 
often more heterogeneous than any of the assumptions indicates. This poses challenges in how realistic 28 
EJT can be, and how transit agencies can implement it in their practice.  29 

The objective of this paper is to use smartcard data to measure public transport service quality as 30 
experienced by passengers in terms of EJT, and investigate the sensitivity of the estimator to the two 31 
types of passenger incidence behaviors (random incidence and scheduled incidence). The research 32 
presented in this paper has been developed commensurate with the analytical needs of the managers of the 33 
rapidly growing, largely circumferential London Overground network in London, England. The methods 34 
developed in this paper are applied to smartcard data from this railway. A case study is conducted to 35 
demonstrate the use of these methods to measure and evaluate the service quality on the core portion of 36 
the Overground network. While the work in this paper is motivated primarily by problems facing the 37 
managers and passengers of London Overground, the methods it develops should generalize well to other 38 
transit systems with off-board entry and exit control (like some BRT systems) where similar automatic 39 
data are available. 40 

The rest of the paper is organized in this way. Section 2 reviews some of the literature of public 41 
transport service delivery and service quality measurement, including EJT. Section 3 discusses the 42 
implications of incidence behavior for establishing EJT standards, and proposes an analytical framework 43 
with which to analyze EJT under different incidence behaviors. Then a rigorous probabilistic analysis is 44 
used to prove, under the proposed framework, that a single means for measuring aggregate EJT 45 
appropriately can accommodate a range of incidence behaviors. Section 4 applies the method developed 46 
here to the London Overground network. Section 5 draws conclusions and discusses some important 47 
considerations for applying EJT. 48 
 49 
 50 
 51 
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2.  Literature review 1 
 2 

The literature on measurement of public transport performance, including service delivery and service 3 
quality, is rich. Interest in the subject has renewed since the introduction of systems for automatically 4 
monitoring various aspects of public transport operations and, most recently, public transport passenger 5 
journeys. The primary client of public transport performance measurements are the managers and 6 
planners of the transport networks themselves. Ideally, they should be motivated to improve the service 7 
quality as experienced by their primary customers, the passengers. However, the levers over which they 8 
have the most tangible understanding and direct control are planning and operational service delivery. 9 
Consequently, it is proposed that measures of public transport performance should find a balance between 10 
the passenger's and operator's perspectives. They should strive for fidelity to the passenger experience, 11 
but not so far that they are not useful or interpretable by operators. 12 

 13 
2.1. Reliability 14 

 15 
Before discussing the literature on specific measures of service delivery and service quality (i.e. from 16 

the operator's and passenger's perspectives) this section discusses first the notion of reliability, defined as 17 
“the invariability of service attributes which influence the decisions of travelers and transportation 18 
providers." (Abkowitz et al., 1978) Under this definition, the discussion of reliability is quite naturally 19 
subsumed by discussions of service delivery and quality if and when they consider higher-order moments 20 
of the attributes perceived by operators and by passengers, respectively. Consequently, much of what has 21 
been said about reliability applies to both service delivery and quality, and thus applies to the balance of 22 
this paper. Understanding reliability as a proxy for overall performance, including service delivery and 23 
service quality, Abkowitz et al. (1978) note that measuring performance from the operator's and 24 
passenger's perspectives should help public transport providers to: (i) identify and understand 25 
performance problems; (ii) identify and measure actual improvements in performance; (iii) relate such 26 
improvements to particular strategies; (iv) modify strategies, methods, designs to obtain greater 27 
performance improvements." In the context of this paper, this description is useful in that it establishes 28 
the measurement of service delivery and service quality as elements of an iterative analytical management 29 
and planning process. 30 

 31 
2.2. Service delivery measurement and the operator’s perspective 32 

 33 
In terms of service delivery, Furth et al. (2006) describe two classes of service delivery measures that 34 

could be developed from automatic data sources: those measuring adherence to timetables and those 35 
measuring adherence to headways.  36 

 37 
2.2.1. Timetable-based measures 38 

Timetable-based measures are often based on observations of schedule deviation - the difference, for a 39 
given service, between the scheduled and actual time of arriving, passing, or departing a given time point. 40 
The most popular measure of timetable adherence is on-time performance (OTP), the fraction of services 41 
with schedule deviation within some threshold (Kittelson & Associates, 2003). Under the name of Public 42 
Performance Measure (PPM), this is the current measure of performance on the London Overground and 43 
all other National Rail services in the UK, with a train considered “on time" if it is less than 5 minutes late 44 
at the destination terminal.  45 

Henderson et al. (1990) and Henderson, Adkins and Kwong (1991) offer a number of criticisms of 46 
OTP, primarily for its lack of passenger orientation. Among these criticisms are (i) OTP measures 47 
performance at terminals, which for many networks are remote from the locations to which most 48 
passengers are bound, (ii) OTP typically counts as late services which have missed part of their trip or 49 
skipped stops, even if these adjustments don't affect many passengers, (iii) passenger waiting times are 50 
not accurately reflected, (iv) focusing on OTP can incentivize dispatch actions that favor schedule 51 
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adherence over regular headways and can make passengers worse off, and (v) OTP, while offering a 1 
probabilistic measure, does not represent the odds of on-time arrival realistically.  2 

A related measure is terminal-to-terminal running time. Statistics of the distribution of running time 3 
indicate the reliability of a service and are important inputs into the scheduling process. When running 4 
times are too short, some vehicles will not be in place to make subsequent trips; when they are too long, 5 
resources are not used efficiently and terminals may be congested (Furth et al,. 2006; Furth and Muller, 6 
2007).  7 

Another common timetable-based service delivery measure is en-route schedule adherence (ESA), 8 
which can be defined as the fraction of services with schedule deviation within some threshold at a given 9 
set of time points. This is similar to OTP, but applied at multiple points along a line. The distribution of 10 
schedule deviation and segment (i.e. point-to-point) running times can also be studied (Furth et al., 2006; 11 
Hammerle et al., 2005). 12 

 13 
2.2.2. Headway-based measures 14 

Some public transport network or lines publish service headways but not timetables. In some cases, 15 
particularly for higher frequency services, it is assumed that passengers do not use the timetable even if it 16 
is available. Kittelson & Associates (2003) recommend measuring the mean observed headway and the 17 
coefficient of variation with respect to the mean scheduled headway.  18 

Henderson, Kwong and Heba (1991) propose two measures of headway regularity, one based on Gini's 19 
ratio and the other based on the coefficient of variation, that have the benefit of being normalized on a 20 
zero to one scale for comparison across services with different mean headways. These measures are all 21 
unitless, and thus hard to interpret in physical terms relevant to operators or passengers (Furth et al., 22 
2006). 23 

Reddy et al.(2009) and Hammerle et al.(2005) define headway regularity in terms of the fraction of 24 
observed headways that are within some absolute or relative deviation from the scheduled headway. 25 
These have the benefit of being easy to interpret by operators, but still fail to translate easily into 26 
passenger terms (Furth et al., 2006). 27 

The adoption of headway-based measures is motivated by the effect of headways on passenger waiting 28 
times, and so is a real step towards representing the passenger's perspective. Nevertheless, they are still an 29 
indirect proxy for the passenger experience, since waiting times are related to but not equal to headways. 30 
Moreover, headway-based measures do not account for the entire duration of passenger journeys, which 31 
are important. Finally, headway at a given location depends on which services one is willing to board at 32 
that location (e.g. for trunk-and-branch services), which depends on where one is headed (Frumin and 33 
Zhao, 2012). Headways cannot be accurately measured without considering the passenger's perspective. 34 

