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1  ABSTRACT 

Aim: Previous work demonstrated a pronounced geography of 

synchrony for marine phytoplankton, and used that geography to infer 

statistical environmental determinants of synchrony. Here we determine if 

terrestrial vegetation (measured by the Enhanced Vegetation Index, EVI) 

also shows a geography of synchrony, and we infer determinants of EVI 

synchrony. As vegetation is the basis of the terrestrial food web, changes in 

spatio-temporal vegetation dynamics may have major consequences. 

Location: The land. 

Time period: 2001-2014. 

Major taxa: Plants. 

Methods: Synchrony in terrestrial vegetation is mapped globally. 

Spatial statistics and model selection are used to identify main statistical 

determinants of synchrony and of geographic patterns in synchrony. 

Results: The first main result is that there is a pronounced and 

previously unrecognized geography of synchrony for terrestrial vegetation. 

Some areas such as the Sahara and Southern Africa exhibited nearly perfect 

synchrony, whereas other areas such as the Pacific coast of South America 

showed very little synchrony. Spatial modeling provided the second main 

result that synchrony in temperature and precipitation were major 

determinants of synchrony in EVI, supporting the presences of dual global 

Moran effects. These effects depended on the timescales on which 
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synchrony was assessed, providing our third main result: synchrony of EVI 

and its geography are timescale specific. 

Main conclusions: To our knowledge, this study is the first to document 

the geography of synchrony in terrestrial vegetation. We showed geographic 

variation in synchrony is pronounced. We used geographic patterns to 

identify determinants of synchrony. This study is one of very few studies to 

demonstrate two separate synchronous environmental variables driving 

synchrony simultaneously. The geography of synchrony is apparently a 

major phenomenon that has been little explored. 

2  INTRODUCTION 

Understanding the dynamics of terrestrial vegetation biomass and production is both an 

interesting and important topic: vegetation is constantly changing over a range of temporal and 

spatial scales (Ichii et al., 2002; Zhu et al., 2016); and it is a key component of the global carbon 

cycle (Beer et al., 2010; Wieder et al., 2015) that is tightly coupled with climate because it 

directly affects land-atmosphere heat and moisture fluxes (Meir et al., 2006). Of course 

vegetation is also the base of the terrestrial food web and hence the dynamics of vegetation 

biomass or production is implicated in essentially every area of pure and applied ecology. 

Therefore, changes in details of vegetation dynamics, including spatio-temporal aspects of those 

dynamics, may have far reaching consequences. 

One incompletely understood aspect of spatio-temporal vegetation dynamics is their spatial 

synchrony. Spatial synchrony is the phenomenon whereby geographically separate population 

time series (or, in this context, vegetation biomass or production time series) fluctuate partly in 
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unison. Spatial synchrony has been observed even in populations separated by hundreds or 

thousands of kilometers (Post & Forchhammer, 2004; Liebhold et al., 2004), across a very wide 

variety of taxa including protists, insects, fish, birds, mammals, and many others (Hanski & 

Woiwod, 1993; Myers et al., 1997; Liebhold et al., 2004). One of the primary mechanisms that 

has been cited to account for synchrony is the presence of spatially synchronized environmental 

factors which drive population dynamics, thereby inducing synchrony in the populations. This is 

known as the Moran effect (Moran, 1953). The Moran effect is one of the main causes of 

synchrony (Lande et al., 1999; Liebhold et al., 2004), but historically it was difficult to 

convincingly show that Moran effects operate in specific scenarios and to identify the 

environmental drivers (Liebhold et al., 2004; Abbott, 2007). This was partly because the 

historically most common statistical descriptors of synchrony can show similar patterns for 

Moran effects and for other causes of synchrony (Ranta et al., 1999; Abbott, 2007). 

We previously mapped global geographic variation in patterns of synchrony in ocean 

phytoplankton (Defriez & Reuman, In review). We thereby provided evidence that a Moran 

effect, operating through synchronized sea surface temperatures or through synchrony of an 

environmental variable highly correlated with sea surface temperature such as nutrient 

availability, and possibly acting through complex oceanographic mechanisms, is a major driver of 

phytoplankton synchrony globally. The main goal of the present study is to apply the same 

statistical techniques to map the geography of synchrony in terrestrial vegetation, and then to 

infer determinants of synchrony in vegetation. Temperature and precipitation are two important 

climatic variables affecting productivity (Nemani et al., 2015; Clinton et al., 2014); and Koenig 

(2002) found synchrony in both of these factors over large spatial scales (up to 5000km). 

Vegetation dynamics may be similarly synchronized. Shetakova et al. (2016) investigated tree 

growth in two contrasting forest biomes and found that large scale synchrony responded to 
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climate warming. But the detailed geography of synchrony in terrestrial vegetation and the extent 

to which that geography reflects geographic patterns of synchrony in temperature and 

precipitation variables are unknown. 

