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Abstract

This thesis addresses the development of broadly tunable, high repetition rate frequency combs
in the mid-IR region. A novel PPKTP crystal design was used to provide phasematching for
parametric oscillation and simultaneously give efficient pump-+idler sum-frequency generation
(SFG). This innovation enabled a fully stabilized idler comb from a 333-MHz femtosecond
optical parametric oscillator to be generated in which the carrier envelope offset frequency
foro together with the repetition frequency frepp were stabilised. This OPO platform was
then extended to demonstrate, via harmonic pumping, a fully stabilized 1-GHz OPO frequency
comb from a 333-MHz pump laser. Next, an alternative route to a 1-GHz OPO comb was
investigated by synchronously pumping an OPO directly with a 1-GHz Ti:sapphire laser. Here
the comb was fully stabilized for the signal, idler and pump pulses by using a narrow linewidth
CW diode laser developed for the project and whose design is also presented. A further increase
in the comb mode spacing was performed with a Fabry-Pérot cavity. A stabilised cavity was
used to filter 1.5 um signal pulses from a 333-MHz repetition rate OPO frequency comb to yield
a 10-GHz comb. The length of the Fabry-Pérot cavity was dither locked to a single-frequency
ECDL and later on directly to the OPO frequency comb. Finally the 333-MHz OPO comb
was demonstrated in an optical frequency metrology experiment. The frequency comb mode
number and the absolute frequency of a narrow-linewidth CW laser were measured and the
performance of the OPO comb was found to be comparable to that of a commercial fibre laser

comb used as a benchmark in the experiment.
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Chapter 1. Introduction

1.1 Aim

In this thesis I describe the generation of stable, broadband, high precision optical frequency
combs which could be used in a number of application areas. Specifically, I describe the de-
velopment and characterization of a stabilised optical parametric oscillator frequency comb in
the mid-infrared (IR) region. One area of emphasis is the increase to GHz rates of the repetition
frequency; the associated increase in the comb mode separation is useful since individual comb
modes can be identified using optical spectrographs of standard resolution. Routes to higher
repetition rates which were investigated included harmonically pumping the OPO and filtering
it with a Fabry-Pérot cavity to extend the spacing up to 10 GHz. Another area of emphasis is
the extension of the wavelength coverage of OPO combs, which led to a comb suitable for use in
high resolution spectroscopy and metrology experiments. The metrology experiment confirmed
that the comb can be used for precise measurements of an unknown optical frequency. In this
chapter I will introduce the principles and applications of stabilised frequency combs. Finally,

a research outline is presented.

1.2 Stabilised optical frequency combs

In the time domain a modelocked laser emits pulses every round trip which in the frequency
domain comprise a collection of modes, uniformly spaced by the repetition frequency. For
a true frequency comb, the repetition rate and carrier-offset frequencies must be stabilised.
The repetition rate drifts due to cavity length changes because of temperature effects, while
the carrier-envelope-offset frequency fopo changes due to environmental factors changing the
intracavity dispersion. After the stabilisation of frgp and fcgo, the comb line separation and
position in the frequency domain are fixed, resulting in a locked frequency comb. Frequency
combs can be used in spectroscopy, astronomy, metrology and attosecond pulse generation [1, 2,
3]. The first absolute frequency measurement of a Cs D line was done in 1999 [4]. The fcpo of
Ti:sapphire laser was stabilised with the {-2f self-referencing technique. A Ti:sapphire frequency
comb was used as a reference to determine the frequency of a CW laser locked to a rubidium
transition line and in 2001 the Ti:sapphire laser comb was used to measure the absolute optical
frequency of a calcium transition [5]. Since then a number of different applications have been

enabled by stabilised laser combs.

Stabilised frequency combs can be achieved directly from lasers, but also from an optical pa-
rametric oscillator (OPO) by pumping with a femtosecond laser. Such OPOs represent the
highest average power and most efficient sources of mid-IR combs [6]. Their output wave-
lengths have (to date) been extended up to 4.8 pm [6, 7] and instrument-limited fopo beat
linewidths of 15 Hz have been achieved [8]. Degenerate OPOs have been reported which emit
spectra instantaneously covering 900 cm™! at 3 um [9]. Table 1 shows the most cited papers on

the frequency combs in the mid-IR region and the papers presented in this thesis are specifically



marked. Almost all of those systems used PPLN as the gain crystal and covered wavelengths
from 1.9-4.8 um in the idler. There are also several degenerate OPOs, which were pumped
with Erbium doped fiber lasers at 1.56 um. Those OPOs oscillated at a 3.1-um central wave-
length and spanned from 2.5-3.8 um at most. For degenerate OPOs increasing the wavelength
is challenging since a longer wavelength pump source must be used and moreover, the PPLN
crystal is less transmissive at wavelengths above 5 um. Thulium based fiber laser systems have
been used to increase the OPO output wavelength up to 4 um [10]. A further increase up to
5.6 um was achieved by using a Kerr-lens modelocked Cr?*:ZnSe laser system to pump a GaAs
OPO [11, 12]. In this thesis I will present a comb, which could be tuned from 1.95-4.0 pwm, thus
representing an octave spanning frequency comb which was lockable at every idler wavelength.
Another important parameter is the repetition rate. As we can see from Table 1, the pump
laser repetition rates are below 1 GHz, but in emerging applications like the use of combs in
astronomical spectrographs a GHz or even multi-GHz mode spacing is preferable and therefore
the need to increase the repetition rate of the comb is obvious. Several articles have demonstra-
ted GHz repetition rate combs [13, 14, 15]. These high repetition rate combs were implemented
for a signal wavelength at around 1.5 pum and their extension into the mid-IR region is still in
progress. In my thesis I will present a 333-MHz frequency comb, whose mode spacing could
be increased up to 1-GHz via harmonic pumping. The 333-MHz comb was also filtered with
a Fabry-Pérot cavity up to 10 GHz. All the experiments showed great potential and genuine

competitiveness in comparison with other systems.

