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FOURIER TRANSFORM FOR QUANTUM D-MODULES VIA

THE PUNCTURED TORUS MAPPING CLASS GROUP

ADRIEN BROCHIER, DAVID JORDAN

Abstract. We construct a certain cross product of two copies of the braided
dual H̃ of a quasitriangular Hopf algebra H, which we call the elliptic double
EH , and which we use to construct representations of the punctured elliptic
braid group extending the well-known representations of the planar braid group
attached to H. We show that the elliptic double is the universal source of such
representations. We recover the representations of the punctured torus braid
group obtained in [Jo], and hence construct a homomorphism to the Heisenberg
double DH , which is an isomorphism if H is factorizable.

The universal property of EH endows it with an action by algebra auto-

morphisms of the mapping class group ˜SL2(Z) of the punctured torus. One
such automorphism we call the quantum Fourier transform; we show that when
H = Uq(g), the quantum Fourier transform degenerates to the classical Fourier
transform on D(g) as q → 1.

1. Introduction

Let (H,R) be a quasi-triangular Hopf algebra, and let H̃ denote the braided dual
– also known as the reflection equation algebra – of H [DKM, DM2, DM1, Ma].
This is the restricted dual vector space H◦, but the multiplication is twisted from
the standard one by the R-matrix (see Section 2 for details).

Let {ei} and {ei} denote dual bases ofH and H̃, respectively. Then the canonical
elementX =

∑
ei⊗ei ∈ H̃⊗H is known to satisfy the following relation in H̃⊗H⊗2:

X0,12 := (id ⊗∆)(X) = (R1,2)−1X0,2R1,2X0,1 (1.1)

Here, H̃ has index 0 in the tensor product, and ∆ denotes the coproduct of H .
There is a canonical action of the planar braid group Bn(R2) on the nth tensor

V ⊗n power of any H-module V . Given modules M for H̃ and V for H , equation
(1.1) allows one to define a similarly canonical action of the punctured planar braid
group Bn(R2\disc) on M ⊗V ⊗n, and moreover to show that H̃ is universal for this
action. We have:

Theorem 1.1 ([DKM], Prop 10). Let B be an algebra, and suppose that XB ∈
B⊗H satisfies relation (1.1). Then there is a unique homomorphism φB : H̃ → B
such that (φB ⊗ id)(X) = XB.

The main goal of this paper is to define elliptic analogs of the reflection equation
algebra. The punctured elliptic braid group Bn(T 2\disc) is the free product of
two copies of Bn(R2\disc), modulo certain relations. In Section 3 we construct an
algebra EH as a certain crossed product of two copies of H̃ , mimicking the cross
relations of Bn(T 2\disc). We define canonical elements X,Y ∈ EH ⊗H by

X =
∑

(ei ⊗ 1) ⊗ ei, Y =
∑

(1 ⊗ ei) ⊗ ei,

and characterize the cross relations on EH as follows:
1
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2 A. BROCHIER, D. JORDAN

Theorem 1.2. The cross relations of EH are equivalent to the following commu-
tation relation for X,Y,R:

X0,1R2,1Y 0,2 = R2,1Y 0,2R1,2X0,1R2,1 (1.2)

We prove the following elliptic analog of Theorem 1.1:

Theorem 1.3. Let B be an algebra, and XB, YB ∈ B⊗H satisfying (1.1) individ-
ually, and (1.2) together. Then there exists a unique algebra morphism

φB : EH −→ B

such that XB = (φB ⊗ id)(X) and YB = (φB ⊗ id)(Y ). Explicitly, φB is given by

φB(x⊗ 1) = (id ⊗x)(XB) φB(1 ⊗ x) = (id ⊗x)(YB).

Equation (1.2) can be used to define representations of Bn(T 2\disc) in the same
way as (1.1) is used for Bn(R2\disc); see Theorem 4.3. Recall that Bn(T 2\disc)
carries a natural action of the punctured torus mapping class group, which is iso-

morphic to a certain central extension S̃L2(Z) of SL2(Z). In the case H is a ribbon

Hopf algebra, we show that this extends to an action of S̃L2(Z) on EH .
When H = Uq(g), we produce degenerations of EH to the algebras of differential

operators on G and, upon further degeneration, on g. Recall that the algebra of
differential operators on an algebraic group G can be constructed as a semi-direct
product

D(G) = U(g) ⋉O(G),

where the action of U(g) on O(G) is induced by that of g on G by left invariant
differential operators. This construction can be extended to any Hopf algebra and is
known as the Heisenberg double [STS]. This is a semi-direct productDH = H⋉H◦,
where H acts on its dual by the right coregular action.