 35 
2.3. Service quality measurement and the passenger’s perspective 36 

 37 
Strictly speaking, service quality is absolute in nature, at least with respect to service delivery. For 38 

example, the service quality of a public transport network can be judged on its waiting and travel times. 39 
Even when every passenger experiences perfect service delivery - more frequent and faster service is 40 
always better. The work described in this section seeks to measure service quality in absolute terms. 41 

For randomly incident passengers, Osuna and Newell (1972) describe how mean waiting times can be 42 
modeled given observations of actual headways. Friedman (1976) extends this result to model the 43 
variance of waiting times. Larson and Odoni (2007) describe how the complete distribution of waiting 44 
times of randomly incident passengers can be derived from headway observations. 45 

Bates et al.(2001) provide an in-depth investigation of how passengers value reliability (expressed as 46 
the variability of total journey time) and how it may affect their behavior. Furth and Muller (2006) 47 
operationalize some of this analysis by proposing to measure the effect of reliability as additional waiting 48 
time costs perceived by passengers. Their analysis is based on the finding of Bates et al. (2001) that 49 
passengers adjust their incidence behaviour based on knowledge of schedule and headway adherence and 50 
reliability. For short headway services, they propose to use headway observations to measure the 51 
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“potential waiting time" as the difference between the “budgeted" 95th percentile waiting time and the 1 
mean waiting time. It represents an additional penalty that passengers pay for the unreliability of the 2 
service headways, albeit a penalty paid in many cases by arriving early at their destination.  3 

Chan(2007) and Wilson et al. (2008) extend the potential waiting time concept to the entire journey. 4 
They use data from the Oyster smartcard ticketing system to measure (rather than model) the journey 5 
times of London Underground passengers. They estimate the distribution of end-to-end journey times for 6 
each origin-destination (OD) station pair and find the “reliability buffer time” (RBT) as the difference 7 
between the 95th and 50th (median) percentiles. This metric is aggregated from the OD pair to the line or 8 
network level by means of an OD flow-weighted average. 9 

Uniman (2009) notes that some “irreducible" amount of variability in passenger journey times is to be 10 
expected because of randomness in waiting times, variation in walking speeds, and normal but acceptable 11 
variability in service outcomes. Uniman proposes to divide observation periods into two classes of 12 
reliability levels – “recurrent" and “incident-related." Passengers experience normal levels of journey 13 
time variability in the former level, and abnormal levels in the latter. Also studying the London 14 
Underground, Uniman makes this classification using a statistical technique that did not consider the 15 
perspectives of the managers of the system under study. Uniman then proposes as a measure of service 16 
quality “excess reliability buffer time" (ERBT) - the difference in RBT for journeys from all observation 17 
periods together and RBT for only those journeys in periods of recurrent reliability. In other words, a 18 
measure of how far the tail of the travel time distribution is extended as a result of abnormal operating 19 
conditions. 20 

The measures discussed in this section are developed entirely with reference to actual operating 21 
conditions and passenger journeys, not with reference any service delivery commitments (i.e. the 22 
timetable, and headways and travel times implied therein). No evidence has been found that any of these 23 
measures are regularly used in practice by public transport providers. Such measures may not yet have 24 
been adopted because they do not provide information in terms that operators can easily relate to.  25 

 26 
2.4. Relative service quality 27 

 28 
The measures of relative service quality described represent a compromise between the pure operator 29 

and passenger perspectives. They measure service quality not in absolute terms, but rather with respect to 30 
certain standards derived from service delivery commitments.  31 

Wilson et al. (1992) propose “excess waiting time” (EWT), i.e. the difference between these the actual 32 
passenger waiting time and the expected waiting time that would result from perfect adherence to 33 
schedule. London Transport (1999) extended the EWT concept to the entirety of journeys on the London 34 
Underground, comparing mean actual and schedule values of each component of passenger journeys. 35 
Automatic data from train control systems is used to estimate EWT, as in Wilson et al. (1992), under 36 
random incidence model. The EWT estimate is augmented by models for estimating the fraction of 37 
passengers, based on static demand data, who are left behind by overcrowded trains. Automatic train 38 
movement data is also used to estimate excess on-train time, where the scheduled on-train time between 39 
any given pair of stations is as per the timetable. Manual sampling at 27 major stations is combined with 40 
pedestrian flow models to estimate access, egress, and interchange (i.e. walking) time as a function of 41 
pedestrian congestion and availability of escalators and elevators. The scheduled values for pedestrian 42 
movements are determined from manual samples under free-flow conditions. In result, the sum of these 43 
components is referred to as “excess journey time" (EJT), i.e. the difference between the median journey 44 
time and the scheduled journey time.  45 

Chan (2007) and Wilson et al. (2008) use Oyster journey data to directly estimate (rather than model) 46 
unweighted EJT for individual journeys on the London Underground. They measure actual journey times 47 
directly from Oyster transactions, and derive scheduled journey time from the values in the 48 
Underground's existing EJT measurement system. The results suggest that, given common scheduled 49 
journey time values, unweighted Oyster-based EJT will be more accurate than model-based estimates. 50 
Besides, Buneman (1984) uses schedule-based assignment to estimate passenger on-time performance for 51 
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the BART railway network in the San Francisco Bay Area. The difference between actual and scheduled 1 
arrival time, in the parlance of this section, is an estimate of schedule-based EJT. Buneman does not 2 
calculate aggregate EJT, but rather compares EJT to a 5-minute threshold window to estimate passenger 3 
OTP. It appears that this measure, perhaps in a modified form, is still used by BART over two decades 4 
later. 5 

The measures of relative service quality represent a compromise between the pure operator and 6 
passenger perspectives. One of these measures, EJT, has found lasting application in large urban railways 7 
such as the London Underground and BART networks. It not only presents a compelling alternative to the 8 
train on-time performance (OTP) measure currently used by the London Overground, but also measures 9 
the actual passenger experience in terms of end-to-end journey time, but reports it with respect to certain 10 
service quality standards. 11 

All of the measures of relative service quality discussed in this section were developed with the intent 12 
of representing the passenger's perspective. However, they all make certain assumptions about passenger 13 
incidence behavior. Based on these assumptions they derive the standards against which measured or 14 
modeled service quality is compared. 15 

 16 
2.5. Heterogeneous passenger incidence behavior 17 

 18 
With the advent of AFC ticketing systems, actual journey times can now be measured simply and 19 

directly as in Wilson et al. (2008) and Uniman (2009). One issue that remains unresolved, particularly as 20 
EJT is applied to networks with lower service frequencies, is how passenger behavior and expectations 21 
relate to the published or unpublished timetable, and thus how the timetable should be used in setting 22 
journey time standards. 23 

Industry manuals (e.g. Kittelson & Associates, 2003); Furth et al., 2006) typically recommend 24 
timetable-based measures for lower frequency services with a headway greater than 10 minutes, where 25 
passenger incidence is assumed to be timetable-dependent, and headway-based measures for higher 26 
frequency (i.e. shorter headway) services, where passenger incidence is assumed to be random. London 27 
Buses, for example, follows this pattern, classifying bus routes as “high frequency" at frequencies of 5 or 28 
more buses per hour (a 12 minute or lower headway), and “low frequency" otherwise (Camilletti, 1998; 29 
Camilletti, 2003). 30 

Most of the relative service quality measures discussed here, including EJT on the London 31 
Underground, use the random incidence assumption to derive waiting time standards. The model of 32 
Buneman utilizes mixed assumptions about passenger incidence behavior to derive waiting time standards, 33 
but he acknowledges that they are arbitrary. These various approaches depend, explicitly or implicitly, on 34 
assumptions regarding how passengers' knowledge of the timetable affects their arrival behavior at rail 35 
stations and their expectations of waiting and travel time (and distributions thereof). 36 