Table 1. Near- to mid-infrared coverage of OPO frequency combs, with work from this thesis
indicated (*).

H Year Power (mW) Coverage (um) frgp (MHz) Pump laser  Process  Reference H
2007 - 1.9-2.4 200 Ti:sapp OPO 6]
2009 1500 2.8-4.8 136 Yb-fiber OPO [7]
2010 1000 2848 137 Yb-fiber OPO 16]
2011 60 2.5-3.8 80 Er-fiber  deg. OPO [9]
2011 10 4.4-5.4 182 Cr?*:ZnSe OPO [11]
2011 60 2.6-3.6 100 Er-fiber  deg. OPO [17]
2012 400 2.8-4.8 137 Yb-fiber OPO [18]
2012 37 3.1-5.9 75 Tm-fiber  deg. OPO [10]
2012 - 1.6 1000 Tisapp  deg. OPO  [46]
2013 100 3.23-3.4 100 Yb:KGW  OPO [19]
2014 220 2.7-4.2 90 Yb-fiber OPO [20]
2014 8.5 3.05-3.15 500 Er-fiber deg. OPO [21]
2015 26 3.5-5.6 175 Cr?*:ZnS OPO [12]
2015 50 1.46 1000 Ti:sapp OPO [22]*
2015 0.3 1.46 10000 Ti:sapp OPO [23]*
2015 20 1.95-4.0 333 Tisapp OPO 24]F
2015 - 1.56 1000 Ti:sapp OPO [14]*




1.3 Thesis outline

This thesis is organised as follows:

Chapter 2 introduces the fundamentals of nonlinear optics together with a description of ul-
trashort pulse propagation. The linear and nonlinear effects described here form the basis of
the OPO systems reported.

Chapter 3 present details of the Ti:sapphire laser and the OPO sources. The OPO was pum-
ped by a repetition-frequency stabilised Laser Quantum 333 MHz Ti:sapphire laser, which is

described in detail. The OPO design and characterization is presented.

Chapter 4 reports a fully stabilized idler comb from a 333-MHz femtosecond optical parametric
oscillator in which the carrier envelope offset fogpo was stabilised in the mid-infrared region.
The design of a novel PPKTP crystal is presented which provided phasematching for para-
metric oscillation and efficient pump+idler sum-frequency generation (SFG). An introduction
to the stabilisation of the repetition rate, carrier-envelope-offset and their characterization by

measurements of the phase-noise and two-sample frequency deviation is presented.

Chapter 5 presents for the first time a locked femtosecond frequency comb achieved from a
harmonically-pumped OPO. A noise analysis together with measurements of the timing jitter

are presented.

Chapter 6 reports the demonstration of a fully stabilized 1-GHz OPO frequency comb. All the
outputs from the OPO and the pump laser were locked. Fully stabilized frequency combs for
the signal, idler and pump pulses were achieved by using a narrow linewidth CW diode laser

developed for the project and whose design is also presented.

Chapter 7 details a stabilized Fabry-Pérot cavity which was used to filter a 333-MHz repetition
rate OPO frequency comb to yield a 10-GHz comb. The length of the Fabry-Pérot cavity was
dither locked to a single-frequency ECDL and later directly on to the OPO frequency comb.

Chapter 8 presents the results of measuring the frequency comb mode number and the absolute
frequency of a narrow-linewidth CW laser. The acquired heterodyne beat in the radio frequen-
cy (RF) region could be easily compared with a well-known Rb reference. The linewidth of
the comb line was determined by heterodyning a frequency comb line with the ultra-narrow
linewidth CW laser. Frequency noise power spectral density (PSD) measurements were used

to reveal all of the noise accumulated in the system.

Chapter 9 contains conclusions from the experiments presented in this thesis. Future improve-

ments to the systems are proposed.
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Chapter 2. Fundamentals of optical parametric oscillators

2.1 Introduction

This chapter presents the fundamental concepts of nonlinear optics which are necessary to un-
derstand the operation of optical parametric oscillators (OPOs) and supercontinuum generation
in photonic crystal fiber (PCF).

2.2 Fundamentals of nonlinear optics

A high intensity electromagnetic field disturbs the position of electrons in a material and leads
to a nonlinear relationship between the irradiance and the amplitude of the resulting electronic
oscillations. The electrons start to emit different frequencies to that of the incident light.
This nonlinear response is responsible for second-harmonic generation (SHG), sum frequency
generation (SFG), different frequency generation (DFG) and parametric amplification, which
can be explained in terms of the second-order Y? susceptibility. Other nonlinear effects such
as self-phase modulation (SPM), two-photon absorption and four-wave mixing are associated

with the third-order x® susceptibility.

2.2.1 Nonlinear susceptibility

An intense wave propagating in a dielectric material displaces the valence electrons from their
original positions, causing an electric polarization of the material. At high intensities this
electric polarization is not proportional to the electric field, so the induced dipoles emit ele-
ctromagnetic waves at different frequencies. The electric polarisation is proportional to the
electric field strength expressed as an electric susceptibility x.. For a weak electric field E(w)

the electric polarization P(w) is expressed as

P(w) = eox' E(w) (1)

where ¢, is the vacuum permittivity and y! is the first-order - linear - susceptibility. This
expression is valid only for weak electric fields such as an incoherent white light source or low
peak power laser beams. In the case of intense fields, such as the femtosecond pulses emitted
from a modelocked laser cavity, the polarization of the dielectric medium can be described by

extending equation (1) [1] as

P(w) = eoX'E(w) + eoX*E(w)* + eoX*E(w)® + ... (2)

where x? and x® are the second- and third-order electric susceptibilities respectively. Each
susceptibility term " is related different nonlinear processes. The linear or first-order term
of the susceptibility y! is associated with the linear refractive index and its dependence on
the frequency, and gives rise to linear dispersion, birefringence, and linear absorption (Beer’s

law). The second-order electric susceptibility x? is responsible for all interactions involving
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three-wave mixing, such as second-harmonic generation (SHG), sum and difference frequency

generation (SFG and DFQG), parametric oscillation and amplification.

