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SUMMARY

Summary

Various entities, including traditional auto makers and new rising IT giants, have

been investing huge amount of resources into the development of autonomous

vehicles. The momentum and expectation have been brought up to such a high

level that people have generally acknowledged it is just a matter of time before

technologies take control of the steering wheels over human drivers.

However, in the current typical setups, the autonomous vehicles are always

equipped with dozens of ranging sensors for environment perception, resulting

in overly-complex systems. These setups attract high cost and slow down the

commercialization process even though the sensor costs have dropped signifi-

cantly. The power consumption from these sensors is another big concern for

long-distance travelling, especially for electric vehicles.

This thesis aims to propose a more sustainable solution towards autonomous

vehicles by hybridizing a minimum viable vision-based autonomous vehicle

with remote human intervention. The remote human driver takes over the con-

trol of the vehicle when the limits of autonomous technology are stretched. Hu-

man touch and technology co-exist in the solution, allowing a fine balance in

cost, safety and efficiency to be achieved without the need to push for 100%

fail-proof solutions which would otherwise be extremely costly and complex.

Due to the huge amount of research involved, this thesis only elaborates

on the minimum viable vision-based autonomous vehicle development, while

remote human intervention is covered in my teammate’s thesis. The minimum

viable solution consists of a vision-based vehicle lane-level localization system,

a lane following control system based on nonlinear model predictive control

(NMPC) scheme and a vision-based fully autonomous parking system.

First of all, two vision systems were proposed for the vehicle lane-level lo-

calization. In both systems, the lane line markings can be detected and tracked.

The vehicle’s location and orientation with respect to the detected lane lines can

be estimated as well. This information serves as the feedback to the NMPC
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SUMMARY

system which controls the vehicle to follow the detected lane.

In the first system, it uses one single camera to capture road images. Four

key steps are involved: Lane line pixels are first pooled with a ridge detector.

An effective noise filtering mechanism next removes noise pixels to a large ex-

tent. A modified version of sequential RANSAC (RANdom Sample Consensus)

is then adopted in a model fitting procedure to capture all the lane lines in the

image. Finally, if lane lines on both sides of the road exist, a parallelism rein-

forcement technique is imposed to improve the model accuracy.

Built upon this mono-camera system, a stereovision system is proposed to

further improve the detection accuracy and consistency. It integrates a new lane

line detection algorithm with other lane marking detectors (e.g. zebra cross-

ing/hump/warning letters/arrows etc.) to effectively identify the correct lane

line markings and remove noise pixels. It also fits multiple road models to im-

prove accuracy. An effective stereo 3D reconstruction method is proposed to

estimate vehicle localization. The estimation consistency is further guaranteed

by a new particle filter framework, which takes vehicle dynamics into account.

Based on the feedback of the stereovision system, an NMPC scheme is pro-

posed to control the vehicle velocity and steering simultaneously to follow the

detected lane. The optimization solver for the NMPC is based on genetic al-

gorithms (GA). As compared to other solvers, using GA in the optimization

enables a more flexible structure for MPC formulation. The cost function and

constraints can be designed in a more accurate, meaningful and direct way.

Moreover, passengers safety and comfort are well taken care of under the pro-

posed NMPC scheme as both the vehicle movement acceleration and steering

acceleration are well confined within a safety range.

Another fundamental task for the autonomous vehicle is self-parking. In this

thesis, a low-cost vision-based reverse parking system is proposed. It consists

of four key modules: a novel path planning module ensures that a feasible path

is available under any given initial poses, which frees human intervention com-
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SUMMARY

pletely; a modified sliding mode control (SMC) module on the steering wheel

is designed for path following; the image processing module with Kalman state

prediction provides consistent and real-time estimation on the vehicle pose; and

a robust overall control module ensures that the vehicle can park along the slot

center line accurately without intrusion into adjacent slots.

In conclusion, a minimum viable vision-based approach for autonomous ve-

hicles is proposed in this thesis. Integrating it with the remote human interven-

tion leads to a more sustainable autonomous vehicle solution with a fine balance

in cost, safety and efficiency. Currently, obstacle avoidance, together with oth-

er exceptions, are under the responsibilities of remote human drivers. As the

technology development advances, they will be eventually embedded into the

minimum viable vision solution and remote drivers will be purely dedicated to

emergencies and contingencies.
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Chapter 1

Introduction

1.1 Background

With the recent advance and development in technologies, autonomous driving

vehicles have drawn a lot of interest from researchers, media and general public.

It has been generally acknowledged that it is just a matter of time before the

technology takes over the control of the wheels from human drivers, with the

vision to reduce car accident, traffic jam, carbon dioxide emission and so on.

Recently, more and more car models are equipped with some kinds of Ad-

vanced Driver Assistance Systems (ADAS), such as autonomous cruise control

(ACC), autonomous emergency braking, lane keeping and so on. As shown

in Fig. 1.1, ADAS can be considered as the transition between traditional and

autonomous vehicles.

The successful implementation of ADAS has led to promising forecasts on

the fully autonomous driving. In the report by KPMG and Center for Automo-

tive Research [1], they predict that the sufficient built-in and after-market pen-

etration to support self-driving applications will be ready by the year 2025. In

[8], IEEE predicts that up to 75 percent of cars on the road will be autonomous

by the year 2040. China Association of Automobile Manufactures (CAAM)

also tries to commercialize autonomous vehicles by the year 2030.

1
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Emergency Braking 

Figure 1.1: The degree of autonomy in autonomous driving vehicles [1]

According to [9], by adding various ADAS to existing car models, the auto-

makers have already gained additional 30 billion USD revenue in the year 2014.

By 2030, with the increase in the degree of autonomy, autonomous vehicles are

expected to bring additional 250 billion USD revenue yearly.

Besides this, the autonomous vehicle technology will create new opportuni-

ties for the automotive value chain and bring in new players to join incumbents

looking to capitalize on a new market. Prospective players along the value chain

should expect significant changes over time, inevitably creating opportunities

for new entrants.

Figure 1.2: Opportunities created by autonomous vehicles in different fields [2]

As forecasted in the investigation report by Lux Research, Inc.[2], the new

opportunity will reach 87 billion USD by the year 2030, which is shared among

2
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players from different fields as shown in Fig. 1.2. Software will capture the

largest slice in the market pi, followed by optical cameras.

The Society of Automotive Engineers (SAE) US and Verband der Automo-

bilindustrie (VDA) Germany have set up the standards for autonomous vehicles

to guide the development. CAAM has also started to define their own standards

in preparation for the autonomous vehicle commercialization.

To further support the development, some countries, including Swizerland,

US and Japan, have established virtual towns for autonomous vehicle tests.

Fig. 1.3 shows the virtual town Mcity Test Facility deployed at the Universi-

ty of Michigan, US. So far, they have established collaborations with Ford, GM,

Honda, Nissan and so on.

Figure 1.3: Virtual town for autonomous vehicle testing at University of Michigan [3]

Currently, almost every traditional auto-maker has their own road map to-

wards autonomous vehicles and has started their own research and development

in order to capture the booming market in the near future. Collaborations with

IT giants and virtual capitals have also been initiated and reported.

Ford announced its Smart Mobility blueprint at CES 2015 (Consumer Elec-

tronics Show), aiming to take the company to the next level in connectivity,

mobility, autonomous vehicles, customer experience and big data [10]. Ford al-

so highlighted the semi-autonomous vehicles it has on the road today (Fig. 1.4)

and the fully autonomous vehicles now in development for the future.

BMW has teamed up with Baidu, a Chinese search giant, to test its own

autonomous vehicles (Fig. 1.4) in Beijing, joining the race with Google to get

the first autonomous vehicle to the market [11]. This kind of joint venture seems

to become more and more popular as auto-makers have the advantages in car
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design, manufacture, brand and retail channel, while IT companies have the

advantages in big data analysis, user database and software development.

Figure 1.4: Autonomous vehicles by Ford (left) and BMW (right)

Tesla, a rising giant in the electric vehicle industry, has launched Model S

(Fig. 1.5) as its showcase towards autonomous electric vehicle. The autopilot

function is designed to learn from human drivers, improve its driving skills auto-

matically and share its driving knowledge with other cars [12]. The technology

to make a fully autonomous vehicle in Tesla will be ready in five or six years as

stated by its CEO Elon Musk in his interview with The Wall Street Journal [13].

Figure 1.5: Tesla Model S, its interior and the autopilot system

Furthermore, some giants from other industries especially IT, also sensed the

huge potential in the autonomous vehicle market and stepped into it in a more

aggressive manner. The traditional auto-makers tend to gradually enhance exist-

ing cars with self-driving features [9], taking the "improvement" path. But the
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new entrants plan to achieve self-driving at one go through artificial intelligence

and computer vision, taking the "revolution" path.

The most famous one is the search giant Google. 53 Google driverless cars

are being tested at the city of Mountain View of California and Austin of Texas.

Out of the 53 cars, 23 are Lexus RX450h SUV (Fig. 1.6 left) and 30 are Google’s

own two-seater electric vehicle (Fig. 1.6 right). Since 2009, the travelling dis-

tance of these driverless cars has accumulated to 2.3 million miles with 60%

of the miles under autonomous driving. Google has also shifted its focus from

highway-oriented autonomous driving to local-street driving, which is more re-

alistic but more challenging.

Google is the biggest thread to the traditional auto-makers, not only from the

self-driving technologies, but also from its advantages on the Android platform

which can seamlessly connect the car system to the smart phone users.

Figure 1.6: Google driverless cars

Fellow tech giant Apple is also widely rumoured to be plotting its move

into this industry. The Apple Car is reportedly to be fully electrical with in-car

connectivity like the CarPlay system. It is expected to be the next break-through

product for the company after iPhone and iPad. According to the domain name

service provider "who.is", in December 2015, Apple registered several domain

names related to cars, including apple.car, apple.cars and apple.auto.

Uber, the biggest car sharing company, after seeing the potential in au-

tonomous vehicles to change the way of car sharing, established its own robotics

center called Advanced Technologies Center in Pittsburgh and poached a num-
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ber of researchers from the nearby Carnegie Mellon University, who are spe-

cialized in autonomous vehicle research.

TomTom, a navigation system provider from Holland, has started to estab-

lish high resolution map specifically for autonomous driving vehicles. The map

will contain the information on road line markings, traffic lights position and

height, road signboards and etc.. So far, they have finished the map for the In-

terstate 280 at California US and A81 high way at Germany. By the year 2017,

the map will cover North America and most of Europe.

Apart from industries, universities and research institutes also play unre-

placeable roles to bring forward the autonomous technologies. The embryo of

the Google driverless car was built upon the robotic vehicle "Stanley" (Fig. 1.8

left image) designed by Thrun’s team at Stanford University [14] in 2005.

Globally, almost every top university has dedicated research resources work-

ing on autonomous driving related technologies. Locally at Singapore, both

National University of Singapore (NUS) and Nanyang Technological Universi-

ty (NTU) have established research teams to look into different perspectives of

autonomous vehicles.

Figure 1.7: Micro electric vehicle project commenced by NUS and TTAP

The work described in this thesis is part of Micro Electric Vehicles Project

jointly commenced by NUS and Toyota Tsusho Asia Pacific PTE. LTD (TTAP),

attempting to solve the last mile challenges using autonomous vehicles. In this

joint project, TTAP provided test vehicles as shown in Fig. 1.7 while NUS put

in research resources to study viable and sustainable solutions.
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To push forward the development and bring awareness to the public, differ-

ent kinds of conferences, forums and competitions on autonomous vehicles are

being organized every year all over the world. The DARPA (Defence Advanced

Research Projects Agency) Challenge is one of the famous, with the vision to

spur the development of technologies needed for fully autonomous vehicles.

The aforementioned "Stanley" vehicle was the winner in 2005 (Fig. 1.8).

The CES was the show for electronics products initially, like hand phone,

play stations and so on. But for the recent years, more and more auto-makers

use this platform to release their new prototypes and products that are related

to autonomous vehicles. In this year, more than 500 companies in automotive

industry participated in this show and occupied one quarter of the show area.

Fig. 1.8 (right) shows Toyota’s conceptual design for the autonomous electric

vehicle at CES 2016 Las Vegas.

Figure 1.8: The "Stanley" vehicle at DARPA 2005 and Toyota booth at CES 2016

With the autonomous driving technologies becoming more and more mature

and pervasive, some significant paradigm changes are expected for the automo-

tive ecosystem and our daily commutes, some of which will offer enormous

benefits economically and socially.

The autonomous vehicles are expected to improve the driving safety and

eliminate car crashes ultimately. Because their driving patterns are more pre-

dictable, controllable and systematic as compared to human drivers. They can

adhere the traffic rules and regulations as explicitly as being programmed. Glob-

ally, this will save more than 1.24 million lives a year and save additional 20-50
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million people from being injured or disabled [15].

In a recent study carried out by Virginia Tech Transportation Institute (VT-

TI), at all the crash severity levels (level 1 is the most severe level) defined by

SHRP 2 NDS (Strategic Highway Research Program 2 Naturalistic Driving S-

tudy), the crash rate per million miles is lower in the autonomous vehicles than

the normal vehicles [4]. The detailed comparison is shown in Fig. 1.9, where

the crash rate for normal vehicles is referred as SHRP 2 Age-Adjusted. This

data is adjusted based on SHRP 2 NDS for a fair comparison.

Figure 1.9: Comparison on crash rate between autonomous vehicles and normal vehi-
cles (SHRP 2 Age-Adjusted) [4]

Uncertainties in anticipation of the travel time will be eliminated or at least

reduced substantially. This will bring great convenience to the travellers and

they can plan their trips more precisely without wasting waiting time. At the

same time, the vehicle can plan a more reliable and efficient path from its origin

to its destination. Consequently, traffic jam can be reduced as well. Further-

more, with this, the delivery service companies are able to predict and schedule

their delivery more precisely and provide better service to their customers.

Autonomous vehicles could redefine the vehicle ownership models signifi-

cantly and expand opportunities for vehicle sharing. If vehicles can drive auto-

matically, they can be summoned when needed and redistributed to other duties

when the trip is over. Thus, travellers would no longer need to own the vehi-

cles but could instead purchase mobility services on demand [1]. This is also
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the main reason why Uber is rushing into this market as aforementioned. Con-

sequently, it will lead to a car-lite society, which benefits the environment and

further reduces traffic congestions. Moreover, autonomous vehicles can be used

more efficiently than private cars throughout the day instead of being parked

most of the day and night.

The time we spend inside the autonomous vehicle will become less boring

and more productive. The autonomous vehicle will save people from being fo-

cused on driving, instead, they will have more time for entertainment, reading

news, watching movies, online chatting and so on. This kind of information

ecosystem is one of the major interests to those IT giants, out of which they can

make profit, similar to their websites, smart TV sets and smart phone applica-

tions. Fig. 1.10 left image illustrates this concept where the passengers can lie

down and enjoy a movie without worrying about the driving.

Figure 1.10: Autonomous vehicles redefines driving: entertainment and working

In the right image, it shows another concept where the autonomous vehicle is

turned into an office where people can conduct meetings and discussions inside.

The car doors themselves are display screens. This concept can be found in the

Mercedes-Bens futuristic model F015.

In summary, autonomous vehicles are the future for automotive industry.

It is a huge market that everyone wants to share a piece of it, varying from

traditional auto-makers, IT giants to universities. The time to reshuffle the au-

tomotive industry is coming, with the opportunities for new entrants to capture

the market and with the risks for traditional players to be eliminated.
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1.2 Current gaps and problems

With the inputs and efforts from auto-makers, IT giants and even governments,

the future of autonomous vehicles is prosperous. But before they finally come

into our daily life, three major challenges have to be addressed in advance, in-

cluding laws (and regulations), information security and technology.

The technologies involved in autonomous vehicles can be roughly divided

into two categories: external and internal. External ones mainly refer to the

vehicle to vehicle (V2V) communication and vehicle to infrastructure (V2X)

communication. Internal ones include the vehicle’s ability to perceive the envi-

ronment and its ability to control its movement in response to the environment.

This thesis aims to tackle the challenges related to the internal technologies of

autonomous vehicles, especially for level 5 autonomous driving. At this level,

the vehicle is supposed to make all decisions on its own, instead of the driver

or passengers. Therefore, the requirement on the perception accuracy is much

higher and more challenging.

The environment perception is the most basic aspect to enable autonomous

vehicles and this is the main focus in autonomous vehicle research. The com-

mon setup adopted in most of the autonomous vehicles is shown in Fig. 1.11.

Figure 1.11: Illustration on the environment perception from on-board sensors[5]
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The long-range radar is for the detection of obstacles in the far distance,

at around 100 to 200 meters while the short range radar (including ultrasonic

sensors and sonar) is for nearby obstacles, including pedestrians and road curb-

s. The working distance is within about 6 meters. In the current commercial

vehicles, the short-range radar is mainly used in reversing alert system.

LIDAR (Lighting Detection and Ranging) is mainly for mid-range obstacle

detection within 100 meters. It sends millions of light pulses per second in a

well-designed pattern. With its rotating axis, it is able to create a dynamic, three-

dimensional map of the environment. LIDAR is the heart for object detection for

most of the existing autonomous vehicles. Fig. 1.12 shows the ideal detection

results from LIDAR, with all the moving objects being detected.

Figure 1.12: The ideal detection result from LIDAR with all moving objects detected

Cameras are also heavily involved in the perception of the environment.

With the development of image processing technologies, they will play more

and more roles in autonomous vehicles since they are able to present direct vi-

sual results to human.

In the current setup, the detection results from these four kinds of sensors are

fused through different technologies in order to achieve reliable results. How-

ever, the number of sensors involved is much more than four, resulting in a

very complicated system. The amount of data to be analysed in unit time is
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numerous. For example, the "Autonomos" car from University of Nevada has

7 LIDARs, 7 Radars and 9 cameras; the "Junior" car from Stanford University

has 5 LIDARs and 5 BOSCH Radars [6].

Due to the huge amount of data to be processed in real time, it requires sev-

eral powerful computing units working in parallel. The "Junior" car aforemen-

tioned contains 30 units to process the data collected by the sensors. Fig. 1.13

shows the sensor setup and its computing units in the trunk.

Velodyne laser
Riegl laser

SICK	LMS	laser Applanix INS

DMI SICK	LDLRS	laserIBEO	laser

BOSCH	Radar

Figure 1.13: The sensor setup and computing units installed on "Junior" from Stanford
University [6]

This over-complex setup results in very expensive autonomous vehicles,

which is the main factor slowing down the commercialization process. Even

though the price of LIDAR sensors has dropped significantly, the cheapest one

from Velodyne still costs 8,000USD, which has only 16 channels and covers

only 2D. For a typical 3D LIDAR with 64 channels, the price is still more than

70,000USD. If the total cost of autonomous vehicle is not able to drop down

to an acceptable level, they will become the "big toys" for the rich only. The

power consumption from LIDARs, Radars and computers is another big issue

for long-distance travelling, especially for electric vehicles.

Therefore, the current approach is not a sustainable and scalable way for

the development of autonomous vehicles, unless the cost of LIDAR can further

drop down to the level of 1,000USD in the near future, which is very unlikely.

A more sustainable solution is highly desirable.

Cameras seem to have the potential to replace LIDARs and Radars, especial-

ly with the development of image processing technologies and with the increase
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in computation power. They are much cheaper, more compact and less power

consuming than LIDARs and Radars. Human can drive a car with eyes, why

cannot the computer drive a car with cameras? Due to its huge potential, cam-

eras are projected to be the second largest share in the market opportunities cre-

ated by autonomous vehicles as shown previously in Fig. 1.2 by Lux Research,

Inc. [2].

However, with the current technologies, cameras are not practical and re-

liable enough. For algorithms that can achieve high performance, they cannot

work in real time. For example, for the top three state-of-the-art algorithms (in

terms of detection rate) on road detection in the KITTI database [16], all of them

take about 2 seconds to finish one iteration. This is not fast enough as compared

to the speed of a moving vehicle. The detection results may be subject to other

noise conditions as well, such as low visibility, poor weather conditions, worn-

off lane lines and etc..

In summary, the autonomous vehicles, equipped with dozens of ranging sen-

sors for environment perception, are overly-complex, attract very high cost and

slow down commercialization efforts. The power consumption by these sensors

is another big concern, especially for electric vehicles. Therefore, the current

autonomous vehicle solutions, while impressive in the use of technologies, may

not be sustainable and scalable. An alternate one through vision system is highly

desirable to achieve a fine balance in cost, efficiency and safety.

1.3 Research objectives

With cost, safety, scalability at the forefront of considerations, this thesis aims

to propose a more sustainable solution towards autonomous vehicles, especially

for level 5 autonomous driving. This can be achieved through a hybrid platform

by integrating minimum viable vision-based autonomous vehicles with remote

human intervention.
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The vehicles are to be installed with cameras only (no other kinds of perceiv-

ing sensors) and work under a nominal and controlled environment. Some of the

responsibilities especially under exceptional conditions will be transferred from

hard core autonomous technology to technology-assisted remote human drivers

at the top and contingency layer of the overall system hierarchy. The remote

driver working in a central hub, oversees a fleet of vehicles and seamlessly takes

over the steering wheel when the limits of autonomous technology are stretched,

thus allowing the cost factor to be reduced and yet achieving a better safety net

as a consequence. Technology and the human touch co-exist in this solution

which allows a fine balance in cost, safety and efficiency to be achieved without

the need to push for 100% fail-proof solutions in ‘fully′ autonomous vehicles

which will be accompanied by extreme costs and complexity.

However, due to the huge amount of research work required in this solution,

this thesis will focus on the development of the vision-based autonomous ve-

hicle part, while the remote human intervention part is concurrently developed

by my teammate, Mr. Kyaw Ko Ko Htet. In his development, the challenges

to be addressed include enabling a 360-degree view with minimum blind spot-

s, sending real-time video streaming to the remote control station, minimizing

latency during wireless transmission and ensuring reliability of the transmitted

data. Interested readers may refer to [17] for more details.

For the vision-based autonomous vehicle part, to achieve a minimum viable

solution, the following sub-systems are to be developed:

(i) A vision system that is able to identify the road lane line markings and

road signs, and then work out the vehicle pose, including vehicle lateral

distance to the road boundary and vehicle heading orientation deviation

to the road tangent. The system must work in real time and reliably under

different road conditions.

(ii) A control system that is able to control the vehicle to follow the road based

on the vision detection results. It must be able to control the velocity and
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steering simultaneously. At the same time, passengers’ safety and comfort

must be guaranteed.

(iii) A fully self-reverse parking system that is able to detect the available park-

ing slot from vision and control the vehicle to park into the slot accurately.

With these sub-systems in completion, the vehicle will be able to understand

the road structure by itself without referring to high resolution digital maps,

localize itself in the lane without using high-accuracy GPS (up to the level of

centimeters), drive along the road under different conditions and park itself at

the car park accurately.

1.4 Thesis outline

The remaining parts of the thesis are organized as: in Chapter 2, a vision system

based on single camera is proposed for lane line detection and vehicle localiza-

tion. In Chapter 3, a more advanced vision system based on stereo cameras is

presented, which works more robustly and accurately than the system in Chap-

ter 2. Chapter 4 proposes an NMPC scheme which controls the autonomous

vehicles to follow the detected road; while Chapter 5 describes a vision-based

autonomous reverse parking system. Conclusions and future works are provided

in Chapter 6. Below are the summaries of each chapter.

Chapter 2: In this chapter, we propose a robust mono-camera system for

vehicle lane-level localization. The approach incorporates four key steps. Lane

line pixels are first pooled with a ridge detector. Next, an effective noise filtering

mechanism removes noise pixels to a large extent. Then a modified version of

sequential RANSAC is adopted in a model fitting procedure to capture each

lane line in the image. Finally, if lane lines on both sides of the road exist, a

parallelism reinforcement technique is imposed to improve the model accuracy.

The results show that the proposed approach is able to detect the lane lines

accurately and at a high success rate compared to other approaches. The road
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model derived from the lane line detection is capable of generating precise and

consistent vehicle localization information with respect to road lane lines, in-

cluding road geometry, vehicle position and orientation.

Chapter 3: Built upon the previous mono-camera system, this chapter pro-

poses a stereovision system, which is able to achieve higher accuracy and con-

sistency. It integrates a new lane line detection algorithm with other lane mark-

ing detectors to effectively identify the correct lane line markings. It also fits

multiple road models to improve accuracy. An effective stereo 3D reconstruc-

tion method is proposed to estimate vehicle localization. The estimation con-

sistency is further guaranteed by a new particle filter framework, which takes

vehicle dynamics into account.

Experiment results based on image sequences taken under different illumi-

nation conditions showed that the proposed system can identify the lane line

markings with 98.6% accuracy. The maximum estimation error of the vehicle

distance to lane lines is 16cm in daytime and 26cm at night, and the maximum

estimation error of its moving direction respected to the road tangent is 0.06rad

in daytime and 0.12rad at night.

Chapter 4: An NMPC scheme is proposed which controls the vehicle veloc-

ity and steering simultaneously to follow the detected lane line from the stere-

ovision system. The optimization solver for the MPC is based on genetic al-

gorithms (GA). As compared to other solvers in the literature, using GA in the

optimization enables a more flexible structure for MPC formulation. The cost

function and constraints can be designed in a more accurate, meaningful and

direct way. Otherwise, they have to be formulated into certain formats and meet

all prerequisites in order to implement the optimization solvers.

Both simulation and on-field test results showed that the vehicle under the

control of the proposed nonlinear MPC is able to follow the road center line

accurately and consistently, even at sharp corners. Moreover, the results also

showed that passengers’ safety and comfort can be well taken care of under the
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proposed MPC scheme as both the vehicle movement acceleration and steering

acceleration are well confined within a safety range.

