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A Magnus Wind Turbine Power Model Based on
Direct Solutions Using the Blade Element

Momentum Theory and Symbolic Regression
Gustavo Richmond-Navarro, Williams R. Calderón-Muñoz, Richard LeBoeuf, and Pablo Castillo

Abstract—A model of the power coefficient of a mid-scale Mag-
nus wind turbine using numerical solutions of the Blade Element
Momentum Theory and symbolic regression is presented. A direct
method is proposed for solving the nonlinear system of equations
which govern the phenomena under study. The influence of the tip-
speed ratio and the number, aspect ratio, and the angular speed of
the cylinders on the turbine performance is obtained. Results show
that the maximum power coefficient is on the order of 0.2, which is
obtained with two low aspect ratio cylinders, a dimensionless cylin-
der speed ratio of 2, and a turbine tip-speed ratio between 2 and
3. The predicted power coefficient at low tip-speed ratio suggests
that a Magnus turbine may be adequate in the urban environment.

Index Terms—Blade element momentum theory, Magnus wind
turbine, symbolic regression.

NOMENCLATURE

a Axial flow induction factor
a′ Tangential flow induction factor
B Number of cylinders
CPow Power coefficient
CT Thrust coefficient
CD Drag coefficient
CL Lift coefficient
Cm Cylinder moment coefficient
D Cylinder diameter (m)
F Tip-loss model correction factor
FD Drag force (N)
FL Lift force (N)
L Cylinder length (m)
L0 Hub-fixed cylinder length (m)
P Wind turbine power (W)
PNet Net power output (W)

Manuscript received June 1, 2016; accepted August 21, 2016. Date of pub-
lication August 29, 2016; date of current version December 14, 2016. This
work was supported by the Instituto Tecnológico de Costa Rica and Minis-
terio de Ciencia, Tecnologı́a y Telecomunicaciones of Costa Rica. Paper no.
TSTE-00411-2016.

G. Richmond-Navarro is with the Escuela de Ingenierı́a Electromecánica,
Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica (e-mail:
grichmond@tec.ac.cr).
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Prot Frictional drag power (W)
Q Torque (N·m)
r Radius (m)
rc Cylinder radius (m)
R1 Residual
R2 Residual
Re Reynolds number
T Axial force (N)
Uinf Free-stream air velocity (m/s)
Un Total relative velocity (m/s)
α Angle of attack (rad)
γ Cylinder aspect ratio
λ Tip-speed ratio (TSR)
μ Air dynamic viscosity (kg/s·m)
ν Air kinematic viscosity (m2 /s)
ρ Air density (kg/m3)
Ω Turbine angular speed (rad/s)
ω Cylinder angular speed (rad/s)
ω̄ Cylinder speed ratio (CSR)

I. INTRODUCTION

WHEN a cylinder rotates in a flow field, a lift force per-
pendicular to the flow direction is generated. This is

due to an asymmetric flow pattern and air pressure difference
produced by the upper and lower boundary layers separating at
different positions [1], which is the well-known Magnus effect.

The use of the Magnus effect to generate lift in cylindrical
shaped wind turbine blades has been proposed as an alternative
to airfoils. Rotating nonuniform blades have also been used. For
example, Mecaro Co. Ltd., a Japanese manufacturer produced a
turbine which has spiral shaped fins coiled around its cylindrical
blades [2].

In a recent study of Magnus type wind turbines, Bychkov
et al. [3] concluded that the Magnus turbine can be exploited in
a wide range of wind velocities, from 2 to 40 m/s, with a rota-
tional velocity 2 to 3 times lower than conventional blade tur-
bines. Luo et al. [2] proposed an analytical solution for Magnus
wind turbine power performance based on the Blade Element
Momentum (BEM) Theory, ignoring the drag of the rotating
cylinders. However, they concluded that the maximum power
coefficient of this type of wind turbine needs further confirma-
tion. Using numerical simulation, Sun et al. [4] examined the
aerodynamic characteristics of a Magnus wind turbine with var-
ious cylinder shapes and found that Magnus type wind turbines
normally have low wind energy utilization efficiency. Sedaghat
[5] concluded that the Magnus wind turbine power coefficient
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is not as yet promising for urban environments, which includes
highly variable flow direction, low speeds and high shear [6].
To improve this performance, local configurations may be con-
sidered as proposed by Bourabaa et al. [7].