In [Jo], canonical functors are constructed from the category of modules over the
Heisenberg double of a quasi-triangular Hopf algebra to the category of modules over
the (unpunctured) torus braid group. This relies upon an alternate construction
– due to Varagnolo-Vasserot [VV] – of the Heisenberg double of a quasi-triangular
Hopf algebra, which uses the braided dual H̃ in place of H◦. This presentation for
the Heisenberg double also yields an isomorphism with the handle algebras S1,1 of
[AGS] (see Remark 3.4).

Lifting the constructions of [Jo] to the unpunctured torus braid group, they can
easily be re-interpreted as producing canonical elements X and Y in DH ⊗H , satis-
fying equations (1.1) and (1.2). Hence, Theorem 1.3 yields a unique homomorphism
Φ : EH → DH , compatible with the representations of the Bn(T 2\disc) on both
sides. The map Φ is an isomorphism if, and only if, H is factorizable. Since the
quantum group Uq(g) is factorizable, we may identify the elliptic double EUq(g)

with the algebra Dq(G) := DUq(g) of quantum differential operators on G.

In particular we obtain an S̃L2(Z) action on Dq(G) by the above considerations.
One such automorphism of Dq(G) we call the quantum Fourier transform; its clas-
sical limit upon an appropriate degeneration is the classical Fourier transform on
the Weyl algebra D(g). We expect that our quantum Fourier transform for Dq(G)
will be compatible with that on the braided dual of Uq(g) defined in [LM], realizing

the braided dual as an S̃L2(Z)-equivariant Dq(G)-module. Studying this category

of S̃L2(Z)-equivariant Dq(G)-modules more generally is an interesting direction of
future research.
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2. The braided dual and its relatives

Let (H,R) be a quasi-triangular Hopf algebra, and denote by:

• He = Hcoop ⊗H where Hcoop is H with opposite comultiplication
• H [2] the Hopf algebra which is H ⊗ H as an algebra, and with coproduct
given by

∆̃(x⊗ y) = (R2,3)−1(τ2,3 ◦ ∆(x⊗ y))R2,3

where τ(a ⊗ b) = b ⊗ a. Recall that the twist HF of H by an invertible element
F ∈ H ⊗ H is the Hopf algebra with the same multiplication, and with coproduct
given by

∆F (x) = F−1∆(x)F.

In order for HF to be co-associative, F must satisfy two conditions:

F 12,3F 1,2 = F 1,23F 2,3, (ǫ⊗ id)(F ) = (id ⊗ǫ)(F ) = 1.

Two twists F, F ′ are equivalent if there exists an invertible element x ∈ H , such
that ǫ(x) = 1 and

F ′ = ∆(x)F (x−1 ⊗ x−1).

The following is standard (see [Dr2]):

Proposition 2.1. A twist induces a tensor equivalence H -mod → HF -mod.
Equivalent twists leads to isomorphic tensor functors.

It is easily checked that F = R1,3R1,4 ∈ (He)⊗2 is a twist, and that

H [2],coop = (He)F .

Let D be the “double braiding”R2,1R1,2. Since D∆(x) = ∆(x)D for all x, we have:

HD = H

as Hopf algebras. Similarly, H [2],coop is in fact equal to (He)F (D1,3)k

for any k ∈ Z,
with F as above.

Let H◦ be the restricted Hopf algebra dual of H . It has a natural H-bimodule
structure, hence a He left module structure given by:

(x⊗ y) ⊲ f := f(S−1(x) · y)

where S is the antipode of H and we use the fact that S−1 is a Hopf algebra
isomorphism Hcoop → Hop. It turns H

◦ into an algebra in He -mod.