Chapter 5: This chapter proposes a low-cost vision-based fully self-reverse

parking system. It consists of four key modules: a novel path planning module

ensures that a feasible path is available under any initial poses, which frees hu-

man intervention completely; a modified sliding mode control (SMC) module

on the steering wheel is designed for path following; the image processing mod-

ule with Kalman state prediction provides consistent and real-time estimation on

the vehicle pose; and a robust overall control module ensures that the vehicle can

park along the slot center line accurately without intrusion into adjacent slots.

Experiment results based on 216 on-field tests under different illumination

conditions showed that the proposed system is able to park the vehicle accurate-

ly and consistently in all cases with a 4.71cm RMS offset distance from center

line and 1.24◦ RMS orientation deviation.

Chapter 6: This chapter concludes the entire thesis and proposes future

works. In this thesis, a minimum viable vision-based autonomous vehicle so-

lution is proposed, in which the vehicle is able to follow the road lane lines

accurately and consistently based on the stereo vision system and the NMPC

control system. It is also able to automatically park itself into the slot based on

the vision parking system. Hybridizing it with remote human intervention leads

to a more sustainable autonomous vehicle solution as compared to the current

approaches, with a better balance in cost, safety and efficiency.

However, in the current hybrid system, some other routine tasks, such as

obstacle detection through vision (which itself can be a PhD research topic), are

handled by the remote driver. In the future, all of them will be eventually trans-

ferred back to the autonomous vehicles and the human efforts will be dedicated

for contingencies and emergencies only.
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1.5 Hardware platform

The testing vehicle used throughout the thesis is a one-seater electric vehicle,

COMS from Toyota. COMS stands for "Chotto Odekake Machimade Suisui" in

Japanese, meaning a little smooth driving into town. The detailed dimensions

are illustrated in Fig. 1.14. It can travel up to 40km/hr.
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Figure 1.14: Toyota COMS EV and its dimensions

The sensors involved in this platform include a driving speed sensor, a s-

teering wheel position sensor, a pair of stereo cameras and a reverse parking

camera. The super WiFi antenna and the remaining cameras (wide angle) as

shown in Fig. 1.14 are for the remote control purpose, which is out of the scope

of the thesis. The stereo cameras are mainly for road lane line and road markings

detection while the reverse parking camera is for parking slot detection.

As shown in the communication diagram Fig. 1.15, the computer system

consists of three hierarchies. The communications between different hierarchies

are through different protocols for the ease of accessibility.

The micro-computer system is the lowest level, running Linux. It directly

communicates to the driving speed sensor and steering wheel position sensor

and broadcasts the sensor readings (v, φ ) to the higher level at 100Hz. When it

receives commands (vt , φt) from the higher level, it can control the movement
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Figure 1.15: Communication diagram of the computer system

of the steering wheel and driving motors through the steer-by-wire system and

drive-by-wire system.

The NI (National Instruments) PXI computer, which runs Window7, is the

middle level. It is in charge of the control algorithms for both NMPC and re-

verse parking. The image process for reverse parking is also carried out by this

computer.

The top level is a laptop which directly connects to the stereo cameras. Its

main focus is lane line detection. Based on the detection results, it calculates

and sends the vehicle pose with respect to the road to NI PXI, from which NI

PXI will work out the control law to follow the detected road.

Table 1.1: Computation unit specifications

OS CPU Memory
Micro-Com Ubuntu i586 -

NI PXI Window7 Intel i5 4G
Laptop Window7 Intel i5 2G

The detailed specifications related to the computation power of each com-

puting unit are listed in TABLE 1.1. Note that there is no GPU (Graphic Pro-

cessing Unit) involved in any of the image processing algorithms.
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Chapter 2

Mono-Camera-Based Lane Line

Detection and Vehicle Localization

2.1 Introduction and literature review

Vehicle localization with respect to road lanes is the fundamental function to be

enabled in autonomous vehicles. Vision-based solution is a low-cost approach

to address such problems. The vehicle position and orientation can be derived

from the detection results. A vast amount of research work has been done in

this domain since a few decades ago [18]. However, it is yet to be completely

solved and has remained as a challenging problem due to the wide range of un-

certainties in real traffic road conditions, which may include shadows from cars

and trees, variation of lighting conditions, worn-out lane markings and other

markings such as directional arrows, warning words and zebra crossings.

A survey on existing lane detection approaches is provided by Hillel AB et

al. in [19]. Most of them share three common steps: 1) Lane line candidate

extraction using different image features such as edges [20] [21] and color [22]

[23], or using machine learning methods such as support vector machine [24],

boost classification [25] [26]. 2) Model fitting to straight lines [27][28], parabo-

las [29][30] and hyperbolas [31][32][33]. 3) Vehicle pose estimation from the
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fitted model.

Some algorithms may also include another tracking step to impose tempo-

ral continuity, where the detection result in the current frame is used to guide

the next search through filter mechanisms, such as Kalman filter [20] [34] and

particle filter [24] [35].

A common disadvantage of a feature-based lane line candidate extraction

is the high sensitivity to noise because it is mainly done through thresholding

gradient magnitude. However, edges of shadows and surrounding objects also

tend to have higher gradient values while poor lighting conditions result in low-

er gradient values at the lane line boundaries. Thus, gradient thresholding alone

is not feasible without other complex adaptation mechanisms. Another disad-

vantage is that it is limited to a local view [36]. A feature point is detected with

only two pixels in the image without considering its connectivity and similarity

to the neighbouring pixels.

The machine learning-based approach is subject to the selection of training

data and off line training results. To fulfil a good detection, the training set has

to contain enough samples under a variety of scenarios. If new situations occur

during the test, the approach may fail.

To resolve these issues, A.López in [37] introduced a newly defined feature

’ridge’, which is claimed to be more suitable than other features (such as edge

or color) to this problem. The noise pixels are then filtered based on ridge

magnitude and ridge orientation. In model fitting, the author adopted RANSAC

(RANdom Sample Consensus) to fit a pair of lane lines (right and left lane lines)

simultaneously based on the given camera height and pitch angle.

However, the algorithm suffers from the following shortcomings:

(i) The noise filtering mechanism is not robust. The author assumed ridge

orientation was always along lane line direction and he used this feature

to filter out some pixels. But this is not true in the presence of shadows,

uneven distribution of lane line painting, worn-out lane lines and etc.
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(ii) The filtering based on a fixed ridgeness threshold is not suitable, which

leads to under-filtering and over-filtering issues in some situations.

(iii) Due to the nature of the model fitting method in [37], when the lane exists

on only one side, the algorithm will not work properly.

(iv) The fitted model accuracy is sensitive to the camera viewing angle. Brak-

ing/acceleration and non-flat road surface changes the pitch angel. To

compensate the variation, the author assigned a series of discrete values

within a certain range to pitch angle. But the result due to this variation is

still clearly lingering especially when the actual pitch angle is outside the

prescribed range.

(v) The hyperbola road model itself is not able to provide an accurate fitting

for a straight road.

Motivated by these unresolved yet important shortcomings, a more robust

approach is proposed in this chapter to solve the vehicle lane-level localization

challenge. It is based on ridge identification and incorporates a modified sequen-

tial RANSAC algorithm in the model fitting process. The main contributions of

the chapter include:

(i) Implementation of an effective noise filtering mechanism based on adap-

tive threshold after ridge detection, thus increasing the processing speed

and improving the detection results.

(ii) Removal of the effects from camera pitch angle variation on model fitting.

In the proposed approach, the model fitting does not rely on having the

pitch angle fixed a priori, instead the pitch angle is back calculated from

the fitted model.

(iii) Lane detection on one side of the road even if the other side is missing.

(iv) Incorporation of a modified version of sequential RANSAC algorithm in

model fitting to capture every single lane line in the image independently.
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(v) Fitting multiple road models simultaneously, including straight line and

hyperbola, in the quest for the best matching results.

The chapter is organized as follows: Section 2.2 provides a brief introduction

to the concept of a ridge. Section 2.3 will focus on the filtering of noise pixels

after the ridgeness thresholding. The modified version of sequential RANSAC

for model fitting is elaborated in Section 2.4. Section 2.5 will illustrate the

experimental validation results and the conclusions are drawn in Section 2.6.

2.2 Ridgeness

The ridge of a grey-scale road image refers to the center axis of the elongated

and bright lane lines. The concept can be visualized by considering the image

as a landscape with intensity represented along the z axis or height [37]. The

intensity increases as it gets closer to the center axis of lane lines, which forms

the shape of a ridge as illustrated in Fig. 2.1. Moreover, ridgeness quantifies

how well the pixel neighbourhood resembles a ridge. At the center axis of the

lane line, its neighborhood at both sides contributes to the formation of the ridge;

therefore it will have a higher ridgeness value. This observation can enable the

detection on lane lines by a simple thresholding method. This is also one of the

root factors explaining why ridgeness is a more robust feature than edge or color

as it takes all its neighborhood pixels into account instead of just two.

Figure 2.1: Concept visualization of ridge

Ridgeness is a loosely defined terminology and there exist different versions

of mathematical definitions. In this chapter, we adopt the version of A.López in

[37] since it has been proven to be largely effective.
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First, the original grey-level image L(x) is convoluted (*) by a 2D Gaussian

filter Gσd . L(x) is taken as the intensity value (I) in HSI (Hue, Saturation, In-

tensity) space because it has clear advantages than H or S or other spaces (e.g.

RGB) as concluded in [23].

Lσd(x) = Gσd(x)∗L(x) (2.1)

Gσd is anisotropic Gaussian kernel with covariance matrix ∑= diag(σdx,σdy)

where σdy is constant (set as 1) and σdx increases with row number which equals

to half of the lane line width. It depends on the camera focal length and pitch

angle ϕ . In our setup, it varies from 1 to 12.

The gradient vector field at each pixel along row (u) and column (v) is:

wσd(x) = (∂uLσd(x),∂vLσd(x))
T (2.2)

A 2×2 matrix sσd(x), similar to Hessian matrix, is computed by dot product

(·) of gradient vector for each pixel:

sσd(x) = wσd(x) ·w
T
σd
(x) (2.3)

The structure tensor field Sσd σi(x) is computed by convoluting each sσd(x)

matrix with another Gaussian filter Gσi (σi is set as 1):

Sσd σi(x) = Gσi(x)∗ sσd(x) (2.4)

The eigenvector w′σd σi(x) is obtained corresponding to the highest eigen-

value of Sσd σi . The projection of w′σd σi(x) onto wσd(x) is defined as:

pσd σi(x) = w′σd σi
T (x) ·wσd(x) (2.5)

A new vector field w̃σd σi(x) is defined below. It is along w′σd σi(x) but its

direction is determined by the sign of pσd σi(x).

w̃σd σi(x) = sign(pσd σi(x))w
′
σd σi

T (x) (2.6)

The ridgeness is then defined by the positive value of divergence of w̃σd σi(x).

k̃σd σi(x) =−div(w̃σd σi(x)) (2.7)
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Fig. 2.2 illustrates the w̃σd σi(x) field orientation of the ROI (region of inter-

est) at the original image. The green box highlights the corresponding lane line

boundaries. It shows that due to the tree shadows, w̃σd σi(x) orientation deviates

from lane line direction, especially for the pixels along the lane line medial axis.

ROI 

500

Figure 2.2: Illustration on ridge orientation w̃σd σi(x)

The detailed dimensions of the variables are shown in TABLE 2.1.

Table 2.1: Ridgeness variable dimensions

Lσd image size wσd(x) 2x1 sσd(x) 2x2 Sσd σi(x) 2x2
Gσi 3x3 pσd σi(x) scalar w̃σd σi(x) 2x1 k̃σd σi(x) scalar
Gσd 3xn, n varies from 3 to 25 with increasing row number

Fig. 2.3 provides an example of the grey-scale image based on ridgeness

value. It is clear that the medial axis of the lane line is brighter than the rest,

which enables the following processing algorithms.

Figure 2.3: Original image and grey-scale image based on ridgeness value

2.3 Noise filtering mechanism

As mentioned previously, the original approach in removing noise pixels is not

robust and effective since a fixed threshold is implemented and w̃σd σi(x) is not

always along lane line direction. Here, we propose an adaptive thresholding

mechanism based on ridgeness value, which avoids checking w̃σd σi(x) direction.
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Based on the fact that lane line medial axis always has higher ridgeness

value, it can be selected by thresholding. To have an adaptive threshold, the

ridgeness histogram is used.

The image size is 480× 640, but the image processing takes effect only

on the bottom half. Because based on the camera setup, only the bottom half

contains useful information for lane line detection while the top half mainly

consists of sky and road portions that are too far to see. The number of pixels

consisting of the longest lane medial axis for one line must be less than 240+

640 = 880. Since lane lines exist on both sides and sometimes, double lane lines

may be used on both sides, the number of pixels for lane medal axis must be less

than 4× 880 = 3520. Therefore, 3520 can be a conservative estimation of the

maximum number of lane line medial axis pixels. In other words, the number

of pixels resulting from lane line detection must be less than 3520.
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Total number of pixels up to this  
bin is 4430 (>3250).   
The corresponding minimum  
ridgeness value in this bin is 1.104 

Figure 2.4: Histogram based on the ridgeness image

After the ridgeness calculation, the histogram of the ridgeness grey-scale

image can be extracted, varying from -2 to 2 with a bin size of 0.1. Each bin

is summed in descending order until the number of pixels exceeds 3520. The

corresponding minimum ridgeness value in that bin will be set as the threshold.

Fig. 2.4 shows the histogram plot based on Fig. 2.3(right).

After thresholding, as shown in Fig. 2.5(c), almost all the lane line medial

axis pixels are extracted. But some are disconnected and a lot of noise pixels

still exist, resulting from shadows and irregularities on the pavements.

To compensate for these, first a morphographic ’bridge’ operation to connect

26



CHAPTER 2. MONO-CAMERA-BASED LANE LINE DETECTION AND VEHICLE
LOCALIZATION

pixels with gap of one pixel is applied then followed by a connected component

labelling operation. The corresponding component is removed if its number of

pixels is less than a prescribed threshold number. This threshold can be worked

out based on the minimum number of pixels required to form a lane line segment

medial axis. For breaking lane lines, according to our on-field measurement, the

shortest segment is about 1 meter. Based on the camera nominal pitch angle, its

intrinsic parameters and assuming a segment at the furthest distance in the cam-

era view (bottom half), the minimum number can be calculated approximately.

In our setup, the threshold number is 6.

2.5.a: Original 2.5.b: Ridgeness 2.5.c: Ridgeness threshold

2.5.d: Bridge connection 2.5.e: Min. structure removal 2.5.f: Intensity check

Figure 2.5: Proposed noise filtering mechanism

Components are further removed if the average intensity is less than a thresh-

old as highlighted in [23]. The threshold is set conservatively low to cater for

the case when lane lines are obscured by strong shadows or the illumination

condition is poor. The number implemented here is 150.

Fig. 2.5 illustrates how the lane line candidate pixels are selected from the o-

riginal image systematically using the proposed noise filtering mechanism. The

red pixels in Fig. 2.5(d) indicate the effects from bridge connection. Both quan-

titative and qualitative comparisons between the original approach in [37] and

our proposed one are presented in Section 2.5. They show that the proposed

approach can outperform the original one most of the time.
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2.4 Model fitting with modified sequential RANSAC

2.4.1 Lane line model construction

Many lane line models have been proposed in the literature, ranging from s-

traight lines to spline and conical curves. There is no clear conclusion on which

one is the best. However intuitively, assuming the road surface to be flat and

lane lines to be parallel, there should exist an explicit relationship between the

real road lane line geometry and the projected lane line in the image subject to

the camera position and orientation.

Leveraging on this consideration, we adopt the road model proposed by

Guiducci [38]. The simplified version provided in [37] and [39] is shown in

(2.8) and (2.9) for the left and right lane respectively.

ul = Eu

(
θe

cosϕ
+

cosϕ

HEv
de(vl +Ev tanϕ)+

EvHC0/cos3ϕ

4(vl +Ev tanϕ)

)
(2.8)

ur = Eu

(
θe

cosϕ
− cosϕ

HEv
dr(vr +Ev tanϕ)+

EvHC0/cos3ϕ

4(vr +Ev tanϕ)

)
(2.9)

To fully understand the model, let’s define three coordinate systems attached

to global (or road), car and camera respectively, with the same origin at the

camera principal point. θe and ϕ are camera yaw and pitch angle with respect

to global system.

Zcar/Heading

Ycar/Yroad

Zcam

Ycam

Zroad

!
"#

Road	tangent

H

Figure 2.6: Road model parameters illustration

(u,v) defines the horizontal and vertical pixel count of one pixel to the image

principal point. Eu and Ev refer to the camera horizontal and vertical focal
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lengths in the unit of pixel/meter. All these parameters (principal point, Eu

and Ev) are camera dependant and can be obtained uniquely through calibration.

Interested readers may refer to Bouguet’s toolbox on the calibration [40].

ϕ is the camera pitch angle. Ideally, this is a fixed value and can be measured

in advance as well. However, in reality, it varies when the car is slowed/stopped

with the brake, accelerating, running on uneven road and etc. The value is

so critical to the final fitting result that it cannot be treated as a constant. To

compensate for the variation, in [37], the author assigned a series of discrete

values within a certain range. However, this approach is sensitive to quantization

noises. In this chapter, we will consider ϕ as an unknown and show that it can

be back-estimated instead accurately.

H is the height of the camera to the road surface, measured in advance. θe

defines the angle between car heading direction and road tangent. C0 is the

lateral curvature of real road with unit of m−1. If the road is straight, C0 = 0 and

(2.8) and (2.9) represent a line. de and dr represent the distances from the car to

the left and right road lane lines. L = de +dr is the lane width.

For each side of the road model, there are four unknown parameters to be

determined through model fitting, namely ϕ,θe,C0 and de(or dr). Although

there are parallelism relationships between left and right lanes, we will ignore

this relationship and take them to be independent for the first pass model fitting

and only merge/fuse the results based on this relationship in a latter process

when both left and right lanes are confirmed to exist. This is to cater for the case

when the lane line only exists on one side.

u = A/(v−D)+Bv+C (2.10)

To facilitate the model fitting process, the road model can be further simpli-

fied to the form of (2.10) with A, B, C and D as unknowns.

The matrix form is shown in (2.11), where Cr is symmetrical, E =C−BD,

F = A−CD, (Cr ·P) represents the tangent of hyperbola at point P.
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PT ·Cr ·P =


u

v

1


T 

0 −0.5 0.5D

−0.5 B 0.5E

0.5D 0.5E F




u

v

1

= 0 (2.11)

2.4.2 Model fitting

As mentioned, we will fit model independently for left and right lanes. There-

fore, the image is deliberately separated into right and left parts. For simplicity,

we choose the vertical center axis of the image as the separation line. If the con-

nected component is across the center axis, it will be classified according to the

number of pixels on each side. If it has more pixels on the left, then it belongs

to the left part and vice versa.

To determine one model, four pixels are required. However, most of the

time, there will be much more than four candidate pixels. Moreover, some are

outliers and multiple models may exist. For such a multiple model fitting prob-

lem with outliers, there are several popular techniques in the literature, such as

sequential RANSAC, multiRANSAC, residual histogram analysis, J-linkage, k-

ernel fitting and energy minimization PEARL. As concluded by Fouhey [41] in

his study, sequential RANSAC is a strong first choice due to its effectiveness.

As the name implies, sequential RANSAC implements the RANSAC al-

gorithm a number of times until all models are found or a certain number of

iterations has been reached. Once one model is determined, all its supporting

data points will be eliminated from the data set and RANSAC is run through

the remaining data points to look for another model. However, when the pre-

vious model is not correctly selected, the subsequent models will be affected

as some of the data points are eliminated wrongly. This becomes more often

when double lane lines are used at road bending. Fig. 2.7 illustrates examples

of inaccurately fitted model (highlighted as red) using sequential RANSAC.

To resolve this critical issue and achieve better lane line detection results,
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we propose the following modified sequential RANSAC algorithm by adding a

fusion step:

(i) Randomly select four points from data set

(ii) Create the model and find all its supporting data points

(iii) Fuse the new model with previous models. If there are common data

points in the new model and the previous ones, only the model with more

data points will be kept while the other is discharged. If no common data

points exist, the model will be taken as new. This is valid because there

should not be any intersections between lane lines.

(iv) Repeat step i) to iii) for a certain number of iterations. No data is elimi-

nated as we do not want this model to affect the consequent fitting results.

(v) Till this step, we have obtained models without any intersection. To ex-

pedite the process, eliminate all the supporting points to these models and

repeat step i) to iii) with the remaining data for a certain number of times.

For example in Fig 2.7(a), in one iteration, the inadequate model represented

by the red pixels is identified. In another subsequent iteration, the accurate

model represented by the inner line is also identified. Then it will be fused with

the inadequate model since they share some data points (the red points at the

top of the image). Only the accurate model is kept and the inadequate model is

discharged because it has less data points.

2.7.a: Inaccurate Fitting 1 2.7.b: Inaccurate Fitting 2

Figure 2.7: Inaccurate fitting (red pixels) results from conventional sequential RANSAC

But if using conventional sequential RANSAC, once the inadequate model

is identified before the accurate model, all the red pixels will be removed from
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the data pool. Almost half of the inner line data points are removed wrongly,

even the accurate model can be identified later, it won’t be kept if the number of

remaining inner line data points is less than that of red data points.

The results from this modified sequential RANSAC are several non-intersecting

models from both sides. The next step is to pair up models and select the best

one from all the possible pairs.

Before explaining the pairing mechanism, we would like to elaborate more

on step ii), which is the core of RANSAC. Although any four arbitrary points

(not on the same line) can generate one unique hyperbola, not every result can

describe the road properly. Before searching for supporting data points in step

ii), we need to validate the model first. The explicit form of A, B, C and D is

shown in (2.12)-(2.15).

The first validation is on D. Its value varies within the range determined by

the physical limits of ϕ . The change of ϕ is a direct result from the car suspen-

sion systems. When its front suspension system is fully compressed and the rear

one is fully released, the camera points most downwards and ϕ is maximum.

When the front suspension system is fully released and the rear one is fully com-

pressed, the camera points least downwards or even upwards and ϕ is minimum.

The nominal pitch angle ϕn can be calibrated when the car is not moving and not

loaded. By referring to the vehicle catalogue, we can calculate the maximum

angle that the car frame can be tilted, which corresponds to the two extreme con-

ditions. For the testing vehicle used, the maximum angle is∼ 3◦ or∼ 0.035rad.

Therefore, the range of ϕ is approximated as [ϕn−0.035, ϕn +0.035].

A =C0HEuEv/(4cos3(ϕ)) (2.12)

B = deEu cos(ϕ)/(HEv) (2.13)

C = θeEu/cos(ϕ)+deEu sin(ϕ)/H (2.14)

D =−tan(ϕ)Ev (2.15)
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With the valid D, A is further validated based on the road curvature. The

absolute value of A has to be less than the value derived from the maximum

allowable |C0| for a feasible and safe turning. For a normal sedan, the minimum

feasible turning radius is ∼ 10m limited by its steering angle. Therefore, in this

chapter, the maximum allowable |C0| is set as 0.1m−1.

B and C are related to the vehicle pose. Since the vehicle can be at any

locations on the road, they should not be constrained. In summary, we have

defined a subclass of valid hyperbolas based on camera pitch angle limits and

road curvature limit.

If it is not able to pass the validation on D or A, the next iteration will be-

gin. Some weird fitting results (highlighted in black) without adding these con-

straints are shown in Fig. 2.8.

Figure 2.8: Wrong fitting results without constraint on hyperbola center

As mentioned, two base models, hyperbola and straight line, will be fitted

simultaneously. This is done in step ii) as well. The four randomly selected

points can generate one unique hyperbola and six lines. Out of these seven

models, only the valid one with most supporting points will be kept. Supporting

data points will be determined purely based on Sampson’s distance ds [42]. If

its ds < a threshold, the point P will be classified as a supporting point.

ds =
(PT ·Cr ·P)2

4((Cr ·P)2
1 +(Cr ·P)2

2)
(2.16)

where Cr is defined in (2.11) and (Cr ·P)n refers to the nth element of the vector.

For straight lines, A = 0.

The straight line model is a necessary complement to the hyperbola model

in fitting a straight road. Firstly, it increases the successful rate in finding a valid

model. Fig. 2.9 illustrates a perfect lane line extraction for the straight road with
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2.9.a: Original 2.9.b: Perfect line extraction

Figure 2.9: Perfect model for a straight road

width of 3.4m. By randomly selecting 4 points on one side, only about 9% of the

1000 trials are able to provide a valid hyperbola model. It indicates that the rate

of fitting is very low by using hyperbola only even under the perfect situation,

not to mention the situations when there exist noise pixels from the lane line

extraction. The original approach [37] suffers the same issue.
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2.10.c: Derived D from fitted models 2.10.d: Example of row-wise deviation

Figure 2.10: Hyperbola model accuracy for a straight line

Secondly, it increases the accuracy of the model. Fig. 2.10(a) plots the num-

ber of supporting points for each of the successful fitted models in ascending

order. Fig. 2.10(b) illustrates their corresponding row-wise maximum devia-

tions. These two figures indicate that out of the 9% successful trials, only half

provide acceptable results in terms of number of supporting points and maxi-

mum deviation. The maximum deviation mainly occurs at the top part of the

image as shown in Fig. 2.10(d).
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Even among those successful trials with small row-wise maximum devia-

tions (from trial 60 onwards), the derived parameters from fitted models are not

consistent. Fig. 2.10(c) plots the D value derived from the corresponding trial-

s. Among the successful trials, it varies from -1000 to 1000 while the ground

truth value is 42.8. As shown in (2.18)-(2.22), all the localization information is

directly related to D. If this value is not accurate enough, then the whole set of

information becomes inaccurate.