Multiple methods have been used to describe patterns of spatial synchrony, ranging from 

standard methods based on correlation coefficients (Hanski & Woiwod, 1993; Bjørnstad & Falck, 

2001) to spectral and wavelet methods (Grenfell et al., 2001; Vasseur & Gaedke, 2007; Keitt, 

2008; Sheppard et al., 2015) and matrix regressions and others (Haynes et al., 2013). Many of the 

prior studies that have statistically illuminated the processes driving synchrony (e.g., Sheppard 

et al., 2015; Shetakova et al., 2016) have used temporally extensive data sets. Here, and following 

Defriez & Reuman (In review), we adopt a different approach, taking advantage of the 

unparalleled spatial coverage (but limited temporal extent) provided by remotely sensed data. We 

use data describing geographic patterns and variation in vegetation, globally, as measured through 

the enhanced vegetation index (EVI), process them so as to quantify and map the phenomenon of 

synchrony, and then make comparisons to geographic patterns in potential causal factors of 

synchrony. Drivers of synchrony should have statistically similar spatial patterns to the 

geographic patterns of synchrony revealed by the EVI data. We use spatial linear models to 

compare geographic patterns in EVI synchrony with putative drivers. 

A key feature of several of the studies cited in the previous paragraph is their attention to the 

timescale dependence of population dynamics in synchrony, through the use of spectral methods. 

We also use spectral methods. Spectral methods allow the decomposition of synchrony into the 

frequencies, or timescales (timescale here indicating the reciprocal of frequency) at which it 

occurs, thereby showing which frequencies contribute most to synchrony. Synchrony on one 

timescale can be independent of synchrony on another timescale, and this independence can 

obscure analysis of synchrony by correlation based methods (Figure 1; Keitt, 2008; Sheppard 
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et al., 2015; Defriez et al., 2016). In addition, synchrony on longer timescales may be more 

important than short-timescale synchrony because it is more likely to affect longer-lived 

consumers (Sheppard et al., 2015; Defriez et al., 2016). We believe timescale-specific approaches 

to synchrony are under-applied, and that this has limited our understanding of the causes and 

consequences of synchrony (Sheppard et al., 2015; Defriez et al., 2016). 

Past researchers have typically considered Moran effects resulting from just one 

environmental driver at a time (Batchelder et al., 2012; Sheppard et al., 2015). However, it is 

possible, in principle, to have two or more distinct simultaneous Moran drivers of synchrony. 

These multiple Moran effects may, a priori, reinforce or counteract each other. Here we 

investigate the possibility that Moran effects from both land surface temperature and precipitation 

environmental drivers are simultaneously important for the synchrony of vegetation. We also 

include other possible covariates of synchrony: average EVI density (areas with more vegetation 

may, a priori, exhibit systematically more or less EVI synchrony), average temperature, average 

precipitation, average altitude, extent of variation in altitude, latitude, and average wind speed. 

The main questions asked here are: Q1) What regions of the terrestrial realm exhibit high 

degrees of regional synchrony in vegetation density (as measured by EVI), and what areas exhibit 

low synchrony? Q2) When regional synchrony is decomposed into long- and short-timescale 

components, do maps differ in their main features, i.e., is the geography of synchrony 

timescale-specific? Q3) What are the main statistical determinants of synchrony in vegetation 

density, as inferred from its geography? Do determinants of long- and short-timescale synchrony 

differ? Q4) Do patterns of synchrony and statistical determinants of synchrony differ between 

major land masses? And finally Q5) Is there evidence for dual Moran effects contributing to 

synchrony in vegetation density? We hypothesize that: H1) Moran effects will be detectable via 

our approach, and will comprise some of the major determinants of vegetation synchrony and its 
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geography. Our past research (Sheppard et al., 2015; Defriez et al., 2016) indicates 

timescale-specific structure is a common feature of synchrony, so we also hypothesize that H2) 

Moran effects will be timescale-specific, and therefore the geography of synchrony will be 

timescale specific. H2 would be supported if short-timescale components of environmental 

synchrony are spatially associated with short- but not long-timescale components of vegetation 

synchrony, or if long-timescale components of environmental synchrony are spatially associated 

with long- but not short-timescale components of vegetation synchrony. This paper is the first 

explicit exploration we are aware of into the detailed geography of synchrony in terrestrial 

vegetation, and is also the first time the geography of synchrony has been used to infer 

determinants of synchrony in the terrestrial vegetation. 

3  METHODS 

3.1  Data 

The Enhanced Vegetation Index (EVI) and land temperature emissivity data sets from the 

MODIS Aqua and Terra satellites were downloaded for the period 2001 to 2014 as C5 monthly 

products at a 0.05
∘
 resolution. 2014 was the last complete year available at the time the data were 

downloaded (September 2015). The EVI data products were retrieved from the online Data Pool, 

courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC), 

USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota 

(https://lpdaac.usgs.gov/data_access/data_pool). EVI gives an indication of 

vegetation greenness and correlates well with gross primary productivity (Huete et al., 2002; 

Sims et al., 2015; Sjöström et al., 2009). Compared to the Normalized Difference Vegetation 
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Index (NDVI) it minimizes the confounding effects of soil background, atmosphere and canopy 

density (Huete et al., 1997, 2002; Xiao et al., 2003). The pixels designated ‘lowest quality’ or 

below in the quality assurance flags and any estimated pixels (pixel reliability 4) were removed 

and the data were converted to 1
∘
 resolution by taking averages. Data from the Aqua and Terra 

satellites were averaged. 