The third-order nonlinear susceptibility x* mediates four-wave mixing effects, including third-
harmonic generation (THG), the Kerr effect (self-focusing, self-phase modulation(SPM), cross-

phase modulation (CPM), Raman scattering and Brillouin-scattering processes.

2.2.2 Pulse propagating in a nonlinear medium

The nonlinear interactions related to the x? susceptibility occur without energy dissipation into
the medium since the photon energy is conserved. These nonlinear processes are highly efficient
because all interactions between the different frequencies proceed through virtual energy levels
and therefore no thermal effects occur and no cooling is required. The only limiting factors are
the material damage threshold and photo-refractive effects. Second-order effects are observed

only in non-centrosymmetric materials.

In centrosymmetric materials only first- and third-order y? effects are obtained because of the
lattice symmetry. The applied external electric field equally polarizes the dipole and therefore

the nonlinear susceptibility x? is equal to zero.

2.2.3 Media exhibiting \? nonlinearity

As mentioned before a number of nonlinear interactions take place in second-order x? materials.

The most common two-wave mixing can be expressed as

E(w) = Eycos(wit) + Eacos(wat) (3)

in which a third field E can be generated. As we take into account first- (x!) and second-order

(x?) susceptibility terms of the equation we can express the polarization field as [2]

P(wi,ws) = €X' [Ercos(wit) + Eycos(wat)]
+ €0X*[2E1 Bycos(wit)cos(wat) (4)
+ Efcos®(wit) + Escos® (wat)]
This  equation can be simplified by using the trigonometric identities,
cos?(x) = (1 + cos(2x))/2 and cos(z)cos(y) = (cos(x — y) + cos(x + y))/2. The result imp-

lies that two waves show the possibility of generating different frequencies in a second order x?

material, each corresponding to a different physical effect:
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P = eox'[Eicos(wit) + Fycos(wyt)] Linear dispersion and refraction

F\FE
GOX#COS([QH — wyt)] Difference frequency generation
’E\E
GOX#COS([(AH + wolt)] Sum frequency generation
2 E2 (5)
ox =i cos(2wit) Second harmonic generation
2 EQ
Ox =2 cos(2wot) Second harmonic generation
60X2 2 2 . . .
T[El + E3) Electro-optical rectification

The first term corresponds to the interference field, giving rise to linear refraction and dispersion,
while the second and third terms represent difference frequency generation (DFG) and sum
frequency generation (SFG). Each wave w; and ws interacting with a nonlinear medium can
generate an independent second harmonic SHG wave. The last term describes electro optical
rectification (EOR).

The evolution of three waves interacting with each other in a x? material is described by using
coupled-wave equations which will be presented later in this chapter. The coupled wave equ-
ations are solved by assuming that all the interacting waves are monochromatic and the pulses
are narrowband. In the case of ultrashort or broadband pulses the coupled wave equations do
not accurately describe the pulse evolution. A more accurate broadband pulse propagation th-
rough a x? medium can be provided using the nonlinear envelope equation (NEE) [3]. Conforti
demonstrated in 2010 that ultra-broadband second order parametric interactions can be desc-
ribed by a single-wave envelope equation. The evolution of a pulse in the transparency region
of the nonlinear medium can be modeled using the Conforti equation. In plane geometries the
resulting single-wave envelope equation is

gfj +iDA = —ifgﬁa -
4 2’A|2eXp—iwot+i(Bo—k1w0)z]

) ) .
AQQX iwot—i(Bo—kiwo)z
Wo 57)[ P (6)

where A(z, 7) is the broadband complex electric field envelope at a reference frequency of wy,
k(w) = 24/1 4+ xW(w) is the propagation constant and v, is the group velocity at the reference

frequency. 7 =t— Ui represents a coordinate system moving with the reference group frequency,
g
o0 m+1 m m
D= mQJW nd and B, = 2k,
This NEE includes all possible second order parametric processes that could occur in x? me-
dia. The method describes how broadband pulses interact with each other, where SFG and
DFG processes appear by taking into account group velocity mismatch and inter-wave phase
relationships. The equation can be solved by implementing a split-step Fourier method [4].

The linear left-hand side of the equation was solved in the frequency domain and the nonlinear
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right-hand side was integrated by a second-order Runge-Kutta scheme for the nonlinear step.