The stated intent of these recommendations and practices is to match journey time standard to the 37 
concerns, experiences, and expectations of passengers. The standards against which measured or modeled 38 
service quality is compared have been explicitly derived from these simplifying assumptions about 39 
passenger incidence behavior. However, passenger incidence behaviors, let alone passenger expectations, 40 
are in many cases not so clear cut (Frumin and Zhao, 2012). It is possible to have a mix of timetable-41 
dependent and timetable-independent passengers using the same service at the same time. In cases when 42 
behavior is homogeneous across some segments of passengers (e.g. those traveling between a given pair 43 
of stations), it still possible to have varying conditions across the network or even at a given station. 44 
Trunk-and-branch services, which provide different service frequencies to different passengers at the 45 
same departure station, are a prime example. Moreover, incidence behaviors are likely to change over 46 
time as a function of changes in relevant attributes of the service (e.g. headway and reliability). Even 47 
where the random incidence assumption has historically been justified by a lack of posted timetables (e.g. 48 
the London Underground), the reality may be changing as a result of internet and mobile delivery of 49 
timetable information. 50 
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Frumin and Zhao (2012) proposed a method to estimate incidence headway and waiting time by 1 
integrating disaggregate smartcard data with published time tables using schedule-based assignment and 2 
applied it to stations in the entire London Overground to demonstrate its practicality and observe that 3 
incidence behaviour varies across the network and across times of day, reflecting the different headways 4 
and reliability. They classify passenger incidence behaviour into two types – scheduled incidence 5 
passengers (passengers whose incidence is timetable-dependent) and random incidence passengers 6 
(passengers whose incidence behaviour is random and completely independent of scheduled departure 7 
times).  8 

This heterogeneity of incidence behavior is a reason that existing measures of service delivery and 9 
(absolute or relative) service quality often fail to appropriately account for the passenger's experience. It 10 
presents a particular problem in measuring EJT, where different assumptions about incidence behavior 11 
could lead to very different journey time standards. This paper proposes and explores a methodology for 12 
estimating aggregate EJT that, it turns out, applies equally well under a range of assumptions regarding 13 
passenger incidence and implied journey time standards. 14 
 15 
 16 
3. EJT-based service quality measurement framework 17 

 18 
This section proposes an analytical framework, with which EJT estimators are developed at both the 19 

individual level and the aggregate level. These estimators are then compared under different incidence to 20 
show how EJT would change under different passenger incidence assumptions. 21 
 22 
3.1. Analytical framework and assumption 23 

 24 
For clarity of exposition, the following lexical convention is adopted. The expectation of a given 25 

quantity refers to the expected value of that quantity in the probabilistic sense. The standard for a given 26 
quantity refers to some individual's supposition of what that quantity should be. Standards can be random 27 
or deterministic. In this discussion, random variables will be shown as capitals, X, known quantities as 28 
lowercase, x, and standards as capitals with tildes, 𝑋. The following analysis considers only trips along a 29 
single line without interchanges.  30 

For a given passenger, let 31 
I = the time that passenger is incident at his or her boarding station, 32 
𝑊  = the standard for waiting time, also referred to as the scheduled waiting time, 33 
𝑉  = the standard for in-vehicle travel time, also referred to as the scheduled travel time, 34 
𝐴  = the standard arrival time at the alighting station, also referred to as the scheduled arrival time, 35 
𝐽  = the standard for end-to-end journey time from incidence at the boarding station to arrival time at 36 

the alighting station, also referred to as the scheduled journey time, 37 
J = the observed or actual journey time, 38 
X = the Excess Journey Time (EJT). 39 
With these definitions, the following equations establish the intuitive analytical framework: 40 
 41 
   𝐴 = 𝐼 +𝑊 + 𝑉             (1)  42 
   𝐽 = 𝐴 − 𝐼   (2)  43 
   𝑋 = 𝐽 − 𝐽           (3)  44 
 45 
Equation (1) says that the arrival time standard is the incidence time plus some standard for waiting 46 

time plus some standard for in-vehicle time. Equation (2) says that the journey time standard is the arrival 47 
time standard less the incidence time. Equation (3) simply formalizes the definition of EJT. Naturally, the 48 
first two equations imply that the journey time standard is the sum of the waiting time standard and the in-49 
vehicle time standard, i.e. 𝐽 = 𝑊 + 𝑉. 50 
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Without loss of generality, consider an origin station (“station 1") on a rail line, a randomly selected 1 
passenger traveling from that station to a destination station (“station 2") on the same line, a set of trains 2 
that passenger is willing to board, including a pair of those consecutive trains scheduled to depart from 3 
station 1 towards station 2 with the first train scheduled to depart at time t = 0. Figure 1 uses a time-4 
distance diagram to illustrate the following additional quantities relevant to this analysis. 5 

Let 6 
d = the scheduled departure time from station 1 of the next train that the passenger in question is 7 

willing to board. 8 
h = the scheduled headway between the prior scheduled departure and the next scheduled departure. 9 
a = the scheduled arrival time at station 2 of the train departing station 1 at time d. 10 
v = the scheduled running time from station 1 to station 2 of the train departing at time d. 11 
a’ = the actual arrival time at station 2 of the train carrying the selected passenger (whichever train that 12 

may be). 13 
l = the difference between the actual arrival time at station 2 of the train carrying the selected 14 

passenger and the scheduled arrival time at station 2 of the train scheduled to depart station 1 at d. 15 
 16 

 17 
Figure 1. Example time-distance graph. 18 

 19 
The following useful relationships are implied by this diagram and related definitions: 20 
 21 
 ℎ = 𝑑 − 0 = 𝑑       (4)  22 
   𝑎 = 𝑑 + 𝑣     (5)  23 
   𝑎! = 𝑎 + 𝑙   (6)  24 
   𝐽 = 𝑎! − 𝐼   (7)  25 
 26 
Let fI(i); i∈[0; d] be the probability density function for passenger incidence times during the headway 27 

in question. This function is assumed to be continuous, representing a smoothed description of behavior 28 
during the given headway on an average day. It is assumed that all passengers belong to one of the two 29 
behavioral classes of individuals, each with its own method for setting journey time standards. The two 30 
classes will be referred to here as scheduled incidence and random incidence (Frumin and Zhao, 2012). 31 

Scheduled incidence passengers are assumed to have knowledge of scheduled departure times and 32 
scheduled running times, which they use both to time their incidence and to set waiting and in-vehicle 33 
time standards. It is assumed that their standard for waiting time is exactly the time between incidence 34 
and the next scheduled departure (i.e. the time they would expect to wait, given their time of incidence, if 35 
they expected the next train to depart as per the timetable), and that their standard for in-vehicle time is as 36 
per the timetable. In the context of the analytical framework, this implies 37 

 38 
 𝑊! = 𝑑 − 𝐼     (8)  39 
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   𝑉! = 𝑣           (9)  1 
 2 
These results correspond with the simple intuition that if a passenger has knowledge of the timetable, 3 

her standards for a given journey depend on her time of incidence only insofar as it determines the next 4 
scheduled departure. Her standard for arrival depends only on the timetable for that departure. These 5 
equations, along with Equations (1) – (2) and (5) - (7), substituted into Equation (3) yield the similarly 6 
intuitive result that 7 

 8 
   𝑋! = 𝑙       (10)  9 
 10 
Consequently, conditioned upon the passenger being incident on the given headway and arriving at 11 

time a’, EJT is independent of I and thus is not a random quantity. 12 
Because this class of passengers are assumed to be aware of the schedule, all that is assumed regarding 13 

the distribution of their incidence times over a given headway h is that it is not uniform (i.e. completely 14 
random). Specifically speaking, a continuous function 𝑓!!(𝑖) is taken to be a probability density function 15 
for the incidence times of scheduled incidence passengers if it meets the following conditions: 16 

 17 
 𝑓!! 𝑖 ≥ 0, 𝑖 ∈ [0, ℎ]       (11)  18 
   ∃𝑖 ∈ 0, ℎ :  𝑓!(𝑖) ≠ !

