
Open Research Online
The Open University’s repository of research publications
and other research outputs

Parametrising a theory of software problem solving
Conference or Workshop Item
How to cite:

Hall, Jon G. and Rapanotti, Lucia (2016). Parametrising a theory of software problem solving. In: TOSE ’16:
Proceedings of the 5th International Workshop on Theory-Oriented Software Engineering, ACM, New York, pp. 22–25.

For guidance on citations see FAQs.

c© 2016 The Authors

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/2897134.2897137

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82981973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/2897134.2897137
http://oro.open.ac.uk/policies.html

Parameterising a theory of software problem solving

Jon G. Hall
Dept. of Computing and Communications

The Open University
Milton Keynes, UK

Jon.Hall@open.ac.uk

Lucia Rapanotti
Dept. of Computing and Communications

The Open University
Milton Keynes, UK

Lucia.Rapanotti@open.ac.uk

ABSTRACT
We explore what can be said about the detailed modelling of
problem solving ability via a stochastic semantics of a theory
of software problem solving, and end with an invitation to
discuss possible experiments that may lead to the practical
characterisation of the problem solving ability of software
teams.

1. INTRODUCTION
In [?] we proposed an initial model for software develop-

ment process modelling using Problem Oriented Engineering
(POE, [?]). In particular, we identified the problem solving
unit of composition based on the POE Process Pattern (PPP,
[?]), shown in Figure 1, and used it to provide process ar-
chitectures for both waterfall and agile processes. In this
short paper, we exploit further characteristics of that prob-
lem solving unit to say more about the modelling of teams’
problem solving ability.

Problem
Exploration

Solution
Exploration

PV

SV

Figure 1: The POE Process Pattern

To this end, we propose a stochastic semantics of the PPP
and perform a simple experiment. Our desire is to inspire
discussion on the possibilities of running such experiments
in the local communities of participants at the workshop.

2. BACKGROUND
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

TOSE’16, May 16 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4174-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897134.2897137

In Design research (for instance, [?]), design is consid-
ered as the fundamental process through which real-world
problems are addressed via the invention, assembly and adap-
tation of technologies, which involves planning and decision
making, as well as the concrete realisation of artefacts. POE
is an emerging problem solving approach to engineering, the
creative, iterative and often open-ended undertaking of de-
signing and constructing products, systems and processes
that address real-world problems.

POE is design theoretic [?], by which we mean it provides
a theory that characterises the elements of problem solving
in terms of the effect they have on the process of design,
and only thus on an artefact1. Problem solving in POE
includes many types of design activity, including Weick’s
‘sensemaking’ [?], various formal and informal refinement
techniques, Jackson’s problem progression [?], architectures
[?], etc., each characterised by its effect on the design process.

A more complete description of POE than can be included
in this position paper (including its relationship to the design
and other literature) can be found [?].

3. SOFTWARE ENGINEERING AS PROB-
LEM SOLVING

POE specialises Rogers’ definition of engineering [?] to
software engineering as:

“Software engineering refers to the practice
of organising the design and construction of any
software system which transforms the physical
world around us to meet some recognised need.”

In this way, software engineering becomes a problem solv-
ing exercise, the problem being, given a real-world environ-
ment E, to find the software C that satisfies a real-world need
N to the satisfaction of a group of stakeholders K, written
E(C) meetsK N. We assume that E contains a computational
engine — a PC, mainframe, cloud service or the like.

POE characterises problem solving as the interaction of
two processes [?]:

(i) one operating in the problem space, which contains the
context E and needs N, and where problem solvers liaise
with the ‘problem owner’ stakeholders to understand
and describe and then validate their problem;

(ii) one operating in the solution space, which contains
the solution C, and where problems solvers liaise with

1Design theoretic is defined by analogy to Gentzen’s Proof
Theoretic approach [?].

‘solution owner’ stakeholders to understand and describe
their needs of the solution.

Interleaved with these are stakeholder validation points: prob-
lem owners validate problem descriptions (‘PV’ in the figure);
solution owners validate solution descriptions (‘SV in the
figure’).

Accordingly, we can identify three problem solving states
for each space:

(i) the state before a validatable understanding exists, writ-
ten P× and S×, respectively;

(ii) the state when a validatable understanding exists, but
before it has been validated, written P? and S?;

(iii) the state when validated understanding exists, written
PX and SX.

As described, the result is two independent processes. How-
ever, the processes are not independent as solution explo-
ration should not commence before a validated problem is
uncovered2 and the process of validation of a solution may
reveal that the problem (even if it had been validated) was
incorrect. Moreover, there are many forces working against
their composition being simple, for instance: the reduced
availability of problem owners to give their validation of the
problem understanding when the need arises; the tendency
or need to move into the solution domain before a validated
understanding of the problem is gained; the volatility in the
context, meaning that previously validated understanding is
rendered out of date; that resources aren’t sufficient to solve
the problem, forcing premature exit; etc.