Daily precipitation values for the same time period were obtained from the Global 

Precipitation Climatology Project (GPCP) (Huffman et al., 2001) as a 1
∘
 daily dataset compiled 

from satellite observations and rain gauge measurements. The daily precipitation data were 

averaged to monthly time series. 

Annual time series for EVI, land surface temperature (LST) and precipitation were obtained 

from monthly time series for each 1
∘
 grid cell as long as there were no more than 5 missing 

months in an individual time series and no more than 1 missing month from any individual year. 

Otherwise the grid cell was omitted. Before annualising, missing months were replaced by the 

average value for that month for that time series. Time series were linearly detrended and their 

mean was subtracted before further analysis. 

Altitude data were downloaded from the British Oceanographic Data Centre 

(http://www.bodc.ac.uk/data/online_delivery/gebco/) at one arc minute 

resolution. Data were re-gridded to 1
∘

 resolution by taking averages. Altitudes were log 

transformed due to a predominance of lower values. To account for the negative values of the few 

points on land below sea level, the minimum altitude was subtracted from all values and 1 was 

added before taking logs. The standard deviation of log-transformed altitude values over a 500km 

radius was also calculated for each cell. 
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Wind data were obtained from the National Centers for Environmental Prediction and the 

National Center for Atmospheric Research (NCEP/NCAR) reanalysis results provided by the 

National Oceanic and Atmospheric Administrations, Earth System Research Laboratory, Physical 

Science Division (http://www.esrl.noaa.gov/psd/; Kalnay et al. (1996)). Data were 

provided as velocity components, u representing the east-west component and v the north-south 

component of wind. Annual data were downloaded at 2.5
∘
 resolution over the time period 2001 to 

2014 and were re-gridded to 1
∘
 resolution. Some 1

∘
 cells fell entirely within a 2.5

∘
 cell and were 

given the value of the larger cell. For 1
∘
 cells which crossed more than one 2.5

∘
 cell an average 

was taken. For each 1
∘
 cell an average of all annual values was calculated for the period of study. 

Wind speed was calculated from the u and v components with the formula u
2
+v

2
. All datasets 

were downloaded September 2015. 

3.2  Correlation-based synchrony 

For EVI, temperature and precipitation (separately), for each 1
∘
 grid cell, Spearman’s correlation 

was calculated between the annual time series of that focal cell and time series of each of the 

other cells within a 500 km radius. These values were averaged to produce a synchrony value for 

the focal cell. Global maps of the strength of synchrony (out to 500 km) were thereby produced 

for EVI, temperature and precipitation. These spatial variables will be referred to as EVI 

synchrony, temperature/temp synchrony, and precipitation/precip synchrony in subsequent spatial 

modeling. Because of the averaging over values for cells within 500 km of the focal cell, our 

synchrony maps are maps of regional synchrony. Justification for the specific choice of 500 km is 

in Appendix S1 in Supporting Information. We computed synchrony maps for distance bands 

500-1000 km and 1000-1500 km to test sensitivity of patterns to the choice of distance band. 
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Spearman’s correlation was used as not all time series were normally distributed and no single 

transformation was able to normalize all time series simultaneously. 

3.3  High- and low-frequency synchrony 

Following (Defriez et al., 2016) a normalized cospectrum was used to decompose synchrony 

between time series according to the frequencies, or timescales, at which it occurred. The 

normalized cospectrum is the frequency specific decomposition of the correlation coefficient 

commonly used to the describe synchrony between two time series. It gives in-phase correlation 

between two time series as a function of frequency and, like the correlation coefficient, takes 

values between -1 and 1. So the input of the normalized cospectrum technique is two time series, 

and the output is a plot with x-axis showing frequency and y-axis showing in-phase synchrony 

between the time series at each frequency. Figure 1 gives idealized examples. An integral of the 

normalized cospectrum over all frequencies equals the correlation coefficient. The highest peaks 

in the normalized cospectrum correspond to frequency components that are most important in 

accounting for covariation in the time series. 

To obtain the normalized cospectrum of two time series, one starts with their cospectrum (a 

standard method, see Brillinger, 2001), and normalizes by dividing by the geometric mean of the 

variances of the time series. Because the integral of the cospectrum of two time series is their 

covariance (Brillinger, 2001), this normalization ensures that the integral of the normalized 

cospectrum of the time series is their Pearson correlation coefficient. To make the integral equal 

the Spearman correlation used in the previous section, time series values were replaced by ranks 

prior to calculating the normalized cospectrum. 

For EVI, temperature and precipitation (separately), for each 1
∘

 grid cell, normalized 

cospectra were calculated between the rank time series of that focal cell and the rank time series 
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of each other cell within 500km. The normalized cospectra were then integrated over ‘high’ 

(0.25-0.5 cycles/year) frequencies (timescales of 2 years to 4 years) and ‘low’ (0-0.25 

cycles/year) frequencies (timescales exceeding 4 years) and average values for each frequency 

band within 500km were then computed. The resulting six spatial variables will be referred to as 

high- (respectively, low-) frequency EVI synchrony, high- (respectively, low-) frequency 

temperature/temp synchrony, and high- (respectively, low-) frequency precipitation/precip 

synchrony. Because the integral of the normalized cospectrum over the whole range of 

frequencies (0-0.5 cycles/year) equals the correlation, high- and low-frequency synchrony values 

for a cell for a given variable summed to the all-frequency values of the previous section. The 

terms total or all-frequencies EVI/temp/precip synchrony will sometimes be used to refer to the 

variables of the previous section, to specifically contrast them with frequency-specific quantities. 