The numbers presented above may vary from trial to trial and image to im-

age, but it provides insights on how a straight line model helps in fitting a straight

road and increasing the accuracy.

2.4.3 Pairing and parallelism reinforcement

In the case that lane lines on both sides exist, a pairing step is implemented right

after all single models are captured. The best pair is determined based on the

number of supporting data points and whether the lane width estimated from the

model is within a typical road lane width (∼ 3.4m).

Equation (2.8)-(2.9) will give the solution for lane width L. However, most

of the time, the results from independent fitting will not follow the parallelism

relationship exactly. In turn, we will get a non-constant L. To compensate this

and to get the model as accurate as possible, the two paired models need to be

fine tuned and adjusted according to the parallelism relationship defined by (2.8)

and (2.9). This fine-tuning process is called parallelism rein f orcement.

It can be derived from (2.8) and (2.9) that if one lane model follows (2.10),

then the other lane model will be

u = A/(v−D)+B′v+C+D(B−B′) (2.17)

Equations (2.10) and (2.17) indicate that to fine tune a pair of lane models,

five points are required to determine the five unknowns (A, B, B′, C and D).

However, the pair of lane models is derived from eight points in model fitting
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step (four for each side). To balance the contribution from both sides, three out

of the four points from one side and two out of the other four points from the

other side will be chosen. In total, there will be 48 combinations to fine tune

this pair of lane lines. Out of these 48 combinations, the one with the most

supporting data points will be the final model for this pair.

Just to highlight, the five unknowns cannot be solved in the form of linear

algebras. The set of equations consists of high order polynomials with multi-

ple variables. Fortunately after tedious conversions and substitutions, it can be

downgraded to one third order polynomial equation with variable D only. Close

form solutions are available in the literature to get the three roots explicitly [43].

The real root with the most supporting points will be selected.

After finalizing all pair models, the one which has the most supporting points

with L within the prescribed range will be used to describe the detected lane.

The corresponding localization information can be calculated as following:

ϕ = arctan(−D/Ev) (2.18)

de or dr = BHEv/(Eu cosϕ) (2.19)

C0 = 4Acos3
ϕ/(HEuEv) (2.20)

θe = (C−Eude sinϕ/H)cosϕ/Eu (2.21)

L = de +dr (2.22)

Note that even the lane line exists on one side only, the localization infor-

mation is still able to be calculated using the same formula above. The only

missing information is lane width L.

2.5 Experiment validation and results

The following tests were carried out on the NI PXI shown in TABLE 1.1. The

algorithm was programmed in MATLAB with mex-C functions and did not op-

timize to run parallel threads. The average processing time for one image is
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0.12s, of which 20% is for ridgeness calculation, 17% for noise filtering, 57%

for model fitting and 6% for pairing and parallelism reinforcement. The pro-

cessing speed is sufficient for a vehicle moving at normal speed (∼ 70km/hr).

Because the look-ahead distance in the image is approximately 30m, but the

vehicle only moves 2∼ 3m during one image processing time.

2.5.1 Noise filtering

The filter results in Section 2.3 using the proposed method and the original

method are compared both qualitatively and quantitatively. For the quantitative

comparison, only 350 images from 3 video clips are used due to the difficulties

in obtaining the ground truth. In each video, the images are sampled consecu-

tively at 10Hz. The 3 video clips contain different challenging scenarios, such

as breaking lines, dense traffic and worn-off lane lines. The detailed challenges

or noise sources are tabulated in TABLE 2.2.

Table 2.2: Noise sources contained in each video clip

Video Noise Sources
1 Other markings, horizontal speed regulation lines
2 Other markings, tree/car shadow, breaking lines, dense traffic, worn-off markings
3 Other markings, tree/car shadow, breaking lines, horizontal speed regulation lines

Two images from each video clip are shown in Fig. 2.11 as a qualitative

comparison. Column (b) contains the results from the original approach [37]

and Column (c) contains results from the proposed one.

The first row shows an example on simple images in which few challenging

scenarios exist. Both approaches are able to identify the right double while lines.

For the left boundary, it is debatable whether it can be treated as lane marking

or not. The original approach cannot identify it but the proposed one can.

The second row indicates that both approaches are able to remove the noise

from the horizontal speed regulation strip.

The third row depicts the results on worn-off lane markings (left lane line).

The proposed approach is able to identify the three left lane line segments count-
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2.11.a: Original images 2.11.b: Approach in [37] 2.11.c: Proposed approach

Figure 2.11: Noise filtering mechanism comparison

ing from the image bottom but the original one almost fails.

In the fourth row, the nearby vehicle leads to false detection in the original

approach as shown on the right top corner of the image. The non-uniform road

color on left side of the image leads to more false detections in the original

approach.

The last two rows illustrate the performances when there are strong tree

shadows and letters in the image. The original approach is not able to remove

the noise pixels effectively.

From the qualitative comparison, we can conclude that the proposed ap-

proach performs similarly as the original approach on simple road scenarios

(e.g. speed regulation strips). But when the road surface becomes more erratic,

non-uniform and complex (e.g. tree shadows), the proposed approach is more

capable of removing noise pixels.

In the quantitative comparison, the ground truth is labelled manually accord-
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ing to the 350 images. One example is shown in Fig. 2.12(c). Three ratios, com-

monly used in ROC (Receiver operating characteristic) curve, are introduced for

the quantitative evaluation.

True positive rate (T PR) = T P/P (2.23)

False positive rate (FPR) = FP/N (2.24)

Accuracy (ACC) = (T P+T N)/(P+N) (2.25)

where T P is the number of lane pixels labelled correctly as lane line (true pos-

itive); FP is non-lane pixels erroneously labelled as lane line (false positive);

T N is the non-lane pixels correctly labelled as non-lane line (true negative); P

and N are the number of lane line and non-lane line pixels.

A lower FPR and a higher T PR indicate better detection results as it is closer

to the perfect result with FPR = 0 and T PR = 1.

2.12.a: Original image 2.12.b: Ridge detector

White: Positive (lane)
Black: Negative (non−lane)

2.12.c: Ground truth
 

 

Green: TP
Blue: FP
Black: TN
Red: FN

2.12.d: ROC

Figure 2.12: Illustration on ROC counting (TP: True Positive, FP: False Positive, TN:
True Negative, FN: False Negative)

Note the way of counting T P, FP and T N. Due to the fact that the result

from ridge detector is the lane line medial axis instead of the whole lane area,

so if one pixel after the ridge detector is classified as T P, all its connected pixels

forming the width of the lane on the same row in the ground truth image will

be counted as T P. If one pixel is classified as FP in the ridge image, it will be

expanded along row direction first. The width of expansion equals to 2 times

of its corresponding σdx (defined in (2.1)). For example, if the FP pixel is at
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the last row and its corresponding σdx is 12, then the number of FP pixels is

approximated to be 2×12 = 24. T N number equals to the number of N minus

FP pixels. Fig. 2.12 illustrates this process in details. In Fig. 2.12(d), Green

represents T P pixels, Blue for FP, Black for T N and Red for FN.

As mentioned before, the first filtering step is an adaptive threshold on ridge-

ness values. To evaluate its performance, we compare its TPR and FPR values

with those resulted from a series of fixed threshold as shown in Fig. 2.13.a. The

blue dots are obtained by setting the ridgeness threshold to the corresponding

fixed values and keeping the remaining filtering steps the same.
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2.13.a:
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2.13.b:

Figure 2.13: a) Average TPR and FPR comparison between ridgeness adaptive thresh-
old and fixed-value threshold. b) Average TPR and FPR after each filtering step.

The figure shows that the resulted point defined by (FPR, T PR) is closer to

the perfect point (0, 1) when using the proposed adaptive threshold. This indi-

cates that adaptive threshold is able to improve the noise filtering performance

as compared to fixed-value threshold.

To further analyze the impact from each individual filtering step, after run-

ning each step, the corresponding ROC values of each image are logged and the

average FPR and TPR values over the 350 images after each step are plotted in

Fig. 2.13.b (blue indicators).

As can be seen from the figure, the minimum structure removal has the great-

est impact in reducing the FPR, which means the noise pixels are largely re-

moved by this step. The intensity check step can further improve FPR without
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sacrificing TPR.

The bridge connection step seems to have little impact on FPR and TPR. But

it is necessary. To verify this, another filtering test on the same set of images is

carried out by removing this step but keeping the rest unchanged. The result-

ed (FPR, T PR) is shown as the red square in Fig. 2.13.b. The FPR is further

reduced as compared to the blue square, but the TPR is reduced more signifi-

cantly, resulting in a longer distance to the perfect point. The bridge connection

step prevents some true positive points from being removed by the minimum

structure removal step.
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2.14.a: TPR (True Positive Rate)
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2.14.b: FPR (False Positive Rate)
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2.14.c: ACC (Accuracy)
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2.14.d: TPR vs. FPR distribution

Figure 2.14: ROC comparison between the proposed and original algorithms

To further evaluate the performance of the proposed noise filtering mecha-

nism, we also compare its ROC values with those obtained from the original ap-

proach [37]. Fig. 2.14(a)-(c) illustrates the comparison results frame by frame,

where the black dashed lines mark the separation of different video clips.

For the first video, both approaches achieve similar performances as the road

conditions are relatively simple. But when more challenging scenarios (e.g.

tree shadows) come into the image as shown in the second and third video,

the proposed algorithm is still able to maintain a low FPR as compared to the

original approach, yet without scarifying TPR too much. This trade-off strategy
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yields higher accuracy as illustrated in Fig. 2.14(c) and improves the model

fitting efficiency significantly as shown later in this section. In other words, the

proposed algorithm is able to remove the noise pixels more effectively. This

observation is similar to that from the quantitative comparison.

In overall, both methods achieve a similar T PR (the proposed is slightly

worse by 0.2% only), but the proposed method has much better performance in

FPR (lower by 3%) and ACC (better by 3%).

Fig. 2.14(d) presents the (FPR, T PR) distribution for each image. It is clear

that the result cluster based on the proposed method is closer to the perfect point

(0,1) than that from the original method.

To further analyze the impact of the noise filtering mechanism on the model

fitting process, define the following variables: ω is the probability of choos-

ing an inlier (T P) each time a single point is selected from the lane line pixel

candidates (T P+FP), p is the probability that the RANSAC process produces

a useful result, n is the number of points needed to estimate model parameter-

s and k is the number of iterations for the RANSAC process. The following

relationships hold:

ω = T P/(T P+FP) (2.26)

1− p = (1−ω
n)k (2.27)

Let the subscript p refer to the proposed method and o refer to the original

method, based on (2.23-2.25) and (2.26-2.27), we can derive

kp

ko
· lg(1− po)

lg(1− pp)
=

lg(1− [ T PRo·P
T PRo·P+FPRo·N ]

no)

lg(1− [
T PRp·P

T PRp·P+FPRp·N ]
np)

(2.28)

To facilitate the analysis, we will use average values based on the 350 images

to substitute to the right hand side of (2.28). If assuming hyperbola, we can have

kp

ko
· lg(1− po)

lg(1− pp)
= 0.1382 (2.29)
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where on average, P= 3672, N = 149928, T PRo = 0.987, FPRo = 0.051, T PRp =

0.985, FPRp = 0.022, no = np = 4.
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Figure 2.15: RANSAC probability analysis of the proposed (pp) and the original (po)
approach when running same number of iterations

From (2.29), statistically, to achieve the same probability p from RANSAC

fitting (po = pp), the number of iterations required in the proposed approach

is only 13.8% of the original one. Furthermore, if running the same number

of iterations (kp = ko), the probability of the proposed approach to get a useful

model is always higher than that of the original one as shown from Fig. 2.15,

where x-axis is pp, varying from 0.01 to 0.99 and y-axis is pp/po. When the

proposed approach has the probability of 99% to find a useful model, the origi-

nal approach only has 47%.

From the ROC analysis above, we can conclude that without sacrificing the

true positive detection rate by much (worse by 0.2% only), the proposed filtering

mechanism removes the noise pixels much more effective than the original one

and thus it improves the detection accuracy and RANSAC fitting efficiency.

2.5.2 Modified sequential RANSAC

To evaluate the modified RANSAC algorithm, it is compared with the conven-

tional one based on the first video clip. The first half of the video contains single

line marking and the second contains double-line marking.

The fitting results from both algorithms were then compared with the ground

truth. Their row-wise maximum pixel deviation from the ground truth are depict

frame by frame in Fig. 2.16.
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Figure 2.16: Line fitting comparison between modified and conventional RANSAC in
terms of maximum deviations

Deviation

2.17.a: Modified

Deviation

2.17.b: Conventional

Figure 2.17: Comparison of fitting results between modified (column a) and conven-
tional (column b) RANSAC

For the first half of the video, both algorithms perform similarly in fitting

single line markings. But for the second half, the modified RANSAC algorithm

obtains more accurate results when fitting double line markings. The average

maximum deviation is only 2.26 pixels for the modified algorithm and 5.63

pixels for the conventional one. It is more often that the conventional algorithm

results in large fitting deviations. Two examples are provided in Fig. 2.17. The

major deviations from the conventional algorithm occur at the top of the images.

2.5.3 Simulation

As aforementioned, the main purpose of this mono-camera system is to generate

vehicle localization information with respect to the road lane. This information

can be calculated from the fitted model based on equations (2.18)-(2.22).

To verify the model fitting accuracy, we first tested the algorithm on the

simulator proposed in [37]. The simulator simulates a sequence of road images

(resolution 480× 640) captured by an on-board camera when changing its ori-
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Figure 2.18: Simulated road with corresponding parameters

entation (θe and pitch angle), position (de) and road geometry (L and C0). The

total number of images is 2000. Fig. 2.18 is one of the images generated by

the simulator. The corresponding parameters are given beside the figure. The

proposed approach is tested with the simulated road images and all the unknown

parameters for each image are back estimated from the fitted model. At the end,

the estimated parameters are compared with the corresponding ones set up in

the simulator to evaluate the accuracy.
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Figure 2.19: Model accuracy evaluation
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Fig. 2.19 illustrates the comparison results of L, θe, de and C0 between the

estimated model value (blue) and the simulator ground truth (red). Most of

the time, all the estimated values are quite close to their true values. The most

prominent errors occur at the locations where road surface is not flat (highlight-

ed by green circles), which violates the assumptions on model construction in

Section 2.4.1. The lane line markings in the image don’t follow hyperbolas or

straight lines. Fig. 2.20 shows two fitting examples at location 417 and 827,

representing down-hill and up-hill situations respectively.

Figure 2.20: Inaccurate fitting examples at non-flat road surface

The absolute error distributions for the corresponding parameters are shown

in Fig. 2.21. Most of the time (∼ 90%), the absolute error for all the parameters

is very small.
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Figure 2.21: Model absolute error distribution

The comparison results with the original approach in terms of root mean

square errors are shown in TABLE 2.3. n refers to the number of discrete values

assigned to the pitch angle in the original approach as aforementioned. L, θe

and de are always better. C0 is a little bit worse than the best performance of the

original approach with n = 1, but better than the remaining cases.

Another important parameter related to localization is the camera pitch an-

46



CHAPTER 2. MONO-CAMERA-BASED LANE LINE DETECTION AND VEHICLE
LOCALIZATION

Table 2.3: Lane model parameters comparison between proposed and original approach
(root-mean square error)

Parameter Proposed
Original

n=1 n=3 n=7 n=41
L (m) 0.070 0.215 0.222 0.210 0.215
θe (degree) 0.94 1.09 1.75 1.54 1.56
de (m) 0.116 0.25 0.26 0.26 0.26
C0 (m−1) 0.0029 0.0027 0.0050 0.0045 0.0046

gle. The simulation results for both approaches are illustrated in Fig. 2.22. Top

one is the proposed method while bottom is original with n = 41 [37]. Zooming

into the figures, we can see that the pitch angle from the proposed method is

closer to ground truth despite several spikes arising while the original approach

provides coarser results around the true values due to the discrete noise. This

indicates that pitch angle can be back-calculated/estimated more accurately than

assigning a series of discrete values in advance and searching for the best match-

ing. The root mean square error for the proposed approach is 0.1052 while it is

0.1249 for the original approach.
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Figure 13: Ground truth and computed ϕ in degrees, for (a) nϕ=7, (b)
nϕ=41, (c), (d) causal median filtering of (a) and (b).

40

Figure 2.22: Pitch angle comparison between proposed (top) and original approach
(bottom). Red line represents simulator ground truth and blue is estimation results

In summary, the simulation results show that the proposed method, even

without a priori accurate information of the camera pitch angle, is still able
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to find a suitable model and generate more accurate geometrical information

related to vehicle localization with respect to road lane. In addition, we also

show that pitch angle can be back estimated from the model and the value is

more precise than the original approach.

2.5.4 Real world environment performance

In the literature, most authors tested their algorithms on highways, where the

road structure is well constructed most of the time and the environment is more

confined and more predictable. To further challenge the capabilities of our al-

gorithm, we extended the test of the proposed approach on normal roads around

NUS (National University of Singapore) instead of highways. The situation is

more challenging and erratic as shown in Fig. 2.25.

However, similar to other works, here we face the main difficulties in ob-

taining precise ground truth. Theoretically, to generate the ground truth, all the

five parameters (L, C0, θe, de and ϕ) need to be measured directly at each frame.

However, this is infeasible by just using any manual measuring tools. In [44],

the ground truth was generated based on high precision GPS and accelerometer-

s. But it also required a high-resolution digital map (lane level) in place which

is still a research issue in itself and not available widely.

Inspired by [31] and [45], we used a dedicated side camera, mounted on the

quarter panel of the vehicle and pointing downwards at about 45◦, to measure

de and θe. The measurements from this side camera can be used as the ground

truth for the front camera. The reasons are:

(i) The image quality is less affected by vehicle vibrations as the side camera

is mounted at a very low position of the vehicle. This also implies that the

camera height and pitch angle can be assumed as constant.

(ii) The image is less contaminated by noise (e.g. trees, shadows, buildings

etc.) because it consists of road pavement and lane line markings only due
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to its narrow and limited field of view (FOV).

(iii) The camera is able to capture clearer marking boundaries as it is much

closer to the road surface.

Therefore, the results from the side camera are supposed to be more accurate

than that from the stereo and thus can be served as ground truth.

However, the side camera is not as reliable or effective as the front camera.

It works only when the lane line markings are continuous and within its limited

FOV. And it is not able to estimate the road profile in a long range. This is also

why the estimations on L and C0 are not analyzed in this study. Therefore, it

can only be a customized method to generate ground truth for this particular

application but cannot be implemented as a practical system for autonomous

vehicle navigation.

In the following analysis, if the ground truth was not available from the

side camera (e.g. at dashed lines), the vehicle dynamics, the prior and posterior

ground truth were used to interpolate the missing ground truth.
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Figure 2.23: Evaluation on model accuracy for real world testing
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The intrinsic and extrinsic parameters of both the front and side cameras are

listed in TABLE2.4.

Table 2.4: Parameter setup for front and side cameras

Eu E f Principle point nominal H nominal ϕ

Front camera 839 839 (371, 237) 1.55m 0.349
Side camera 717 717 (307, 257) 0.50m 0.785

Fig. 2.23 illustrates the comparison results based on two video clips (black

vertical dash line marks the separation of the two videos). Both videos con-

tain solid/dash single line markings on one side of the road. The noise sources

include non-flat surface, poor illumination, warning letters and glare from the

head lights of incoming vehicles. TABLE 2.5 shows the corresponding mean

error, absolute mean error and the error standard deviation for both parameters.

Table 2.5: Fitting results error statistics

Mean Abs Mean STD
θe (rad) -0.0131 0.0247 0.032
de (m) 0.0018 0.0559 0.0811

From the comparison, it is clear that most of the time, the proposed algo-

rithm can provide accurate and consistent estimation on vehicle lateral distance

de to the road boundary and its moving direction θe with respect to road. The

average absolute error in de is only 5.6cm, even less than lane marking width.

The most prominent errors for both parameters, as highlighted by black cir-

cles in Fig. 2.23, occur at the locations where the road surface is not flat and the

road is curving. This observation tallies with that from the simulation. Two ex-

amples are illustrated in Fig. 2.24, where the fitted line (red) slightly miss-aligns

with the medial axis of the lane line markings at the bottom of the image.

Figure 2.24: Inadequate model fitting examples (red lines) at non-flat road surface
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Another observation, similar to the simulation as well, is the non-smoothing

estimation, which fluctuates around the ground truth values with small errors.

From the statistical analysis in TABLE 2.5, the estimation error can be approx-

imated as zero-mean white noise since their mean values are close to zero. This

implies that a Particle Filter can be implemented to improve the consistency.

2.25.a: Line on one side only 2.25.b: Sharp Turn 2.25.c: Different Lighting

2.25.d: Shadow 2.25.e: Breaking Line 1 2.25.f: Breaking Line 2

2.25.g: Worn-out of lane line 2.25.h: With other vehicles 2.25.i: Different line colors

2.25.j: Different Surface 2.25.k: Breaking lines 2.25.l: Poor illumination

2.25.m: Glare 2.25.n: Bending

Figure 2.25: Fitting results under different situations. a∼ j daytime vision (black line)
and k ∼ n night vision (red line)

In Fig. 2.25, we present quantitative fitting results sampled from the testing

sequence under different situations as indicated under each image. Black (day-

time vision a∼ j) and red lines (night vision k ∼ n) represent the fitted results.

In this section, we demonstrate both qualitatively and quantitatively that the

proposed approach works well even with strong disturbances coming into the

images. It is capable to provide estimation on vehicle localization with respect

to road lane lines, which can be used as a feedback to control an autonomous
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vehicle to follow the lane.

In addition, when lane line exists on one side only (Fig. 2.25(a,l,n)), the

original approach in [37] will fail due to the nature of the algorithm but the

proposed one is still able to detect the lane line. Under situations with small

irregularities on road surfaces (such as d and j), the original approach is not

able to remove noise pixels effectively and consequently it will have a higher

probability to fail as shown by the probability analysis in Section 2.5.1.

2.26.a: Non-stop yellow box 2.26.b: Zebra crossing 2.26.c: Before zebra crossing

2.26.d: Round-about 2.26.e: Non-parallel lines 2.26.f: Warning letters

Figure 2.26: Situations where original and proposed approaches not working properly

However, there are still extreme situations under which both the proposed

and original approaches may not work satisfactorily. These situations include:

(i) Other road markings, which are similar to lane line markings, may result

in false detection, for example, the non-stop yellow box (Fig. 2.26(a)) and

zebra crossing (Fig. 2.26(b)).

(ii) Lane lines do not follow the hyperbola or straight line assumptions. For

example, before the zebra crossings, the lane line is in zigzag shape (Fig. 2.26(c)).

At round-about, it forms a circle (Fig. 2.26(d))

(iii) Lane lines are not parallel. For example, at lanes merging location, the

lane line width shrinks (Fig. 2.26(e)).

(iv) Sometimes, warning letters on the road will lead to false detection as well

(Fig. 2.26(f)), especially when lane line exists on one side only.

To address these cases, additional special detectors should be implemented
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to indicate to the algorithms that the vehicle is approaching these locations, so

that the results can be interpreted accordingly.

2.6 Chapter summary

In this chapter, we proposed a robust and reliable vision-based lane line detec-

tion approach which works even under challenging road situations. We demon-

strated that the fitted model is capable of providing accurate estimation on vehi-

cle localization information with respect to road lane lines, including the camera

pitch angle ϕ , vehicle heading direction θe, vehicle position to lane line de or dr,

road width L and road curvature C0.

However, this system is still not practical enough to be implemented on au-

tonomous vehicles. Firstly, it is not able to handle the extreme conditions as

shown in Fig. 2.26. Although they occur intermittently, they can cause fatal

errors. Secondly, the estimation results are too sensitive to the accuracy of ϕ .

Lastly, its estimation consistency should be further improved by including a fil-

tering step.

Due to these drawbacks, the single camera system is not implemented on

the AV platform eventually, but it proves that the ridge detector is effective

for lane line detection and vehicle pose can be estimated from the road mod-

el. These findings and lessons enable and motivate us to come out with the

more advanced stereovision system in Chapter 3. Without these findings in this

chapter, the stereovision system would not be as accurate and consistent as it is,

and consequently the NMPC system in Chapter 4 would not control the vehicle

properly. Furthermore, the parking slot detection and tracking algorithm in the

self-parking system in Chapter 5 is also inherited from this chapter.
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Chapter 3

Stereovision-Based Lane Line

Detection and Vehicle Localization

3.1 Introduction and literature review

As highlighted in Chapter 2, the mono-camera system has limitations and draw-

backs, but it provides us the insights and experiences in carrying out the research

in this field. With the lessons learnt from the mono-camera system, we re-visited

the literature and proposed a more advanced vehicle localization system based

on stereovision instead of mono camera. A more comprehensive and updated

literature review is provided below to illustrate how we arrived at the stereovi-

sion system.

As aforementioned in Chapter 2, lane-level vehicle localization includes the

estimation on vehicle’s lateral distance to the lane boundaries and vehicle mov-

ing direction with respect to the lane tangent. However, as raised in both the

recent survey [19] and the previous chapter, research gaps still exist to apply

vision system to achieve accurate lane-level localization for autonomous vehi-

cles. The main difficulties lie in understanding complex roads, achieving high

reliability and catering road singularities (such as low visibility, zebra crossing

and various illuminations as defined in [46]).
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The objective of this chapter is to propose a more reliable and comprehen-

sive vision-based system to achieve high precision lane-level localization for

autonomous vehicles. As summarized in [19] and Chapter 2, four major steps

are required generally, including lane line feature extraction, lane line model fit-

ting, time integration (or tracking or filtering) and vehicle pose estimation from

the fitted model.