!
         (12)  19 

   𝑓!!(𝑖)  
!
! 𝑑𝑖 = 1           (13)  20 

 21 
Random incidence passengers are assumed to have knowledge of scheduled running times and 22 

headways but not to have or not use any knowledge of scheduled train departure times. These passengers 23 
are assumed to set standards for waiting time based on knowledge of scheduled train headways and to set 24 
standards for in-vehicle time based on knowledge of scheduled train running times. Specifically, it is 25 
assumed that their standard for waiting time is exactly half the scheduled headway in which they are 26 
incident, and that their standard for in-vehicle time is as per the timetable. In the context of the analytical 27 
framework, this implies 28 

 29 
 𝑊! = ℎ/2     (14)  30 
   𝑉! = 𝑣   (15)  31 

  32 
These results correspond with the intuition that if a passenger has no knowledge of specific departure 33 

times, his standard for arrival time will depend on his time of incidence, but that his a priori standard for 34 
total journey time is independent of his time of incidence. These equations, along with Equations (1) – (2) 35 
and (5) - (7), substituted into Equation (3) yield the similarly intuitive result that 36 

 37 
 𝑋! = 𝑙 + !

!
− 𝐼     (16)  38 

  39 
EJT for random incidence passengers is, unlike for scheduled incidence passengers, a random variable, 40 

even when conditioned upon being incident in the given headway and arriving at time a’. This result is 41 
also intuitive, indicating that the EJT for a given randomly incident passenger depends on luck with 42 
respect to how close his time of incidence is to subsequent departures.  43 

For random incidence passengers, conditional upon being incident at a given station during a given 44 
scheduled headway, their specific times of incidence are assumed to be uniformly random. In precise 45 
terms, for a passenger incident during a given headway h, the classical assumption (e.g. Osuna and 46 
Newell, 1972) is made that 47 

 48 
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 𝑓!! 𝑖
!
!
, 𝑖 ∈ [𝑖, ℎ]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (17)  1 

 2 
3.2. A unified unbiased estimator for aggregate EJT 3 
 4 

Section 3.1 reveals that the wrong assumption regarding the class of this passenger biased the 5 
estimation of EJT for at the individual passenger journey level. In practice there is no intent to report EJT 6 
at the level of an individual passenger. Rather, EJT should be aggregated over many passengers to 7 
indicate the performance of all or part of the network in question over a period of time. Of interest is an 8 
estimate of the probabilistic expectation (i.e. the mean) of X, E[X] for any given passengers incident on 9 
the headway [0, h]. 10 

 11 
3.2.1. Framework for aggregate EJT 12 

If EJT is to be aggregated over multiple journeys, the analytical framework is insufficient as currently 13 
constructed. Different passengers traveling between the same two stations and incident on the same 14 
scheduled headway can have different arrival times depending on the actual departure times of trains from 15 
the origin station. For example, if, on a given day, trains departed station 1 at times 0, h /3, and h, and 16 
some passengers were incident on [0, h /3] and others were incident on [h /3, h], then it is highly unlikely 17 
that all passengers incident on [0; h] could have the same arrival time a’. 18 

To account for this, the framework is generalized. It still considers a single randomly selected 19 
passenger incident to station 1 on headway [0, h], but rather than a single train arriving at station 2 at time 20 
a’, instead consider K discrete trains arriving at station 2. For the kth train, k ∈ 1…K, let 21 
𝑎!′  = the arrival time at station 2 of train k, 22 
𝑎 = as before, the scheduled arrival time at station 2 of the first train scheduled to depart station 1 at 23 

the end of the given headway, 24 
𝑙!   = the difference between the arrival time of train k and a, 25 
𝑌!   = an indicator random variable, for each passenger, which is 1 if the passenger arrive on train k, 0 26 

otherwise, 27 
𝛼!   = the fraction of all passengers incident at station 1 on [0, h] who arrived at station 2 at 𝑎!′ , trivially 28 

equal to E[𝑌!], 29 
𝑔!! 𝑖  be a probability density function, defined over [0, h], describing the distribution of the incidence 30 

time of the passengers who were incident on [0, h] and traveled from station 1 to station 2 aboard train k. 31 
It is appropriate to model the arrival times of passengers discretely since train arrivals are a discrete 32 

phenomena, at least as compared to passenger incidence. The set of K trains is exhaustive in that it 33 
includes all trains used by passengers incident on [0, h] and traveling from station 1 to station 2. This is 34 
sufficient to write that 35 

 36 
 𝛼!!

!!! = 1           (18)  37 
   𝛼!𝑔!! 𝑖   !

!!! = 𝑓!(𝑖)             (19)  38 
 39 
It will also be useful to use the law of total expectation to decompose E[X] as a function of the 40 

respective probabilities and conditional expectations of X for passengers arriving on each of the K trains 41 
as 42 

 43 
 𝐸 𝑋 = 𝛼!𝐸[𝑋|𝑌! = 1]  !

!!!            (20)  44 
 45 

3.2.2. Equivalence of random and scheduled incidence assumptions 46 
In Equation (10) it was shown that under the assumption of scheduled incidence, for a given journey 47 

incident at station 1 on [0, h] and arriving at station 2 at time a’, EJT is not a random variable but rather 48 
equal to l, independent of time of incidence I. Because the extended framework uses the indicator random 49 
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variable  𝑌!, 𝑋!  is a random variable. However, conditional upon a given passenger being on train k, EJT 1 
for that passenger is no longer random and is known to be 𝑙!, which implies that 2 

 3 
   E 𝑋! 𝑌! = 1 = 𝑙!      (21)  4 
 5 
Substituting this into Equation (20) yields, quite intuitively, that under the assumption of scheduled 6 

incidence the estimator for aggregate EJT is 7 
 8 
 𝐸 𝑋! = 𝛼!𝑙!   !

!!!            (22)  9 
 10 
Under the random incidence assumption, it was seen in Equation (16) that EJT for a given journey 11 

does depend on time of incidence. However, conditioned on a specific incidence time I = i, XR is a 12 
deterministic quantity.  13 

If it is assumed that the passengers in question are in fact randomly incident, Equations (17) and (19) 14 
can be used to write that  15 

 16 
 !

!
= 𝛼!𝑔!! 𝑖   !

!!! , 𝑖 ∈ [0, ℎ]             (23)  17 
 18 
This along with the fact that the integral of any probability density function over its entire domain 19 

equals unity simplifies the estimator for aggregate EJT under random incidence assumptions to  20 
 21 
 𝐸 𝑋! = 1/ℎ(!

!
− 𝑖)!

! 𝑑𝑖 + 𝛼!𝑙!   !
!!!            (24)  22 

 23 
which simplifies further to 24 

 25 
 𝐸 𝑋! = 𝛼!𝑙!   !