Remark 2.2. We use the inverse of the antipode rather than the antipode itself
because it is convenient to consider the canonical element as an invariant element
of of H◦ ⊗ H , the image of 1 ∈ C under the evaluation map k → H◦ ⊗ H , which
means that H◦ really denotes the left dual of H in the rigid monoidal category of
H-modules. This is slightly different from the convention used in [DKM, Jo] but it
allows us to label tensor factors from left to right.
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Definition 2.3. The kth twisted braided dual H̃k is the algebra image of H◦ via the
tensor functor He -mod → H [2],coop -mod given by the twist F (D1,3)k. Explicitly,
this is H◦ as a vector space, with multiplication given by

x · y = m(R1,3R1,4(D1,3)k
⊲ (x⊗ y))

where m is the multiplication of H◦. This is an algebra in the category of H [2],coop-
module with the same action as above, namely

(x⊗ y) ⊲ f = (u 7→ f(S−1(x)uy)).

Let X be the canonical element of H̃ ⊗ H , that is the image of 1 under the
coevaluation map k → H̃ ⊗ H . If ei is a basis of H and ei the dual basis of
H̃ ∼= H◦, then X =

∑
ei ⊗ ei. If H is infinite dimensional then X lives in an

appropriate completion of the tensor product.

Proposition 2.4. The element X satisfies:

X0,12 = Dk(R1,2)−1X0,2R1,2X0,1. (2.1)

This implies that X satisfies the reflection equation

R2,1X0,2R1,2X0,1 = X0,1R2,1X0,2R1,2.

The braided dual is in fact universal for this property in the following sense:

Proposition 2.5. Let B be an algebra and XB ∈ B ⊗ H satisfying equation (2.1)
for some k ∈ Z. Then there exists a unique algebra morphism

φB : H̃k −→ B

such that (φB ⊗ id)(X) = XB. Explicitly, φB is given by

H◦ ∼= H̃ ∋ f 7−→ (f ⊗ id)(X).

Propositions 2.4 and 2.5 are proved in [DKM] in the case k = 0. The general
proof is similar. Note that the fact that these axioms all leads to the same reflection
equation, regardless of the value of k, essentially follows from the fact that the left
hand side of (2.1) is invariant under conjugation by D.

Let u = m((S ⊗ id)(R2,1)) where m is the multiplication of H . Then ν = uS(u)
is central and satisfies

∆(ν) = D−2(ν ⊗ ν)

implying that
Dk−2 = ∆(ν)Dk(ν−1 ⊗ ν−1)

meaning that Dk−2 and Dk are equivalent. Therefore, they lead to isomorphic
tensor functors, from which follows the following:

Proposition 2.6. For any k ∈ Z, the algebras H̃k and H̃k+2 are isomorphic.

Therefore, it is enough to consider H̃0 and H̃1. Moreover, if H is a ribbon Hopf
algebra, then by definition ν admits a central square root implying by a similar
argument:

Proposition 2.7. If H is a ribbon Hopf algebra then all the H̃k are isomorphic.

Remark 2.8. The algebra H̃0 is usually called the reflection dual, the braided dual
or the reflection equation algebra in the literature.

Remark 2.9. For any k, equation (2.1) plays the same role in the reflection equa-
tion, as the hexagon axiom in the Yang-Baxter equation, encoding some kind of
compatibility with the tensor product of H-modules. Topologically, it corresponds
to a “strand doubling” operation for the additional generator of the braid group
of the punctured plane. Formally, such an operation depends on the choice of a
framing, while a ribbon element removes the dependence on the framing.
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3. The elliptic double

Let T denote the following element in (H [2],coop)⊗2, which we identify as a vector
space with H⊗4:

T = (R3,2)−1(R3,1)−1(R4,2)−1R1,4.

Proposition 3.1. The element T satisfies the hexagon axioms

(id ⊗∆H[2],coop )T = T 1,3T 1,2 (∆H[2],coop ⊗ id)T = T 1,3T 2,3

in (H [2],coop)⊗3.

Proof. This is straightforward computation with the Yang-Baxter equation. The
computation is depicted in braids in Figure 1.

=

Figure 1. A braid diagram proof of (id ⊗∆)(T ) = T1,3T1,2.

�

Since H̃k is a H [2],coop-module algebra, one can make the following definition:

Definition 3.2. The kth elliptic double E
(k)
H of H is the braided tensor square of

H̃k with respect to T . Explicitly, it is H̃⊗2
k as a vector space, H̃k ⊗ 1 and 1 ⊗ H̃k

are subalgebras and the cross relations are given by

(1 ⊗ g)(f ⊗ 1) = T ⊲ (f ⊗ g).