Lane line feature extraction is to identify the pixels that belong to lane line

markings and eliminate non-lane line marking pixels. Most approaches in the

literature are based on the observations that lane markings have large contrast

compared to road pavement.

Some gradient based algorithms can be commonly found in the literature.

Besides those reviewed in Chapter 2, some other examples are Sobel edge de-

tector with symmetrical local threshold [47], adaptive thresholding [34] and

gradient-enhancing conversion [48]. But as pointed out before, these algorithms

are sensitive to noise and can result in a large number of outliers from clutter

and shadows. Furthermore, they are limited to local view and ignore the shape

feature of lane line markings (long and thin bright structures).

Some other more advanced variants based on image gradient have been pro-

posed in the literature, which are less sensitive to noise. For example, the steer-

able filter ([45][29]) is based on second order derivatives of 2-D Gaussians and

ridge detector ([37][49] and Chapter 2) is based on tensor field construction of

first order derivative. Both methods are able to get the response of gradient di-

rections which facilitates to remove outliers if their directions deviate too much

from the presumed lane line direction.

Another set of algorithm attempts to detect lane line markings from a differ-

ent perspective, searching for low-high-low intensity pattern along image rows.

The most common one is box filter (also known as top-hat filter) or other forms

of variants, e.g. [50], [51], [52], and [53]. They are considered as more reli-

able than the aforementioned algorithms. In brief, it convolutes the image with
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certain form of step filters and selects the high response pixels as the lane line

candidates at each image row. Normally, it is capable of extracting the medial

axis of lane line markings instead of edges.

For this kind of algorithms to work properly, its scale or step width must be

tuned accurately according to the lane line marking width in the image, to pre-

vent under/over filtering. Otherwise, the original image has to be transformed

through inverse-perspective mapping (IPM) to compensate the camera perspec-

tive effect (e.g. [54] [55]). But this also requires a good estimation of camera

pitch angle (or viewing angle). At the same time, interpolation is needed to make

up for the missing pixels in the IPM image. As the viewing distance becomes

larger, the interpolation becomes more and more inaccurate.

Another shortcoming that is common to the aforementioned lane line ex-

traction algorithms, including the one proposed in Chapter 2, is that they cannot

distinguish lane line markings with other on-road markings, such as warning let-

ters, humps and so on. These on-road markings may result in severe estimation

errors from time to time.

The second step is model fitting. It is the process to extract a compact high-

level representation of the lane from the lane line detection results. Depending

on the model used, the vehicle pose can be derived from the fitted model as

shown in [37] and Chapter 2. The model can also be used to guide the lane line

detection in the next frame to improve continuity (e.g. [56] [57]).

Different road models have been proposed in the literature. Those reviewed

in Chapter 2 are parametric models. The other group is semi-parametric and

mainly consists of splines, such as B-Snake [58], Cubic splines [24], active

contours [59] and so on. The advantage of these models is that they are more

flexible and can cover various road shapes. But they are more computationally

demanding and complex. They also require a good selection of control points.

As concluded in [19], there is no single model that can cover all kinds of road

shapes, on-line model selection should be considered.
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The time integration step, which is not implemented in Chapter 2, is to make

use of the previous information to guide the search in the current image. It

imposes smoothness and continuity between consecutive images. It can improve

vehicle localization accuracy and prevent erroneous detection failures.

Most of the proposed approaches are stochastic. For example, the Kalman

filter can be found in [45], [50] and [60] and particle filter is applied in [24],

[29], [35] and [57]. As pointed out in [19], the particle filter is more reliable

especially under abrupt changes in between consecutive images induced by ve-

hicle vibrations or non-flat road surfaces.

In general, the particle filter can be implemented directly to image (or pix-

els), lane line model and vehicle. For example, in [24], each particle contains

the locations of control points in the image for the cubic spline fitting. In [35]

and [55], each particle represents lane line model parameters. The change of the

parameters is simply assumed to follow a Gaussian distribution. But they did

not mention how the covariance matrix was obtained. In [29], each particle rep-

resents the location of the vehicle in real world coordinate but again the motion

of vehicle is simply assumed to be Gaussian.

Since the change between consecutive images is purely due to the vehicle

motion, a more intuitive and straightforward approach is to apply the particle

filter on the moving vehicle and take its explicit dynamic model into account,

especially when the vehicle is moving fast.

The last step in the lane-level localization is to estimate the vehicle later-

al position and moving orientation based on the lane line model. To recover

this information from 2D image to 3D real world, depth is required. In most

approaches, depth is derived from the camera viewing angle or pitch angle by

assuming constant camera height and flat road surface. One typical example

is the IPM. The approach in Chapter 2 also follows the same principle but in

a more compact and hidden form as shown from (2.18) to (2.22). Therefore,

localization accuracy depends strongly on the pitch angle and it is sensitive to
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pitch angle estimation noise.

A more reliable and direct way to recover the depth is through stereo cam-

eras, given that the disparity image can be constructed effectively and accurate-

ly. Another advantage to use stereo is that on-road vehicle or obstacle detection

can be integrated easily into the system. However, as mentioned in [19], the low

texture of road surface poses processing challenge to obtain the disparity image.

This is the main reason why stereo is not widely adopted in this research field.

In [61], the author used dense mapping to obtain disparity while in [62], Maxi-

mum A Posteriori - Markov Random Field (MAP-MRF) approach was applied.

But both are not effective and subject to smoothing noise.

Leveraging on the problems listed above and the unresolved issues in Chap-

ter 2, we propose a more comprehensive vision-based solution to achieve high

precision lane-level vehicle localization. The system makes use of stereo for

3D information reconstruction and the particle filter for time integration. The

novelties lie in four fold:

(i) A more reliable lane line detection algorithm with adaptive Gaussian-box

filter and special detectors to remove other road markings.

(ii) Simultaneous multi-model fitting which covers straight lines, curves and

even zigzag lines. We proposed the first fitting algorithm for zigzag line.

(iii) New particle filter framework which takes vehicle dynamics and road

shape into account explicitly.

(iv) Effective way of recovering 3D information from stereo vision based on

road model. It avoids the conventional time-consuming dense correspon-

dence mapping algorithms.

The chapter is organized as follows: Section 3.2 provides detailed elabo-

ration on the aforementioned four steps. The experiment setup and results are

illustrated in Section 3.3, and conclusions are drawn in Section 3.4.
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3.2 Image processing

3.2.1 Pre-processing

As aforementioned, the images are from a pair of stereo cameras. Before they

are processed, several pre-process steps are required.

First, we design a customized mechanism to determine camera exposure

time to prevent over/under exposure. Normally, the exposure time is adjusted

based on different metering mechanisms on image overall brightness, e.g. par-

tial area metering, center weighted metering [63]. Here in our approach, the ex-

posure time is calculated based on the road surface (ROI) brightness. The road

surface is approximately derived from the previous lane line detection. This is

helpful especially when the vehicle moves from a shaded area to an unshaded

or the other way round.

Secondly, the images from left and right cameras need to be rectified so

that the corresponding pixels in the two images lie on the same row [64]. The

rectification parameters can be calibrated accurately according to [40].

Thirdly, both images need to be converted to grey images. We choose inten-

sity value from HSI color space as the grey value, same as Chapter 2.

3.2.2 Lane line detection

Both images I are smoothen or convoluted by a normalized 1D Gaussian kernel

G with variable step width wG.

G(v) = exp
(
−0.5x2

(0.5wG)2

)/∫ 0.5wG

−0.5wG

exp
(
−0.5x2

(0.5wG)2

)
dx (3.1)

where v is image row, wG is the width of Gaussian kernel and x is the integration

variable varying from −0.5wG to 0.5wG.

wG has to be adaptive to prevent over/under filtering. It is adjusted according

to the image row (v), the real lane line marking width (wm), the camera pitch
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angle (ϕ), height (H) and focal length ( f ).

The left and right edges of lane line markings follow (3.18) and (3.19). Then

wG can be derived as (3.2) where ϕ and H are from the previous estimation. f is

camera focal length. wm normally follows government standards (e.g.[65]) and

have few possible values (10cm, 15cm and 20cm). At the end of each iteration,

several templates based on these values are generated. A template matching

process with the lane line markings in the current image is carried out to check

which value is more accurate and should be used in the next iteration.

wG(v) = ul−ur = wm cosϕ(v+ f tanϕ)/H (3.2)

The smoothed image L and corresponding gradient image Lu along u are

defined in (3.3) and (3.4), where ? denotes convolution and u is column number.

L(u,v) = I(u,v)?G(v) (3.3)

Lu(u,v) = ∂L(u,v)/∂u (3.4)

A lane line marking pixel I(u0,v0) is detected if it satisfies

argmax
u

(
L(u,v0)|u ∈ [bl, br]) = u0 (3.5)

Lu(u,v0)>−s, ∀u ∈ [bl, u0] (3.6)

Lu(u,v0)6 s, ∀u ∈ [u0, br] (3.7)∫ u0

bl

Lu(u,v0) du > It (3.8)∫ br

u0

Lu(u,v0) du 6−It (3.9)

where bl = u0−wG(v0), br = u0 +wG(v0), s (set at 3) is a small positive value

to add in tolerance in the increasing or decreasing trend and It (set at 30) is the

intensity threshold.

The set of constraints defines a hill structure in L along its rows, with specifi-
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cations on the hill height and steepness. The detection algorithm is insensitive to

illumination changes as the threshold is not based on absolute intensity but the

difference between hill peak and valley. It is not subject to local view problems

[36] because it takes its neighbourhood pixels into account.

Fig. 3.1 illustrates the lane line detection process. Fig. 3.1(d) depicts the

intensity plot at Row 125 of the smoothed image. A and B are detected as the

lane line marking pixels. The rest are not because their hill structures are not

steep enough.

3.1.a: Original image 3.1.b: Smoothed image

3.1.c: Detection result
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3.1.d: Row125 intensity

Figure 3.1: Illustration on lane line detection algorithm

The proposed algorithm is capable of detecting bright long structures in the

images. However, besides lane line markings, humps, zebra crossings, warning

letters and arrows also exhibit similar features and may be false detected as lane

line markings as shown in Fig. 3.5(b), Fig. 3.6(f) and Fig. 3.7(e). This is a

common issue to other detection algorithms as well. To distinguish them from

lane line markings, special detectors have to be implemented.

3.2.2.1 Hump Detector

As show in Fig. 3.2(a) and 3.5(a), hump markings consist of equally spaced

parallel lines that cover the entire lane width and are slanted to lane tangent.

They follow the government standards as shown in Fig. 3.2(a).

Row wise intensity change of the hump portion in the image follows a peri-

odic pattern as shown in Fig. 3.3(a) Row 100 and 170. Fourier transform [66] is
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3.2.a: Hump 3.2.b: Zebra crossing

Figure 3.2: Government standards for hump and zebra markings (in mm) [7]

implemented to convert the row-wise signal to its frequency domain. As indi-

cated by A and B in Fig. 3.3(b), they have obvious dominant frequencies.
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3.3.b: Frequency response

Figure 3.3: The frequency response at different rows of hump image shown in Fig. 3.5

However, due to the image perspective effect, their dominant frequencies

at different rows are different. At Row v, the distance dy between two yellow

marking lines can be derived similarly as wG.

dy(v) = 0.35(v+ f tanϕ)cosϕ/H/cos(θe−π/4) (3.10)

where ϕ , H and θe are all from the previous detection results. Then the signal

frequency fd at Row v is defined as (3.11) with WI being the image width.

fd(v) =WI/dy(v) (3.11)

Based on (3.10) and (3.11), an upper and lower limits for the dominant fre-

quency at Row v can be derived empirically if assuming the estimation error in

θe varies from −θE to θE . An example based on the hump image (Fig. 3.5) is

shown in Fig. 3.4. The actual dominant frequency is derived from the Fourier
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transform at each image row.
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Figure 3.4: Illustration on frequency limits at different image rows and the actual dom-
inant frequencies derived from Fourier transform

If Row v belongs to hump, its dominant frequency must be within the upper

and lower limits. At the same time, its response at the dominant frequency has

to be larger than a prescribed threshold (set at 18.5). For example, for Row 220,

its dominant frequency is very small and within the limits (Fig. 3.4). But its

response is very low at this frequency as indicated at C in Fig. 3.3. Therefore,

Row 220 is not considered as hump.

One more step is required to further remove the false detections. Similarly

to the lane line detection, the image is smoothed by G and all hill structures are

detected as shown in Fig. 3.5(b). At each row, the number of structures has to

be greater than a prescribed threshold (set at 4) and the distance between two

consecutive hill structures must be within the range defined in dy (by varying θe

between θe−θE and θe +θE).

3.5.a: Hump image 3.5.b: Lane line detection

Figure 3.5: Hump and the lane line detection results. (The red box indicates the hump
detection result)

The hump detection results are shown by the red box in Fig. 3.5. Although

every single line of the hump is identified as the lane line markings, they will be

removed effectively after the hump detection.
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3.2.2.2 Zebra Crossing Detector

Similar to the hump detector, zebra crossing can be identified through Fourier

transform as well. The dominant frequencies fd and the smoothing kernel G

need to be adjusted based on the dimensions in Fig. 3.2(b).

3.2.2.3 Warning Letter Detector

The types of warning letters painted on the road surface are very limited. Com-

mon ones may include ”SLOW”, ”HUMP”, ”AHEAD”, ”BUS” and so on. They

follow the standards as listed in [7] (different countries may follow different

standards), from which the templates can be obtained.

However, the letters in the images are subject to camera perspective, orien-

tation and scaling effects. For this kind of template matching, the advanced ap-

proaches in the literature [67] include Scale-Invariant Feature Transform (SIFT),

Principal Component Analysis (PCA)-SIFT [68], Speeded Up Robust Features

(SURF) and Features from Accelerated Segment Test (FAST, [69] and [70]).

But they are not applicable here due to their relatively slow speed. The low-

texture feature of the warning letters also makes it difficult to identify corre-

sponding feature points effectively.

Here we propose a fast convolution based template matching algorithm for

warning letter detection.

First, image I is transformed through IPM to remove the perspective and

scaling effect. Since we only target to identify the rough position of the warning

letters, all the shortcomings with IPM as mentioned in Section 3.1 are tolerable.

Then threshold the IPM image to obtain the binary image Iinv (Fig. 3.6(b)).

The second step is to remove its orientation effect. Every single warn-

ing word has line components that is perpendicular to its orientation. 13 s-

traight line masks are predefined, representing 13 equally spaced orientations in

[−π/3, π/3]. Their lengths are set approximately as the height of the letters.

Convolute Iinv with every mask. At each pixel, its maximum response Imax
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(Fig. 3.6(c)) and the corresponding orientation Iori can be obtained.

Imaski = Iinv ?maski , i = 1,2, · · · ,13 (3.12)

Imax(u,v) = max
(
Imaski(u,v)| i = 1,2, · · · ,13

)
(3.13)

Iori(u,v) = argmax
i

(
Imaski(u,v)| i = 1,2, · · · ,13

)
(3.14)

For each orientation i, count the number of pixels (Ni) that have the maxi-

mum response at orientation i and match > 75% to the corresponding mask.

Ni =
∣∣∣∣(u,v)| Imax(u,v)> 0.75, Iori(u,v) = i, ∀u,v

∣∣∣∣
0 (3.15)

The orientation of the warning letters can be approximated by the angle that

corresponds to the maximum of Ni. Then Iinv can be rotated accordingly as

shown in 3.6(d) Irot .

3.6.a: Original image I 3.6.b: IPM (threshold) 3.6.c: Direction response

3.6.d: Rotation 3.6.e: ROI

SLOW

3.6.f: Result

Figure 3.6: Warning letter detection algorithm

The next step is template matching which is the most time consuming part.

To reduce computation effort, regions of interest (ROI) will be identified first.

Based on the statistical analysis on all the templates, the coverage ratio,

defined as the number of 1s over the total number of pixels in the template,

falls in the interval of [0.3, 0.5]. Taking the pixel (u,v) in Irot as the center of

a rectangular, which has similar size as templates, if the coverage ratio of the

rectangular is in the interval, the pixel (u,v) belongs to ROI. This process can
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be realized through convolution as shown below:

Iconv = (Irot ?O)/nO (3.16)

ROI = {(u,v) : Iconv(u,v) ∈ [0.3,0.5]} (3.17)

where O is a matrix containing 1 only and its size is similar to the templates. nO

is the total number of entries in O.

Each pixel in ROI will go through template matching. The difference mea-

surement index is L1 norm due to its efficiency and robustness as concluded in

[71]. Once the index is less than 0.3, the corresponding pixel will be taken as

the center of the particular warning letter. Its four vertices in I can be back cal-

culated. Any pixel from lane line detection will be removed if they fall into the

area enclosed by the four vertices. The final result is shown in Fig. 3.6(f).

3.2.2.4 Arrow Detector

Since the arrow has very clear and unique features, PCA is implemented for

arrow detection. To remove the perspective effect, IPM image is used, same

as the warning letter detection. The major components of PCA is generated by

rotating the standard template from −30◦ to 30◦ with a step size of 1◦. The

standard template is again from [7]. There are a total of 61 templates and based

on SVD decomposition, the first 10 components are more dominant.

After the IPM and threshold, similar ROI selection process as defined by

(3.16) and (3.17) is carried out. In this case, the size of O is the same as the

arrow template size and the coverage ratio interval is [0.07 0.10].

Each pixel in the ROI will be expressed by the 10 major PCA components

and its corresponding coefficients are compared with the coefficients of the 61

templates. The one with minimum difference will be taken as the template for

that pixel. The difference image Id is shown in Fig. 3.7. In Id , the minimum

value is identified (marked as red) and if its corresponding difference is less
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than a threshold (set at 5.5), the pixel will be taken as the center of the arrow

and the four vertices that correspond to the particular template can be obtained

and then they can be back calculated in I. Any pixel in I that is within the area

enclosed by these four vertices will be removed.

3.7.a: Original image I 3.7.b: IPM (threshold)

3.7.c: ROI 3.7.d: Difference image 3.7.e: Result

Figure 3.7: Arrow detection algorithm

However this algorithm may lead to false detections for those wide lane line

markings. To eliminate this, the predicted lane line model based on the vehicle

motion and the previous lane line detection is worked out. After projecting

the predicted model on the IPM, a range, with fixed width and centered at the

predicted model, is generated as shown by the green boxes in Fig. 3.7(b). Any

pixel in this range will not be considered for arrow detection.

As known, PCA is not robust for partial object detection. For example,

for the image in Fig. 3.7(a), when the vehicle moves forward, the arrow tail

will disappear from the bottom of the image. The PCA algorithm will fail to

identify the remaining part of the arrow. If this happens, a similar PCA detection

algorithm based on arrow head will be carried out.

3.2.3 Model fitting

The basic road model adopted here is hyperbola, similar to (2.8) and (2.9), but

with the assumption of Eu = Ev = f . The straight line and zigzag line can be

derived from the hyperbola. For the stereo camera pair, if the left road lane line
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follows (3.18) in the left camera, then its correspondence in the right camera

follows (3.20) with dlr the distance between left and right cameras.

ul =
f θe

cosϕ
+

cosϕde(vl + f tanϕ)

H
+

f 2HC0/cos3ϕ

4(vl + f tanϕ)
(3.18)

ur =
f θe

cosϕ
− cosϕdr(vr + f tanϕ)

H
+

f 2HC0/cos3ϕ

4(vr + f tanϕ)
(3.19)

ul =
f θe

cosϕ
+

f 2HC0/cos3ϕ

4(vl + f tanϕ)
+

cosϕ(de +dlr)(vl + f tanϕ)

H
(3.20)

Theoretically, this also means that if we can solve the unknowns in (3.18)

and (3.20), we are able to find the correspondence of the lane line in left and

right images. Then, the lane line disparity can be calculated and followed by 3D

road reconstruction.

These two equations can be solved independently but there is no guarantee

that they result in the same H, θe and de and thus no guarantee on correspon-

dence. They have to be solved jointly. Define the pixels in left and right image

to be (uL,vL) and (uR,vR) respectively. Subtract (3.18) with (3.20), we can have

uL−uR =
f 2HC0

4cos3ϕ

( 1
vL + f tanϕ

− 1
vR + f tanϕ

)
+

cosϕ

H
de(vL− vR)−

cosϕ

H
dlr(vR + f tanϕ) (3.21)

To solve (3.21), we take ϕ as known from the previous detection and H, C0

and de as unknown, so that (3.21) becomes LIP (linear in parameter). Taking

two pixels each from left and right images is sufficient to solve the unknowns in

simple linear algebra. Substituting the unknowns in (3.18) or (3.20), θe can be

obtained as well.

It seems we have solved the vehicle lane-level localization; however, the

results (de,θe) are not accurate due to the various assumptions as listed in [37]

and there is no mechanism to update ϕ .

Therefore, this model, defined as primary model or road-in-image model, is

just used to guide the search for lane line marking pixels in the images. A more
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accurate model, defined as ultimate model or road-in-real-world model will be

derived based on stereo 3D reconstruction to solve the vehicle localization.

Random sample consensus (RANSAC) algorithm is implemented to find the

inliers to the primary model. The detailed algorithms are as following:

(i) Randomly select two pixels each from left and right images. Based on

(3.21), (3.20) and (3.18), work out the lane line model in both images.

(ii) Verify the derived models by checking C0 and H. C0 cannot be very large

for road as mentioned in Chapter 2; otherwise the vehicle cannot turn. H

cannot be less than 0. If verification fails, go back to i).

(iii) For each lane line candidate pixel in left and right images, calculate its dis-

tance to the corresponding models. If its distance is less than a prescribed

threshold (set as 2 pixels), it is an inlier to the model.

(iv) Repeat i)-iii) for a certain number of iterations (set as 1600).

(v) The model with maximum number of inliers is selected as the primary

hyperbola model.

Note that this RANSAC algorithm based on (3.21) avoids the conventional

time-consuming algorithms to find stereo dense correspondence. This innova-

tive approach saves so much computation power that the system can run in real

time. This is the main novelty that distinguishes the system from other systems

which use stereo images.

For straight road, its primary model can be derived by setting C0 = 0 in

(3.21), (3.20) and (3.18). The similar RANSAC procedure can be carried out to

fit the primary line model.

For zigzag markings, they can be identified based on the straight road prima-

ry model. If the straight model is part of the zigzag line, it must be continuous

and a DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
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clustering algorithm [72] is implemented to remove its discontinuous part. The

next step is to search for the next segment of the zigzag line.

Define the inliers to the first straight line as set SA. Taking the pixels above

the first straight line as an example, define them as set SB. Similarly, to deter-

mine the second straight line model, two points each from left and right images

are to be selected. The first point from each image can be selected from SB ran-

domly. The second point from each image is selected on the first straight line,

which means it is the intersection of the zigzag line. To select this point, select

its row value first and determine its column value based on the first straight line

model. Since the intersection point has high probability to lie in the vertical gap

between SA and SB, the row value can be selected based on the Gaussian distri-

bution with µ = 0.5(minv(SA)+maxv(SB)) and σ = 0.5(minv(SA)−maxv(SB)).

There are no other fitting methods available in the literature for zigzag line.

After the three RANSAC processes, three primary models, hyperbola, s-

traight line and zigzag line, are derived. The one with maximum inliers is se-

lected as the primary model for further operations.

Since all the results are based on rectified images, in theory, the disparity

map of the lane line markings can be obtained straightforwardly by setting vL =

vR in (3.21). However, due to the following reasons, a refine process is required.

(i) Small offset exists between the fitted model and the actual pixel position

(ii) The fitted model is based on previous estimated ϕ , which might not be

accurate for the current iteration.

(iii) When double lines exist on one side of the road, e.g. Fig. 3.6(a) left lane

line markings, since they are very close (15cm), the model fitting may

match the outer line in one image to the inner line in the other.

The refine process is described as follows. Taking left image as the base,

the template at row v0 is defined as the pixels between uL−wG and uL +wG.

The searching range in right image is from uR− 2wG to uR + 2wG on the same
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row. The pixel with the maximum matching results in the right image is the

correspondence to the base pixel in the left image. By doing this, we are able to

map lane line correspondence accurately. And their disparities dis at each row

can be worked out accordingly.

In stereo coordinate system (by translating origin of left camera coordinate

to the midpoint of the left and right cameras), the position of the detected lane

line markings follows


Xcam = uLZcam/ f +dlr

Ycam = vZcam/ f

Zcam = dlr f/dis

(3.22)

The camera height H and pitch angle ϕ can be calculated accurately by

assuming the short road segment (3 ∼ 6m) in front of the car is flat. Based on

geometry, for these lane line points, they follow (3.23). tanϕ and H/cosϕ can

be solved by least squares, and thus H and ϕ can be determined.

[
Zcam −1

] tanϕ

H/cosϕ

=−Ycam (3.23)

With these two values, the lane line 3D coordinates in the car coordinate

system can be directly obtained by coordinate rotation. In the car coordinate

XZ plane, if the primary model is a hyperbola, a parabola model is used to fit

the lane line points as shown in (3.24). The resulted model is defined as the

ultimate model. Since all the lane line points in car coordinate are transformed

from the inliers of the primary model, they are inliers to the ultimate model.

Therefore, least squares fitting is enough to work out the model parameters.

Xcar = aZ2
car +bZcar + c (3.24)

Similarly, if the primary model is a straight line, in the car coordinate system,
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a line model will be implemented accordingly as the ultimate model. However,

if the primary model is zigzag line, we need to transform it into one single line

model which is parallel to the road boundary.

To achieve this, first, two straight line models can be fitted based on the

zigzag line marking points in the car coordinate system. Then calculate their

intersection. According to [65], each line segment in zigzag markings is 4m

long. The midpoint of the corresponding line segment can be located by finding

a point on the line segment with a distance of 2m to the intersection point. The

line determined by two midpoints is the model to describe the zigzag line.