The resulting process is complex and iterative; further
details, together with a fuller discussion of the literature that
is possible in this short article, can be found in [?].

A validated solution to a validated problem, i.e., software
that has, for instance, passed its acceptance tests, constitutes
a solved problem and so is an end state in the process. The
other end state is when the problem has been accepted as
being without solution, within the available resources.

4. A STOCHASTIC SEMANTICS OF THE
PPP

Discrete-time Markov chains (DTMCs) model memoryless
stochastic processes, i.e., processes whose development is gov-
erned by random variables and whose future development is
determined only by its current state and not by the sequence
of events that preceded it. Given our assumption that a
problem solving team is characterised by the likelihood of
problem or solution validation success after exploration, we
can model both problem and solution processes as Markov
processes and analyse long-term behaviour. We can use
the PRISM model checking tool [?] for process simulation
and analysis. PRISM allows ‘experiments’ to be run on a
parametrised model by varying those parameters.

An initial PRISM encoding of the process is shown in
Figure 3. The listing shows constant and formulæ definitions
(those without initial values can be varied in an experiment),
four process modules and a reward clause, explained next.

2Of course, this does not discount the possibility that work
in the solution space might be a useful part of problem
exploration, and vice versa.

Px

P?

P√

Sx

S?

S√

pe
xp

lo
re

pv
al
id

sv
al
id

sp
inv
ali
dsinvalid

se
xp

lo
re

spinvalid

pi
nv

al
id

Swaitpvalid

Figure 2: Discrete Time Markov Chains for (left)
Problem and (right) Solution processes.

Constant and formulæ definitions. These include:
(i) stamina, which models that problem solving is a resource
intensive activity3; (ii) pexpertise (resp., sexpertise) the like-
lihood that any one request for problem (resp., solution)
validation will be successful. These characterise team exper-
tise in the sense that more expert teams will be more suc-
cessful when they validate with stakeholders. (iii) svalidbias
which measures how likely solution validation reveals that
the problem description isn’t actually valid, i.e., the problem
validator made a mistake; (iv) the ok formula captures that
energy remains; and (v) the solved formula characterises that
the successful end state has been reached, i.e., the problem
is solved.

Module problem encodes the problem process shown on
the left of Figure 2 as a DTMC.

Module solution encodes the solution process shown on
the right of Figure 2 as a DTMC.

We note that, due to limitations of the PRISM modelling
language, certain auxiliary states and transitions are needed
to model non-determinism in the processes of Figure 2, with
the result that some transition labels shown in Figure 2 are
omitted in the listing.

Modules problem and solution interact through two transi-
tions:

• pvalid, by which the solution process is constrained to
wait until the the problem process is validated complete,
and

• spinvalid, by which the problem process is reset should
validation of the solution reveal that the ‘wrong problem
has been solved’.

Module activityMonitor is an auxiliary (deterministic) pro-
cess to monitor resource levels. We thus model that software
engineering is resource constrained.

Module solvedMonitor is an auxiliary (deterministic) pro-
cess to monitor whether the problem has been solved or when
the teams run out of energy. The problem is solved when
both problem and solution have reached their respective end
states together. The problem is unsolved when resources are
exhausted.

3Without stamina all (solvable) problems would eventually
be solved.

Figure 3: A stochastic semantics for the POE prob-
lem solving pattern

The rewards clause, separately from the activityMonitor,
counts all time taking steps (problem and solution explo-
ration) which allows cumulative costs to be recorded.

5. OUR EXPERIMENT
We wished to exercise our model in a parsimonious way

on an easily accessible class of problems. The problems had
to be representative, accessible and illustrative with skills
extant for their solving.

Ever since their use to identify those with the particular
problem solving skills needed to crack German encryption at
Bletchley Park during WWII ([?]), cryptic crosswords have
held an affectionate place in UK problem solving life.

Thus, the problem class that we chose is cryptic crosswords.
Although cryptic crosswords may appear someway distant
from those encountered in software engineering — their scale
and subject matter being very different, for instance — we
would argue that they have some of the characteristics of
problems in that they have both a problem (the cryptic clue
itself) and solution understanding part; moreover, unlike
mathematical problems, problem and solution can be am-
biguous. Also, the link between crosswords and software is
not entirely unknown: Apt [?] relates the solving of cross-
words to constraint programming.