The fact that E
(k)
H is indeed an associative algebra follows from the hexagon

axioms. Choose a basis (ei)i∈I of H and define X,Y ∈ E
(k)
H ⊗H by

X =
∑

ei ⊗ 1 ⊗ ei, Y =
∑

1 ⊗ ei ⊗ ei,

where we use the vector space identification E
(k)
H

∼= H̃⊗2. The main result of this
section is the following:

Theorem 3.3. The cross relations of EH are equivalent to the commutation rela-
tion for X,Y,R:

X0,1R2,1Y 0,2 = R2,1Y 0,2R1,2X0,1R2,1. (3.1)
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Proof. By definition every element f ∈ H̃k can be written as

f =
∑

eif(ei)

hence the product gf in E
(k)
H is obtained by applying (id

E
(k)

H

⊗f ⊗ g) to

Y 0,2X0,1

and fg by applying the same element to

X0,1Y 0,2.

Therefore all commutations relation can be gathered into a “matrix” equation

Y 0,2X0,1 = T ⊲0 X
0,1Y 0,2 (3.2)

where T acts on the E
(k)
H (i.e. 0th) component. We recall the following identities:

R−1 = (S ⊗ id)(R) = (id ⊗S−1)(R). (3.3)

Applying S−1 to the first factor of the relation (S ⊗ id)(R)R = 1, setting R =∑
r1 ⊗ r2 =

∑
r′

1 ⊗ r′
2 – using apostrophes to distinguish between copies of R –

one has the following useful identity (note the order of the terms):
∑

S−1(r1)r′

1 ⊗ r′

2r2 = 1. (3.4)

Then equation (3.2) reads, in coordinates:

(
(1 ⊗ ej)(ei ⊗ 1)

)
⊗ ei ⊗ ej

=
(
(r2r

′

1 ⊗ r′′′′

2 r′′

2 ⊗ S(r′′′′

1 )S(r1) ⊗ S(r′′

1 )r′

2) ⊲ ei ⊗ ej
)

⊗ ei ⊗ ej. (3.5)

The left H [2] action on H̃k is by definition dual to the right H [2] action on H ,
therefore: ∑

((x ⊗ y) ⊲ ei) ⊗ ei =
∑

ei ⊗ S−1(x)eiy

Using this, equation (3.5) can be rewritten
(
(1 ⊗ ej)(ei ⊗ 1)

)
⊗ ei ⊗ ej = ei ⊗ ej ⊗ S−1(r′

1)S−1(r2)eir
′′′′

2 r′′

2 ⊗ r1r
′′′′

1 ejS(r′′

1 )r′

2.

Then, using the R-matrix relations (3.3) and (3.4) to move elements from the right
hand side to the left hand side (and reassigning apostrophes for the sake of clarity)
we obtain:

(
(1 ⊗ ej)(ei ⊗ 1)

)
⊗ r2r

′

1eir
′′

2 ⊗ r1ejr
′

2r
′′

1 = ei ⊗ ej ⊗ eir2 ⊗ r1ej

which is exactly (1.2). �

Remark 3.4. The relations of Theorem 3.3 should be compared with those of the
graph algebra S1,1 of [AGS].

Equation (1.2) is a defining relation for E
(k)
H , in the following sense:

Corollary 3.5. Let B be an algebra, and XB, YB ∈ B ⊗ H satisfying both the
axiom (2.1) and equation (1.2) (with X and Y replaced by XB and YB). Then
there exists a unique algebra morphism

φB : E
(k)
H −→ B

such that XB = (φB ⊗ id)(X) and YB = (φB ⊗ id)(Y ). Explicitly, φB is given by

φB(x⊗ 1) = (id ⊗x)(XB) φB(1 ⊗ x) = (id ⊗x)(YB).
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4. Braid group and mapping class group actions

In this section we construct representations of the punctured torus braid group

from E
(k)
H . First, we have:

Definition 4.1. The punctured elliptic braid group Bn(T 2\disc) is the fundamental
group of the configuration space of n points in T 2\disc.