Our use of the normalized cospectrum is described with formulas in Appendix S2, the dividing 

frequency 0.25 cycles/year is justified in Appendix S3, and a method is described in Appendix S4 

for producing 95% confidence thresholds for values on maps of synchrony. 

3.4  Statistical modeling 

Spatial linear models were run with: 1) EVI synchrony as the response variable and temperature 

and/or precipitation synchrony potentially included as explanatory variables (among other 

potential explanatory variables, see below); and 2) high- and 3) low-frequency EVI synchrony as 

the response variable and high- and low-frequency temperature and precipitation synchrony 

potentially included (among others, see below) as explanatory variables instead of total 

temperature and precipitation synchrony. Total, high-, and low-frequency EVI synchrony were 

linearly mapped from the interval -1 to 1 onto the interval 0 to 1 and then logit transformed before 

models were run so that they were not limited by -1 and 1. 
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Four types of model were considered. First, standard linear models y=X
1
β+ε  were 

considered, where y is the response variable (a column matrix with one entry for each grid cell for 

which data were available) and X
1

 is the standard design matrix, with columns containing 

explanatory variables. The specific columns depended on the explanatory variables included in a 

given model (see below). Second, models with spatially “lagged" variables y=X
1
β+WX

2
δ+ε were 

considered (LeSage, 2014). If N is the number of grid cells for which data were available (this is 

the length of the column y) then W is an N×N matrix of weights encoding the geographic 

neighbourhoods of each location. The term WX
2
δ  represents neighbourhood, or spatially 

“lagged" effects of the explanatory variables in X
2
 on the response variable, y, and the estimated 

parameters δ represent the strengths of these effects for each explanatory variable in X
2
. Third, 

the spatial error model y=X
1
β+u was considered; and fourth, the spatial Durbin error model 

y=X
1
β+WX

2
δ+u (Elhorst, 2010) was considered, where for both models the equation u=λWu+ε 

implicitly defines u, and u represents spatially autocorrelated residuals. See Appendix S5 for 

further details on the models. 

Variables which could enter in a model are listed in abbreviation in table 1 and are explained 

here. Temporally averaged EVI (abbreviation ‘EVI’) in the focal cell, as well as temporally 

averaged land surface temperature (‘temp’) and precipitation (‘precip’) variables were used, as 

was average altitude within the focal cell (log transformed as described in the Data section, 

abbreviation ‘log(altitude)’), standard deviation of log(altitude) values over grid cells within the 

500 km radius disk centered at the focal cell (‘sd log(altitude)’) and average wind speed within a 

focal cell (‘wind speed’). The strengths of synchrony of temperature and precipitation (‘temp 

synchrony’, ‘precip synchrony’), as computed above, were also used to test for Moran effects. 
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Either total or low- and high-frequency versions of these variables were used, as described above. 

Variables could enter as local effects or, in models with lagged variables could enter as 

neighbourhood effects, the latter specified by ‘lag’ in table 1. 

The variance inflation factor (VIF) was used to test for collinearity. VIF indicated only 

negligible collinearity among predictor variables (table S1 in Supporting Information), following 

the recommendations of Dormann et al. (2013) for assessing collinearity. 

To limit the number of models fitted and because we sought main determinants of synchrony, 

the total number of variables allowed in any one model was restricted to 5 or fewer. For models 

with spatially lagged variables and for spatial Durbin error models, explanatory variables were 

allowed to enter the models either as part of X
1
 (local effects) only, or as part of both X

1
 and X

2
 

(both local and neighbourhood/lagged effects). Neighbourhood effects without local effects (i.e., 

putting a variable in X
2
 but not X

1
) were not considered. 

For each model, the Bayesian information criterion (BIC) was calculated and BIC weights 

were computed to determine the top 95% confidence set of models. BIC was used instead of the 

Akaike information criterion (AIC) because it is known that AIC tends to favor more complex 

models (Burnham & Anderson, 2004) and we sought the main determinants of synchrony. 

Importance of a given variable as a predictor of EVI synchrony (total, low- or high-frequency) 

was measured by summing BIC weights across models that included the variable. Signs of 

model-averaged coefficients were computed (Burnham & Anderson, 2004). Residual plots were 

produced for top models to check that model assumptions were reasonable. 

Spatial statistical models were fitted and model selection was performed using the global data. 

But if determinants of synchrony differed markedly by continent, the global analysis would 

represent an average of different processes. To diagnose whether important differences occurred 
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(Q4 from the Introduction), analyses were also run separately for Eurasia, Africa, North America, 

South America and Oceania. See Appendix S6 for methodological details. 