!!!            (25)  26 
 27 

which is the same result as found for scheduled incidence in Equation (22). Note that 𝑙! can still be 28 
negative because in this generalized context, some trains departing station 1 on [0, h] may arrive at station 29 
2 before time a. 30 

The estimator for aggregate EJT under scheduled incidence assumptions is thus shown to be equal to 31 
the estimator for aggregate EJT under random incidence assumptions if passengers are in fact randomly 32 
incident. This implies that using the scheduled incidence estimator for aggregate EJT is appropriate if all 33 
passengers are scheduled incidence passengers or all passengers are random incidence passengers. 34 

 35 
3.2.3. Blended passenger incidence behavior 36 

In practice, it will often be the case that some passengers are randomly incident while others clearly 37 
make use of the timetable. This would be indicated by a distribution of passenger incidence times over a 38 
given headway that is clearly a superposition of two different incidence distributions, one meeting the 39 
scheduled incidence conditions of Equations (11) - (13), and one meeting the random incidence 40 
conditions of Equation (17). 41 

Without loss of generality, assume that some fraction γ of passengers incident on [0, h] are random 42 
incidence passengers, and so 1 −   γ   are scheduled incidence passengers. The probability density function 43 
for incidence times of all passengers under blended incidence can then be written as the superposition of 44 
the respective random and scheduled incidence density functions 45 

 46 
 𝑓!! 𝑖 = γ𝑓!! 𝑖 + (1 − γ)𝑓!! 𝑖 , 𝑖 ∈ [𝑖, ℎ]           (26)  47 
 48 
Through a series of derivation, it is found that 49 
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 1 
 𝐸 𝑋! = 1/ℎ(!

!
− 𝑖)!

! 𝑑𝑖 + 𝛼!𝑙!   !
!!!            (27)  2 

 3 
which is the same as Equation (24), again simplifying to 4 

 5 
 𝐸 𝑋! = 𝛼!𝑙!   !

!!!            (28)  6 
 7 
The estimator for aggregate EJT in the case of multiple trains carrying blended incidence passengers is 8 

thus found to be the same as the estimator for aggregate EJT under scheduled incidence assumptions. 9 
A simple example is used to test this finding. Consider a transit service with a constant scheduled 10 

headway of 15 min. In reality, each train departs exactly 5 min late (see Figure 2). All passengers are 11 
randomly incident. Since both the scheduled and the actual headways are evenly distributed, E[XR] (or the 12 
aggregate EJT for random incidence passengers) should be zero. Based on the derivation above, this 13 
result should be the same as E[XS], the aggregate EJT for scheduled incidence passengers. Assuming 14 
passengers incident during (8:00, 8:15] at a constant rate λ (passengers/min) know the specific schedule, 15 
all of them will have the same expected arrival time 𝐴 = 8:35. For the 5λ passengers incident during (8:00, 16 
8:05], they will actually arrive at the destination at 8:25, and thus their EJT will be 𝑋!! = -10 min. For the 17 
10λ passengers incident during (8:05, 8:15], they will actually arrive at the destination at 8:40, and thus 18 
their EJT will be 𝑋!! = 5 min. Therefore, the aggregate EJT under the scheduled incidence assumption 19 
will be E 𝑋! = 5λ ∗ 𝑋!! + 10λ ∗ 𝑋!! = 0, which is the same with the E[XR]. Thus it proves that the 20 
unified aggregate estimator of EJT developed in this paper works. 21 

 22 

 23 
Figure 2. A perfect-headway example 24 

 25 
 26 

4. Application to the London Overground network 27 
 28 
This section presents EJT results for the London Overground network. It adopts the conceptual 29 

approach proposed in this paper and implements it using published Overground timetables and journey 30 
data from the Oyster smartcard ticketing system. It uses some of the results observed on the Overground 31 
as consideration points for discussing the properties and merits of EJT as a measure of service quality. 32 

 33 
4.1. The London Overground and the oyster smartcard ticketing system 34 

 35 
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 1 
Figure 3. London Overground map (as of 2008) 2 

 3 
The London Overground network is for the most part circumferential, primarily orbiting London to the 4 

North and West, and is very much part of the integrated network of Transport for London (TfL) and 5 
National Rail services. Services on the Overground are for the most part divided into four different 6 
service patterns: North London Line (NLL), Gospel Oak to Barking Line (GOB), Watford DC Line 7 
(WAT), and West London Line (WLL). NLL is the core of the network and the busiest Overground line, 8 
with the most frequent service. A map of the Overground network is shown in Figure 3. 9 

Oyster is TfL’s AFC smartcard system. London’s fare policy and technologies requires most Oyster 10 
users to validate their cards upon all entries and exits to the system. The centralized computer system 11 
archives these Oyster entry and exit transactions including their location, time stamp and Oyster ID in an 12 
easily accessible database. As a result, disaggregate Oyster journey data are cheap to gather in large 13 
volumes, and provide a prime source of data on individual passenger journey. Not everyone uses Oyster. 14 
The penetration rate across all TfL services is estimated to be approximately 80% (Transport for London, 15 
2009), but varies in space and in time across the TfL network (Chan, 2007) 16 

 17 
4.2. Implementation of the EJT methodology 18 

 19 
EJT for London Overground journeys is estimated according to the unified methodology described in 20 

Section 3. This method assumes that the incidence behavior and journey time standards of all passengers 21 
are dependent on the timetable. This was shown to be unbiased in aggregate, even if some or all 22 
passengers are in fact randomly incident. 23 

Under this framework, for each given journey recorded by the Oyster smartcard ticketing system 24 
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• the incidence time, I, is estimated as the timestamp of the entry transaction; 1 
• the actual arrival time, a’, is estimated as the timestamp of the exit transaction; 2 
• the scheduled arrival time, a, is estimated from the timetable; 3 
• the total journey time, J, is estimated as a’ - I (the difference between the entry and exit transaction 4 

times); 5 
• the excess journey time, X, is estimated as a’ - a (the difference between the actual and scheduled 6 

arrival times). 7 
 8 

 9 
Figure 4. Time-distance illustration of EJT estimation for a passenger from Stratford to Camden Road. 10 

 11 
Figure 4 illustrates this method for a passenger traveling from Stratford to Camden Road on the North 12 

London Line (NLL) of the London Overground. In this “time-distance" plot, the X axis represents time 13 
and the Y axis represents the distance traveled along the NLL in number of stations. Each line traveling 14 
northeast through the plot shows the schedule of one weekday service. 15 

The estimation of the scheduled arrival time, a, for each passenger is achieved through the same 16 
schedule-based assignment process used to analyze passenger incidence behavior by Frumin and Zhao 17 
(2012). In the algorithm a Path() function is used to encapsulate the complexity of conducting a schedule-18 
based assignment for a single passenger trip. This was implemented in the free/open source software 19 
library Graphserver (Graphserver, 2009). Graphserver reads timetables in the widely used General Transit 20 
Feed Specification (GIFS) (Google, 2009). This specification was defined by Google to facilitate transfer 21 
of public transport schedules from operators to Google to power its own web-based journey planning 22 
software. It has become a de-facto standard for public distribution of public transport timetables. A 23 
combination of open source tools and scripts were used to process over 1.6 million Oyster journey records 24 
made by over 290 thousand passengers on the 52 weekdays from 31 March, 2008 through 10 June, 2008, 25 
inclusive. The data set was filtered to include only those journeys for which it is almost certain that the 26 
passenger in question used only Overground services. The resulting data set contains nearly 1,670,000 27 
journeys from 54 stations on 1,442 origin-destination pairs made by over 290,000 passengers. In that 28 
sense, EJT is estimated through a two-stage assignment process. First, a frequency-based assignment is 29 
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used to select journeys that are (almost) certain to have used the Overground. Second, a schedule-based 1 
assignment is used to determine EJT with respect to the Overground timetable for those journeys. 2 