With the ultimate model (3.24), the vehicle localization information (de and

θe) can be calculated easily based on geometry.

To further improve the robustness, after getting the primary model on one

side of the road, the algorithm tries to search for lane line on the other side of

the road. We define this model as primary conjugate model. But it won’t be

used for any further calculation. It just checks whether the other side of the road

has clearer lane line markings (more inliers). If yes, in the next iteration, the

primary model will be fitted by this side.

If the primary model follows (3.18) in the left image, the conjugate model in

the left image follows (3.19) if they are parallel. By varying lane width L, we can

get an ROI for the right lane. Normally, L is within the range of [2.5m,4.0m].

When fitting the conjugate model, we will drop the parallel constraint. That

means the primary model and its conjugate share the same ϕ , H and C0, but

have different θe and the conjugate has one more variable L. Equation (3.21)

becomes

uL−uR =
f 2HC0

4cos3ϕ

( 1
vL + f tanϕ

− 1
vR + f tanϕ

)
+

cosϕ

H
(de−L)(vL− vR)−

cosϕ

H
dlr(vR + f tanϕ) (3.25)

where the only unknown is L and other parameters can be obtained from primary
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model. Again similar RANSAC procedures can be carried out. But here, we

only need to choose one pixel each from left and right images to calculate L. If L

is out of the range mentioned above, new pixels need to be selected. Substitute

L into the conjugate of (3.18) and (3.20), we can obtain the new θe for the

conjugate lane line, and thus the conjugate model.

3.2.4 Particle filter

The particle filter has been widely used in this research field for tracking pur-

pose to improve the consistence and smoothness. Here, as aforementioned, we

propose a new particle filter scheme which takes the vehicle dynamic model and

the road shape into account explicitly. While in other works, vehicle dynamics

are always ignored or simplified as Gaussian movements.

The model of the vehicle motion follows Ackermann equations as defined

in (3.26), where x, z and θ refer to the vehicle location and orientation in the

global coordinate as shown in Fig. 3.8(a). Ts is the sampling time. l is the dis-

tance between the front and rear wheel axis. vk and φk are velocity and steering

direction. de and θe defined in Fig. 3.8(b) are the same as those in Fig. 2.6.


xk+1 = xk + ẋkTs ẋk+1 = cos(θk)vk

zk+1 = zk + żkTs żk+1 = sin(θk)vk

θk+1 = θk + θ̇kTs θ̇k+1 = tan(φk)vk/l

(3.26)
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𝜃 
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𝑧 𝑙 
𝑙1 

𝑙1 
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𝑍 

3.8.a: Ackermann model
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()", +")

3.8.b: Vehicle pose error

Figure 3.8: Ackermann vehicle model and pose error definition
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Each particle represents the location of the vehicle. The only measurable

variables in this setup are de and θe. By comparing the measured values and the

predicted values associated to each particle, an importance factor of each parti-

cle can be calculated by approximating the measurement difference as Gaussian

distribution. The SIR (sampling importance resampling) algorithm is carried

out to re-draw particles from the current particle pool.

min
am,bm,cm

(Ncar

∑
i=1

(
amz2

car +bmzcar + cm− xcar
)2) (3.27)

sub ject to :

xt = amz2
t +bmzt + cm tan(θe) = 2amzt +bm

xt = de cos(−θe) zt = de sin(−θe)

The updated de and θe are taken as the mean of those of the re-drawn par-

ticles. The states of re-drawn particles in (3.26) are translated from their orig-

inal coordinate system to a new one whose origin is at the gravity point of the

re-drawn particles and whose z axis aligns with the mean θ of the re-drawn par-

ticles. In this new coordinate system, the origin represents the updated vehicle

location and its z axis represents the vehicle moving direction. If the updated

de and θe are the same as the measured ones, (3.24) can be used directly for the

next prediction step. Otherwise, it has to be refined by solving the constrained

optimization problem in (3.27), where Ncar is the number of detected 3D points,

de and θe refers to the updated ones, xt and zt are transition variables.

Equation (3.27) ensures that the vehicle localization with respect to the re-

fined model is exactly de and θe. At the same time, it ensures the refined model

has minimum deviation to the detected 3D points.

Equation (3.26) is used to predict the re-drawn particle based on the input vk

and φk. To prevent sample impoverishment or increase the particle diversities,

an empirical Gaussian covariance matrix is appended to the right hand side of

(3.26). The predicted de and θe associated to each particle can be calculated
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based on their predicted states and the refined model [am,bm,cm].

3.2.5 Algorithm summary

For better illustration, the algorithm is summarized in the following flow dia-

gram (Fig. 3.9), where the italics indicate the output of the previous process.

Stereo 
Camera Pre-Process 

Image Processing 
& Special Detector 

Model 
Fitting 

Particle 
Filter 

Grey 
Images 

Lane line  
candidate 

pixels 
Vehicle 
sensors 

Road model 
& (𝑑𝑒 ,𝜃𝑒) 

Lane line position 
prediction 

Final Results 
(de,𝜃e) 

ROI 

Refined model & Filtered (𝑑𝑒 ,𝜃𝑒) Filtered (𝑑𝑒 , 𝜃𝑒) 

Color 
Images Start 

Figure 3.9: Lane line detection algorithm flow diagram

The algorithm starts from stereo camera and ends with vehicle lane level lo-

calization information (de, θe). The lane line position prediction module makes

use of the current estimation results to predict the lane line position in the con-

sequent image to improve the image processing consistency.

To further improve the smoothness of the detection, two more steps are

carried out. First, the change of road curvature C0 cannot be abrupt and can

be approximated as logistic distribution. Therefore, the number of inliers in

RANSAC model fitting step v) refers to the normalized number by the corre-

sponding logistic distribution. Second, in determining (3.24), the points from

previous iteration are taken into account, but with a weighting factor of 50%.

Therefore, the lease squares fitting is indeed the weighted lease squares fitting.

50% is determined empirically. The main reason to include the previous detec-

tion results is that the lane line portion near the vehicle falls behind the camera

scene and thus cannot be seen in the image. The previous detected points are

used to estimate this lane line portion.
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3.3 Experiment results

The proposed algorithm is implemented in Matlab running on the Asus laptop

in TABLE 1.1. On average, it takes only 0.11s for one iteration.

The test rout was shown as red in Fig. 3.10 between point A and B. The

algorithm has been tested extensively under different situations as shown in

Fig. 3.12 and Fig. 3.14. The challenging situations include sharp turns, tree

shadows, camera saturation, worn-off lane lines, poor visibility and etc..

A 

B 

Figure 3.10: Test bed area and the test rout

The results shown from Section 3.3.1 to 3.3.4 are based on image sequences

taken under normal daytime. To further evaluate the algorithm, it has been tested

at different times of the day and under different weather conditions, including

dusk, night and after rain. The results are presented in Section 3.3.5. Two

illustration video links (Link i and ii) are provided in Appendix B.

3.3.1 Results on special detectors

The results are based on 1145 image sequences. They were captured continu-

ously when driving the vehicle from point A to point B, then back to point A in

Fig. 3.10. T PR (true positive rate), FPR (false positive rate) and ACC (accuracy)

are used as defined from (2.23) to (2.25).

To classify T P and FP when the detection is misaligned or partially over-

lapped with ground truth, we adopted the index proposed in [73] for car and
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pedestrian detection. If the overlap ratio is more than 70%, the result is consid-

ered as T P; otherwise, it is FP.

The detailed results are tabulated in TABLE 3.1. In general, all the detectors

are able to achieve a very high T PR, ACC and low FPR, indicating that most of

the time the detectors are able to identify those markings on the road and when

they do not appear, the detectors seldom alert.

Table 3.1: Quantitative evaluation of special detectors

P N T P FP T PR FPR ACC
Arrow 174 971 167 12 0.960 0.012 0.983
Hump 61 1084 58 6 0.951 0.006 0.992
Letter 155 990 140 0 0.903 0.000 0.987
Zebra 44 1101 41 4 0.932 0.004 0.994

The defects in T PR are mainly due to the long distance between the ob-

ject and the camera. The object becomes either too small to detect or distort-

ed too much in the IPM image due to the interpolation, e.g., the "HUMP" in

Fig. 3.11(a). The small and intermittent FP are mainly induced by strong ir-

regular shadows as shown in Fig. 3.11 where the detected arrow and hump are

false.

3.11.a: False arrow detection (red box) 3.11.b: False hump detection (cyan box)

Figure 3.11: False positive detection from strong tree shadows

Fig. 3.12 shows the detection examples under some challenging scenarios.

More examples can be found in Fig. 3.14. (a) shows the case when multiple

special markings exist in the same image. (b) demonstrates even the letter is

slanted in the image, the algorithm is still able to detect. (c) and (d) illustrate

the situation under strong irregular tree shadows. In (e) and (f), only half of

the special markings are visible in the image. In (g), the visibility of the zebra
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crossing is poor due to the shadows of the cover roof. In the last image, the

zebra crossing is partially occluded by pedestrians.

3.12.a: Multiple detection 3.12.b: Slanted letter 3.12.c: Tree shadows

3.12.d: Tree shadows 3.12.e: Partial letter 3.12.f: Partial arrow

3.12.g: Low visibility 3.12.h: Occluded by pedestrians

Figure 3.12: Special markings detection in challenging situations (Red box: Arrow.
Blue box: Warning letter. Cyan box: Hump. Yellow box: Zebra crossing)

3.3.2 Results on lane line detection

The results in this section are based on the same set of images as in Section

3.3.1. As mentioned in Chapter 2, the major difficulty to evaluate the lane line

detection performance is the lack of ground truth, especially on lane line level.

Some established databases, such as KITTI benchmark [16], are not applicable

here since they only include ground truth on road surface but not the lane line.

In Chapter 2, we implemented ROC for evaluation. But this method is very

tedious as the lane line pixels of the ground truth were labelled manually image

by image. It is not practical in this chapter due to the huge number of images to

be evaluated. Therefore, in this chapter, we adopted a simpler method proposed

in [34] and [24], which divided the fitting results into three categories: correct

detection, misaligned one and incorrect one. We followed the guidelines in [24]

to determine them. Although this method is less accurate and less objective than

the one in Chapter 2, it is still good enough to provide insights on the lane line
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detection performance.

For benchmark, the results from the proposed algorithm are compared with

PG (probabilistic grouping [24]), ALD (advanced lane detector [34]) and the one

(MC, mono-camera) in Chapter 2. Since none of these algorithms is designed

to detect zigzag lines, their detection results on zigzag lines are not counted.

As shown in TABLE 3.2, among these four methods, the proposed one

achieves the highest correct fitting rate and lowest incorrect fitting rate. This in-

dicates that the proposed lane line detection algorithm, based on adaptive Gaus-

sian kernel filter with special detectors, is more effective in removing noise pix-

els under various conditions. Furthermore, the fitting mechanism also reduces

its sensitivity to noise, because it fits two correspondence images simultaneous-

ly and imposes stereo disparity constraints.

Table 3.2: Lane line detection results comparison

PG ALD MC Stereo
Correct fitting rate 82% 87% 86.7% 93%
Misaligned fitting rate 4.0% 6.0% 7.0% 5.6%
Incorrect fitting rate 14% 7.0% 6.3% 1.4%

Some incorrect fittings in PG, ALD and MC are from those special road

markings, especially from the humps. Some are from sharp turns (Fig. 3.14(i)(j)).

The curve penalty in PG is too restrict to allow such large curvatures while the

logistic distribution used in the proposed algorithm is a more relax assumption

and proved to be more reliable and stable.

Other incorrect fittings in PG and ALD are due to fast vehicle lateral move-

ment. In PG, the motions of the control points between consecutive images

are assumed as Gaussian. However the fast vehicle lateral movement induces

unusual movement to the control points. Consequently, some correct lane-

boundary hypotheses with weak lane-marking supports are rejected. In ALD,

the temporal blurring assumes small ego dynamics. But the fast lateral move-

ment dictates such assumption and results in poor average images and thus high

rate of incorrect fittings. Therefore, it is an obvious improvement to consider
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the explicit vehicle dynamic model in the prediction of the particle filter.

Figure 3.13: Incorrect fitting on lane lines due to far distance

The incorrect fittings from the proposed algorithm mainly happen when the

visible line markings are far away from the camera. For the examples shown in

Fig. 3.13, the line segments after the zebra crossing are very short in the image,

and the algorithm fails to identify them. Under such incorrect fitting conditions,

the system will make use of the previous road profile, vehicle dynamics and the

particle filter to estimate the vehicle position.

3.3.3 Qualitative results on lane line detection

To further illustrate the capabilities of the proposed algorithm, some lane line

detection examples are shown in Fig. 3.14 under different conditions. The green

lines represent the detection results and blue dots represent the points used to

work out the ultimate road model.

Fig. 3.14(a) to (d) show that even the road surface intensity is not uniform-

ly distributed (strong contrasts), the algorithm is able to remove noise pixel-

s and fit the correct line, regardless of its shape (straight, curve or zigzag).

Fig. 3.14(e) to (h) indicate that although the number of lane line marking pix-

els under those situations are very few, the algorithm manages to identify them

correctly. Fig. 3.14(i) and (j) demonstrate its capability to fit sharp turns, even

when the line markings are not continuous. The last two images show the fitting

performance on non-flat road surfaces.

3.3.4 Results on lane-level localization

In this section, we used the same side camera method as describe in Section

2.5.4 Chapter 2 to generate the ground truth for de and θe. However, due to
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3.14.a: Zigzag line fitting 3.14.b: Irregular shadows 3.14.c: Camera saturation

3.14.d: Different surfaces 3.14.e: Limited visible line 3.14.f: Fitting over hump

3.14.g: Occlusion 3.14.h: Worn-off line 3.14.i: Turn (continuous line)

3.14.j: Turn (dotted line) 3.14.k: Uphill 3.14.l: Down slope

Figure 3.14: Lane line detection in challenging situations

the inconsistent feature of zigzag lines, their ground truth cannot be generated.

Therefore, the quantitative analysis does not cover the performance on zigzag

lines. A new set of image sequences were used in this section. It consists of 749

images in total, out of which 499 have ground truth. They were taken on the

same road as shown in Fig. 3.10 when driving from point A to point B during

normal daytime.
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Figure 3.15: Estimation results on de. A & D: straight road. B: sharp turn. C & F:
zigzag. E & G: moderate turn.

The testing results are illustrated in Fig. 3.15 and 3.16. In both plots, the

green line refers to the ground truth from the side camera, the blue line refers to
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Figure 3.16: Estimation results on θe.

the results measured/derived directly from the image and the red line refers to

the results from the particle filter.

For straight road (A & D), the direct measurement (DM) and the particle

filter (PF) achieve similar results in both de and θe. They are very close to the

ground truth with average abs de error 2cm and average abs θe error 0.01rad.

For curve road (B ,E & G), most of the time, the particle filter performs

better than direct measurement. The direct measurement exhibits inconsistency

in estimation as intermittent spikes occur, especially in the θe estimation. The

de standard deviation (STD) is 9cm for DM and 5cm for PF. The θe STD is

0.043rad for DM and 0.022rad for PF. The maximum abs de error from PF is

only 16cm, which is similar to the width of lane line markings and the maximum

abs θe error is only 0.06rad.

For zigzag lines (C & F), although there is no ground truth, the particle filter

achieves smoother and more consistent estimation than direct measurement.

In overall, the estimation error in de has an absolute mean of 0.029m, an STD

of 0.039m and a 95% confidence interval between −0.024m to 0.084m. The

estimation error in θe has an absolute mean of 0.011rad, an STD of 0.016rad

and a confidence interval between −0.013rad to 0.035rad.

To further verify the algorithm, it is compared with the ALD algorithm in

[34]. The de and θe can be derived based on its line fitting parameters (ρ & θ

in the referred paper) and IPM image. Before applying ALD, the images were

pre-processed by the special detectors to remove the impact from those non-lane

line markings. The comparison results are illustrated in Fig. 3.17 and 3.18.
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Figure 3.17: Comparison results between the proposed and ALD algorithms on de.
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Figure 3.18: Comparison results between the proposed and ALD algorithms on θe.

However, the original ALD algorithm uses straight line model only and

when fitting the curve road, it has obvious deviations as shown by the blue

line (ALD(original)) in both figures. Therefore, improvements are made so that

the original ALD algorithm is able to fit parabola model for curve road and the

results are depict as cyan lines (ALD(modi f ied)).

As shown in both de and θe plots (Fig. 3.17 and 3.18), the proposed algorith-

m is able to achieve more accurate and smoother results. The estimation from

the proposed algorithm is more consistent and reliable. The main reason for the

spikes in ALD is due to constant camera pitch angle assumption in obtaining

the IPM. However, this assumption is not valid as the camera pitch angle varies

with vehicle acceleration and uneven road surface (e.g. at humps).

Table 3.3: Accuracy and consistency comparison between MC and stereovision

de(m) θe(rad)
MC Stereo MC Stereo

Mean 0.002 -0.001 -0.013 -0.002
Mean Abs 0.056 0.029 0.025 0.011
STD 0.081 0.039 0.032 0.016

As compared with the MC method in Chapter 2, again, the stereovision sys-
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tem proposed here has clearer advantages in both accuracy and consistency. The

comparison results are tabulated in TABLE 3.3. The stereovision system has s-

maller absolute errors and smaller standard deviations for both de and θe.

In summary, the proposed algorithm is able to provide accurate estimation

of the vehicle lane-level localization. The particle filter is necessary to improve

its estimation consistency and accuracy, especially for curve road.

3.3.5 Results at different times of the day and weather

To further evaluate the competencies of the system, it has been tested at different

times of the day and under different weather conditions.

For the special detectors, the performances at dusk are similar to that during

normal daytime. At some locations, they perform better because tree shadows

become obscure at dusk.

Figure 3.19: Road markings detection results at night

At night, the visibility becomes very poor. Due to the fixed intensity thresh-

old used in the detection algorithms, warning letters and arrows cannot be de-

tected at most of the time as shown in Fig. 3.19 left. (The word "HUMP" was not

detected.) This is the limitation of the proposed algorithm. While the hump and

zebra crossing detections are much less affected by the poor visibility as their

detections are based on intensity patterns instead of values (Fig. 3.19 right).

Figure 3.20: Incorrect road markings detection due to wet surface

After rain, the wet road surface may induce glare effects in the image and

cause some intermittent incorrect detections. For example, in Fig. 3.20 left im-
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age, the algorithm misclassified the glare to the arrow sign, while in Fig. 3.20

right image, the zebra crossing is not detectable due to the glare.

Table 3.4: Localization accuracy at different times of the day and weather

Normal Dusk Night After Rain

de(m)

Mean -0.001 -0.004 -0.002 -0.006
Mean Abs 0.029 0.053 0.051 0.043
STD 0.039 0.074 0.072 0.059
Max Abs 0.160 0.258 0.231 0.233

θe(rad)

Mean -0.002 -0.002 -0.003 -0.003
Mean Abs 0.011 0.022 0.022 0.019
STD 0.016 0.030 0.030 0.027
Max Abs 0.063 0.122 0.120 0.122

For the lane-level localization accuracy, the comparisons of de and θe are

summarized in TABLE 3.4. The ratio of images with ground truth to the total

number of images are 590/859, 474/727, and 488/712 for the case of dusk,

night and after rain respectively.

Under normal daytime condition, the system achieves the best performance

in both accuracy and stability. For the cases at dusk and night, the lighting

condition is the main reason causing the deteriorations as some parts of the lane

line markings at far distance become invisible (Fig. 3.21(a)) at dusk and night.

For the case after rain, the glare from wet surface may cause inadequate fitting

as illustrated in Fig. 3.21(b).

3.21.a: Poor illumination 3.21.b: Glare from wet surface

Figure 3.21: Inadequate lane line fitting results

However, the impacts from poor lighting condition and wet surface are not

severe. The proposed algorithm is still able to function adequately. The errors in

both de and θe are small and tolerable. The largest error in de is only 26cm and

largest error in θe is 0.122rad. From the standard deviations, it can be concluded

that the estimation is able to maintain its stability and continuity.
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3.22.a: At dusk 1 3.22.b: At dusk 2 3.22.c: At night (street lights)

3.22.d: At night (head lights) 3.22.e: After rain 1 3.22.f: After rain 2

Figure 3.22: Lane line fitting results at dusk, night and after rain

Some sample images are depicted in Fig. 3.22 to demonstrate the lane line

fitting results qualitatively. Image a and b illustrate the illumination conditions

at dusk. c and d show the cases at night when the road was lit up by street lights

and car head lights. The last two images show the cases after rain, when the

road surface is wet and bright.

3.4 Chapter summary

In this chapter, built upon the mono-camera system in Chapter 2, a more ad-

vanced vehicle lane-level localization system is proposed. The system work-

s based on stereovision. Through extensive on-field tests, it has been proven

that the proposed system is able to estimate the vehicle localization information

more accurately and robustly. More importantly, the system works in real time

and has very few limitations in practice. It even works in dark nights.

Its high level of accuracy and consistent good performances under different

conditions enable its implementation on the navigation of autonomous vehicles.

The outputs (de, θe and road profile) from this stereovision system are served as

the feedback to the NMPC control system, which is to be elaborated in the next

chapter, to control the vehicle to move along the detected lane.

Without this high-performance stereovision system, the NMPC will suffer

from the inaccurate feedback and not be able to control the vehicle properly

regardless of how adaptive and advanced the controller is.
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Chapter 4

Nonlinear Model Predictive

Control on Autonomous Vehicles

4.1 Introduction and literature review

This chapter attempts to address the challenges lying in the field of autonomous

vehicle control. The purpose is to control the vehicle to move along the detected

lane accurately and smoothly. However, this control problem is nontrivial as a

result of the nonlinear vehicle dynamics, highly coupled system inputs and non-

differentiable constraints related to physical limitations and safety.

A number of control schemes have been proposed in the literature for such

complex systems, varying from conventional PID control [74] to advanced adap-

tive ones, like back stepping control, sliding mode control (SMC) [75][49],

fuzzy logic control [76], model predictive control (MPC) and etc. Among them,

with the increment in computation power of computers, MPC has been shown

to be a promising control scheme for such applications [77].

MPC is capable of systematically handling model nonlinearities, uncertain-

ties and constraints [78] and it is able to optimize the current step while keeping

the future steps and future trajectories into account. Its predictive ability distin-

guishes MPC from the rest of the control schemes aforementioned. However,
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the major concern in applying MPC is its computational burden to solve the

optimization problem in real time, especially for nonlinear systems.

The common approach to compensate for its high computation demand in

nonlinear systems is to linearize the nonlinear model around an operating point.

Then the linearized MPC problem is fitted to certain formats, so that some

fast and well developed convex optimization solvers can be implemented di-

rectly. For example, in [79], the vehicle model was linearized iteratively and

customized to fit into the sequential quadratic programming (SQP) algorithm.

In [80], a linearized time-state control form was adopted and the optimization

was recast into SQP as well. One of the popular MPC optimization toolboxes is

the multi-parametric toolbox (MPT) by ETH [81].

Common linearization techniques include linear time-varying (LTV) system

[79][82] and piecewise affine (PWA) system [83]. Switching-based MPC is a

variant of PWA [77], in which the piecewise region index is updated only at

the initial step of the prediction horizon. Some examples can be found in [84]

(Ford’s active front steering) and [85].

However, a linearized model is only accurate within a small region around

the operating point (a constant velocity and fixed steering angle). This leads to

other limitations in applying MPC to vehicle control, for example, the approach

in [86] is limited to low curvature roads. Moreover, the linearization is only

applicable to single input system, either the velocity [83] or the steering.

To control both velocity and steering, several nonlinear MPC solvers were

proposed in the literature, such as NPSOL [78], FP-SQP [87], OPTNOV [88]

and so on. However, they have their own limitations. For example, NPSOL

works only for polynomial nonlinearities. Moreover, the computation complex-

ity in these nonlinear solvers significantly limits the number of maximum pre-

diction cycles in MPC, which is critical for high speed applications.

Some attempts have been taken in the literature to reduce the computation

time. The one in [89] separated the optimization into off-line and online com-
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ponents, where the optimization was carried out on the on-line part only, and

thus reduced computation time. But the effectiveness of this approach depends

on the separability of the constraints and reduces its flexibility for a wider range

of applications [87]. In [90] and [91], the real time iteration algorithm, built up-

on direct multiple shooting method, was implemented. It reduces computation

time dramatically to ∼ 20ms per iteration. But it requires the cost function and

constraints to be at least twice continuously differentiable [92].

Furthermore, for both linear and nonlinear solvers, they are only useful when

the model and constraints can be converted into particular formats and satisfy all

the prerequisites (e.g. KKT condition). This may compromise or even prohibit

the implementation of some complicated but important constraints.

The other set of algorithms to solve constrained optimization problem is the

Genetic Algorithms (GA) and its variants. Over decades of development, GA

has demonstrated its potential in solving real and practical applications in con-

trol systems, such as PID parameter fine tuning [93], fuzzy logic [94] and so on.

However, as mentioned by P.J. Fleming [95] and F. Manenti [88], the computa-

tion complexity of GA is the main impediment to real-time applications, same

for the nonlinear solvers.

Due to this, only a few applications of GA to nonlinear MPC are available

in the literature. Most of them are applicable to slow processes and the results

are based on simulations only. For example, in [96], the GA-based MPC is

implemented in the autopilot design of an underwater vehicle (UV), but the UV

runs at 2knots (1.03m/s) only.