2.2.4 Media exhibiting \* nonlinearity

In our experiments photonic crystal fibre (PCF) was used for supercontinuum generation as
part of the frequency comb locking scheme. The supercontinuum generation occurs because
of the Kerr effect, which is an intensity dependent effect. A strong electric field propagating
through a Kerr medium modulates the refractive index n of the medium, therefore femtosecond
pulses can experience SPM, acquiring an instantaneous frequency shift which results in spectral
pulse broadening. Together with SPM, other nonlinear optical effects may take place such as
four-wave mixing, SHG and parametric amplification. The refractive index n for Kerr medium

can be expressed as

n(t) = ng + nol(t) (7)

where ng is the refractive index of the material, ny is the nonlinear index and I(¢) is the optical

intensity. The additional phase shift experienced by the pulse over a propagation distance L is

wnoL

bspu(t) = I(t) (8)

This time-dependent phase shift results in a instantaneous frequency shift, with a femtosecond

C

pulse experiencing red-shifting and blue-shifting of its wavelengths because of the third-order x?
electric susceptibility. New frequencies are created as a high peak power pulse is propagating
through the Kerr medium (Figure 1). As the pulse spectrally broadens, four-wave mixing
processes appear. These nonlinear processes require phase-matching to be fulfilled but because
fibers can be very long, femtosecond pulses of even low peak power can experience broadening.
As an intense pulse continues to propagate through a x?® nonlinear medium, its spectrum will

broaden because of SPM, four-wave mixing and Raman scattering processes.

The generalised nonlinear Schrodinger equation must be solved in order to characterise ultrafast
pulse propagation in a fiber. The equation used by John Dudley and Roy Tayler [5] describes

an optical pulse envelope evolution (the spectral broadening in fibers)

A « ikt gk A
5 Tt X e

0z k>—2

= (14 o) (A1) [~ ROI)AGT =TTy (9)
The left side of the equation models linear propagation effects. « is a constant related to the
linear power loss. The sum over [, represents the effective wavevector expansion of all 3 terms
(the dispersion coefficients related to the Taylor expansion of 3(w) about a central frequency
wp) which depends on the photonic crystal fiber (PCF) properties. A(z,t) is the field/pulse
complex spectral envelope after propagating z distance. The right side of the equation contains

nonlinear effects. ~ is the Kerr medium nonlinearity coefficient based on the nonlinear refractive
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index ny and A,y (the effective mode area). The nonlinear coeflicient v is frequency dependent
according to the relation
wWona (CUQ)
Y= (10)
cAcyf(wo)
where wy is the fundamental frequency, ng(wp) is the nonlinear refractive index and A.s(wp) is
the effective mode area [6]. The integral represents a nonlinear Raman scattering process with

the nonlinear response function of silica R(T")

R(t) = (1 — Fr)8(t) + Frha(t) = (1 — Fr)s(t) + ]-“RTfT;;"Q eXp:;sin(;l)@(t) (11)

where Fr = 0.18 is the fractional contribution of the delayed Raman response, 71 = 12.2 fs
and 75 = 32 fs. The ©O(t) and 6(t) are the Heaviside step function and Dirac delta function

accordingly.

The time-dependent term on the right-hand side of the equation describes the nonlinearity
dispersion. The time derivative describes the nonlinearity dispersion characterized by the time
scale Topock = W—IO which is the optical shock formation time. As the pulse propagates through
the PCF, it exhibits more and more nonlinearity and therefore the optical shock term 7ok
can be tailored to fulfill the function. With certain parameters of a fiber, the evolution of the
pulse can be simulated. The input data requires three parameters to be included: FE(t), the
nonlinear coefficient v and the fiber dispersion in the form of its D-curve. From the D-curve
the dispersion expansion coefficients can be calculated. The dispersion of a fiber is related to

its the second-order dispersion

2 2mc 623
D=="%="a52

where D represents dispersion (ps/nm/km), ¢ is the the speed of light and \ is the wavelength.

(12)

The purpose of the modelling was to determine the pulse spectral broadening in photonic crystal
fiber (PCF). As an ultrashort high peak power pulse enters the fiber, because of the Kerr effect,
the pulse spectrally expands. Depending on the pulse peak power, the spectral broadening can
be extremely efficient. As the pulse propagates through the PCF, its duration can also increase.
As a result the peak power of the pulse falls and therefore most of pulse broadening happens in
the first several cm of the highly nonlinear fiber. We used a 30-cm PCF, but a supercontinuum
spreading down to 500 nm could be achieved in only the first half of the fiber length. The
Dudley equation can be used to estimate the necessary fiber length so that the broadening
can be achieved in the shortest possible length of the fiber and the temporal expansion can be
minimized.

As described later in Chapter 4(a), a supercontinuum was produced by focusing 10% of the
Ti:sapphire pump power into an NKT PCF (NL-2.0-740). A ThorLabs C110TMD-B aspheric
lenses (f=6.24 mm) focal length lens was placed in front of the PCF to permit focusing of the
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Figure 1. The simulated spectral (left) and temporal (right) broadening of the pump pulses
from the 333 MHz Ti:sapphire laser in a 30 cm PCF. A supercontinuum output reaching as low
as 510 nm can be generated.

pump beam into the PCF. The nonlinear fiber had a length of 30 cm with a core diameter
of 2 um and a zero dispersion at 740 nm wavelength. For the simulation we used 100 mW
average input power, v = 0.018, pulse duration 7p=30 fs and a Gaussian-shaped pump pulse.
After a coupling of 67% had been achieved, an output spectrum spanning from 510 nm to
1200 nm was measured. The experimental and theoretical spectra of the supercontinuum were
found to overlap quite well. The numerical calculation of the Dudley nonlinear equation for

our parameter fibre is presented in Figure 1.

2.3 Parametric nonlinear frequency conversion

Earlier I discussed frequency doubling, sum and difference frequency generation, parametric
oscillation and amplification, and supercontinuum generation are the result of different optical
nonlinear processes. In order to efficiently generate new frequency components a phasematching
condition must be ensured. In the following sub-sections I will introduce the coupled-wave

equations and the solutions for several nonlinear processes appearing in our experiments.