 3 

 4 
Figure 5. Time-distance plot of timetable and observed Oyster exits for westbound travel on the North 5 

London Line on 3 April, 2008. 6 
 7 
Because of the complex and dynamic nature of even a single day's rail operations and passenger 8 

journeys, a graphical approach is used to validate the EJT measurements. Figure 5 shows the graphical 9 
validation results, and it can also help agencies to monitor service performance information. The plot is 10 
similar to that shown in Figure 4 with the addition of the times, locations, and EJT of actual passenger 11 
journeys. The size of the slanted hatch marks represents the number of Oyster journeys (in the Stratford – 12 
Richmond direction) that exited a given station on a given minute of the day on Thursday 3 April, 2008. 13 
The color of each hatch mark indicates the average EJT for the trips it represents. The more yellow and 14 
then red the mark, the more positive (i.e. late) the EJT; the greener the mark, the more negative (i.e. early) 15 
the EJT. There is much that can be inferred from this plot about the service delivery and quality on the 16 
day in question, for example: 17 
• Trains arriving Richmond (RMD) after 08:00 were less patronized and ran to schedule or a bit early. 18 
• Starting with the 07:07 service from Stratford there are slight delays, which become severe for the 19 

08:06 and 08:22, and, perhaps, also the 08:30 and 08:37 trips. 20 
• The 08:52, 09:03, 09:22, and 09:38 services ran smoothly, at least as far as Willesden Junction (WIJ). 21 
• The 09:31 shuttle to Camden Road (CMD) may not have run at all, as reflected by the late passengers 22 

as far as Camden Road on the 09:38 service. 23 
• The 09:52 from Stratford ran extremely late or not at all. 24 
• By the 11:07 departure from Stratford, the service had largely recovered. 25 
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The above hypotheses were justified by the true record of events found in the Overground’s incident 1 
logs, and thus prove that that aggregate Oyster-based EJT measurements accurately reflect events on the 2 
ground, including train operations (service delivery) and the passenger's experience (service quality).  3 

 4 
4.3. Results 5 

 6 
This section presents EJT results for the London Overground network, first in isolation and next in 7 

comparison to the existing measure of service delivery.  8 
 9 

4.3.1. Mean and total EJT by line and time period 10 
 11 

 12 
Figure 6. Total EJT, by line and time period 13 

 14 

 15 
Figure 7. Mean EJT, by line and time period 16 

 17 
Figures 6 and 7 show two different aggregations of EJT by line and time period. The first of these 18 

presents the daily average of the sum of EJT for all Oyster journeys. This plot emphasizes the passenger-19 
weighted nature of EJT as a measure of system performance. It is clear that, as a product of the number of 20 
passengers and the length of delays experienced by those passengers, the NLL, particularly during the 21 
AM and PM Peak periods, is the most problematic part of the Overground network. It is the line most 22 
deserving of management and tactical planning attention; the other lines frankly pale in comparison. For 23 
the Gospel Oak to Barking (GOB) line, the West London Line (WLL) and for interchange passengers 24 
(INT) the AM and PM Peak periods have the most total passenger delay. The Watford DC Line (WAT) 25 
breaks this pattern, with negative total and mean EJT in the Early and AM Peak periods.  26 

Figure 7 shows the pure mean passenger EJT. It puts all lines and time periods on equal footing by 27 
normalizing by the total number of journeys. This plot is primarily useful for comparing the performance 28 
of different lines at different times of day from the perspective of the average passenger, rather than all 29 
passengers. Overall mean EJT clearly varies across lines and time periods. After normalizing for the total 30 
number of journeys, the AM and PM Peak periods, with EJT of 2.6 and 2.2 minutes, respectively, are still 31 
the most problematic periods for the NLL. 32 
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These measurements are higher than all other lines for corresponding time periods except for 1 
interchange passengers (INT) in the AM Peak, with an EJT of 3.1 minutes. It is not unexpected that 2 
interchange passengers (most of whom likely use the NLL for one leg of their journey) suffer longer 3 
delays than single-line passengers. A short delay on the first leg of an interchange journey can cause the 4 
passenger to miss the targeted departure of the second leg. This could magnify the small delay on the first 5 
leg to an entire headway of the service on the second leg. 6 

The WLL is very close to the NLL in terms of mean EJT, whereas it was dwarfed in terms of total EJT. 7 
The implication is that journeys on the WLL are subject to delays of similar (average) magnitudes, but 8 
many fewer journeys are affected. Unlike on the NLL, the normalization by total passengers does change 9 
the relative picture for the GOB. While total EJT is greatest in the AM and PM Peak periods, the highest 10 
average EJT is experienced by passengers during the Early Morning period. These relative differences do 11 
not necessarily mean that one time period or line is more worthy of attention than the other. Rather, it 12 
presents a more nuanced picture of service quality which can be acted upon differently depending on 13 
management policies and priorities. 14 

EJT is net negative on the WAT in the Early and AM Peak periods. To understand this further, EJT of 15 
WAT passengers were investigated at the level of individual origin-destination (OD) flows. In the AM 16 
Peak, 46 out of 236 OD flows on the WAT had net negative EJT, including all 15 OD flows into Euston, 17 
the line's southern central London terminus. These flows into Euston account for 93% of net negative EJT 18 
on the 46 net negative OD flows. Almost half of that net negative EJT into Euston comes from the flows 19 
originating at Queens Park and Kensal Green (towards the southern end of the line), both with average 20 
EJT of almost -3.0 minutes. This is explained, in consultation with Overground management (Bratton, 21 
2008) by the fact that WAT trains often depart Queens Park on time or slightly late and arrive Euston 22 
terminal up to 5 minutes early. In other words, their scheduled running time over the last portion of the 23 
line is generous. 24 

Another quarter of the net negative EJT into Euston comes from the OD flows originating between 25 
Watford Junction and Harrow & Wealdstone (at the northern end of the line), non-inclusive, which have a 26 
mean EJT of -5.1 to -12.4 minutes. This likely represents a problem with the assignment model used to 27 
filter non-Overground passengers. Another National Rail service provides twice-hourly express service 28 
from Watford Junction and Harrow & Wealdstone to Euston in substantially less time than the 29 
Overground. The assignment model correctly assigns passengers from these two stations to that service, 30 
but not for passengers who start on the Overground and interchange to this express service, perhaps 31 
opportunistically, at Harrow & Wealdstone.  32 

In general, these aggregate results are in line with a priori expectations held by the management of the 33 
Overground network (e.g. Bratton, 2008). The most strongly held belief, confirmed here, is that the NLL 34 
carries the largest passenger loads and has the most delays, especially during the peak periods. 35 

 36 
4.3.2. Time series of mean EJT 37 

Figure 8 shows daily mean EJT over time for each London Overground line, for the whole day and for 38 
the AM Peak period. On all lines, there is marked day-to-day and week-to-week variability of EJT. As 39 
expected, mean EJT exhibits some volatility on a day-to-day basis. This is particularly the case as sample 40 
sizes decrease, namely in the AM Peak compared to the whole day, and for the WLL and INT compared 41 
to the other lines. There is not a clear up or down trend over time in this dataset suggesting that overall 42 
relative service quality on the Overground was steady over this period. 43 

 44 
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 1 
Figure 8. Daily mean EJT. 2 