In this paper, a model of the turbine performance is obtained
using the BEM Theory and symbolic regression. The maxi-
mum power coefficient of a mid-scale Magnus wind turbine is
obtained. Also, the influence of dimensionless parameters, in-
cluding tip-speed ratio, cylinder speed ratio, aspect ratio and the
number of cylinders on the power coefficient is presented.

II. MATHEMATICAL MODELING AND SYMBOLIC REGRESSION

A. Direct Method to Estimate Power for Magnus Wind
Turbines

The Actuator Disc Concept [8], explains the energy extraction
process in a horizontal axis wind turbine (HAWT) by means of
the axial flow induction factor, a, which accounts for the wind
velocity variation when the air passes through the rotor disc.

Using the linear momentum theorem, Bernoulli’s equation
and the BEM theory, in which a blade element sweeps out an
annular ring of width δr (assuming there is no radial interaction
between contiguous annuli), the axial force on each annulus is
shown in Eq. (1):

δT = CT ρU 2
∞πrFδr, (1)

where CT is the thrust coefficient, given by the modified Glauert
Correction [9], ρ is the air density, U∞ is the air velocity far
upstream, r is the radius to the annular ring, and F is a correction
factor from the Tip-Loss Model [9], which takes into account the
influence of vortices shed from the cylinder tips on the induced
velocity field.

From the angular momentum theorem, the torque on the ring
is equal to the rate of change of angular momentum of the air
passing through the annulus, as shown in Eq. (2):

δQ = 4ρU∞Ωa′(1 − a)πFr3δr, (2)

where Ω is the turbine angular speed and a′ is the tangential
flow induction factor, which measures the transfer of rotational
motion to the air due to the opposite torque imposed by the rotor
upon the air.

Thrust and torque on B cylindrical elements can also be
expressed as a function of lift and drag forces, as shown in
Fig. 1 and given in Eqs. (3) and (4):

δT = Bcos(α)δFL + Bsin(α)δFD , (3)

δQ = (Bsin(α)δFL − Bcos(α)δFD )r, (4)

where α is the angle of attack and FL and FD are the lift and
drag forces, respectively.

Combining Eqs. (1), (2), (3) and (4) and using the dimen-
sionless lift and drag coefficients, CL and CD , the following

Fig. 1. Local velocities, angles and aerodynamic forces on a Magnus wind
turbine cylinder.

nonlinear system of algebraic equations is obtained for a and a′:

2CT U 2
∞πFr − U 2

n (CL cos(α) + CD sin(α))BD = R1 , (5)

8a′(1 − a)U∞Ωr2πF − U 2
n (CL sin(α)

− CD cos(α))BD = R2 , (6)

where Un is the total relative velocity, D is the cylinder diameter,
and R1 and R2 , are residuals which ideally must be zero. The
numerical solution of Eqs. (5) and (6) is found by satisfying
Eq. (7):

min
a,a ′

(|R1 | + |R2 |). (7)

In this paper, a Direct Method is proposed for determining
flow induction factors that minimize the solution of Eq. 7. It
involves evaluation of |R1 | + |R2 | for all the possible values
of a and a′ between 0 and 1, in increments of 10−2 . Given the
interval in which a and a′ provides the minimum residual, a
similar process is repeated to narrow the interval to within 10−4

and a third pass determines a and a′ to within 10−6 , which is
sufficient to obtain a stable result for the wind turbine power,
in all the cases under study. Thus, this process determines the
axial and tangential flow induction factors directly. This method
provides several benefits relative to an indirect method. It avoids
iterative trial and error. It also automatically finds inductions
factors within the acceptable range 0 and 1. Finally, it converges
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for all combinations of input parameters without the need for
error criteria.

Given values of the induction factors for each value of r,
the wind turbine power can be obtained using a discrete set of
annular rings of width Δr, according to the Eq. (8):

P =
∑

4a′(1 − a)ρU∞Ω2r3πΔr, (8)

where the sum includes all Δr corresponding to the cylinder
length, L.

B. Unique Magnus Wind Turbine Characteristics

In order to describe the Magnus wind turbine properly, en-
ergy consumption by the rotating cylinders must be taken into
account. An approach is presented by Childs [10], in which
the power required to overcome frictional drag for a rotating
cylinder is shown in Eq. (9):

Prot =
1
2
πρω3r4

c LCm , (9)

where rc is the cylinder radius and ω is the angular speed relative
to the hub. The moment coefficient for a rotating cylinder, Cm ,
is a function of the angular speed and the radius of the cylinder
as well as the kinematic viscosity, ν, of the fluid in which the
object is immersed.