BIC approaches can identify which of several models is best supported by the data (Burnham 

& Anderson, 2004), but do not, on their own, indicate whether any of the models was objectively 

good. We provided three pieces of information to assess model fit. First, we computed R
2
, the 

fraction of spatial variation in EVI synchrony explained by the model. Second, we compared, via 

BIC and ANOVA, our best (lowest BIC) model from each model comparison exercise to the null 

model y=X
1
β+u, for X

1
 a column of 1s and u spatially autocorrelated residuals. All analyses 

were done using R v3.1.3. Spatial models were fitted using the R package spdep (Bivand & Piras, 

2015). 

4  Results 

Figure 2a shows total EVI synchrony and answers Q1 from the Introduction by depicting which 

areas have relatively much and which areas have relatively little synchrony. The confidence 

threshold was very low compared to observed strengths of synchrony. The areas of highest 

synchrony are found in Africa over the Sahara and also in Botswana and Namibia. Eastern Brazil, 

Northern Europe and large areas of Australia were also highly synchronized. Regions of 

relatively low synchrony included areas on the west coast of South America, the Pacific 

Northwest of the United States, some islands of Oceania and areas in central China and West 

Africa. Global variation in the strength of synchrony was enormous, spanning essentially the 

entire range of possibilities from almost no synchrony (purple on Figure 2a) to almost perfect 

synchrony (yellow on Figure 2a). Patterns of synchrony were broadly similar for 500-1000km 

and 1000-1500km (Figure S1 in Supporting Information), but the geographic variation in strength 
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of synchrony at these distances was not as great, as may be expected because averages are 

computed across more space. 

Answering Q2, geographic patterns of synchrony were strongly frequency specific 

(Figures 2c and 2d), with areas that were strongly synchronized at low frequencies often differing 

from (though sometimes being near to) areas that were strongly synchronized at high frequencies. 

For example, synchrony in the Sahara and in China predominantly occurred at low frequencies. 

Synchrony on the Atlantic coast of Brazil was primarily at low frequencies, but synchrony inland 

from the coast had a larger high-frequency component. 

Both globally and for continental regions, spatial linear models of synchrony were fitted and 

ranked by BIC weight (tables S2-S7), variable importance tables were generated by summing 

BIC weights (tables 1, S8-S12), signs of model coefficients were tabulated (tables S13-S19) and 

model-averaged predictions were generated (Figure 2b, S2, S3). Figure 2b shows model-averaged 

total EVI synchrony as predicted by the top 95% confidence set of global models (by BIC 

weight). The models generally identified the areas of highest synchrony such as the Sahara, 

Southern Africa, and Eastern Brazil (compare to Figure 2a). However, predicted synchrony was 

often lower than observed synchrony when observed synchrony was high, and was higher than 

observed synchrony when observed synchrony was low: total geographic variation in the strength 

of synchrony was underestimated by the model. High synchrony in Northern Europe was also not 

captured by predictions. Although model predictions roughly captured large-scale trends, they 

were poor at representing fine spatial structure in synchrony. The best model explained 29% of 

the variation in total EVI synchrony (table S2). It had BIC far superior to the BIC of the null 

model y=X
1
β+u, for X

1
 a column of 1s: BIC was -626 for the best model, 307 for the null model. 

ANOVA revealed a highly significant difference between these models (p<0.001). 
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Models of frequency-specific synchrony explained less of the variation than models for all 

frequencies, as may be expected given the greater variability intrinsic to estimates of 

frequency-specific quantities (table S2). But BIC comparisons and ANOVA p-values nevertheless 

indicated highly meaningful differences between best models and the null model (Appendix S9). 

Synchrony in temperature and precipitation are both consistently highly important in 

statistically explaining all-, high- and low-frequency EVI synchrony (table 1), answering Q3 from 

the Introduction. They have a positive effect, meaning greater synchrony in temperatures or 

precipitation is associated with greater synchrony in EVI, demonstrating the likely importance of 

Moran effects and supporting H1 from the Introduction. The importance of both variables 

supports the presence of dual Moran effects, answering Q5. 

Results show that both temperature and precipitation effects are frequency specific, 

confirming H2 from the Introduction. High-frequency precipitation synchrony was a more 

important predictor of high-frequency EVI synchrony than it was of low-frequency EVI 

synchrony. Low-frequency temperature synchrony was a more important predictor of 

low-frequency EVI synchrony than it was of high-frequency EVI synchrony, and likewise for 

precipitation (table 1). 

Given that both synchrony in temperature and synchrony in precipitation were important 

determinants of total EVI synchrony, it was possible, a priori, that interaction effects were 

present between the two. As there was only one supported model in the global, all-frequencies 

analysis (table S2) we compared that model to a model that had interaction effects between 

temperature and precipitation synchrony variables, but was otherwise the same. The BIC value of 

the model with interactions was -616 compared to -626 for the best model with no interactions, so 

there was no evidence for interaction effects. 
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Also important and also having a positive association with EVI synchrony were mean 

temperature and log altitude (table 1). These were important predictors for all frequencies and for 

high and low frequencies, separately. Average EVI itself was only an important predictor of 

high-frequency EVI synchrony, further demonstrating the frequency specificity of synchrony and 

its determinants. 