2.3.1 The coupled wave equations

An intense electric field induces a nonlinear response of the dielectric medium leading to the
generation of new frequencies. These interacting fields are coupled to each other. The coupled
wave equations describe the relationship between these fields, and how the energy is exchanged

between three interacting waves in a second order y? material when the waves are propagating
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through a non-centrosymmetric medium. The radiated field created by the medium can be add-
ressed by solving the standard wave equation containing an additional second order nonlinear
polarization term [1]
1 6°E 1 6%P
’E — = = (13)

c? ot2 €oc? Ot?

The equation can be solved by assuming that all three waves are propagating in the same

direction and that w; < wy < ws. The electric fields of the three interacting waves in a second-

order x? medium can be written

dElZ' iwl / % i
dz _EdijkEng%eXp( A
dEg, w4 * +iAkz
dz = %dkith’EgjeXp( ) (14)
dFEs; ) , .
37 _ _@d 'ikEliEleXp(—HAkz)
dz cnz ?

These equations are used to explained any frequency conversion appearing in a second order
ijk material due to a susceptibility component. d;jk is the effective nonlinear susceptibility

2
Xijk
2

the wave vector mismatch

component (d;ji = ) describing the nonlinear coupling between these fields [7] and Ak is

Ak =k — ko — Kk (15)
where
2mn (A
k,, = 2720m) (16)

The waves interact efficiently only if the wave vector mismatch Ak is equal to or close to
zero. This can be achieved in birefringent materials by the technique known as phasematching.
Phasematching between different frequencies in the same nonlinear crystal can be achieved by
manipulating the refractive index which in a birefringent medium can be done by changing the
crystal angle when the propagating waves are different in polarizations. In this work we employ
quasi-phasematching, where Ak # 0, since we are using periodically poled potassium titanyl
phosphate (PPKTP).

2.3.2 Quasi-phasematching

Quasi phasematching can be achieved in dispersive y? materials. If three waves are interacting,
their relative phase after a certain propagation length will experience a phase slip of 7. The
propagation length during which the phase slip remains between 0 and 7 is called the coherence
length. The conversion of the photon energy is efficient only up to the coherence length. In
this case forward conversion is efficient but after the coherence length the converted energy
reduces and back conversion takes place. The coherence length can be written in terms of the

wave-vector mismatch as:
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7

Lco erence — A 7. 1
e = (17

Back conversion can be stopped and the forward conversion obtained again by adding a phase
step of 7 after the waves propagate through one coherence length L.ynerence: The phasematching
condition is optimised for the forward conversion of the energy from the fundamental frequency

to other ones by periodically flipping the polarity of the phase, to ensure continuous forward

conversion
dEli Z'Ldl ’ ; ;
_ d... E-E*ex (—iAkz+im)
dz cny 9k 352 XD
= 24 E Efex (+iAkz+im) 18
dz cns kij L1 £3€XP ( )
dEgj ?:w;; / ; ;
) 2 d B Eaex (+iAkz+im)
dz cng TR P

The phase slip repeats every two periods of coherence length, a length known as the quasi

phasematching period:

2w
A, = 2Lco erence — A 7. 19
g h Ak ( )
As a result the quasi-phasematching condition is
2

g
The quasi-phasematching condition can be achieved by modifying the grating period so that
Ak is equal to or close to zero. Implementation of Eq.(14) results in a final grating period
calculation formula which is a required parameter when specifying a nonlinear crystal PPKTP,
PPLN, etc.

A, = [”()\3) _n(A) ”(Al)]q (21)

A3 A2 A

Periodically flipping the grating period along the crystal length with sub um precision lets us

manufacture an efficient frequency conversion crystal with no need for birefringent phasemat-
ching (QPM). The main advantage of quasi-phasematching is that all of the interacting waves
can have the same polarization which is a more efficient interaction than in comparison with
a birefringent phasematching where the interacting waves have different polarizations. The
QPM interaction ensures a much higher efficiency and is therefore preferentially used in opti-
cal parametric oscillators (OPO) for frequency conversion of high repetition rate femtosecond

pulses.

2.3.3 Second harmonic generation

To analyse second harmonic generation (SHG) using the coupled wave equations an assumption

of low conversion efficiency is made. This assumption of % R~ dd% ~ 0 results in only one
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equation

dE3 iW3 / iAkz
E = _£dijkElE2€Xp(+ ) (22)
and by implementing
Es = aexp(iAkz) + b
dFE. (23)
d—;’ = aiAkexp(iAkz)
we obtain
o — il (24)
CTLgAk’

After applying the boundary condition that there is no second harmonic generation at the

crystal entrance i.e. at 2 =0, E3 = 0 we find that:

(,L)gd/- 'kEl EQ
/) . L — 25
“ cns Ak (25)
and therefore
2W3d/'jkE1E2
S L — y - ' 26
3 Bk [1 — expiAkz] (26)
The generated second harmonic intensity is
8w (d; )2 1222
Lo (2) = W 2% iy 2(Akz/2 27
2w (2) i T—— sinc”(Akz/2) (27)

If Ak = 0 the intensity of the second harmonic grows quadratically with the propagation
through the crystal distance z. The intensity is quadratically dependent on the frequency of
the input wave. The (d;jk)z tensor, refractive indexes of n;, ng and n3 are determined by the

linear and nonlinear crystal properties.

2.3.4 Sum and difference frequency generation

The coupled wave equations for sum and different frequency generation can be solved by as-
suming that there is no pump depletion and the wave vector mismatch is equal to zero i.e.
perfect phasematching is ensured. In the case of sum frequency generation, the frequency ws is

generated as a result of w; and wy wave mixing

W1 + W = Ws (28)

As the waves travel through the nonlinear crystal, the energy is transferred from one frequency
to another. Forward and backward energy conversion can occur. The simplest case is when we
assume that the phase mismatch is equal to zero. As in an OPO, we can assign waves as the

pump and signal which interact to create a third idler wave. In this case the pump is much
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stronger than the signal, so we assume that the wy wave is strong with no depletion. The strong
field amplitude E5 of wy is assumed to not change (% = 0) when the signal pulse w; is weak.