Cryptic crossword clues are, in the following sense, self-
validating: a cryptic clue (the problem) is constrained to
be grammatical and has three components, a definition, a
puzzle and a letter count ; its solution is a word or phrase.
The definition can be arbitrarily long and, as the name
suggests, defines the solution. The puzzle, the remainder,
is a grammatical word play that cleverly tells the solver
how the solution should be built. The complex relationship
between clue and solution leads to work in the problem
space — in gaining validated understanding the clue — and

Prob Valn Soln Valn
Phase Succ Uns Succ Uns Prob Inv

Early 17 13 6 21 3
Middle 17 12 13 16 2

Late 6 20 4 3 0

Table 1: Results of the observed crossword problem
solving process

solution space — constructing a validated answer — as well
as iteration between the two — where a valid but incorrect
understanding of the clue is revealed by exploration of the
solution space.

We do not claim that the complexity of cryptic crossword
solving rivals to any extent that of anything but the simplest
of software engineering tasks. Rather, we claim only that
they both represent problem solving activities that match
the problem solving patterns that are available in POE.

5.1 Solving a cryptic clue
Generally, the first step in solving a cryptic clue is to

identify definition and puzzle parts. As definition and puzzle
are contiguous, they form either a pre- or suffix of the clue.
That they must make grammatical sense individually is a
form of self-validation (i.e., validation without recourse to
the setter).

An example of a cryptic clue is:

“Welcome alternate dignitary to top middle-
of-road club, it’s said (12)”

Here the definition is ‘Welcome’4; the puzzle is the remainder.
The solution, having 12 letters, is ‘Introduction,’ a word
meaning welcome, which is defined by the puzzle in the
following way: take ‘alternate’ letters of ‘dignitary’ — i-n-t-r

— prefixed ‘to’ the ‘middle of’ ‘top’ — o — followed by a
synonym of ‘road’ — d-u-c-t — followed by a homonym (‘it’s
said’) of a type of (golf) ‘club’ — i-o-n..

A simple experiment is, then, to observe a crossword prob-
lem solver to identify the various problem solving phases,
and to parametrise the stochastic model accordingly.

We identified a cryptic crossword from Private Eye mag-
azine (#564, [?]). The first author was solver. From his
experience of solving cryptic crosswords, we determined that
there would be three phases to the experiment: Early (when
no or very few intersection letters exist), Middle (when some
intersection letters exist) and Late (when almost all inter-
section letters exist). For each phase we assigned an hour,
broken down into 60 minute intervals. We gave each attempt
to solve a clue 5 minutes. At the end of each minute we
recorded the state of problem solving process in terms of ∗×,
∗? and ∗X (where ∗ ∈ {P,S}). When a clue was solved we
moved to another without waiting.

6. FINDINGS
The results of the three phases are shown in Table 1; the

first line (Early) should be read as, in the first hour, we
observed 30 successful Problem Validation events (i.e., the
solver had found what they thought was a valid definition), 17
of which were successful, and 30 Solution Validation events
(i.e., the solver had found the answer), 6 of which were

4But it could have been a longer clue prefix or suffix.

successful (i.e., a valid solution was found), with 3 of those
unsuccessful indicating that the clue’s definition was invalid
too.

The results were instantiated in the model as constant
probabilities (see Figure 3). The resulting DTMC was ‘veri-
fied’ through the PRISM tool. We ran the following queries:

• P=?[F solved]: to give the probability (P=?) of success-
ful solving5. PRISM returned p = 0.236 (to 3 d.p.)
suggesting the expected solved number of 4/16, which
compares to the actual of 6/16;

• R=?[F solved]6: to give the expected cost (R=?) of
problem solving, when successful. PRISM returned
c = 2.844.

Figure 4: A 3D plot of cost versus solution and prob-
lem experience for a problem solving experiment
similar to that described, but with effectively uncon-
strained resources: (sexperience, pexperience = 0.1...1.0
step 0.05) with the vertical representing the total
cost of solving (min = 0, max = 80). The asymmetry
between problem and solution is due to the spinvalid

transition.

7. CONCLUSIONS AND FURTHER WORK
We have given an initial DTMC semantics for the PPP

and shown how observations of a problem solver in action
can be used to parametrise it. Other possible metrics we
could investigate under such semantics include, for instance,
problem solving risk, total cost of solving, etc.

Work is in progress on a compositional semantics of PPP
under a simple process-algebra [?] which, in combination
with the ideas in [?], may allow us to encode complex software

5From the initial state, what’s the probability (P=?) of
eventually reaching (F) a state in which solved holds.
6For technical reasons, the actual query was R=?[F
"deadlock"]-stamina*P=?[F energy=0])/P=?[F solved].

development processes in terms of the PPP, thus providing
a stochastic semantics based, so making them susceptible to
(a more sophisticated form of) the analysis of this paper.

Acknowledgements
Thanks are due to Dariusz Kaminski for his contributions to
the ideas expressed here.