As compared with other nonlinear solvers, GA has its considerable advan-

tages. It is not limited by the typical control problem attributes (e.g. convexity,

polynomial nonlinearity) and has a very flexible structure [95]. The searching

range of input variable constraints can be easily incorporated in the search space

of GA during optimization [97]. Furthermore, it can be parallelized to further

reduce its computation time.
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Leveraging on these gaps in current MPC schemes, in this chapter, we pro-

pose a fast nonlinear MPC scheme to control the vehicle velocity and steering

simultaneously to follow a reference path at high speed. The optimization is

carried out through customized GA, which is designed to run at real time.

The implementation of GA gives the flexibility to design and formulate the

MPC scheme in a more accurate, meaningful and direct manner. One need not

worry about the convexity, linearity and continuity of the formulation. Bene-

fitting from this flexible structure, the control signal smoothness is explicitly

enforced by setting constraints in the MPC scheme. More importantly and nov-

elly, the passengers’ safety and their comfort are specifically taken into con-

siderations in the MPC formulation while they are not found in other state-of-

the-art MPC approaches. Safety and comfort are two most important indices in

autonomous driving vehicles. Taking them into account is the main contribu-

tion of this chapter. The results show that the vehicle exhibits certain kinds of

behaviours that mimic a human driver’s.

For the remaining parts of the chapter, it is organized as follows: the formu-

lation of the nonlinear MPC, with all physical and safety constraints, is elaborat-

ed in Section 4.2 in details. The GA design is depicted in Section 4.3, together

with some specific improvements on the computation efficiency to make it real

time. The results and discussions based on both simulations and on-field tests

are illustrated in Section 4.4 and conclusions are drawn in Section 4.5.

4.2 Nonlinear MPC formulation

To implement nonlinear MPC, the non-holonomic vehicle kinetic model (Ack-

ermann model) is adopted as shown in Chapter 3 Fig. 3.8(a). In some other

research works [78][79][86][98], a more complicated dynamic model (Pacejka

tire model) was implemented and some even utilized both [82]. We did not fol-

low this because we wanted to keep the model less complex so that we could
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have more computation resource to implement safety and comfort constraints.

Furthermore, IMU (Initial Measurement Unit) in addition to velocity and steer-

ing encoders is required in the Pacejka model. The Ackermann kinetic model

given in (3.26) can be expressed compactly as:

ξk+1 = f (ξk,Ts,Uk) (4.1)

where ξk = [xk, zk, θk]
T defines the vehicle pose in the global coordinate system;

Uk = [vk, φk]
T refers to the inputs of the system and is defined as: vk = vk−1 +δvk

φk = φk−1 +δφk

or Uk =Uk−1 +δUk (4.2)

For path following, both the distance and moving direction errors (de and

θe) respected to the reference path (Fig. 3.8(b)) should be minimized. Same as

Chapter 2 and 3, the reference path within the prediction horizon is approximat-

ed as a parabola in (4.3), where (a, b, c) are the parabola parameters.

X = aZ2 +bZ + c (4.3)

Given the vehicle pose (xk, zk, θk) and the shape of the reference path in the

global coordinate, the corresponding distance and moving direction errors can

be worked out analytically by solving a third order polynomial based on geom-

etry. This process is denoted as g(·) as shown in (4.5d) with Ek = [dek , θek ]
T .

This process will not be possible without the high-performance stereovision

system proposed in Chapter 3. Other approaches mainly use IMU and odometry

to calculate Ek, suffering from accumulative errors. The stereovision guarantees

the accuracy in Ek, which is prerequisite for NMPC to work properly.

J =
Hp

∑
i=1

(
w1||dek+i||

2 +w2||θek+i||
2
)
+

Hc−1

∑
i=0

(
w3||δφk+i||2 +w4||δvk+i||2

)

+
Hp

∑
i=1

(
wacck+i||acck+i||2 +wink+i||δvk+i||2 +wvk+i||vmax− vk+i||2

)
(4.4)

The L2-norm cost function at time instant k is constructed as (4.4), where
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w1,w2,w3 and w4 are the prescribed weighting factors to reflect the importance

of individual terms, while wacck+i ,wink+i and wvk+i are on-off weighting factors

varying with the vehicle states as defined in (4.5m), (4.5n) and (4.5o). Hc and

Hp are control horizon and prediction horizon respectively and Hc ≤ Hp.

min
δUk,...,δUk+Hc−1

(J) (4.5a)

sub ject to :

ξk+1 = f (ξk,Ts,Uk) (4.5b)

Uk =Uk−1 +δUk (4.5c)

Ek = g(ξk,a,b,c) (4.5d)

δUk+m = 0, f or m = Hc, ...,Hp (4.5e)

acccen = v2
k+i tan(φk+i)/l (4.5f)

acctan = δvk+i/Ts (4.5g)

acck+i =
√

acc2
cen +acc2

tan (4.5h)

−δvmax ≤ δvk+i ≤ δvmax (4.5i)

−φmax ≤ φk+i ≤ φmax (4.5j)

−δφmax ≤ δφk+i ≤ δφmax (4.5k)

−δωmax ≤ δφk+i−δφk+i−1 ≤ δωmax (4.5l)

wacck+i =


0, if acck+i ≤ accmax

wacc0, otherwise
(4.5m)

wink+i =


win0 , if condition1

0, otherwise
(4.5n)

wvk+i =


0, if condition1

wv0, otherwise
(4.5o)

condition1 = (δvk+i > 0) &
(
(acc > accmax)

| (|dek+i|> 0.3m) | (|θek+i|> 0.09rad)
)

(4.5p)
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The first summand in (4.4) indicates the penalties on path tracking errors and

the second emphasizes control input smoothness. The acc term (4.5h) in the last

summand, which refers to the vehicle acceleration, penalizes high acceleration

for safety purpose; the δv term prevents the velocity from increasing when dan-

gerous conditions occur (as defined in (4.5p)) and the last term controls the

vehicle to travel at a prescribed cruise speed vmax under the safe condition.

The optimization problem can be formulated as (4.5), where [δUk, δUk+1...,

δUk+Hc−1] is a sequence of control actions that minimize J. The control actions

from Hc to Hp are assumed to be 0 (4.5e). A longer Hp than Hc is desired to

yield smoother control signals as the portion from Hc to Hp servers as a kind of

stabilizer. It forces the vehicle to reach a position with small errors before Hc

and/or move in the direction of reducing errors. If the vehicle is to the wrong

direction at Hc, the cost function will be inflated from Hc to Hp.

The vehicle centrifugal and tangential accelerations are defined as acccen

and acctan respectively while acck+i is the resulted overall acceleration. δvmax

and δφmax are the maximum achievable velocity change and steering change in

Ts. φmax is steering physical limit corresponding to its full lock position. δωmax

is the maximum allowable change in consecutive δφ , equivalently it reflects the

maximum angular acceleration of the steering wheel.

The safety and comfort of human passengers are specifically taken into ac-

count in this formulation:

(i) High vehicle acceleration (both centrifugal and tangential) is penalized

heavily so that the resulted acceleration is less than the max acceleration

defined in [99]. This can prevent drifting of the vehicle and motion sick

of passengers. It is realized by (4.5m).

(ii) It tends to slow down the vehicle when the acceleration is too large or the

deviations to the reference path are large. Because under this condition,

wink+i will be turned on to penalize positive δvk+i; and wvk+i will be turned
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off so that J will not be penalized even the current speed is less than the

cruise speed. This is a precaution action to keep the vehicle on track and

it is realized by (4.5n), (4.5o) and (4.5p).

(iii) The angular acceleration of the steering wheel is well confined by (4.5l)

to prevent sudden and large changes in the steering, which may otherwise

induce strong shaking.

From the set of constraints in (4.5), we manage to implement and realize the

safety and comfort concepts without any compromise or approximation.

4.3 GA design

The nonlinearities of the scheme include the trigonometric functions, squares,

square root, on-off weights and the combinations of them. To the best of our

knowledge, no other solvers except GA are able to solve this complex, high

dimension and discontinues optimization problem. As reviewed in Section 4.1,

the design of GA is well established in the literature, but the challenge here is to

make it run in real time. The overall design flow chart is illustrated in Fig. 4.1,

which involves typical processes for standard GA.

Initialization Fitness 
Evaluation 

Selection for 
Mutation Mutation 

Termination? Final 
Results 

Fitness 
Evaluation 

Survivor 
Selection 

Yes 

No 

Figure 4.1: GA design flow chart

To make the GA suitable for real time application, new features are designed:

(i) No crossover operation is implemented in the design since it is not a nec-

essary step.

(ii) The constraints (4.5j) and (4.5l) are enforced in the Fitness Evaluation
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process instead of initialization or mutation processes. Otherwise, addi-

tional loops of condition checking have to be carried out.

(iii) Steering direction alignment algorithm is proposed and embedded in the

Fitness Evaluation process. This algorithm facilitates the GA to obtain

the optimal faster and makes the results more stable.

To further improve the computation speed, all the processes in the flow chart

are carried out in parallel. For example, in Fitness Evaluation, n chromosomes

are evaluated simultaneously, where n refers to the number of CPU cores.

4.3.1 Encoding

Each chromosome (or individual) op is a 2×Hc matrix, with the first row repre-

senting δv and the second row representing δφ in the control horizon. The total

number of chromosome in the population is Npop.

op =

δv1 δv2 ... δvHc

δφ1 δφ2 ... δφHc

 , p = 1,2, ...,Npop (4.6)

Each gene (δvi or δφi) in all the chromosome population follows the constraints

defined in (4.5i), (4.5k) and (4.5l).

4.3.2 Initialization

A suitable initialization procedure at the beginning of each MPC cycle is es-

sential for a better and faster optimization result. At first, each gene in every

chromosome is assigned by randomly picking a floating number within the in-

tervals defined in (4.5i) and (4.5k). (4.5j) and (4.5l) are only enforced in Fitness

Evaluation process as aforementioned.

The best chromosome from the previous optimization cycle also plays a role

in the initialization process of the current cycle. Each gene in the previous best

chromosome is shifted to the left by one position and the last position is patched
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randomly within the intervals in (4.5i) and (4.5k). 20% of the initialization pop-

ulation is generated from this chromosome with the last position being different.

This facilitates the GA to exploit based on the previous best knowledge so that

it may reach at the optimum faster. This also enforces the stability of the GA re-

sults. Whereas the rest of the population, which is generated randomly, creates

diversity and possibility in the searching space to prevent the GA from being

trapped at local optimum.

4.3.3 Selection

Two stages of selection are required, one is the selection for mutation and the

other is survivor selection.

The selection for mutation selects individuals or chromosomes which go to

the mutation process. To prevent the good individuals from taking over the en-

tire population rapidly and maintain a suitable selection pressure, deterministic

q-tournament selection is implemented.

First, q individuals are selected at random from the current population (par-

ent pool). Then their fitness is compared and the best out of the q individuals is

selected and copied to the intermediate pool, on which the mutation will act. All

the q individuals are then returned to the parent pool and may be selected again.

The process is repeated Npop times until the population in the intermediate pool

reaches Npop. The mutation will act on this intermediate pool and the results are

copied into the child pool.

The survivor selection is to select Npop chromosomes out of the 2Npop after

mutation. The 2Npop consist of the parent and child pool. In order to maintain

the diversity in the subsequent generations, all parents are replaced by children.

4.3.4 Mutation

Mutation acts on the gene of individuals in the intermediate pool. At each gene,

a random number between 0 and 1 is picked uniformly and compared with the
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mutation rate pm that is associated with the particular individual/chromosome.

If it is less than pm, that gene undergoes mutation, meaning the gene will be

replaced by a new random number picked uniformly within the range of (4.5i)

or (4.5k) accordingly. If the mutated gene is δφ , only its value will change but

its sign remains. The reason will be explained later in the Fitness Evaluation.

To prevent good individuals from being destroyed by mutation and expe-

dite the optimization process, we adopt the self-adaptive mutation rate. pm is

associated to each individual. It self-adapts each time when the corresponding

individual is selected to mutate or the mutation rate itself undergoes mutation

process. The new mutation rate p′m is given by

p′m = (1+(1/pm−1)e−γN(0,1))−1 (4.7)

where e is the exponential operator, γ is the learning rate (set at 0.2) and N(0,1)

represents a random number picked from normal distribution.

4.3.5 Fitness evaluation

The fitness F of an individual is defined based on the cost function J. This is

the most time consuming part in GA.

F = 1/(1+ J) (4.8)

As aforementioned, constraints (4.5j) and (4.5l) are enforced here to save

computation time. But before checking these constraints, steering direction

alignment is carried out first. This process facilitates the GA to arrive at the

optimal faster and makes the results stabler. However, to maintain the diversity,

only half of the population is randomly selected and undergoes this process.

When the vehicle is on the left side of the road and moving towards to the

road left boundary (Fig. 4.2(left)), in order to bring the vehicle back to the cen-

ter and align it to the tangent direction of the road, the steering angle has to be

smaller than the desired one φd . Based on the sign convention in Fig. 3.8, small-
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er means to steer more towards the right. φd corresponds to the curvature k of

the road, φd = arctan(l/k), at which the vehicle can follow the road arc exactly

if starting from the correct direction.
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Figure 4.2: Vehicle pose illustration for steering angle alignment

For the instance shown in Fig. 4.2(left), if the current steering position is

at φ1, δφ needs to be negative. If δφ is positive, its sign is changed but its

magnitude remains. If the current steering position is at φ2, δφ can be positive

or negative. However, if δφ is positive and results in a steering position larger

than φd , its sign is kept but its magnitude is changed to a uniformly picked

number from [0, φd−φ2] to keep the resulted steering position less than φd .

For the instance shown in Fig. 4.2(right), to bring the vehicle to the center

and align it to the tangent direction of the road, the steering angle needs to be

larger than or equal to φd . Similar alignment procedures can be implemented. If

the vehicle is on the right side of the road, the same concept applies as well.

The next step in Fitness Evaluation is to ensure the constraint (4.5l) is ful-

filled. If not, δφk+i needs to be updated as following based on its sign.

If δφk+i is less than or equal to zero

δφk+i =


R(−δωmax,δωmax)+δφk+i−1, if δφk+i−1 +δωmax < 0

δφk+i−1−δωmax, else if δφk+i−1−δωmax > 0

R(δφk+i−1−δωmax,0), else

(4.9)

where R(x,y) defines a uniformly picked number in the interval [x, y]. The new

δφk+i under the first and last conditions satisfies (4.5l) and maintains its original

sign. But under the second condition, we choose to sacrifice the sign of δφk+i in
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order to fulfil the more important constraint (4.5l). The new value for δφk+i is

the nearest possible value from the interval constrained by (4.5l) to its original

sign. If δφk+i is greater than zero, similar update mechanism can be derived.

When applying (4.9), the new δφk+i is counter checked with (4.5k) and

capped by the limits in (4.5k). If the resulted steering position φ violates con-

straint (4.5j), the limits (±φmax) is used in the calculation instead of φ .

4.3.6 Termination

This determines when the GA should stop and return the best individual leading

to the minimum of J. The termination condition is a trade-off between the best

optimal solution and computation time. In order to make sure the MPC works

properly, a sub-optimal solution will be returned if the time taken is too long. In

particular, the GA will terminate when the optimal solution is found or the time

elapsed is reaching 1.1Ts whichever is earlier.

4.4 Results and discussions

In order to evaluate the performance of the proposed GA-based nonlinear MPC

control scheme, both simulations and on-field tests have been carried out. The

control scheme is implemented on the NI PXI as listed in TABLE 1.1.

Table 4.1: Parameters in MPC setup

w1 0.8 Hc 15 δvmax 0.05m/s wacc0 0.5
w2 1.5 Hp 20 δφmax 0.02rad/s wv0 5.0
w3 2.0 l 1.28m δωmax 0.015rad/s2 Npop 40
w4 2.0 Ts 0.1s φmax 0.40rad/s pm0 0.1

Vmax 20m/s accmax 1.5m/s2 win0 2.0 λ 2.0

The MPC parameters are summarized in TABLE 4.1. w1 to w4 were tuned

based on the following guidelines and simulation trial and error. First w1 should

not be larger than the rest as de generally has much larger value than θe, δφmax

and δvmax; Otherwise, the optimization will be biased by the de term. Second,
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when the vehicle is off from the lane center or moves towards to the boundaries

(|de| > 0.3m or |θe| > 0.09rad), the pose of the vehicle (the first summand in

(4.4)) is more important than the control smoothness (second summand), so

0.32w1 + 0.092w2 needs to be larger than w3δφmax
2 +w4δvmax

2. Third, when

the vehicle moves along the lane center with small de and θe, we need to ensure

w1d2
e +w2θ 2

e can be smaller than w3δφmax
2 +w4δvmax

2 so that (4.4) focuses

more on control smoothness.

4.4.1 Simulation

The simulation platform consists of three major parts, namely road map, the

vehicle simulator and the MPC controller. The road map is built according to

the real road around the university engineering buildings with a total length of

1.8km. The lane width is assumed to be constant, 3.5m. It consists of straight

line segments, bends with different turning radiuses and even a double bend at

position C as shown in Fig. 4.5.

The road curvatures are not polished or smoothed as shown in Fig. 4.4(left).

For example, at one particular corner, its turning radius may be varying instead

of being smoothed to a constant arc. The turning radius indicated in Fig. 4.5

refers to the minimum value inside the turning corner. They show how sharp

the turns are. All these varying curvatures and sharp turns induce challenges to

the path following control, but they reflect the real world scenarios and make

the simulation more realistic. While in some other research works, only simple

paths are used. For example, lane change path, obstacle avoidance path and

overtaking path are used in [100] [101] and [98] respectively on straight road.

They only require at most four manoeuvres to finish the task.

The vehicle simulator is designed according to (4.1) and (4.2). The dimen-

sions are adopted from the Toyota COMS EV as introduced in Section 1.5. The

steering motor and driving motor dynamics are also taken into account. Given

the desired input, the output from the steering motor and driving motor can be
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approximated by two second order systems. These two systems are identified

based on the real data collected from the Toyota COMS EV.

Vehicle	simulator

MPC Map
Road	profile

Figure 4.3: Simulation flow diagram

The detailed flow diagram is illustrated in Fig. 4.3. The simulator takes the

target velocity and steering from MPC as the vehicle inputs. Then it works out

the vehicle new real velocity, steering and vehicle pose (position and orienta-

tion). The sampling rate of the vehicle simulator is 100Hz, which is much faster

than MPC frequency (1/Ts = 10Hz). The map takes the vehicle pose as input,

then it locates the vehicle in the map and outputs a parabola which approximates

the road profile in front of the vehicle up to the prediction horizon. The MPC

takes the road profile, the vehicle velocity, steering and pose as the inputs, and

outputs the target velocity and steering to the vehicle simulator.
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Figure 4.4: Road curvature and time taken for each MPC iteration

Fig. 4.4(right) shows the time taken for each MPC iteration during a typical

run of the simulation. The average time per iteration is 0.098s which is less than

Ts. Out of all the iterations, 95% is able to return the optimal solution before

the time termination condition is triggered. For the remaining 5%, only sub-

optimal solution is returned, but the control is able to work properly as shown

later. Several spikes occur occasionally in the plot. This happens when the GA
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solver is stuck at the fitness evaluation process due to computer hang. Under

such situations, the second control command in the previous optimal control

sequence is passed to the vehicle.
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Figure 4.5: Vehicle travelling trajectory under the control of MPC

The red line in Fig. 4.5 illustrates the car travelling trajectory under the con-

trol of MPC. In overall, the controller is able to maintain the vehicle to travel

along the center line of the road approximately. Even at those sharp corners, the

vehicle remains travelling within its ego lane.
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Figure 4.6: Tracking error (red dashed lines: safety boundaries)

Fig. 4.6 demonstrates the tracking errors de and θe with respect to the center

line of the ego lane. Most of the time (82%), the errors are within the safety

bounds (red dashed lines, |de|< 0.3m and |θe|< 0.09) regardless the change of

road curvature. When it is outside of the safety bounds, the MPC can quickly ad-
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just the vehicle back. On average, the absolute distance tracking error is 19.5cm

and absolute moving direction error is 0.039rad. The standard deviation in de

is 27cm and standard deviation in θe is 0.072rad. The 95% confidence intervals

for de and θe are [−0.35m, 0.48m] and [−0.13rad, 0.14rad] respectively. These

small values indicate that the algorithm is able to control the vehicle to follow

the path consistently under different road curvatures and vehicle velocities.

Note that the safety boundaries are the designed criteria we want the system

to achieve. They are set empirically.

The most prominent errors occur at the starting point and those sharp turning

corners. For the starting point, we purposely set it at an off-center position to see

whether the MPC is able to adjust the vehicle to the lane center as the vehicle

moves. The trajectory in Fig. 4.7(a) (zooming in Fig. 4.5 at the starting point)

shows how the vehicle is controlled to move to the lane center gradually.
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4.7.b: Corner B

Figure 4.7: Zooming in the trajectory at starting point & corner B

The errors at the sharp turning corners are mainly caused by two reasons.

The first is that the road shape at the sharp corners cannot be adequately ap-

proximated by parabola. The second is that the vehicle overshoots and misses

the turning point before it is fully slowed down. Fig. 4.7(b) (zooming in at

corner B of Fig. 4.5) depicts these two reasons clearly, the error before the cor-

ner is due to inaccurate parabola model and the error after the corner is due to

overshooting.

Fig. 4.8 illustrates the velocity and steering outputs under the control of

MPC in each iteration. The behaviour is similar to that of a human driver, for
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Figure 4.8: Vehicle velocity and steering output

example, the portion in between the dotted line which corresponds to the dotted

area in Fig. 4.5. Before entering the first corner, the velocity starts to reduce

and concurrently, the steering wheel turns to its right. Once passing through the

corner, the steering wheel retrieves back to the center and the velocity increases.

However, before the velocity reaches cruise speed (20m/s), the vehicle starts to

decelerate again and turns to its left in order to move around the second corner.

Once moving out of the corner, the steering wheel is quickly turned to its right

and gradually returns to its center. Meanwhile, the velocity does not increase

because the steering is at full lock position and the tracking errors are big. But

when it returns to the lane center, the vehicle picks up its velocity quickly.
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Figure 4.9: Vehicle moving acceleration and steering acceleration

The distribution of the vehicle overall acceleration (absolute value, resulted

from centrifugal and tangential accelerations as shown in (4.5h)) and steering

wheel acceleration (absolute) is shown in Fig. 4.9, where red bars refer to un-

pleasant accelerations. For the vehicle acceleration, 90.6% of the running time

(blue bars) is less than accmax, which is set at 1.5m/s2 according to [99]. Simi-

larly, for the steering acceleration, when it is less than 1.5rad/s2 (96.4% of the

time), the passengers will not feel the shaking effects in general.

For the red bars, they will induce certain level of discomfort to the passen-
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gers, but they are necessary in order to keep the vehicle within the safety bounds.

The MPC chooses to sacrifice the vehicle/steering acceleration. It is the direct

result from the weight assignment in the cost function J (4.4).
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Figure 4.10: GA solver consistency analysis

As stated in Section 4.3, the GA solver contains several random processes.

100 simulations with the same initial conditions for a straight road segment

(∼ 80m long and 3m wide) were carried out to demonstrate the consistency of

the proposed solver. The mean |de| and |θe| for each simulation are depicted

in Fig. 4.10. The largest difference among the 100 mean |de| is 0.1m, which is

small compared to the road width and car size. The largest difference among

the 100 mean |θe| is only 0.01rad. The STD of the 100 mean |de| is 0.024m and

|θe| is 0.0027rad. Both values are very small, and thus the optimization from

the GA solver is consistent.

4.4.2 On-field tests

In the on-field tests, the stereovision system described in Chapter 3 was used to

provide the road profile and the vehicle pose information to the nonlinear MPC

controller. We did not test the vehicle on the same road as the simulation since

parts of the road do not have lane line markings. The on-field tests were carried

out at a different location. The mock up of the test field is shown in Fig. 4.11,

with a total length of 140m. It consists of bends with different turning radiuses.

The road width is 3.0m approximately.

As shown in Fig. 1.15, the on-field test system comprises of three computing

units. The first one is the NI (National Instruments) PXI, which runs Windows7
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4.0m 35m 
9.6m 10m 

Total 140m 
A B C D 

Figure 4.11: On-field test road profile

with Intel i5 CPU (same as the one for simulation) and carries out the nonlin-

ear MPC related calculations, including the GA optimization. The second one

is an Asus laptop, dedicated to perform the image processing for the stereovi-

sion. The last one is a low-level micro-computer, which runs Linux with i586

CPU and serves as an information exchange hub between NI PXI and low-level

steering/driving motor controllers and sensors.

Fig. 4.12 illustrates the conditions of the testing field and the lane line de-

tection results from the stereovision system. Fig. 4.12(a) corresponds to the

bend with 4.0m turning radius. Fig. 4.12(b) is 10m turning radius and on an

incline slope of 5◦. Furthermore, part of the road surface is not flat as shown in

Fig. 4.12(c). All these conditions add more challenges to the control scheme.

Two illustration videos (link iii and iv) are provided in Appendix B.

4.12.a: Sharp turn 4.12.b: Moderate turn 4.12.c: Uneven road surface

Figure 4.12: Illustration on road conditions of test field (Green lines and blue dots
indicate lane line detection results)

The tracking errors (de and θe) measured from the stereovision system are

depicted in Fig. 4.13. They illustrate the vehicle performance when it travelled

from left to right on the test field. As shown by the large errors at the beginning

of the plot, the vehicle was purposely started from an off-center location and

pointing to the road boundary.

The letters (A, B, C and D) correspond to the locations marked in Fig. 4.11.

Before entering corner A, the vehicle managed to move into the safety bound-

aries from its initial position. Although the minimum turning radius at A is only
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Figure 4.13: Test tracking errors (red dashed lines represent safety boundaries)

4.0m, the vehicle remained in the safety boundaries when manoeuvring around

the corner. It also maintained a low speed as shown in Fig. 4.14, otherwise the

acceleration (mainly from centrifugal acceleration) would exceed 1.5m/s2.