Proposition 4.2. The group Bn(T 2\disc) is generated by X1, . . . , Xn, Y1, . . . , Yn, σ1, . . . , σn−1

with relations:

• the Xi’s (resp. Y ′
i s) pairwise commute,

• the planar braid relation for the σi’s,
• the following cross relations:

Xi+1 = σiXiσi Yi+1 = σiYiσi (4.1)

X1Y2 = Y2X1σ
2
1 (4.2)

The results of the previous section easily imply:

Theorem 4.3. There exists unique group morphisms

φ : Bn(T 2\disc) −→ (E
(k)
H ⊗H⊗n)× ⋊ Sn

given by

X1 7−→ X0,1, Y1 7−→ Y 0,1, σi 7−→ (i, i+ 1)Ri,i+1.

Proof. The two first set of cross relations can obviously be taken as a definition of
Xi, Yi for i > 1. That these operators pairwise commute follows from the reflection
equation and the Yang-Baxter equation. The last cross relation is nothing but the

defining equation (1.2) of E
(k)
H . �

Let S̃L2(Z) denote the group generated by A,B,Z with relations:

A4 = (AB)3 = Z, (A2, B) = 1. (4.3)

Clearly, Z is central, so this is a central extension,

1 → Z → S̃L2(Z) → SL2(Z) → 1.

Proposition 4.4. The group S̃L2(Z) acts on Bn(T 2\disc) in the following way:

A · σi = σi B · σi = σi

A ·X1 = Y1 A · Y1 = Y1X
−1
1 Y −1

1

B ·X1 = X1 B · Y1 = Y1X
−1
1 .

Proposition 4.5. Let B be an algebra and (XB , YB) ∈ B ⊗ H satisfying equa-
tion (1.2) and axioms (2.1) with k = 1. Then, so does (XB, YBX

−1
B ) and (Y, YBX

−1
B Y −1

B ).

Proof. Equation (1.2) is exactly one of the defining relation of B1
1,n so that it is

satisfied follows from the previous proposition. So we just have to check that YBX
−1
B

and YBX
−1
B Y −1

B satisfies (2.1) with k = 1. This is a direct computation:

(YBX
−1
B )0,12 = R2,1Y 0,2

B R1,2Y 0,1
B (X0,1

B )−1(R1,2)−1(X0,2
B )−1(R2,1)−1

= R2,1Y 0,2
B R1,2Y 0,1

B (R1,2)−1(X0,2
B )−1(R2,1)−1(X0,1

B )−1R2,1(R2,1)−1

= R2,1Y 0,2
B R1,2(R1,2)−1(X0,2

B )−1R1,2Y 0,1
B R2,1(R2,1)−1(X0,1

B )−1

= R2,1Y 0,2
B (X0,2

B )−1R1,2Y 0,1
B (X0,1

B )−1,

where at lines 2 and 3 we use the reflection equation and the elliptic commutation
relation respectively. The second part is proved by doing the exact same computa-
tion replacing YB by YBX

−1
B and XB by YB. �



8 A. BROCHIER, D. JORDAN

Corollary 4.6. There is an action of S̃L2(Z) on E
(1)
H , uniquely determined by its

action on canonical elements X,Y as follows:

A ·X = Y, A · Y = Y X−1Y −1,

B ·X = X, B · Y = Y X−1.

Moreover, the action is compatible with the S̃L2(Z)-action on Bn(T 2\disc),

Proof. It follows from Proposition 4.5 together with the universal property stated
in Corollary 3.5. �

5. Relation with the Heisenberg double and quantum Fourier

transform

Since H̃0 is a H [2],coop-module algebra, one can form the semi-direct product
H̃ ⋊H [2],coop. It is easily checked that H ⊗ 1 ⊂ H [2],coop is a coideal subalgebra,
hence the following definition makes sense:

Definition 5.1. The Heisenberg double DH is the subalgebra H̃0 ⋊ (H ⊗ 1).

Remark 5.2. The standard definition of the Heisenberg double involves He and the
usual dual, instead of H [2] and the braided dual. However, it is shown in [VV] that
these two algebras are isomorphic.

Clearly, the double braiding R2,1R1,2 satisfies axiom (2.1) with k = 0. This is a
manifestation of the embedding of the cylinder braid group on n strands into the
ordinary braid group on n+ 1 strands. We have:

Theorem 5.3. [Jo] The canonical element X ∈ DH ⊗H together with the image of
the double braiding under the inclusion H ⊗H → DH ⊗H satisfy the commutation
relation (1.2).