The solution of the coupled wave equations for sum frequency generation is:

/

Ei(z) = E1(0)cos(I" 2)

Es(2) = —E,(0)2 wjn; sin(T" 2)
resulting in
By(2) = iB1(0) ¢ = Lsin(T' 2 )exp™® (30)
wins
where (I") is a coupling coefficient for SFG [1]
dwdwid, ;| Fo|?
'\2 13 %5k 12

— 31
(' = A (31)

and ¢, is the phase of E5. The equations represent forward and backward energy conversion
from one frequency to another one when the waves are propagating through the nonlinear

crystal.

The same simplifications can be made for difference frequency generation (DFG). In this case

dE3 __
dz

for wy under the perfect phasematching condition (Ak = 0) is:

the pump frequency assigned as ws ( ) is mixed with another frequency w;. The solution

Ei(2) = E1(0)cosh(I z) (32)

and the generation of ws can be expressed as

Ei(2) = —i\Z/EEl(O)sinh(F/z) (33)

2iw2desrAp
k;c?

gation angle and polarisations of the waves traveling through the nonlinear crystal
(degy = 0% (digiFj ).

As all three waves are travelling through the nonlinear crystal, the weak frequency w; expe-

where k; = . deyss is the nonlinear conversion efficiency which depends on the propa-

riences amplification and the wave at frequency wy grows from zero at the expense of a strong

wave at the pump frequency ws

W9y = W3 — W1 (34)

In a nonlinear OPO crystal, as the pump, signal and idler waves are interacting, the pump
is depleted and new frequencies are created and amplified. This is essential for acquiring the
carrier envelope offset (CEQO) frequencies of the signal, idler or pump pulses depending on what

we want to achieve.
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2.3.5 Parametric gain

In x? materials it is possible not only to generate but also to amplify waves. This can be done
in optical parametric oscillators (OPOs) which can increase the field of the chosen wave. In
OPOs the three interacting waves are designated the idler, signal and pump according to the
relation wigier < Wsignat < Wpump- An OPO typically contains high reflectivity cavity mirrors
coated for signal or idler frequencies so that the cavity is singly resonant for either the signal
or idler waves (see Figure 2). We can make a doubly resonant OPO too if both the signal and
idler waves can oscillate in the cavity at once or even a degenerate OPO when signal and idler

wavelengths overlap. The coupled wave solution for the OPO is

Ay(z) = As(0)cosh(gz)

35
o 271 ﬁA;‘(O)sinh(gz) (33)

wing | Ayl

We assume that the idler does not oscillate in the OPO cavity and is zero at the beginning.

. . . ’ A * A
Perfect phasematching is also assumed. The coefficient g = \2/ I'— (88)? = \2/ kiky — ()2
2iwldeg s Ap
k;c? :
wave (CW) or pulsed regime. Their pulse duration and wavelength tunability are determined

and k; = OPOs are widely tunable frequency converters operating in continuous
by the mirrors used and the nonlinear crystal properties. This thesis concerns OPOs which
are pumped synchronously and therefore the repetition rates of the OPOs are limited to the
repetition rate of the pump laser. In order to resonate the signal or idler pulses in the OPO, the
cavity length must be perfectly matched to the pump laser’s cavity length. The pulse is further
amplified only if after every round trip it meets another pump pulse coming from the pump
laser inside the nonlinear crystal placed inside the OPO cavity [8]. Synchronously pumped
OPOs are limited by the repetition rate of the pump laser, but it is possible to run the optical
parametric oscillator at a harmonic of the pump repetition rate when the cavity length is an
integer [9] or integer fraction [10] of the pump laser cavity length. This principle is the basis of
the study presented in Chapter 5.

L
pump pump
idler
signal
Nonlinear
crystal
M1 M2

Figure 2. A general schematic of a signal wave oscillating in a two mirror based OPO. The
signal wave is resonant and idler is not resonant. The idler leaves the cavity after the M2 mirror
where the oscillating signal wave is contained inside two mirrors and only a small portion of its
power leaves the cavity.
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2.4 Ultrashort pulses

An ultrashort pulse propagating through a material is changed in its shape in both the temporal
and frequency domains via linear and nonlinear processes. Mirror coatings can also change the
shape of the pulse since they usually add additional dispersion which is important to know in

order to understand ultrashort pulse dynamics.

2.4.1 Ultrashort pulse description

Ultrashort pulses leaving a mode-locked oscillator have a broadband optical spectrum resulting
in durations of order of <100 femtoseconds (107?). The ultrashort pulse can be expressed in
the time-domain by a complex envelope function where the real electric field is oscillating at

an angular frequency wy which corresponds to the central wavelength of the pulse

E(t) o< Re[A(t)exp™!] (36)

where A(t) is the normalized electric field amplitude. The spectral amplitude of the ultrashort

pulse can be extracted by Fourier-transforming the temporal field

0= e [y .

The real power spectrum of the pulse can be obtained by |A(w)|?.

An ultrashort pulse is characterized by a spectral width in frequency space Avp and a pulse
duration A7p via fixed the duration-bandwidth product (A7pAvp). In laser physics pulses are
specified by measuring the full width at half-maximum (FWHM) in the time and frequency
domain. The shape of the pulse determines the duration-bandwidth product. For sech? pul-
ses the product is 0.315, while for Gaussian pulses it is 0.44. The fixed duration-bandwidth
relationship means that for a certain spectral bandwidth of the pulse, a lower limit of pul-
se duration exists. The value of the duration-bandwidth product therefore indicates whether
the pulse is transform limited or not. If the duration-bandwidth product is higher than the

minimum "transform-limited" value, it means the pulse is chirped.