 3 
4.3.3. Mean and total EJT by time period and direction (NLL) 4 

 5 

 6 
Figure 9. Total EJT on the NLL, by time period and direction. 7 

 8 

 9 
Figure 10. Mean EJT on the NLL, by time period and direction. 10 

 11 
Figures 9 and 10 further disaggregate EJT results for the NLL by direction of travel. This aggregation 12 

is important because of the unbalanced nature of passenger demand on the NLL (and indeed on many 13 
railways) in different periods of the day. Figure 9 shows total EJT to be substantially worse in the 14 
westbound direction than in the eastbound direction in the AM Peak period. Figure 10 shows mean EJT to 15 
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be similarly unbalanced, though somewhat less so than total EJT, in the same period. This indicates that, 1 
in the AM Peak period, there are more passengers suffering longer delays in the westbound than the 2 
eastbound direction. Similar results can be seen in the PM Peak period with the directions reversed, 3 
though the unbalance is not nearly as severe as in the AM Peak. 4 

 5 
4.3.4. Mean and total EJT by scheduled service (NLL AM peak) 6 

One advantage of the approach proposed here is that, with such a large and detailed data set, it is 7 
possible to probe deeper into the specifics of delays and their effects on passengers. To estimate EJT, 8 
each passenger journey was assigned to a specific scheduled service (Frumin and Zhao, 2012). This 9 
assignment indicates only which train a given journey would likely have taken under right-time service 10 
delivery, not which train the passenger actually rode. In that sense, each scheduled service defines a 11 
specific market over time and space, and the assignment places journeys into these markets. 12 

 13 

 14 
Figure 11. Total EJT by scheduled service, westbound. 15 

 16 

 17 
Figure 12. Mean EJT by scheduled service, westbound. 18 

 19 
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Figures 11 and 12 aggregate EJT to the level of these markets. They show total and mean EJT, 1 
respectively, for westbound passenger journeys on the NLL between Stratford and Willesden Junction. 2 
These are the peak London Overground markets - the peak direction (from Stratford towards Richmond) 3 
at the peak time of day on the busiest line - which were shown in Figures 5 and 6 to have the most severe 4 
EJT problems on the whole Overground network. The bars in these plots are spaced according to the 5 
actual headway (at Stratford) of each service. 6 

Figure 11 clearly shows that the 07:52 and 08:22 trains are the most problematic services in terms of 7 
total passenger delay. It also shows how unbalanced the headways in the timetable are, especially 8 
between Stratford (SRA) and Camden Road (CMD). Between 07:00 and 09:00, the services to Richmond 9 
with full 15 minute headways have the highest total EJT relative to their shorter-headway leaders and/or 10 
followers.  11 

The mean EJT results in Figure 12, normalized by the total number of journeys in each market, show 12 
similar results. The most substantial relative differences are for the short headway services at 07:12 and 13 
09:07. Their mean EJT is much higher compared to other services than was their total EJT. This stands to 14 
reason, in that with short headways they should have fewer journeys and thus less total EJT. 15 

 16 
4.3.5. Comparison with existing performance metrics 17 

EJT measures are compared with corresponding on-time performance (OTP) results from the existing 18 
London Overground performance regime, the Public Performance Measure (PPM). These comparisons 19 
are presented as much to explore the differences between EJT and OTP as public transport performance 20 
measures as to characterize performance on the Overground. 21 

Figure 13 plots PPM and total and mean EJT by line, for the AM Peak and for the whole day, over the 22 
entire study period. The plot shows the complement of PPM so that the measures are directionally aligned 23 
(i.e. a higher number indicates worse performance). PPM and total EJT correspond in that the NLL is by 24 
far the worst performing line. The difference between the NLL and other lines is even more pronounced 25 
in terms of total EJT than in terms of PPM. This reflects the difference in passenger volumes between the 26 
different Overground lines. 27 

 28 

 29 
Figure 13. EJT and PPM, by line. 30 

 31 
The WLL appears much worse than the other lines in terms of mean EJT than it is in terms of PPM. 32 

This could be because the WLL has the lowest frequency of the Overground lines. Consequently, each 33 
delayed train (counting against PPM) may have a greater proportionate effect on the line's passengers. It 34 
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could also be that the manner in which WLL trains are delayed has worse effects on passengers than on 1 
the other lines. 2 

 3 
 4 

5. Discussion and conclusion 5 
 6 
This section anticipates and discusses some concerns that may arise in the application of the method 7 

proposed in this paper. And in the end, a few conclusions are drawn. 8 
 9 

5.1. Application considerations 10 
 11 
AFC penetration rates may vary across the network for which EJT is measured. In some cases, this 12 

may require a weighting of EJT values to account for this variation. For example, if the rate varies 13 
significantly across different OD flows on the same line, re-weighting may be needed when analyzing 14 
EJT on that line. If penetration is largely consistent for a given line but varies across line, such correction 15 
is only necessary if comparing EJT results between those lines.  16 

 17 
Care must be taken if EJT is to be measured for only some portion (e.g. the Overground) of a broader 18 

network (e.g. the entire London railway network), especially if timetables are available only for that 19 
portion of the network. The most straightforward way to handle this situation is to select only those OD 20 
flows that will use the portion of the network in question with relative certainty. This can be done 21 
manually based on judgment, or can take advantage of an assignment model that considers the entire 22 
network. 23 

 24 
5.2. Negative EJT 25 

 26 
EJT for an individual passenger journey (under the scheduled incidence assumptions) can be negative. 27 

This is in and of itself not a cause for concern in terms of the measurement of EJT. However, aggregate 28 
EJT that is net negative may indicate certain biases in the EJT estimation process. Negative EJT for 29 
individual journeys can occur for several reasons, including the following. 30 
• A passenger uses some service not included in the set of timetables used in setting journey time 31 

standards. In this case, the negative EJT can be smaller or larger in magnitude than the headway of 32 
the service in question. 33 

• A passenger takes the service on which he or she is scheduled to depart, but that service arrives at that 34 
passenger's destination earlier than the timetable indicates. In this case, when the headway is 35 
relatively large, the negative EJT should be small in magnitude relative to the headway of the service 36 
in question. 37 

• A passenger takes an earlier service than the one which he or she is scheduled to depart (because that 38 
earlier service was running late), which naturally arrives at the passenger's destination before the 39 
passenger's scheduled arrival time. In this case, the negative EJT can be as large as the headway of 40 
the service in question. 41 

The first of these reasons indicates a potential bias the estimation of EJT. If non-scheduled trips were 42 
inserted into the timetable by the operator in question as a result of service control decisions, the negative 43 
EJT is unbiased in that passengers would not be considered to have expected to use this new service. 44 
However, if the service that the passenger used was provided by a different operator (e.g. one who shares 45 
the same track, or on a different path altogether), the result can be considered a biased EJT in that the 46 
service should have been used in setting journey time standards. This reflects a problem with the selection 47 
of OD flows for which EJT is measured for a given operator, which may result from biases in an 48 
assignment model used to select those OD flows. The second and third of these reasons do affect the EJT 49 
estimate for an individual journey. These negative EJT measurements clearly affect the distribution of 50 
EJT, but should not under most circumstances unduly affect the mean. 51 
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 1 
5.3. EJT and longitudinal analysis 2 

 3 
A problem for using EJT in longitudinal analyses is that when the timetable is revised, changes in EJT 4 

may be driven more by the timetable modification than by any real changes in journey times experienced 5 
by passengers. For example, if running times in the timetable are lengthened but passenger journey times 6 
remain the same, EJT will decrease even if passengers experience no actual improvement in actual 7 
journey time.  8 