For the straight road between A and B, the vehicle picked up its speed at a

constant acceleration and maintained at its cruise speed (5.0m/s). It made only

minor changes on steering wheel to refine its travelling direction. The maximum

cruise speed is limited by the speed regulation at the test field (15km/hr).
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Figure 4.14: Vehicle velocity and steering output in an on-field test

The most prominent error occurs at the location around corner C. But it

quickly adjusted the vehicle back to the safety boundaries. At the same time,

it reduced the vehicle speed immediately for precaution. Without counting the

initial part when the vehicle is moving from its initial position to safety bound-

aries, the average absolution distance tracking error is 11.4cm with STD of

13.4cm and confidence interval of [−0.30, 0.25]. The average absolute mov-

ing direction error is 0.027rad with STD of 0.039rad and confidence interval of

[−0.079, 0.082].

The vehicle overall acceleration and steering acceleration are illustrated in

Fig. 4.15. For all the time, both the vehicle acceleration and steering accelera-

tion are confined within the comfort regions. The passengers will not feel any
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Figure 4.15: Vehicle & steering acceleration in an on-field test

shaking and jerking effect from the nonlinear MPC controller.

4.5 Chapter summary

In this chapter, we have proposed a nonlinear MPC to control a vehicle to follow

a prescribe reference path at relatively high speed (∼ 20m/s). The velocity

and steering direction are controlled simultaneously. We have also proposed a

fast genetic-algorithm-based solver to solve the optimization problem, which

allows more meaningful and direct design of MPC without any compromise.

Benefitting from the flexible structure of the nonlinear MPC, human passengers’

comfort and safety are able to be taken into account explicitly.

We have also built a realistic simulation platform to evaluate the proposed

nonlinear MPC scheme. The results clearly show the competencies of the pro-

posed MPC in controlling the vehicle to travel along the road center line. The

vehicle is even able to maintain its position in its ego lane at sharp corners.

Extensive on-field tests (about 300) have been carried out with the help of

stereovision system which provides road profile and tracking errors. The results

tally with that from the simulation. The vehicle is able to manoeuvre to travel

along the road center line and maintain its position within the safety bound-

aries. The results show that the control signal is smooth enough not to cause

any jerking effect to the passengers.
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Chapter 5

Vision-Based Autonomous Reverse

Parking System

5.1 Introduction and literature review

Parking is a fundamental function for the autonomous vehicle. Only with the

stereovision and NMPC systems proposed in the previous chapters, the AV is

not able to park properly as there is no vision feedback from the back of the AV.

This chapter proposes a new vision-based self-parking system. The detection

of the parking slot is inherited from the ridge detector in Chapter 2 since it has

been proven to be largely effective under normal conditions.

As mentioned in Chapter 1, some commercial car models have adopted,

to a certain extent, various types of self-parking systems. However, most still

require human intervention. For example, in the Toyota Prius [102] and BMW 7

series [103], the driver needs to regulate the speed of the vehicle by pressing and

releasing the brake pedal. The system only takes control of the steering wheel.

Thus, gaps still exist in the attempt to render a fully self-parking system.

Parking can be categorized into two major groups based on the parking slot

orientation with respect to the road, namely reverse parking and parallel park-

ing, while the focus of the chapter is on reverse parking. All concepts except
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path generation can still be applied directly to parallel parking. To realize au-

tonomous parking, typically three basic steps are needed, including target posi-

tion designation, path planning and path following/tracking.

The target position designation is to identify the available parking slot and

track the desired slot during the parking process. Based on the sensors utilized,

it can be roughly divided into three categories, including active ultrasonic or

laser sensor based, infrastructure-based and vision-based methods.

The active sensor based method is the most common one for parallel park-

ing. The system collects range data as vehicle passing by a free parking space

and registers the range data using odometry to create depth map. Some typical

examples can be found in [104], [105] and [106]. However, as pointed out in

[107], this approach usually fails in reverse parking because the incident angle

between the sensor and the side facets of nearby vehicles is too large. Moreover,

the final parking accuracy depends on the nearby vehicle parking orientation.

The infrastructure based method requires modifications on existing car park

systems. In [108], local GPS, car park digital map and communication with the

parking administration systems are required. However, these approaches may

not be practical in a short time due to the requirement of additional hardware

installation on current car parks.

Vision-based methods provide the simplest and cheapest solution among

these three categories. In [109] and [110], the vision system was used to recog-

nize adjacent vehicles as the boundary of the slot while in [111], the author used

fish-eye cameras and Canny edge detector to identify the slot markings.

However, conventional vision-based methods may not be robust enough to

tackle various illumination situations in different types of car parks [106]. To

deal with poorly lit environment which is common for indoor/underground car

parks, a new system was proposed in [112] to recognize 3D information by

analyzing the light stripe from a light plane projector. But it requires external

references to work properly, such as vehicles in the adjacent slots.
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Taking all these into consideration and based on successful experience gained

from Chapter 2, we propose to use mono camera with ridge detector for the tar-

get position designation. As proven in Chapter 2, ridge detector is more robust

than conventional edge detectors in identifying bright long structures in the im-

age. More importantly, it functions well in poor illumination conditions. And

since the parking slot image is less complex and less contaminated by noise as

compared with the road image, the ridge detector can work properly enough to

detect the slot markings. The detector proposed in Chapter 3 cannot be applied

here directly without further adjustment because it is not designed to detect lines

that are near horizontal orientation.

Similarly as Chapter 3, to improve the tracking consistency, filtering mecha-

nism, like Kalman filter or particle filter, between consecutive images is desired.

For this particular application, the vehicle moves slowly and on flat surface, thus

there are no abrupt changes between consecutive images. This indicates that

Kalman filter will work as robust as the particle filter. But it is less computation

demanding; therefore, Kalman filter is preferable here.

In the domain of path planning for reverse parking, many continuous-curvature

path generators based on geometrical information have been proposed in the lit-

erature. Pioneering works by Dubins [113] and Reeds [114] proved that the

shortest paths for a car to move from one pose to another consist of arcs of

circles (minimum turning radius) and straight line segments. Based on this con-

cept, Massaki [108] and Daobin [115] proposed several algorithms to address

this problem in their respective works. Some other researchers [116] adopted

concepts of way points. Wang et al. [111] proposed double circular trajectory in

which the first arc follows the minimum turning arc and the second one depends

on the available space. But the key idea is still based on arc-line type of path.

A common disadvantage of their works is that a feasible path is not always

guaranteed under the constraint of minimum turning radius. The success in

finding a path depends strongly on the vehicle initial pose relative to the car park
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slot, for example, the double circular trajectory [111] requires the initial pose to

be parallel to the road. M. B. Oetiker et al. proposed a different approach from

navigation field point of view [117]. But the critical problem is to determine the

way point and the available paths depend on a pre-calculated vector field.

Leveraging on these considerations, we propose an arc-line based path plan-

ning algorithm which guarantees to find a feasible path under any initial pose.

For the path following controller design, as reviewed in Chapter 4 there

are many designs available varying from PID to more advanced adaptive ones,

including sliding mode control (SMC) [118], input-output linearization [119],

fuzzy-neural network [120], MPC [80], back-stepping [121] and so on.

Although MPC has the aforementioned advantages among these controllers,

we did not use it here because it requires too much computation resources and

is overly-complex for this parking system. The vehicle moves at low speed and

follows a simpler path as compared with the real road.

For this parking system, we propose to apply SMC since it has the lowest

computation complexity among the advanced controller, yet it is still able to

achieve fast response and good transient tracking [122].

However, the conventional SMC also has drawbacks. As shown later, the

control signal is not smooth when it is applied to non-holonomic vehicles. Sev-

eral spikes arise which induce strong vibrations to the vehicle. To mitigate this,

we improved the SMC design and managed to suppress these spikes.

In this chapter, a complete set of solutions to self-reverse parking system is

proposed. The system utilizes a mono camera with Kalman filter to generate

real-time feedback on vehicle pose. A supervision control scheme is designed

as well to prevent the vehicle from entering adjacent parking slots and ensure the

vehicle parks along the slot center line accurately. The system is proven, through

experiment data, to be robust, reliable and practical. The main contributions of

the work include:

(i) A robust path planning algorithm. It is proven that a feasible path can be
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generated regardless of the vehicle initial pose with respect to the slot.

(ii) A smooth SMC path following controller. It is able to eliminate the con-

trol signal spikes induced by conventional SMC and provide high level of

human comfort without jerking or shaking.

The chapter is organized as follows: Section 5.2 and 5.3 provide detailed

explanation on the main contributions of the chapter, including path generation

and SMC. Section 5.4 explains the image processing and Section 5.5 elaborates

the interactions between individual modules. The experiment setup and results

are illustrated in Section 5.6, and conclusions are drawn in Section 5.7.

5.2 Path generation

It has been proven in [113] and [114] that the shortest path between two vehicle

poses consists of straight line segments connected with circular arcs of mini-

mum turning radius. Based on this result, we propose a novel path planning

algorithm which guarantees the existence of a feasible path at any vehicle pose.

Although the curvature profile at the transition points between arcs and lines is

discontinuous [120], it is not critical as far as this application is concerned since

the vehicle moves at slow speed (1−2km/hr).

To better illustrate the algorithm, the coordinate system in Fig. 5.6 is defined

with its origin at the center of bottom boundary. The last segment of all the paths

must be a straight line along Z axis, otherwise, part of the vehicle body will have

to pass through the forbidden areas before reaching the destination point.

For a path consisting of two segments, the first segment must be an arc.

Depending on the vehicle moving direction and steering direction, there are four

cases. Similarly, for a path consisting of three segments, the first segment has

four cases as well and thus the total number of paths in this case is 4×4 = 16.

Analogously, for a path consisting of n segments, each segment except the last

has four cases and the number of possible paths is 4n−1.
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Given a vehicle pose, since the number of path segments is unknown, the

program has to check from the path with one segment until n segments. Then the

total number of paths to be examined equals 1+4+42+ · · ·+4n−1 =(4n−1)/3.

Based on our implementation, when the check is up to n = 4, there will be at

least one feasible path for 90.5% of the possible poses. Further increasing n, the

total number of paths to check will increase by 256 and no explicit solution is

available for a 5-segment path even the arc-line combination and sequence are

fixed. The computation requirement increases dramatically. Therefore, it is not

worth of trying n≥ 5 for the remaining 9.5% poses. A compensate solution will

be proposed later to cover these remaining poses.

Table 5.1: Basic path models

Segment Path Number
n=1 SB 1
n=2 (RB/LB/RF/LF)-SB 4
n=3 (SB/SF)-(All cases with n=2), 12

(RB/RF)-LF-SB, (LB/LF)-RF-SB
n=4 (SB/SF)-LB-RB-SB, (SB/SF)-RB-LB-SB 4

When n= 4, the total number of paths is 85, out of which some are redundant

especially for those with four segments. Therefore, instead of checking all 85

paths, we used 21 non-redundant paths as the basic set. The details are tabulated

in TABLE 5.1. The first letter refers to steering direction (Straight, Left, Right)

and second refers to moving direction (Forward, Backward).

xc = x0±Rsinθ (5.1)

zc = z0∓Rcosθ (5.2)

To facilitate the illustration on how to check paths, the following parameters

are defined: the vehicle position (x0, z0) is represented by the center point of

its rear axel, its orientation θ is the angle from +X direction to its body center

axis (Fig. 5.1(b)), the car width is Wcar and the parking slot width is Wslot . For

a given car pose (x0, z0, θ), its turning center (xc, zc) with radius of R is (5.1)

and (5.2) according to its steering direction (Top signs are for right steering).
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5.2.1 Paths with two segments

To check a path with two segments for RB− SB as shown in Fig. 5.1(a), the

path must satisfy the following conditions in order to avoid passing through the

adjacent parking slots.

(i) |x1| needs to be less than tolerance, where (x1, z1) is the transition point

between the arc and the line. tolerance defines the allowable offset from

the parking slot center line. From a geometrical relationship, x1 = xc +R.

(ii) Arc 1© needs to intersect with left boundary or x1−Wcar/2 >−Wslot/2

(iii) The lower intersection point (x2, z2) needs to be below the bottom bound-

ary or z2 needs to be less than 0. Arc 1© is given in (5.3). By substituting

x =−Wslot/2, z = z2 and picking the smaller value, z2 is solved as (5.4).

(x− xc)
2 +(z− zc)

2 = (R−Wcar/2)2 (5.3)

z2 = zc−
√

(R−Wcar/2)2− (xc +Wslot/2)2 (5.4)

Once these validations are passed, the path can be determined uniquely by

point (x0, z0) and (x1, z1).

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

(𝑥𝑐 , 𝑧𝑐)  

(𝑥1, 𝑧1)  

(𝑥2, 𝑧2)  
𝑋 

𝑍 

   

𝑧𝑐𝑐𝑐  𝑥𝑐𝑐𝑐  

𝑅 

5.1.a:

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

(𝑥1, 𝑧1)  

𝑋 

𝑍 

(𝑥0, 𝑧0)  

𝜃 

𝑥𝑐𝑐𝑐  

𝑧𝑐𝑐𝑐  

5.1.b:

Figure 5.1: Paths with two segments

For the path in Fig. 5.1(b) (RF − SB), the only thing to ensure is the first

criteria as none of the vehicle body will enter the forbidden areas along the
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path. The remaining two paths for n = 2 (LB−SB and LF−SB) can be worked

out similarly since they are symmetrical with the above two cases.

5.2.2 Paths with three segments

For paths with n = 3, they can be divided into two groups according to the first

segment, Line−Arc−Line (Fig. 5.2) and Arc−Arc−Line (Fig. 5.3).

(−𝑅, 𝑧𝑐)  (0, 𝑧𝑐)  

(𝑥2, 𝑧2)  

𝑋 

𝑍 

(𝑥0, 𝑧0)  

𝑧 = 𝑎𝑎 + 𝑏 

 

(𝑥3, 𝑧3)  

5.2.a:

𝑋 

𝑍 

(𝑥0, 𝑧0)  

𝑧 = 𝑎𝑎 + 𝑏 

(𝑥3, 𝑧3)  

(0, 𝑧𝑐)  

5.2.b:

Figure 5.2: Paths with three segments – Line−Arc−Line

For the first group, the straight line z = ax+ b can be determined based on

the vehicle initial pose with a = tanθ and b = z0− x0 tanθ . The first transition

point (x3, z3) satisfies

z3 = ax3 +b (5.5)

(x3− (−R))2 +(z3− zc)
2 = R2 (5.6)

a(z3− zc)/(x3− (−R)) =−1 (5.7)

From the three equations above, all transition points (x3, z3) and (0, zc) can

be derived as (5.8)-(5.10). By comparing the relative position between (x0, z0)

and (x3, z3), the moving direction for the first segment can be determined.

x3 =−R+aR/
√

1+a2 (5.8)

z3 =−aR+b+a2R/
√

1+a2 (5.9)

zc = aR+b+R/
√

1+a2 (5.10)
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Similarly, a collision check on the left boundary is necessary to ensure the

vehicle does not enter forbidden areas. The condition is z2 < 0, where z2 is

defined in (5.4) with xc =−R.

For the path in Fig. 5.2(b), the transition points can be derived similarly with

the arc center at (R, zc) instead of (−R, zc). For collision check, as long as the

vehicle is outside the forbidden areas at (x3, z3), it will be safe along the whole

path. However, there is no short form solution for this case. Instead of using the

analytical approach, we implement a more general collision checking method

which is illustrated at the end of this section.

All the remaining paths in Line−Arc−Line group can be worked out simi-

larly based on the vehicle initial pose and the corresponding turning centers.

(𝑥𝑐 , 𝑧𝑐)  

(𝑅, 𝑧𝑐′)  

(𝑥3, 𝑧3)  

(𝑥0, 𝑧0)  

(0, 𝑧𝑐′)  

𝑋 

𝑍 

5.3.a:

𝑋 

𝑍 

(𝑥0, 𝑧0) 

(𝑥3, 𝑧3)  

5.3.b:

Figure 5.3: Paths with three segments – Arc−Arc−Line

If the path is Arc−Arc−Line (Fig. 5.3), the transition points for Fig. 5.3(a)

can be derived as following: The center for the first arc (xc, zc) is given by (5.1)

and (5.2). Since the two arcs are tangent, the distance between the two centers

satisfies (5.11), from which zc
′ can be solved by selecting the smaller value.

Then the transition point (x3, z3) can be solved as (5.12) and (5.13).

(xc−R)2 +(zc− zc
′)2 = (2R)2 (5.11)

x3 = 0.5(xc +R) (5.12)

z3 = 0.5(zc + zc
′) (5.13)

Fig. 5.3(b) path is not covered as it is redundant to the path with n = 4.
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5.2.3 Paths with four segments

For the path with four segments, only the type Line− Arc− Arc− Line are

checked. Even for this single type, the number of solutions given an initial

vehicle pose is infinity. For example in Fig. 5.4(a), the path is related to the

length of the first straight line t. As shown in Fig. 5.4(b), three different t result

in three different paths.

𝑋 

𝑍 

(𝑥0, 𝑧0) 

(𝑥2, 𝑧2)  

(𝑥𝑐 , 𝑧𝑐)  

(𝑅, 𝑧𝑐′)  
(0, 𝑧𝑐′)  

(𝑥1, 𝑧1) 

𝑡 

(0, 𝑧𝑒)  

𝛽 

5.4.a:

𝑋 

𝑍 

𝑡1 
𝑡2 

𝑡3 

5.4.b:

Figure 5.4: Paths with four segments and its non-unique solutions with different t

From geometry, the transition points (x1, z1) (x2, z2) (0, zc
′) and corre-

sponding turning centers (xc, zc) (R, zc
′) in Fig. 5.4(a) can be specified as

x1 = x0 + t cosθ (5.14)

z1 = z0 + t sinθ (5.15)

xc = x1 +Rsinθ (5.16)

zc = z1−Rcosθ (5.17)

zc
′ = zc +

√
(2R)2− (xc−R)2 (5.18)

x2 = 0.5(xc +R) (5.19)

z2 = 0.5(zc + zc
′) (5.20)

Theoretically, t should be selected according to the shortest travelling dis-

tance d as shown in (5.21). However, the explicit form of d is too complicated

to get its minimum analytically as it consists of terms with squares under square
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root, square root inside arcsine etc. It also depends on the vehicle initial pose

(x0, z0, θ). A numerical method is preferred to solve this minimization problem

since the range of t can be estimated roughly.

d = t +Rα +Rβ +(ze− zc
′) (5.21)

α = 2arcsin
(√

(x1− x2)2 +(z1− z2)2/(2R)
)

(5.22)

β = 2arcsin
(√

x2
2 +(z2− zc′)2/(2R)

)
(5.23)
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(𝑥0, 𝑧0)  
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𝑡𝑚𝑚𝑚 

Forbidden 
area 

Forbidden 
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Figure 5.5: Range of t for paths with four segments

The range of t is defined in Fig. 5.5, where the solid dark areas mark the ve-

hicle initial location and dotted light areas marks the extreme locations it might

end when moving straight forward and backward. The upper limit of t, tmax is

determined by the road boundary in the front of the parking slot as shown in

Fig. 5.5. From geometry, tmax can be expressed in (5.24), where l and l1 are

defined in Fig. 3.8(a) and WR is ∼ 8m for a typical two-lane road.

tmax = (z0 +WR)/(cosθ)− (l + l1)+Wcar/(2tanθ) (5.24)

For its lower limit, two cases may occur as indicated by path 1© and 2©

depending on the x location of point A or xA. On path 1©, the maximum distance

the vehicle is able to move backward from location (x0, z0) is tmin1, otherwise it

will enter the forbidden area. While on path 2©, it is able to move back further

into the slot before it enters the forbidden area. From geometrical relationship,
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the lower limit tmin can be shown in (5.25) with xA = x0 +
Wcar

2sinθ
+ z0

tanθ
.

tmin =


z0

sinθ
+ l1 + Wcar

2tanθ
|xA|> Wslot

2

−x0+0.5Wslot
cosθ

+ l1 + Wcar tanθ

2 |xA|6 Wslot
2

, (5.25)

Since the scale of parking range is several meters, a discrete series of t with

step size of 0.01m from tmin to tmax will provide an accurate enough estimation

in locating the minimum value of d. However, each element in t series needs to

meet the following criteria before being passed to d.

(i) Equation(5.18) must be real

(ii) Similar to (5.4), The intersection point between the vehicle inner wheel

path and parking slot right boundary has to be below X axis.

The two criteria lead to the following inequalities respectively

(x0 +Rsinθ −R+ cosθ t)2 6 4R2 (5.26)

sinθ t +
√

4R2− (x0 +Rsinθ −R+ cosθ t)2

6 Rcosθ +
√
(R−0.5Wcar)2− (R−0.5Wslot)2− z0 (5.27)

In summary, for a path with 4 segments, first, get the range of t based on

(5.24) and (5.25). Discretize t with step size of 0.01m from tmin to tmax. Select

the valid elements in t which satisfy (5.26) and (5.27). Pass all the valid elements

to (5.14)-(5.23) to get the minimum of d and its corresponding transition points.

5.2.4 Refined paths

As mentioned before, the feasible path is not available at 9.5% of the poses just

based on these 21 basic paths. To compensate this shortfall, we propose the

following path generation algorithm incorporated with these basic paths.
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(i) For a given initial vehicle pose (x0, z0, θ), get the shortest feasible path

out of the basic ones if such a path exists.

(ii) Assume the vehicle moves LF (or LB, RF, RB) by a small angle δθ .

(iii) Based on the new vehicle pose, get the shortest feasible path out of the

basic ones if such a path exists.

(iv) Assume the vehicle further moves in the same direction and steering angle

by another δθ .

(v) Repeat iii)-iv) until a feasible path is found or the vehicle hits the forbid-

den area

(vi) Change to another combination of moving and steering directions (LB,

RF or RB) and repeat ii)-v).

(vii) The optimal path is selected as the one with the shortest traveling distance.

If the path is still not available, move the vehicle forward or backward along a

straight line by a small distance and repeat the steps above. The time complexity

of the algorithm is approximately O(n), linear to the number of basic paths.

 

 

(𝑥0, 𝑧0) 
Path 1 
Path 2 
Path 3 

𝐴 
𝐵 𝑋 

𝑍 
Forbidden 

area 
Forbidden 

area 

Figure 5.6: Illustration on path refining process

Fig. 5.6 illustrates this process briefly. Path1 is from the basic path while

Path2 and Path3 are generated by assuming the vehicle steers to the right and

moves backwards to Point A and Point B respectively, then follow the basic

four-segment paths. As shown in the simulation in Section IV, the proposed

path generation algorithm can provide a feasible path at each single pose, even

when the vehicle is inside the parking slot.
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5.2.5 Collision check

As aforementioned, due to the complexity in checking collision analytically un-

der some cases, a general method is proposed, which can not only validate a

generated path but also can check the vehicle collision status during the real run

as long as the vehicle pose is known.

First, define a new coordinate system xcar− zcar attached to the vehicle as

shown in Fig. 5.1(a). Every point on the vehicle boundaries can be expressed

easily in this coordinate system. By taking points on the boundaries with a step

size of 0.01m, we can get a set of points representing the vehicle boundaries.

Ccar =

 x1 x2 . . . xn

z1 z2 . . . xn

 (5.28)

The translation matrix T from xcar− zcar coordinate to X −Z coordinate is

defined below, where (x0, z0, θ) is a given vehicle pose.

T =

 cosθ −sinθ x0

sinθ cosθ z0

 (5.29)

The vehicle boundary points expressed in X−Z coordinate are

C = T

 Ccar

11×n

 (5.30)

If any of the boundary points in C fall in the forbidden area, collision occurs.

5.3 Sliding mode controller design

To control the vehicle to follow the generated path, we apply SMC on the vehicle

steering wheel. The controller calculates a target steering angle based on the

vehicle position and orientation errors (de and θe) with respect to the target
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path. Vehicle velocity is not under the control of SMC. To implement SMC, the

non-holonomic vehicle model defined previously is adopted (Fig. 3.8(a)).

de and θe are defined similarly as previous. However, since the target path

is either an arc or a line instead of a parabola, the expressions are different from

(4.5d). For the particular relative position shown in Fig. 3.8(b), if the path is an

arc with the arc center at (xc, zc), de and θe can be expressed as

de =−sinθd(x− xd)+ cosθd(z− zd) (5.31)

θe = θ −θd (5.32)

where (xd, zd, θd) defines the target position and orientation as shown below


xd = xc +R|x− xc|/

√
(x− xc)2 +(z− zc)2

zd = zc−R|z− zc|/
√
(x− xc)2 +(z− zc)2

θd =−arctan
(
(z− zc)/(x− xc)

) (5.33)

The position error dynamics can be calculated from (3.26) and (5.31).

ḋe = vsinθe− θ̇d[cosθd(x− xd)+ sinθd(z− zd)]

= vsinθe ( f rom geometry) (5.34)

The following sliding surface is proposed so that both position and orienta-

tion errors converge to zero. k is non-negative for a stable sliding surface [123].

s = ḋe + kde = vsinθe + kde (5.35)

The sliding surface convergence rate can be shown as

ṡ = v2 cosθe(tanφ − tanφd)/l + kvsinθe (5.36)

Define ṡ = − f (s) where f (s) could be any non-decreasing odd function or

123



CHAPTER 5. VISION-BASED AUTONOMOUS REVERSE PARKING SYSTEM

combination of them, such as sign, saturation etc. To suppress the chattering

effect and prevent a sudden change in control signal due to f (s), we choose the

arctan function which is non-decreasing odd and more importantly, continuous.