Using the moment coefficient data provided by Childs for
a mid-scale Magnus wind turbine operating in the range of
interest, Cm may be approximated as shown in Eq. (10):

Cm = 0.1173

(
ωr2

c

ν

)−0.219

. (10)

Substituting Eq. (10) into (9) and multiplying by the number
of cylinders, B, yields the total power consumption, as shown
in Eq. (11). Bearing losses of 2.7%, indicated by Grauers [11],
are also included in Eq. (11).

Prot ≈ B · 0.06023πρω3r4
c L

(
ωr2

c

ν

)−0.219

. (11)

The proposed model adequately captures the exponential be-
havior of the power consumption as a function of the cylinder
angular speed exhibited in the data of Sun et al. [4].

The standard Magnus turbine, in which the entire length of
cylinders rotate at a constant rate, can consume more power
than that extracted from the wind. This is because, under some
operating conditions, the power required to rotate the cylinders
is higher than the power captured by the turbine. To eliminate
this problem, the inner section of the cylinders can be fixed to the
hub and the cylinder angular speed can be selected based on the
wind speed. Proper selection of the hub-fixed cylinder section
length, L0 , and the cylinder angular speed, ω, ensures positive
power output at all wind speeds, as shown in Fig. 2. The figure
compares two Magnus wind turbines with the same geometry
(L = 5 m, D = 1 m, B = 3) and angular speed (Ω = 30 RPM).
The standard Magnus turbine has a net power consumption at
low wind speeds, whereas the turbine with the hub-fixed cylinder
section and variable cylinder angular speed has net power output
for all spin rates.

Fig. 2. Two Magnus wind turbines, one standard and other with a hub-fixed
length, L0 , and variable cylinder angular speed, ω.

TABLE I
RANGES OF INPUT PARAMETERS

B Um in Ωm in Ωm a x Lm a x ωm a x Dm a x

(m/s) (rad/s) (rad/s) (m) (rad/s) (m)

2 6 3 6 4 600 0.2
4 7 2 5 5 300 0.2
6 7 2 5 5 300 0.18

Note: In all cases Um a x = 20 m/s, ωm in = 200 rad/s, Dm in =
0.1 m, Lm in = 2 m and L0 = 0.9 m.

The power curves are obtained simulating the turbine behav-
ior with the proposed Direct Method, using CL and CD curves
from Bychkov et al. [3] as input. In the next section, the numer-
ical trials and regression modeling are described.

C. Symbolic Regression Modeling

In this section, optimum models are shown based on results
of the application of the aforementioned Direct Method to the
BEM formulation for several Magnus turbine configurations.
Using dimensional analysis, the function for the net power out-
put shown in Eq. (12) can be expressed in terms of dimensionless
parameters as shown in Eq. (13).

PNet = f(U∞,Ω, L, ω,D, ρ, ν,B), (12)

PNet
1
2 ρπL2U 3

∞
= f

(
LΩ
U∞

,
ωD

U∞
,
L

D
,
ρU∞L

μ
,B

)
, (13)

where the left hand side is the power coefficient, CPow ,
LΩ/U∞ = λ is the tip-speed ratio (TSR), ωD/U∞ = 2ω̄ is
twice the cylinder speed ratio (CSR), L/D = γ is the aspect
ratio of rotating cylinders, ρU∞L/μ is the Reynolds number
and μ is the dynamic viscosity. Eq. (13) can be written as shown
in Eq. (14):

CPow = f (λ, ω̄, γ, Re,B) . (14)

Symbolic regression was used to obtain the functional f .
Using the design of experiments methodology, the set of input

parameters shown in Table I was defined. The criterion to define
the parameter ranges was to have a positive output power for at
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TABLE II
CORRELATION COEFFICIENTS (CC) AND MEAN ABSOLUTE ERRORS (MAE)

AMONG ALL MODELS

Model for CP ow CC MAE

General f (λ, ω̄ , γ , Re, B ) 0.95873 0.00499
Specific f2 (λ, ω̄ , γ , Re) 0.98488 0.00341

f4 (λ, ω̄ , γ , Re) 0.99261 0.00232
f6 (λ, ω̄ , γ , Re) 0.99286 0.00237

Simplified Specific f2 (λ, ω̄ , γ , Re) 0.92979 0.00656
f4 (λ, ω̄ , γ , Re) 0.93339 0.00536
f6 (λ, ω̄ , γ , Re) 0.93406 0.00720

least 80% of the combinations and to include values correspond-
ing to an urban environment. Recall that if the design parameters
are not selected properly, the output power might not be positive
because the power consumption to rotate the cylinders can re-
duce the net output power to zero. It is necessary to capture this
effect in a Magnus turbine model. Moreover, through a process
of trial and error it was found that if a higher percentage of
positive power combinations are required, the ranges of Table I
are drastically reduced such that the ranges exclude values of an
urban environment.