Results for the continent-specific analyses (tables 2, S8-S12) were similar to global results, 

but with some heterogeneity in some determinants of synchrony, answering Q4 from the 

Introduction. Apparent dual Moran effects with temperature and precipitation drivers were 

supported at high, low, or all frequencies on all continents (table 2). The frequency-specificity of 

temperature effects is visible for all continents: either high-frequency temperature synchrony is 

only important for high-frequency EVI synchrony and not for low; or low-frequency temperature 

synchrony is only important for low-frequency EVI synchrony and not for high; or both (table 2). 

The same can be said for precipitation in Eurasia, Africa, and South America. Some of the 

variables not important in the global analysis were important when looking at specific continents 

(table 2, for all models see tables S3-S7). For example in Africa wind speed is an important 

determinant of synchrony across all and at low frequencies although it has opposite effects. At all 

frequencies it has a negative effect on EVI synchrony, but its lag has a positive effect, and at low 

frequencies it has a positive effect. Mean EVI itself is also important at all frequencies for two 

continents, South America and Oceania; and at high frequencies for three, Africa and South and 

North America. It always has a positive effect: areas with higher EVI values have greater EVI 

synchrony. In continent-specific analyses, best models were always much better than the null 

model (y=X
1
β+u, for X

1
 a column of 1s) according to BIC comparisons and ANOVA results 

(Appendix S9). 
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5  Discussion 

Our principle result is that there is an important geography of synchrony of terrestrial vegetation, 

globally. Regional (500 km) synchrony varied enormously, from areas with almost no synchrony 

to areas with near-perfect synchrony. Dual apparent Moran effects of precipitation and 

temperature were the major statistical determinants of EVI synchrony and its geographic patterns 

worldwide, with some variation among continents in the details of these effects and in the 

importance of other determinants of synchrony. The geography and determinants of synchrony 

were strongly frequency specific. Inferences leading to our conclusions about likely Moran 

effects and frequency-specificity of synchrony were effective because they exploited the 

geography of synchrony. Moran effects from a single environmental driver have been reported 

(e.g., Batchelder et al., 2012; Sheppard et al., 2015), and studies have combined multiple drivers 

using PCA (Haynes et al., 2013). However, as far as we are aware, this is the first or one of few 

studies to provide evidence for two distinct separate synchronous environmental variables driving 

ecological synchrony in concert. Additional observations on effects of altitude on synchrony and 

the partial coincidence of high-synchrony areas with arid regions are in Appendix S7. 

This work complements Defriez & Reuman (In review), in which we analyzed the main 

statistical determinants of synchrony in ocean chlorophyll. The key similarities between 

synchronies of chlorophyll and terrestrial vegetation are that the geography of synchrony was 

pronounced in both contexts, and Moran effects were statistically supported and frequency 

specific. There were also differences. Chlorophyll synchrony is highest in areas where 

chlorophyll itself is low; but EVI often has a positive association with EVI synchrony. 

It is well known that temperature and precipitation can be important factors in vegetation 

dynamics (Ichii et al., 2002; Piao et al., 2006; Clinton et al., 2014). However, our new result that 
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geographies of synchrony in temperature and precipitation are important correlates of the 

geography of EVI synchrony, while true, does not follow automatically from the earlier 

knowledge. Defriez & Reuman (In review) found that the geography of synchrony of incident 

solar irradiance was not statistically related to the geography of synchrony in chlorophyll-a 

abundance in the world’s oceans, even though it is well known that irradiance can be an important 

factor in chlorophyll-a dynamics. In complex ecosystems, known importance of an environmental 

factor for ecological dynamics does not necessarily mean the factor produces a Moran effect or a 

geography of synchrony, for several potential reasons, including: the possibility that the 

environmental factor itself has a muted geography of synchrony; and the possibility that the 

factor’s influence on vegetation is nonlinear or complex in some important way that varies 

geographically (see, e.g., Defriez & Reuman, In review, where mechanisms are discussed for the 

phytoplankton case). The following paragraphs explore some of these complexities further. 

Non-monotonic relationships are increasingly important in ecology (Zhang et al., 2015). A 

non-monotonic effect of an environmental variable on a population variable may modify the 

extents to which Moran effects can occur and the geographies of synchrony of the environmental 

and population variables match. To illustrate the concept, suppose the population p
i
(t) at time t in 

location i, for i=1,2, equals f(e
i
(t)) for e

i
(t) some environmental variable. And suppose f is an 

increasing function of e
i
 for e

i
<o  and decreases for e

i
>o . Then even if e

1
(t)  and e

2
(t)  are 

perfectly synchronous through time, the populations p
i
(t) need not be perfectly synchronous. For 

instance, if the mean of e
i
 is less than o for i=1 and greater than o for i=2, many year-to-year 

fluctuations in the environment will produce opposite effects in the two populations. For more 

than two locations, geographic variation in local mean environments could produce a geography 

of population synchrony even if the environmental fluctuations are perfectly correlated across all 
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locations. Although this example is oversimplified, it illustrates that non-monotonicity may 

mediate relationships between the geographies of synchrony of population variables and their 

environmental drivers. Our methods probably cannot illuminate intricacies such as these, if they 

are indeed important in real systems. These ideas may reveal a worthwhile area for future 

research. 