Corollary 5.4. There exists a canonical map from the elliptic double to the Heisen-
berg double.

By construction, this map is the identity on the first H̃0 component and defined
on the second component by the factorization map,

φ : H̃0 → H,

f 7→ (f ⊗ id)(R2,1R1,2).

Definition 5.5. A quasi-triangular Hopf algebra is called factorizable if φ is injec-
tive.

Let IH be the image of φ and let D′
H be the subalgebra H̃ ⋊ (IH ⊗ 1) of DH .

Theorem 5.6. If H is a factorizable Hopf algebra, then D′
H is isomorphic as an

algebra to E
(0)
H .

Let G be a reductive algebraic group, g its Lie algebra and U = Uq(g) the
corresponding quantum group. Recall (see e.g. [CP, Chap. 9]) that this is a quasi-
triangular Hopf algebra1 over C(q) for q a variable which, roughly, specialize to the
enveloping algebra of g at q = 1. Denote by U ′ = Uq(g)′ its ad-locally finite part.

Theorem 5.7 ([BS, RSTS]). U is a factorizable ribbon Hopf algebra, and the image
of the factorization map (U∗) → U is U ′.

1This is not quite true since the R-matrix does not belongs to Uq(g)⊗2 but only to a certain
completion of it, but it is still enough for our purpose



FOURIER TRANSFORM FOR QUANTUM D-MODULES 9

Let Dq(G) be the subalgebra Ũ ⋊ U ′ of the Heisenberg double of U . It is a
deformation of the algebra of differential operators on G. Thanks to the above

theorem, Dq(G) is isomorphic to E
(0)
U which is itself isomorphic to E

(1)
U . Altogether

this yields the action of S̃L2(Z) on Dq(G).

6. Relation to classical Fourier transform

In this section we show how the Weyl algebra of g and the classical Fourier
transform can be obtained both directly as the elliptic double of a certain Hopf
algebra and via an appropriate degeneration of the elliptic double of the corre-
sponding quantum group. Let Uℏ(g) be the “formal”version of the quantum group.
This a topological quasi-triangular Hopf algebra over C[[ℏ]], where ℏ is a formal
variable, deforming the enveloping algebra of g and whose definition can be found,
e.g., in [CP, Chap. 6]. Since directly taking the classical (i.e. ~ = 0) limit of the
elliptic commutation relation gives the commutative algebra S(g)⊗2 we will have
to consider a slightly more complicated degeneration.

Let S(g) denote the symmetric algebra on g, equipped with its standard co-
product ∆(X) = X⊗1+1⊗X for X ∈ g, making it a commutative, cocommutative
Hopf algebra. Let r ∈ g

⊗2 denote the quasi-classical limit of the R-matrix of Uℏ(g),
i.e.:

R = 1 + ℏr +O(ℏ2).

Then, in a straightforwardway, the completion of the symmetric algebra (Ŝ(g),R0 =
exp(r)) is a quasi-triangular, factorizable Hopf algebra2. Let t = r + r2,1 ∈ S2(g)g

and let C denote the corresponding Casimir element, i.e. C = m(t) where m
is the multiplication of S(g). Then ν0 = exp(−C/2) is a ribbon element. Since
R0 6∈ S(g)⊗2, S(g) is not strictly speaking a ribbon Hopf algebra, but the construc-
tion of the elliptic double is still well defined in this situation.

Let D(g) be the algebra of differential operators on g, i.e. the Weyl algebra. As
a vector space it is S(g∗)⊗2, the two copies of S(g∗) are subalgebras and the cross
relations are:

∀f, g ∈ g
∗, [f ⊗ 1, 1 ⊗ g] = 〈f, g〉

where 〈 , 〉 is the pairing on g
∗ induced by t. The first result of this section is:

Proposition 6.1. The 0th elliptic double of (S(g),R0) is isomorphic to the Weyl

algebra D(g) and the action of the generator A of S̃L2(Z) coincides with the classical
Fourier transform. That is, on generators (f, g) ∈ g

∗ × g
∗ ⊂ D(g), we have,

A(f, g) = (−g, f).