Furthermore, passengers may adjust their incidence behaviour over time as service conditions change. 9 
The method proposed here is entirely conditioned on actual incidence behavior, so changes in such 10 
behavior will not bias estimates of EJT per se. In one sense, this is a positive feature of this method 11 
because it absolves the analyst of the need to make any assumptions regarding incidence behavior. 12 
However, it also implies that EJT will not capture some of the benefits of improved service reliability. 13 
Specifically, it will not reflect the benefits captured by passengers who take advantage of more reliable 14 
service by adjusting their incidence behavior to reduce waiting time (likewise for the harm to passengers 15 
who react to less reliable service by becoming more randomly incident incidence). 16 

For example, consider a service that has become more reliable over time, perhaps because of improved 17 
infrastructure or rolling stock but with no changes to the timetable. If, as a result of this reliability 18 
improvement, passengers of this service now arrive at their destinations closer to their respective arrival 19 
time standards, such will be reflected in EJT measurements. However, it may also be the case that the 20 
journey time standards of some of these passengers has decreased because, as the service has become 21 
more reliable, their incidence behavior has become less random (i.e. more timetable-dependent, with 22 
smaller scheduled waiting times). This would not be reflected in EJT measurements. 23 

These realizations highlight the relative nature of EJT, and suggest that other measures, for example 24 
those for absolute service quality, may be necessary for longitudinal analysis. It should also be noted that 25 
measures of service quality, including EJT, are not intended to be used for evaluating a timetable on its 26 
own merits. They simply speak to the differences between passengers’ actual journeys and the promise 27 
implied by the timetable. Evaluation of a timetable in isolation from passenger journeys is not considered 28 
here. 29 

 30 
5.4. Extension to a heterogeneous rail network with interchanges 31 

 32 
The authors' intuition is that this analysis extends readily beyond a single rail line with a single service 33 

pattern to a rail network with interchanges and a variety of service patterns. Such an extension would 34 
require the model to account for passenger incidence behavior at interchange locations. Without formally 35 
extending the model, the following observations should provide an intuitive sense of why the schedule-36 
based estimator for aggregate EJT is appropriate in a network context. Note that in all cases it is expected 37 
to measure only the end-to-end journey time, which subsumes all interchanges. 38 
• This analysis easily extends to include a network with walking links, such as those between AFC 39 

gatelines and station platforms. Such links can be thought of as lines or services with continuously 40 
available departure times (i.e. infinite frequency, or zero headway), in which case the distinction 41 
between scheduled and random incidence is irrelevant. 42 

• On a single line with heterogeneous service patterns, such as short turns or a trunk-and-branch 43 
configuration, passengers can be considered to ignore certain departures that do not improve their 44 
overall travel time (Frumin and Zhao, 2012). This simply changes the timetable applicable to each 45 
passenger's journey, not the analysis thereof. 46 

• If passengers are aware of and make plans based on the timetable for the entire network, then clearly 47 
the schedule-based estimator is appropriate. 48 

• If passengers are unaware of or do not use the timetable for any portion of the network, and if the 49 
different services are timetabled independently, then incidence at the interchange location will be 50 
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random with respect to the departures of the service being interchanged to. In this case, some 1 
passengers will be lucky and experience short interchange times while others will experience long 2 
ones. 3 

• If the timetable is designed to facilitate interchanges (i.e. minimize interchange times) between lines, 4 
then a schedule-based estimator should be used regardless of passenger incidence behavior and 5 
standards. Even if passengers are randomly incident at the initial station, their incidence at the 6 
interchange station is non-random with respect to the timetable of the subsequent line by the very 7 
nature of the specially-constructed timetable. 8 

• If passengers are aware of and use the timetable for only a portion of the network, then they either 9 
interchange from a service on which they schedule their incidence to a service on which they are 10 
randomly incident, or vice versa. In the former case, since they do not know (or care) about the 11 
timetable for the second service, their incidence time (and thus journey time standard) for the first 12 
service is unaffected. 13 

• The reverse scenario, where passengers are unaware of the timetable on their first service, but have a 14 
target departure in mind for the second, is perhaps less straight-forward. In this case, it would be 15 
reasonable to set a waiting time standard of a full (rather than half) headway for the first service, since 16 
this is what an operator would recommend, based on the timetable, to minimize the probability of 17 
missing the second, scheduled, departure. A first intuition is that this would bias some of the analyses 18 
in this paper. However, as was found in those analyses, the first intuition with respect to incidence 19 
behavior, the timetable, and journey time standards is not always correct. This issue merits further 20 
examination. 21 

• If these intuitions are to be believed, and the issue in the final observation is resolved, the model and 22 
estimators for aggregate EJT developed in this paper are in fact quite general and should be 23 
applicable to a wide variety of contexts. 24 

 25 
5.5. Conclusions 26 

 27 
Excess journey time (EJT), with standards derived from the timetable, is a measure of relative service 28 

quality that strikes useful balance between the passenger's and operator's perspectives. It has found lasting 29 
application at a number of large urban railways. Actual passenger journey times can now be measured 30 
(rather than modeled) directly from automatic data produced by AFC systems such as the Oyster 31 
smartcard. 32 

Along with measuring actual passenger journey times, EJT depends on a standard against which to 33 
compare those measurements. These standards should be based on the timetable, so as to be as 34 
meaningful and useful to operators as possible. Within that constraint, they should reflect passenger 35 
concerns as realistically as possible. Most measures of service quality and relative service quality have 36 
made the assumption of random incidence, with the implied standard for waiting time of half the 37 
scheduled headway. Passenger incidence behavior is often, including on the London Overground, much 38 
more heterogeneous than that. This heterogeneity of the behavior comes with certain implications about 39 
what knowledge passengers have of the timetable and how they use that knowledge. 40 

Based on this, this paper has established a rigorous framework for analyzing EJT, in particular for 41 
reasoning about passenger’ journey time standards as implied by varying incidence behaviors. It was 42 
found that the wrong assumption about incidence behavior and journey time standards can result in a 43 
biased estimate of EJT at the level of an individual passenger journey. Nevertheless, the estimator for 44 
aggregate EJT is unbiased and unified, regardless of actual passenger behavior, under the assumption that 45 
all passenger incidence and associated journey time standards are dependent on actual departure times in 46 
the timetable. This result was proven for a single rail line without interchanges, but intuitively should 47 
hold for a rail network. This is a very useful result in practice. It allows for the estimation of aggregate 48 
EJT from only AFC (e.g. Oyster smartcard) data and published timetables in a simple unified manner, 49 
regardless of service frequencies or passenger behaviors that vary across the network or over time.  50 



24 
 

The paper also presents an analysis of aggregate and disaggregate EJT results for the London 1 
Overground, both in isolation and in comparison to the Overground's existing measure of service delivery. 2 
EJT for individual passenger journeys on a given service was found to range from negative (i.e. early) by 3 
up to one headway to positive (i.e. late) by substantially more than one headway. However, it is difficult 4 
to interpret EJT for individual journeys, in part because of the ambiguity with respect to passenger's 5 
standards and incidence behavior discussed. Consequently, EJT is not a particularly useful measure to 6 
analyze individual passenger journeys. Aggregate EJT, on the other hand, is a measure of relative service 7 
quality with clear meaning. It expresses the average passenger's experience in terms of total journey time 8 
compared to what the timetable would imply, for a wide range of passenger incidence behaviors. 9 
Individual EJT measurements are, by nature of the assignment process by which they are estimated, easily 10 
aggregated both spatially and temporally. Depending on the analytical need, aggregate EJT can be 11 
estimated at the level of line, origin-destination flow, scheduled service, time period (e.g.AM Peak), day, 12 
week, etc. Aggregate EJT was found to vary substantially across the different London Overground lines 13 
and across time periods of weekday service. Total EJT is greatest on the North London Line in the AM 14 
and PM Peak periods, which also had among the highest estimates of mean EJT. 15 
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