ṡ =−Qarctan(s/P) (5.37)

Equation(5.36) and (5.37) provide the control law on φ

φ = arctan
(
− lQarctan(s/P)

v2 cosθe
− lk tanθe

v
+ tanφd

)
(5.38)

A simple Lyapunov stability check using V = s2/2 implies that P and Q

must be positive for a stable system.

Conventionally, we should go on to calibrate k, P and Q based on their con-

straints and the corresponding control performance. However, for this particular

application, a fixed value of k and Q is not sufficient to provide a smooth control

signal even though some precautions have been taken in the choice of f (s).

The main reason is due to the v terms in the denominator in (5.38). |v|

may drop close to zero occasionally, which magnifies the control signal in φ

unnecessarily even when both s and θe are small. Such fast switching in steering

directions induces strong jerking experience to the driver.

To compensate for this effect, we propose the following designs for Q and k,

where Q′ and k′ are the new positive parameters to be tuned. Q is ensured to be

non-negative as−π/2 < θe 6 π/2. The resultant control law is shown in (5.40).

Q = (v2 cosθe/l)Q′ k = |v/l|k′ (5.39)

φ = arctan
(
−Q′ arctan(s/P)− sg(v)k′ tanθe + tanφd

)
(5.40)

To summarize, (5.31)-(5.33), (5.35) and (5.40) form the full set of SMC

design on the steering wheel, which can generate a smooth and fast response for

path following.
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5.4 Image processing

It has been shown in Chapter 2 that ridge detector is effective in extracting bright

long structures in the image. Therefore, it is also implemented here to extract

slot markings. The top row in Fig. 5.7 illustrates the results from ridge calcu-

lation. It directly extracts the medial axis of the slot boundary markings. Their

ridge values are larger than the rest of the image.

A simple fixed value threshold is applied on the ridge image. Then, a noise

filtering step, consisting of connected components labeling operation and re-

moval of components with small number of pixels (< 25 pixels), is applied to

remove the noise pixels. A sequential RANSAC line fitting algorithm is imple-

mented to detect all the lines representing the visible slot boundaries, followed

by a line assignment process to determine which boundary the lines belong to.

Other robust line fitting algorithms are also applicable to replace RANSAC, e.g.

Radon Transform [111]. Fig. 5.7 illustrates the whole process.

Figure 5.7: Illustration on image processing (row-wise=> original, smoothed, ridgeness,
threshold, filtering, line assignment)

This line assignment process is based on Kalman filter prediction. From the

predicted vehicle pose, a simulated parking slot image can be realized and thus,

all its boundary medial axis can be expressed in the image coordinate system.

The fitted lines in the real image will be compared with each of the simulated

medial axis in terms of gradient and average pixel distance dave (5.41).

dave = (∑
N
i=1 |Cxi +Eyi +F/2|)/(N

√
C2 +E2) (5.41)
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where (xi,yi) represents one pixel on the fitted line, N is the total number of

pixels on the fitted line and Cx + Ey + F/2 = 0 refers to the simulated slot

boundary medial axis. In [124], the author also used the predicted image to

fuse with actual images to improve the tracking accuracy. But the predicted im-

age was estimated directly from vehicle odometry sensors without any filtering

mechanisms, thus the results may be sensitive to noise.

The vehicle pose with respect to each parking slot boundary can be calcu-

lated by making use of the fitted lines and the camera intrinsic and extrinsic

transformation matrix.

5.5 System integration

In this section, an overall picture of the algorithm is illustrated to demonstrate

how each individual module interacts with each other.

When the driver stops the car at any pose near the intended car park slot, the

fully automated reverse parking process can be initiated if part of the parking

slot is within the camera view. The steps of the process are stated as follows:

(i) Take a picture of the parking slot and start the image processing to calcu-

late vehicle pose.

(ii) Initialize the path generator with the above information and start to work

out a feasible path. The associated moving velocity and steering angle at

each point of the path are generated simultaneously.

(iii) Initialize Kalman filter and sliding mode controller.

(iv) Start the iteration by taking a new picture at the new vehicle pose.

(v) Derive the new vehicle pose based on image processing and Kalman filter

state prediction.

(vi) Read in vehicle moving speed and steering angle.
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(vii) Pass the new vehicle pose, speed and steering angle to Kalman filter for

state estimation and prediction. A check on re-initialization of Kalman

filter is carried out at the same time.

(viii) Check collision based on the estimated states. If collision occurs, stop the

vehicle, re-generate a feasible path and resume from step iii) onwards.

If not, work out the target position (xd, zd) and orientation (θd) based on

the path and the estimated states.

(ix) Check whether the vehicle passes beyond the end point. If not, proceed to

the next step. Otherwise, stop the vehicle and further check its alignment.

If its misalignment is small (within±2◦ and±7cm from Z axis), the park-

ing is completed. If not, re-generate a path and resume from step iii).

(x) Generate the error signals and pass them to SMC if no collision and not

beyond the end point

(xi) Work out a steering angle command through SMC and send it to the ve-

hicle steering motor.

(xii) Sent the target speed to an independent PID controller.

(xiii) Repeat step iv) to xii) until the parking is completed.

The flow chart on the whole algorithm is illustrated in Fig. 5.8. The Kalman

filter re-initialization prevents the initial error, which is induced from the dif-

ference between the pre-assumed and actual parking slot size, from inflating as

iteration continues. It also makes the system adaptive to different slot sizes.

The entire scheme guarantees a collision-free parking process since it checks

collision at every iteration. The final parking accuracy is imposed as well by a

misalignment check. The path planning step only carries out at the beginning

and when collision or end-point misalignment occurs. The robust path planning

frees human intervention from the whole process as there are no dead spots

requiring the human driver to adjust the car pose to generate a feasible path.
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Figure 5.8: Self reverse parking algorithm flow chart

5.6 Experiment results

To validate the proposed algorithm, we implemented it on Toyota COMS EV

as shown in Fig. 1.14. The camera is mounted at the center of the vehicle rear

roof, pointing downwards at an angle of 48◦ from horizon and height of 1.55m

from the ground. Other related dimensions are shown in the schematic drawing

(Fig. 1.14 right). Note that the minimum turning radius measured from the

control point is about 3.6m.

All the function modules mentioned above are realized by MATLAB run-

ning in the on-board NI PXI with Intel Core i5 CPU. The average time taken for

one iteration is about 0.18s which is satisfactory for this low speed application.

85% of the time is spent on image processing.

5.6.1 Results on path generation

To validate the robustness of the path generation, the following simulation is

designed: for the space in front of the parking slot, assume the vehicle position
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X varies from−2.8m to 2.8m with an interval of 0.2m and Z varies from−0.5m

to −2.5m with an interval of 0.2m as well. For each position (X , Z), assume

the vehicle orientation varies from 0rad to −πrad with an interval of 0.1rad.

Based on this mesh grid, we generate 10208 vehicle poses to test.

Fig. 5.9(a) shows the distribution of the path at each pose generated by the

proposed algorithm with the turning radius R = 3.6m. The green box refers to

the parking slot. At each of the 10208 poses, at least one feasible path can be

generated. The free space required varies from−7m to 7m for X and up to−6m

for Z. The widespread of the distribution is mainly caused by the poses which

are close to horizontal direction and far away from parking center line. If the

turning radius can be reduced, the free space required can be shrunk accordingly.

5.9.a: 5.9.b:

Figure 5.9: Path distribution for the testing vehicle with R = 3.6m

When the vehicle is inside the parking slot, similar grids are generated. The

path distribution is shown in Fig. 5.9(b). The paths for the poses where the

vehicle is at collision are not shown. An example is when the vehicle is near the

left or right boundary; however, it seldom ends up at those poses as the collision

check is carried out in every control cycle. The widespread wings are due to the

poses near the slot bottom boundary with near horizontal orientations.

Since the test bed is smaller than normal sedans, we carry out further simula-

tions to verify the path generation algorithms with normal sedan size and normal

parking slot size. The sedan size is based on Toyota Corolla [125], 1.8m wide

and 4.6m long with minimum turning radius of 5.4m. The size for a standard
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parking slot is 2.4m×4.8m [126]. The testing area is enlarged accordingly. The

range in X direction is from −5m to 5m and Z is from −1m to −5m.

5.10.a: 5.10.b:

Figure 5.10: Path distribution for a normal sedan with R = 5.4m

For all the simulated poses, we obtained the path distribution as shown in

Fig. 5.10. Again, we confirmed that for a normal sedan, at least one feasible

path is available at any given vehicle pose, even when it is inside the parking

slot (Fig. 5.10(b)). However, as compared to the test EV, the free space required

in front of the parking slot is larger for a normal sedan since both its size and

turning radius R are larger. For the same reason, under certain poses, a normal

sedan requires paths with more segments.

To further evaluate the proposed algorithm, we also compared it with other

two state-of-the-art algorithms proposed in [127] and [128] which also try to

generate a feasible path regardless of vehicle initial poses.

In [127], the path consists of tangent arcs only except for the last segment

which is a straight line (we refer this as Arc Algorithm). One of its disadvan-

tages is that the final parking orientation is not unique. For example in Fig. 5.11,

if the initial pose faces to the left (red vehicle), the final vehicle orientation faces

outwards. If the initial pose faces to the right, it generates the same path (blue

dot-dash line) and ends up with an inwards-faced orientation. If uniqueness

is to be preserved, there may be no feasible path under some poses. But our

algorithm guarantees an outwards-faced final orientation.

Moreover, no path is available when the vehicle initial pose is inside the slot.
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Figure 5.11: Non-uniqueness of final orientation by Arc Algorithm

This situation happens when the vehicle deviates from the planned path due to

some disturbances and ends up in collision with adjacent slot. The path needs

to be re-generated and the Arc Algorithm will fail.

For the algorithm proposed in [128] (KPP), it generates a multi-folded path,

of which each section consists of translation, followed by rotation (minimum

radius) and another translation. It is also able to generate a feasible path un-

der any vehicle initial poses. Fig. 5.12 illustrates the comparison between the

paths generated by KPP algorithm and our one for 3 initial poses. The 3 poses

were used to compare KPP with another algorithm RRT in [129]. For a fair

comparison, we adopted all the dimensions in that article.
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Figure 5.12: Path generation comparison between KPP algorithm and our proposed one

TABLE 5.2 shows the comparison of path length, number of maneuvers and

computing time to generate the path. Both algorithms generate similar paths in

terms of path length and no clear advantages of one algorithm over the other.
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But due to the multi-folded property of KPP, it tends to generate paths with

more maneuvers, which is more difficult to follow. And our algorithm is able to

generate a feasible path much faster than KPP. The average time of generating

one path shown in Fig. 5.9 is 0.098 seconds.

Table 5.2: Comparison between KPP and the proposed algorithm

Initial Pose (1) (2) (3)
Algorithm Ours KPP Ours KPP Ours KPP
Length(m) 14.6 15.5 19.8 22.64 20.11 18.56
Maneuvers 2 4 3 4 3 4

Com. time(s) 0.132 0.875 0.138 0.812 0.111 0.813

Therefore, the proposed algorithm outperforms KPP in the domain of re-

verse parking. But under a cluttered environment as shown in [128], a multi-

folded approach is preferred at the expense of computing time. Note that our

algorithm can be extended to a multi-folded version by adding straight lines and

minimum turning arcs alternatively at the beginning of the proposed algorithm.

In summary, the robustness of the path generation algorithm has been vali-

dated and a feasible path is guaranteed under any initial poses.

5.6.2 Results on SMC

Fig. 5.13 illustrates how the vehicle position error de and orientation error θe

vary from frame to frame during one typical parking trial. The errors are calcu-

lated based on (5.31) and (5.32). The left y axis and blue solid line are for θe

while right y axis and red dotted line for de. Both values vary within a small

range around 0. Frame 65 to 75 show the fast response from the controller to

bring large deviations back to 0. The revised SMC is capable to control the ve-

hicle to follow the planned path with very small position and orientation errors.

To validate the improvement in human driver’s comfort level, the proposed

path following controller was compared with the conventional SMC in [122]

and fuzzy logic control. Three sets of on-field tests using these three controllers

were carried out. Each set consist of 50 trials with random initial poses.
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Figure 5.13: Position and orientation error trend during one trial

Similar to SMC, the fuzzy logic takes de and θe as the input and φ as the

output. The membership functions are illustrated in Fig. 5.14. Based on the

vehicle moving direction, 30 rules are designed in total. (NB stands for Negative

Big, N for Negative, Z for Zero, P for Positive and PB for Positive Big.)
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Figure 5.14: Fuzzy logic membership function design

To measure the comfort level, the following indices, unexpected steering

swings (USS) and jerk, are proposed.

USS: one steering swing (SS) is defined as turning the steering wheel from

center or zero position to its left or right limit. The number of expected SS is

counted from the generated path. The difference between the expected SS and

SS counted from the actual run is USS. Ideally USS equals to 0. The smaller

the USS is, the smoother the controller is.

JL = ȧL = d(θ̇v)/dt = d(tan(φ)v2/l)/dt

= (v2 sec2(φ)φ̇ +2tan(φ)vv̇)/l (5.42)

JT = ȧT = d(v̇)/dt = v̈ (5.43)

Jv =
√

J2
L + J2

T (5.44)

Jφ = d3(φ)/dt3 (5.45)
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Jerk [130]: It is the time derivative of the acceleration. Both vehicle motion

(Jv) and steering (Jφ ) induce jerk to the system. Jv can be decomposed into two

components, longitudinal JL and lateral JT as shown in (5.42) and (5.43). Both

Jv and Jφ average absolute values based on all the measurements in one trial are

used as indices to indicate the jerking effect of that trial.

TABLE 5.3 shows the comparison between the proposed, conventional SM-

C and fuzzy logic performance. Data presented are mean values over the 50

trials for each controller. As compared to the conventional SMC, since there are

less unexpected steering swings, the proposed controller output is more capable

of following the required steering profile while making necessary minor adjust-

ments. The induced jerking effects can be suppressed significantly, especially

the ones from steering wheel.

Table 5.3: Comparison between the proposed, conventional SMC and fuzzy logic

Controller USS Jv(ms−3) Jφ (s−3)
Proposed SMC 1.02 0.985 8.218
Conventional SMC 3.06 1.669 20.812
Fuzzy Logic 0.03 1.212 10.850

As compared to fuzzy logic control, although the proposed SMC yields high-

er USS due to the fast transient response, it is still able to reduce jerking effects

in both Jv and Jφ and provide smoother control actions. Moreover, the tuning

of the proposed SMC is much simpler than the fuzzy logic control since SMC

involves two parameters only while fuzzy logic control involves more than 10.

From all the experiments above, we can conclude that the revised SMC is

able to generate smooth control output and eliminate jerking to a large extent. It

results in a higher level of human driver’s comfort.

5.6.3 Results on final parking accuracy

Extensive experiments were conducted under different illumination situations

to evaluate the robustness of the proposed algorithm. The situations include an
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indoor car park and an open air car park during daytime, sunset and night time.

Sample images are shown in Fig. 5.15 to demonstrate illumination intensities.

During daytime, the sunshine is strongest and visibility is the best. But some

pixels may be saturated. During sunset, the sunshine and visibility are moderate.

During night, the visibility is very poor and the light source is from the vehicle

tail lights. In indoor car park, visibility is also moderate and fluorescent lamp

is the main light source. Two illustration videos (link v and vi) are provided in

Appendix B to show the parking process.

Figure 5.15: Illumination during daytime, sunset, night and indoor

54 trials were carried out under each situation with a variety of initial poses

as shown in Fig. 5.16 to better reflect real parking exercises. Parking accuracy

is evaluated based on two indices, namely the vehicle offset distance from the

slot center line and its orientation deviation. These two values were measured

manually after finishing each trial.
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Figure 5.16: Initial pose distribution for all the trials

Fig. 5.17 plots the absolute offset and orientation error for each trial under

different illumination conditions. From both offset and orientation error plots,

the accuracy is similar under different conditions. There is no clear advantage
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of one condition over the others. The same observation is made on RMS as

shown in TABLE 5.4. This infers that the proposed vision approach is robust to

illumination variation, even the image quality taken during the night is poor.
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Figure 5.17: Absolute offset distance and orientation deviation for each trial (dashed
line represents RMS)

The overall RMS distance offset is 4.71cm and orientation deviation is 1.24◦.

The overall standard deviation (STD) for offset is 2.31cm and 0.66◦ for orienta-

tion deviation. The overall 95% confidence interval for offset is [−0.46cm, 8.7cm]

and [−0.25◦, 2.4◦] for orientation deviation. This shows that the proposed ap-

proach is capable of providing consistently satisfactory parking accuracy under

environment changes. The approach is therefore reliable.

Table 5.4: Offset and orientation RMS and STD

Daytime Sunset Night Indoor Overall

Offset(cm)
RMS 4.60 4.36 4.50 5.31 4.71
STD 2.50 1.81 2.64 2.09 2.31

Orientation RMS 1.34 1.25 1.30 1.07 1.24
Deviation(◦) STD 0.70 0.73 0.71 0.47 0.66

It is important to note that the results obtained are subject to other distur-

bances, including 1) inaccurate conversion from steering motor turning angle
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to vehicle turning radius; 2) un-modeled slippage between ground and wheels,

between wheels and driving motors; 3) deficits in camera calibration. All these

factors can lead to inaccuracy in Kalman filter and image processing. But the

result shows that the algorithm handles these disturbances well.

The parking accuracy was also compared with manual parking results. Ex-

cept for the autonomous COMS mentioned above, there were 8 more manual

COMS shared among NUS staff. The sharing scheme has been carried out for

1.5 years and the COMS users are considered experienced. The parking accu-

racy was measured at the end of the day after the users returned all the COMS

to the dedicated indoor car park. 50 sets of data were collected. The RMS dis-

tance offset is 8.12cm and orientation deviation is 1.73◦. This shows that the

proposed autonomous parking approach can achieve a slightly better accuracy

than experienced human drivers.

5.7 Chapter summary

In this chapter, a vision-based autonomous reverse parking system is proposed,

which is a supplementary but essential system to the AV platform. The low

cost system is proven to be practical and reliable through extensive on-field

experiments under different illumination conditions.

The implementation of a ridge detector and a Kalman filter ensures the accu-

racy and consistency of vehicle pose estimation while the revised SMC reduces

the jerking effects to a large extent. The robust overall control scheme makes

sure that there is no collision with adjacent parking slots and the vehicle parks

accurately along the slot center line.

The novel path planning algorithm guarantees a feasible path at any given

pose. This is the key function to enable the fully autonomous feature because it

doesn’t require human driver’s intervention to re-adjust the vehicle to a certain

pose in order to get a feasible path.
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Conclusions

6.1 Main contributions

In this thesis, a vision-based minimum viable solution towards sustainable au-

tonomous vehicles is proposed, which substantially reduces both the cost and

power consumption as compared to typical AV setups. It utilizes vision to per-

ceive environment instead of Lidar or Radar. Special controllers are designed

to control the vehicle based on the vision feedback. The solution consists of a

vision-based vehicle lane-level localization system, an NMPC-based path fol-

lowing control system and a fully vision-based reverse parking system.

First of all, a vehicle lane-level localization system based on mono cam-

era is proposed. It identifies lane line pixels in the images through the cus-

tomized ridge detector and then removes noise pixels to a large extent based on

an adaptive filtering mechanism. The road model, from which the vehicle pose

respected to the road can be calculated, is fitted through a modified RANSAC

algorithm and then followed by a parallelism reinforcement technique. It is able

to detect lane lines in the images at a high success rate and estimate the vehicle

localization information with small errors.

To further improve the vehicle pose estimation accuracy and consistency, at

the same time, to obtain the depth information, a more advanced stereovision

138



CHAPTER 6. CONCLUSIONS

system is constructed based on the lessons learnt from the mono camera system.

It is more robust to noise as it incorporates special detectors to distinguish lane

line markings from warning letters, directional arrows, humps and zebra lines.

It fits multiple road models to cater for different road conditions, even including

zigzag lines. The depth information is obtained from an effective stereo 3D

reconstruction algorithm without carrying out the conventional time-consuming

correspondence mapping algorithms. A new particle filter framework, which

takes vehicle dynamics into account, is embedded into the solution to further

improve the estimation consistency. More importantly the system works in real

time and has very few limitations in practice, even working in dark nights.

By taking the output from the stereovision system as feedback, an NMPC

scheme is designed to control the vehicle to follow the detected lane. It control-

s the velocity and steering direction of the vehicle simultaneously. The GA is

customized to optimize the NMPC in real time. As compared to other existing

MPC optimizers, using GA enables a more flexible structure for MPC formu-

lation. The cost function and constraints can be designed in a more accurate,

meaningful and direct way, which would otherwise have to be approximated or

compromised in order to fit into other optimizers. Benefitting from this flexible

structure, passengers’ safety and comfort are taken into account explicitly.

Both simulations and on-field tests show that the NMPC system based on

the stereovision feedback is able to control the vehicle to travel along the center

line of the detected road accurately and consistently. The accelerations induced

by the steering and vehicle movements are well confined within a certain range,

thus allowing a pleasant and safe journey.

Furthermore, a vision-based reverse parking system is proposed as well to

park the car into the parking slot autonomously. It uses a single camera, pointing

backwards, to identify and track the parking slot markings on the floor. A novel

path planning module ensures that a feasible path is always available under any

initial poses, which frees human intervention completely. A modified sliding
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mode controller controls the vehicle to follow the prescribed path to park the

car into the slot. Intensive on-field tests under different illumination conditions

demonstrate its robustness, consistency and accuracy.

In conclusion, all these systems mentioned above, working together, formu-

late the minimum viable vision-based autonomous vehicle solution. Although

the mono-vision system is not applied on the AV platform eventually, it proves

us the feasibility of the frame work for lane line detection and vehicle pose esti-

mation and motivates us to come out with the more advanced stereovision sys-

tem and the self parking vision system as well. The stereovision system serves

as the feedback to the NMPC control system. Benefitting from its high detec-

tion accuracy and consistency, the NMPC is able to achieve high performance

in controlling the vehicle to follow the detected lane line. Otherwise, the NMPC

will suffer from the detection error. And regardless of how advanced or adaptive

the controller is, it will not achieve good performance if the feedback is wrong.

The vision parking system is a supplementary but essential component to the

AV platform. Without this system, the AV will not park properly no matter how

accurate the stereovision system and NMPC system can perform.

Hybridizing the minimum viable vision-based platform with remote human

intervention leads to a more sustainable autonomous vehicle solution with a fine

balance in cost, safety and efficiency. The hybrid system has been tested and

demonstrated for a number of times over the years to illustrate its viability. The

five awards, won both regionally and internationally as listed in Appendix A, are

self-evident testimonies of the excellence and potential of the proposed system.

6.2 Future works

The next milestone to be achieved in this solution is to minimize the level of

remote human intervention and dedicate it purely to emergencies and contin-

gencies so that one remote driver can oversee more vehicles at one time, and
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thus further reducing the total cost. In the current hybrid system, the responsi-

bilities under the remote human drivers are still considered as heavy to reach at

a lower ratio between the number of remote drivers and autonomous vehicles.

To achieve this milestone, the following future works are proposed.

First of all, vision-based obstacle detection is the most essential key to re-

duce the remote human intervention substantially. The anticipated results from

the obstacle detection include the obstacle category (car, cyclist, pedestrian), it-

s moving speed and moving direction. The main challenges in achieving this

lie in the requirements on real time operation and high detection rate, which is

expected to be more than 99% for a reliable and safe driving. But the current

benchmark for vision-based car and pedestrian detection in complex environ-

ment is only 83.8% and 64.8% respectively as listed in the KITTI database [16].

Therefore, there exist big gaps for improvement and huge potential for further

and deeper research in this area. With the development of machine learning

technologies and the increment in computation power, it is anticipated that the

vision-based obstacle detection is highly achievable.

With this information from the obstacle detection, the autonomous vehicle

will be able to identify dynamic models for each obstacle and predict their future

dynamic states to understand their intentions. An intelligent decision-making s-

trategy is to be developed to determine whether the autonomous vehicle should

give way to, overtake or follow the obstacles. Machine learning will again play

an important role in achieving this as we can try to teach the autonomous vehi-

cles to learn from a human driver.

Global path planning is also required to guide the autonomous vehicle to

move from one point to another. The technology is quite mature and has been

applied widely in the current commercial GPS navigators and smart phones.

But the technology was developed based on how it can be understood and used

easily by human. Therefore how to integrate and tailor it to fulfill the need of

autonomous vehicles is another challenge, especially for vehicle navigation at
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junctions with multiple branches.

With all these future works in completion, the vehicle will be able to au-

tomatically drive the passengers around under normal conditions. The remote

human driver will only be activated when emergencies or unforeseen scenarios

occur, such as temporary road closure, car sensor failure and etc.. The com-

muters, after setting their destinations, can enjoy their journey to the fullest

without any concerns.
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Appendix B: Illustration Video
Links

(i) Lane line detection through stereovision during daytime

https://www.dropbox.com/s/4edblzmixprfemn/LLD1.mp4?
dl=0

(ii) Lane line detection through stereovision at dusk, at night and after rain

https://www.dropbox.com/s/kkcvb9rgqs9m7j5/LLD2.mp4?
dl=0

(iii) Lane line following under nonlinear MPC 1

https://www.dropbox.com/s/kcdplw29pge0zqn/MPC1.mp4?
dl=0

(iv) Lane line following under nonlinear MPC 2

https://www.dropbox.com/s/a8ah16ouq4lc7nw/MPC2.mp4?
dl=0

(v) Autonomous reverse parking 1

https://www.dropbox.com/s/j07si2cuyc2f8xc/Parking1.
mp4?dl=0

(vi) Autonomous reverse parking 2

https://www.dropbox.com/s/l34afznpw1w3jqo/Parking2.
mp4?dl=0
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