Proof. Let x, y denote two copies of the canonical element in g
∗ ⊗ g. The restricted

dual of S(g) is S(g∗) and the corresponding canonical element is X = exp(x). Since
S(g) is commutative, equation (2.1) reduces to the standard relation,

(id ⊗∆)(X) = X0,1X0,2,

hence the braided dual and the restricted dual coincide. Likewise, the defining
equation of the elliptic double reduces to:

(X0,1, Y 0,2) = R2,1
0 R1,2

0 ,

where (a, b) = aba−1b−1 and Y = exp(y). Since

[x0,1, t1,2] = [y0,2, t1,2] = 0,

this equation is equivalent to:

[x0,1, y0,2] = t1,2.

2Here the tensor product is the topological one, i.e. Ŝ(g)⊗2 := Ŝ(g × g)
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Applying f and g to the first and second components, respectively, of the above
equation gives the defining relations (6) of D(g).

Since (S(g),R0) is ribbon, E
(0)
S(g) is isomorphic to E

(1)
S(g). Pulling back the action

of the A generator of S̃L2(Z) through this isomorphism, we find:

x 7→ y y 7→ Y −1(−x+ (1 ⊗ C))Y

It is easily seen that the cross relations of D(g) implies

Y −1xY = x+ (1 ⊗ C).

Hence A map x to y and y to −x. �

Let Uℏ2(g) be the C[[ℏ]]-Hopf algebra obtained by formally replacing ℏ by ℏ2 in
the definition of the product, the coproduct and the R-matrix of Uℏ(g). Denote by

δn the map (id −ǫ)⊗n◦∆n where ǫ is the counit of Uℏ2(g). Denote by Û the quantum
formal series Hopf algebra (QFSHA) attached to Uℏ2(g), i.e. the sub-algebra

Û = {x ∈ Uℏ2(g), δn(x) ∈ ℏnUℏ2(g), ∀n ≥ 0}

It is known [Dr1, Ga] that Û is a flat deformation of Ŝ(g). Hence, choose a C[[ℏ]]-
module identification

ψ : Û −→ Ŝ(g)[[ℏ]]

which is the identity modulo ℏ, and let U ⊂ Û be the preimage under ψ of S(g)[[ℏ]].

Proposition 6.2. The following holds:

(a) U is a Hopf algebra.
(b) We have canonical bialgebra isomorphisms:

Û/(ℏ) ∼= Ŝ(g), U/(ℏ) ∼= S(g).

(c) The R-matrix of Uℏ2(g) belongs to Û⊗2 and its image in Ŝ(g)⊗2 is R0.

One can therefore consider the 0th elliptic double of U . A direct consequence of
the above proposition is then:

Corollary 6.3. The algebra EU is a flat deformation of the Weyl algebra D(g), and

the S̃L2(Z)-action on EU degenerates to the S̃L2(Z)-action on D(g). In particular,
the quantum Fourier transform degenerates to the classical one.

Proof of Prop. 6.2. All of this can be checked explicitly. A more conceptual argu-
ment is as follows: recall that (g, µ, δ, r) is a quasi-triangular Lie bialgebra, where
we denote by µ its bracket and by δ its co-bracket. The quantum group Uℏ2(g) is
obtained by applying an Etingof–Kazhdan quantization functor [EK] to the C[[ℏ]]-

quasi-triangular Lie bialgebra (g[[ℏ]], µ, ℏ2δ, ℏ2r). On the other hand, Û is the
quasi-triangular Hopf algebra obtained by applying the same functor to the quasi-
triangular Lie bialgebra (g[[ℏ]], ℏµ, ℏδ, r). The QFSHA construction is the lift of
the inclusion,

(g[[ℏ]], ℏµ, ℏδ, r) −→ (g[[ℏ]], µ, ℏ2δ, ℏ2r),

given by x 7→ ℏx (since r ∈ g
⊗2, its image is indeed ℏ2r).

One can show that the product, the coproduct and the antipode on Û restrict to
a well-defined Hopf algebra structure on U . By construction, the reduction modulo

ℏ of Û is the quantization of the C-quasi-triangular Lie bialgebra,

(g[[ℏ]], ℏµ, ℏδ, r)/(ℏ) ∼= (g, 0, 0, r),

which is easily seen to be (Ŝ(g),R0). �
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