A total of 33,500 combinations of the dimensionless param-
eters of Eq. (14) were generated using the proposed Direct
Method. The data was processed with Eureqa predictive ana-
lytics software (Nutonian Inc.), which finds functional relation-
ships in data using a machine learning technique called symbolic
regression.

III. RESULTS AND DISCUSSION

Among the independent variables in Eq. (14), the number
of cylinders is the only discrete variable, which affects a step-
change in power output for a given set of the other design vari-
ables. As a result, the optimum general function that includes
all of the independent variables has a lower correlation coeffi-
cient and a higher mean absolute error than those of optimum
functions for each cylinder configuration (Table II). Therefore
separate functions are found for each of the cylinder configura-
tions analyzed.

A. Cylinder Configuration Specific Models

For a given number of cylinders, Eq. (14) becomes:

CPow = fB (λ, ω̄, γ, Re). (15)

The correlation was improved from about 0.96 for the general
model to over 0.98 for the configuration specific models, as
shown in Table II.

The Eureqa software provides the relative relevance of each
variable, as shown in Fig. 3. The TSR, λ, is the principal explana-
tory variable for the power output of Magnus wind turbines. The
same is true of bladed turbines. However, for Magnus turbines, a
parameter that is not present in bladed turbines is almost equally
important, the CSR, ω̄. This result is in agreement with Bychkov
[3], who showed that the Magnus turbine performance is mainly
governed by ω̄. The important role of ω̄ is due to the direct effect

Fig. 3. Relative relevance of each variable across the models.

of cylinder angular speed on the lift and drag coefficients. On
the other hand, the high relevance of TSR supports the use of
bladed HAWT methods to analyze Magnus wind turbines.

Relative to λ and ω̄, the aspect ratio, γ, is not as significant
an explanatory variable of the turbine power output coefficient,
CPow . Besides, the aspect ratio could be constrained due to
physical reasons. A Magnus turbine with very low aspect ratio
cylinders could be impossible to manufacture because the root
of the cylinders could be in contact with adjacent cylinders.
A high aspect ratio could lead to significant deflections of the
cylinders.

The Reynolds number is not included in the models due to its
negligible relative relevance as shown in Fig. 3. The absence of
Reynolds number reveals that it was not a fundamental dimen-
sionless term in this study. To understand this, it must be point
out that Re = ρU∞L/μ, and this research is focused on wind
turbines, so the simulations were performed at constant density,
ρ, and constant viscosity, μ. On the other hand, variations of
U∞ and L on mid-scale wind turbines, could be an order of
magnitude, which means that 105 < Re < 106 across all the
data. Additionally, for this Reynolds number range, there is not
a transition of the flow from laminar to turbulent. Therefore,
present results are valid only in the specified Re range.

B. Simplified Models

Although the specific models have a good correlation with
the data, they are complex to interpret. To show the influence of
each variable on the system behavior, this section presents sim-
pler models for each cylinder configuration, albeit with a lower
correlation coefficient, as shown in Table II. Selecting a mini-
mum correlation coefficient of 0.93 provided models that were
sufficiently simple, such that the effects of the design param-
eters on the power coefficient are clear. Models having higher
correlation coefficients were significantly more complicated.

1) Two-Cylinder Configuration (B = 2): The simplified
model for the two-cylinder configuration is shown in Eq. (16).
In this model there is an inverse relation between CPow and the
aspect ratio, γ. Therefore the power coefficient can be plotted
as a function of TSR, λ, and CSR, ω̄, for a fixed γ, knowing that
for higher aspect ratios, all of the CPow values on the surface
will be lower. Examples are shown in Fig. 4 for γ = 5 and Fig. 5
for γ = 10, which represents optimistic configurations given the
aforementioned aspect ratio constraints.

CPow =
1.12λω̄2

18.2 + 2.82γ + (3.01 + λ)ω̄
. (16)
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Fig. 4. Power coefficient from simplified model with B = 2 and γ = 5.