The carrying capacity of vegetation varies globally due to spatial variation in soils and other 

factors, and therefore the nature of density dependence in vegetation dynamics also varies 

spatially. Liebhold et al. (2006) describe a reduction in environmentally caused spatial synchrony 

resulting from geographic variation in density dependent dynamics. The effect can mediate or 

produce a geography of population synchrony, and is related to the concepts of the previous 

paragraph. If spatial variation in density dependence over a region is pronounced, the geography 

of ecological synchrony need not match the geography of synchrony of an environmental driver. 

Although temperature and precipitation are key drivers of primary productivity, which of 

these is more important can differ among biomes (Nemani et al., 2015). For example, 

precipitation is often found to be more tightly coupled with vegetation and productivity in arid 

zones (Zhang, 2005; Fabricante et al., 2009). Although it is difficult to tell from the analyses of 

this study whether both synchrony in temperature and synchrony in precipitation are driving EVI 

synchrony everywhere across a given continent or if their relative importance varies, future work 

might be able to illuminate this question. There is substantial heterogeneity globally in the 

correlation between EVI and precipitation and temperature intra-annually (Clinton et al., 2014). 

Furthermore, in Africa, according to our results, there are two areas of strong synchrony: the 

Sahara and an area in Southern Africa. Synchrony in the Sahara is predominantly at low 

frequencies (Figure 2d) whereas synchrony in Southern Africa is predominantly at high 

frequencies (Figure 2c). Both high-frequency precipitation synchrony and high-frequency 
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temperature synchrony were important determinants of high-frequency EVI synchrony in Africa; 

but only low-frequency temperature synchrony, and not low-frequency precipitation synchrony, 

was an important determinant of low-frequency EVI synchrony. This suggests that in Southern 

Africa synchrony in both temperature and precipitation drive synchrony in vegetation density but 

in the Sahara only synchrony in temperature drives synchrony in vegetation density, despite the 

tight coupling with precipitation often found in arid regions (Zhang, 2005; Fabricante et al., 

2009). The wavelet methods of Sheppard et al. (2015) can illuminate what is causing synchrony 

with no need to rely on geographic variation in synchrony. Although our time series are probably 

too short for their wavelet analyses, a Fourier version of the techniques of Sheppard et al. (2015), 

applied separately to different regions of Africa (and elsewhere) might identify precisely how 

temperature and precipitation trade off against each other in relative importance as Moran drivers. 

We used land surface temperatures (LST) as opposed to surface air temperatures (SAT, 

measured at 1.5-2m above ground level) because LST is available from satellite measurements 

and SAT is measured at discrete weather stations. Data products that provide SAT estimates 

globally based on interpolation between weather stations are available, but interpolation creates 

artefactual synchrony, so those products could not be used. LST can be affected by vegetation 

cover and condition (through evapotranspiration), and by soil wetness and therefore precipitation 

(Jin & Dickinson, 2010; Mildrexler et al., 2011), so causal relationships between our temperature 

and EVI synchrony variables may be complex and are incompletely illuminated by our correlative 

statistical approach. It is possible that temperature synchrony causes EVI synchrony through 

Moran effects, or that EVI synchrony causes temperature synchrony through vegetation effects on 

LST, or, most probably in our opinion, that the factors jointly affect each other or the causal 

relationship itself varies geographically. Our models establish statistical determinants of 

synchrony, a necessary but not sufficient condition for a causal effect of temperature synchrony 
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on EVI synchrony. SAT may be a better variable for improving causal understanding of 

synchrony in future research, though a modified statistical approach would be needed to account 

for the fact that direct SAT measurements are only available at weather stations. 

Changes in synchrony through time have received recent attention (Sheppard et al., 2015; 

Defriez et al., 2016; Shetakova et al., 2016; Koenig & Liebhold, 2016), raising the possibility of 

changes in synchrony superimposed on the geography of synchrony or affecting this geography 

itself. Shetakova et al. (2016) describe increasing synchrony through time in spatio-temporal 

forest tree growth data. They concluded that observed increases are not due to increasing 

synchrony of Moran drivers, but instead to stronger synchronizing influence of the drivers: as 

climate becomes more extreme and impacts in climatic variation therefore become more widely 

influential on ecosystems, climate has a more synchronizing influence even when climate need 

not itself have become more spatially synchronous. In our analysis we did not address the 

possibility of changes in synchrony with the passage of time - our time series are probably too 

short to do so. Although we removed trends before calculating synchrony we found mean 

temperature was an important determinant of synchrony across all frequencies, and has a positive 

effect. The results of Shetakova et al. (2016) raise the possibility that longer term increases (or 

decreases) in synchrony may be superimposed on top of the spatial patterns we found. Changes in 

synchrony may also interact with and modify spatial patterns of synchrony. To examine this 

possibility one would need data that are extensive both spatially and temporally. Synchrony is 

ecologically important, as metapopulations displaying increased spatial synchrony have an 

increased risk of extinction (Heino et al., 1997). It has also been proposed that an increase in 