2.4.2 Optical dispersion

The refractive index of any material depends on the frequency of the wave interacting with it.
Each frequency of the ultrashort pulse will travel with different velocities. This results in a
phase delay which changes the pulse shape as it travels through a material causing the pulse
to broaden in time. In this scenario the pulses traveling in the material become chirped and
the duration-bandwidth product becomes larger than the minimum value. The contribution of

this frequency-dependent phase term is:

Alw) = A(w)exp@) (38)



and its effect can be observed in the time domain via the inverse Fourier transformation

At) = \/127 " A et (39)

The spectral phase of a pulse can be expressed by a Taylor expansion of wave vector k, rep-
resenting a spectral phase change as a function of of angular frequency w, in respect to the

central frequency wy:

$(w) = d(wo)
+ (w— wo)[gf] Linear ¢(w)
2 40
+ ;(w — wo)Q[gﬁ] GDD 1)
1 5050
-I—é(w—wo) [ﬁ] TOD

The first element represents the phase accumulated at the central frequency wy of the ultrashort
pulse. Since this is the same frequency, it has no effect on the shape of the pulse. The second
term is the first-order differential term. It describes the linear variation of the carrier wave
phase with the frequency. It has no effect on the pulse shape and in the time domain it is

known as the group-delay 7¢.

The relationship between the group delay and the group velocity is

L
Vg = — (41)
TG

The group velocity is the speed at which the pulse envelope is propagating through the medium.

Higher order terms change the pulse shape. The third term contains the information of how

fast the second term changes with the frequency. It is known as the group-delay-dispersion

(GDD, £s?) [11].

(52¢ 57’G
DD=— ==
G dw? ow

The fourth term describes the evolution of the pulse shape when one edge of the pulse is

(42)

stretching and other one is steepening resulting in the separation of the pulse (pulse break-up).
The differential term is called third-order dispersion (TOD, fs?)

53¢
TOD = —= 43
0 w3 (43)

As a result the intracavity dispersion must be taken into account, if we want to generate an
ultrashort pulse. All these and higher order spectral phase terms must remain flat and negligible

across the full-bandwidth of the pulse.

23



2.4.3 Material dispersion

When the ultrashort pulse leaves the laser cavity through the output coupler, the pulse straight
away exhibits temporal broadening since each material has a wavelength (frequency) dependent
refractive index n(A). Material dispersion and the refractive index are described by the Sellmeier

equation, which provide n, for a given material. Practical expressions of the spectral phase

terms are:
vp = % Phase velocity
Ve = c[n — /\gil\]l Group velocity
Ta i[n — )\?;\L] Group delay (44)
GDD = 2)\7::5222)\2 2nd order dispersion
TOD = 4_7:\240[3/[3;?; + Agi\g] 3rd order dispersion

If the wavelength and the refractive index are known, the GDD, group-velocity and TOD can
be quickly calculated. For an ultrashort pulse, the bandwidth of the pulse is huge and therefore
to know the shape of the GDD or the group-velocity, a cycle of calculations must be done
for a number of wavelengths. Moreover, the well-defined GDD and TOD of the materials can
be used for ultrashort pulse compression to a duration-bandwidth limited product of 0.441
for a Gaussian pulse shape. For this purpose, angular dispersive elements such as prisms or

diffraction gratings can be used for dispersion compensation [12, 13].

In the work presented here, we used dielectric mirrors containing multiple thin layers of optical
materials. By changing the low and high refractive indices (usually by introducing TiOy and
SiO2 materials), mirrors operating over a certain wavelength range can be designed [14, 15].
Each layer thickness of the material must be a quarter of the local wavelength. The thickness of
the layers is increased in deeper regions so that a group delay is generated: dispersion of these
chirped mirrors is adjustable so that faster propagating longer wavelengths are reflected from the
deeper mirror layers whereas the shorter wavelengths are reflected from the closer to the surface
layers. In this way we can compensate the positive chirp which is incurred when propagating in
normal dispersion materials by using chirped mirrors to introduce negative dispersion. Chirped
mirrors are manufactured quite routinely and most importantly the supplier can provide well-
defined dispersion curves [14]. Since each chirped mirror has a modulation of the GDD, these
mirrors are implemented in pairs with matched coatings. The modulation of the GDD is
cancelled and remains flat over required wavelength region. The chirped mirror structure is
shown in Figure 3.

For the GDD compensation Gires-Tournois interferometer (GTI) mirrors were used too. These
mirrors introduce several times higher negative GDD at the cost of a narrower reflectivity

bandwidth. The GTI mirror structure comprises a partially reflective mirror, an etalon-like
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Figure 3. The principle of a chirped mirror. The longer wavelength light penetrates deeper
into the mirror structure experiencing larger group delay vg where the shorter wavelengths
experience a smaller group delay. The difference leads to anomalous chromatic dispersion
where GDD is negative.

resonant cavity and a highly reflective Bragg mirror. The GTI mirror utilises the natural
dispersion of a Fabry-Pérot etalon to develop greater values of GDD than are typically available

from chirped mirror designs [16].