Fig. 5. Power coefficient from simplified model with B = 2 and γ = 10.

Fig. 6. Power coefficient from simplified model with B = 4 and γ = 5.

The ω̄ exponent in the denominator ensures that at high cylin-
der angular speeds, the power becomes zero due to the high en-
ergy consumption to rotate the cylinders. Having the maximum
at ω̄ = 2 is in agreement with Sedaghat [5] who specified the
range 1.5 ≤ ω̄ ≤ 2.5 as the optimum for the spinning cylinder
on Magnus type wind turbines. The maximum power coefficient
of approximately 0.2 is insensitive to λ, which is consistent with
the aforementioned low relative relevance of the aspect ratio. It
is not clear that the peak power coefficient would be found in
the TSR range analyzed. However, there is reason to believe that
it would not be significantly higher than 4, since at high Ω the
resultant relative wind velocity of the cylinders would be closer

Fig. 7. Power coefficient from simplified model with B = 4 and γ = 10.

Fig. 8. Power coefficient from simplified model with B = 6.

to the rotation plane of the turbine and the Magnus force will
be in the rotor axial direction, rather than in the circumferential
direction.

2) Four-Cylinder Configuration (Case B = 4): The sim-
plified model for the four-cylinder configuration is shown in
Eq. (17).

CPow =
2.19λsin(5.56 + ω̄)

10.8 + γ + λ3 . (17)

Again the model shows an inverse relation between CPow and
γ. The power coefficient is shown in Fig. 6 for γ = 5 and Fig. 7
for γ = 10. The surface characteristics are simliar to those of
the two-cylinder configuration. Although the function for CPow
is oscillatory, other peak values are outside the parameter ranges
analyzed. The relatively low optimum TSR is in agreement with
Bychkov et al. [3]; their study shows that Magnus wind turbines
are efficient at low Ω. The maximum CPow of approximately
0.15 is lower than that of the two-cylinder configuration. The
optimal TSR is between 2 and 3 according to Fig. 6. The figure
clearly shows the reduction of power when the TSR increases
beyond the optimum.

3) Six-Cylinder Configuration (B = 6): The simplified model
for the six-cylinder configuration is shown in Eq. (18).

CPow = 0.107sin(5.76 + ω̄)sin(0.392λω̄). (18)
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This simplified model is independent of the aspect ratio,
which means that for a high number of cylinders, the three-
dimensional effects on Magnus force are less significant; the
turbine is more like an actuator disc. Since the model is in-
dependent of γ, the surface of Fig. 8 represents, in general,
the power coefficient for B = 6. Again, ω̄ = 2 and 2 ≤ λ ≤ 3
coincide with the optimal CPow value. This six-cylinder con-
figuration model has a lower CPow compared with the other
models. The maximum of CPow = 0.107 is evident by inspec-
tion of the model equation since the maximum of a sine function
is unity.

IV. CONCLUSION

The influence of number of cylinders, aspect ratio, cylinder
speed ratio and turbine tip-speed ratio on the net output power
of a mid-scale Magnus wind turbine was investigated to deter-
mine a set of parameters that optimize the turbine performance.
Several power coefficient models were obtained using numeri-
cal solutions and symbolic regression. These models yield the
following conclusions:

1) Magnus turbine performance is governed by two main
variables, the tip-speed ratio, λ, and the cylinder speed
ratio, ω̄. The significant TSR dependence supports the
use of HAWT methods for the analysis of Magnus wind
turbines. The CSR dependence is particular to Magnus or
Magnus-type turbines.

2) Among the studied cases, the optimum number of cylin-
ders for the Magnus wind turbine is B = 2. This means
that the maximum power coefficient decreases as the
number of cylinders is increased, as shown in Figs. 6,
7 and 8, due to the drag increment. The two-cylinder
configuration balances energy consumption to generate
the cylinder rotation and the energy captured by the
turbine.

3) The maximum power coefficient achievable by a mid-
scale Magnus wind turbine is lower than 0.2. This can be
achieve at a CSR of ω̄ = 2 and with a tip-speed ratio, λ,
between 2 and 3.

The low tip-speed ratio optimum suggests that a Magnus
turbine may be adequate in the urban environment. However,
more research of cylinder lift and drag is needed to achieve
a higher lift without producing an increase in drag, thereby
improving the power coefficient of the Magnus turbine and
advancing its feasiblility.
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