spatial correlation may occur in environments before a regime shift (Dakos et al., 2010). As such, 

our study may act as a baseline for examining future changes in synchrony and its geography, in 

addition to being one of the first to document the geography of synchrony at all. 
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Figure 1: Idealized illustration of how synchrony can differ by timescale. (a) Time series are 

synchronous on long and anti-synchronous on short timescales. (b) Time series are 

anti-synchronous on long and synchronous on short timescales. (c, d) Decomposition to the 

individual frequencies that sum to form the time series in a and b, respectively. Standard 

correlation coefficients between time series are 0 for both (a) and (b), misleadingly suggesting 

lack of important synchronous phenomena. Note that normalized cospectra (e, f; Methods) reveal 

that positive synchrony at one frequency is masked by negative synchrony at the other. In 

practice, exact cancellation is unlikely. But asynchrony at some frequencies may nevertheless 

strongly conceal important synchrony at other frequencies. This figure is reproduced from Defriez 

et al. (2016). 
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Figure 2: a) Observed EVI synchrony, all frequencies. b) Predicted EVI synchrony, all 

frequencies, from the 95% confidence set of models. c) Observed high-frequency EVI synchrony 

(timescales of 2-4 years). d) Observed low-frequency synchrony (timescales exceeding 4 years). 

The white horizontal lines on the colour legends in a, c, d are approximate 95% significance 

thresholds compared to a null hypothesis of no synchrony (Appendix S4). Projection is 

equidistant cylindrical. 
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 All 

Frequencies 

 +/- High  +/- Low  +/- 

EVI 0.00888  + 1.00000  + 0.00000  - 

EVI lag 0.00000  - 0.00000  - 0.00000  - 

temp 1.00000  + 1.00000  + 1.00000  + 

temp lag 0.00000  - 0.00000  - 0.00000  + 

temp synchrony 1.00000  +     

temp synchrony lag 0.00800  +     

temp synchrony high   1.00000  + 0.99991  + 

temp synchrony high lag   0.00000  + 0.00000  + 

temp synchrony low   0.00046  + 1.00000  + 

temp synchrony low lag   0.00000  - 0.00013  + 

precip 0.00002  - 0.00000  - 0.00001  - 

precip lag 0.00000  - 0.00000  - 0.00000  - 

precip synchrony 0.99192  +     

precip synchrony lag 0.99099  +     

precip synchrony high   0.99950  + 0.00001  - 

precip synchrony high lag   0.13876  + 0.00000  - 

precip synchrony low   0.00000  - 0.99999  + 

precip synchrony low lag   0.00000  - 0.00894  + 

log(altitude) 1.00000  + 0.86123  + 0.99098  + 

log(altitude) lag 0.00000  - 0.00000  - 0.00000  - 

sd log(altitude) 0.00000  - 0.00002  - 0.00000  - 

sd log(altitude) lag 0.00000  + 0.00000  + 0.00000  + 

abs(latitude) 0.00019  + 0.00000  + 0.00003  + 

wind speed 0.00000  + 0.00000  + 0.00000  + 

wind speed lag 0.00000  + 0.00000  + 0.00000  + 

Table 1: Variable importance as shown by sums of BIC weights of models that contain each 

variable (Burnham & Anderson, 2004), for global data. Values are between 0 and 1, larger values 

correspond to more important predictors. + or - indicate whether model-averaged coefficients of 

each variable are positive or negative. Variables in bold indicate those that are meaningfully high 

(their summed BIC weight was greater than or equal to 0.6). The abbreviations temp and precip 

stand for temperature and precipitation respectively, and “lag" indicates a variable entering as a 

spatially lagged, neighbourhood effect (Methods). Columns give results of separate spatial 

statistical analyses of total, high-frequency, and low-frequency synchrony maps.
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Eurasia +/- Africa +/- NAmerica +/- SAmerica +/- Oceania +/- 

All Frequencies          

temp + temp synchrony + temp + EVI + EVI + 

temp synchrony + temp synchrony lag + temp synchrony + temp + temp + 

log(altitude) + log(altitude) + precip + temp synchrony + temp synchrony + 

abs(latitude) + wind speed - precip lag - log(altitude) + log(altitude) + 

  wind speed lag +     log(altitude) lag - 

High Frequencies          

temp + EVI + EVI + EVI + temp + 

temp synchrony high + temp + temp synchrony high + temp + temp synchrony high + 

precip synchrony high + temp synchrony high + sd log(altitude) - temp synchrony high + log(altitude) + 

precip synchrony high lag + precip synchrony high +   temp synchrony high lag + log(altitude) lag - 

  log(altitude) +       

Low Frequencies          

temp synchrony high + temp synchrony low + temp + temp synchrony low + temp synchrony high + 

temp synchrony low + wind speed + precip synchrony high + precip synchrony low + temp synchrony low + 

precip synchrony low +   precip synchrony low + precip synchrony low lag + precip synchrony high - 

Table 2: Most important variables driving EVI synchrony by continent. Variables were included if their summed BIC weight was greater than or equal to 0.6. The + or - 

signs indicate whether model-averaged coefficients of each variable are positive or negative. 