2.5 Conclusions

In this chapter I have presented the fundamentals of nonlinear optics together with a mathema-
tical description of ultrashort pulse propagation. The linear and nonlinear effects introduced
here form the basis of the OPO systems described in the following chapters, and are also

fundamental to the measurement methods which are essential for frequency comb stabilisation.
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Chapter 3. Design and characterisation of a Ti:sapphire

pumped optical parametric oscillator

3.1 Introduction

Here I present details of the Ti:sapphire laser and the OPO sources. We aimed for a high rep-
etition rate, high average power frequency comb, which was pumped by a repetition-frequency
stabilised Laser Quantum 333 MHz Ti:sapphire laser. In Section 3.2, the Ti:sapphire laser is
described, while in Section 3.3 the OPO design is presented. The OPO was the frequency comb

source for which stabilisation procedures and results are detailed in Chapters 4 and 5.

3.2 Ti:sapphire pump laser

High quality frequency combs were achieved by designing our synchronously pumped OPO
around a commercial femtosecond Ti:sapphire pump laser (Laser Quantum). The Ti:sapphire
laser produced 30-fs duration pulses with 1.45 W of average power centered at 800-nm central
wavelength. The self-mode-locking regime in the Ti:sapphire laser is mediated by the optical
Kerr effect. Following its original demonstration [1], the Ti:sapphire laser quickly become the
most popular laser for generating femtosecond pulses because of the Ti:sapphire gain medium’s
excellent thermal conductivity, large gain bandwidth, wide wavelength tunability, variety of
pumping wavelengths and short upper-state lifetime making it possible to extract high average
powers. In these days the pulse durations achievable directly from commercial Ti:sapphire lasers
are less than 10-fs if the intracavity dispersion is carefully optimised. I will briefly introduce
the mode-locking regime for generating femtosecond pulses and characterise the pulses achieved

from the 333-MHz Ti:sapphire pump laser.

3.2.1 Ultrashort pulse generation

Several different approaches can be applied to generate ultrashort pulses. Normally, high peak
power pulses are extracted from the laser cavity through an output coupler (OC) after every

round trip, where the repetition rate of the laser is determined by its round-trip cavity length
L

frep = % (45)

If phase or amplitude modulation is applied inside the cavity during continuous wave (CW)
operation a modelocking regime can be activated. In the frequency domain modelocked pulses
contain thousands of longitudinal modes. All of them are experiencing more gain than loss
after every round trip and these longitudinal modes have a fixed relative phase relationship.
In phase oscillating modes can constructively interfere with each other and form broadband

ultrashort pulses whose durations are inversely proportional to the bandwidth of the pulses [2].
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3.2.2 Active and passive modelocking regimes

Modelocking can be achieved with an active or passive element [3, 4]. In the case of active
modelocking an additional optical element is placed inside the laser cavity for phase or ampli-
tude modulation. The introduced amplitude or phase modulator changes the intra-cavity loss
(transmission) or intra-cavity phase respectively and can be implemented by either an acousto-
or electro-optic modulator [5]. Sinusoidal loss or phase modulation causes phase coupling be-
tween neighbouring cavity modes, causing the formation of pulses. The drawback of active
modelocking is its limited modulation bandwidth which limits the minimum possible pulse

duration.

The passive modelocking regime does not require an actively driven element and therefore the
modulation bandwidth can be much greater. Passive modelocking is activated through the use
of intensity dependent loss or gain. The most common example is the semiconductor saturable
absorber mirror (SESAM), which introduces a reflectivity coefficient which depends on the
intensity [6, 7]. Low intensity waves experience high intra cavity loss while high intensity waves
propagate with relatively low loss. This loss saturation gives more loss for lower intensity light
(CW light) while the loss is decreased or reduced to zero for higher intensity light (typically
meaning shorter pulses) [8]. When random noise is present in the cavity, any higher intensity
light experiences lower loss while passing through the saturable absorber in comparison with
the average background level of CW light. This noise peak will see lower loss and therefore will
get stronger after every round trip. The more intense this light becomes the more transparent
the SESAM becomes. In this way, light initiated from a random noise spike will get stronger
every time it passes the SESAM whereas the CW light will decay since all the energy will
be taken by this intense pulse. During such a buildup phase there may be many noise peaks
travelling around the cavity, but eventually , following the action of intra-cavity dispersion and

self-phase modulation, only one pulse will be left oscillating inside the cavity with minimal loss.

As was first shown in Ti:sapphire [1], a laser can be passively modelocked without the need
for any additional element. In all materials third order x® nonlinear effects including the Kerr
effect are obtained. As a strong electric field is propagating through the Kerr medium, the
refractive index n is changed. The time-dependent refractive index for a Kerr medium can be

expressed as

n(t) = no + nol (%) (46)

where ngq is the refractive index of the material, ny = 5‘—660, the nonlinear index dependent on

o
the material and /(t) is the laser intensity. The Kerr effect results in self focusing and self phase

modulation (see Chapter 2) [9].

In this case we have a much faster modulation bandwidth even compared with SESAMs. SE-

SAMs are in common use in many solid-state femtosecond lasers, but Kerr lens modelocking is
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even better since it supports sub-10-fs pulse durations [10, 9].

Kerr lens modelocking is achieved through self focusing. Because the refractive index in x?
materials depends on the intensity, the more intense central part of the pulse will propagate
with a slower phase velocity in comparison with the boundaries of the pulse since the intensity
on the edges is much lower. A transverse phase velocity gradient will be established, which
creates a virtual lens within the gain material (in our case Ti:sapphire) which is an effect called

self focusing (see Figure 1).

Figure 1. Self-focusing in a nonlinear medium.

To enable modelocking, this Kerr lens must be exploited to cause self-amplitude modulation,
so that more intense pulses or noise peaks see less loss or more gain than less intense light. The
so called soft aperture arranges the beam alignment inside the cavity so that in the presence
of the Kerr lens the pulsed light experiences better overlap with the intra-crystal pump mode
(in our case from a 532-nm Finesse laser) [9]. Another case of self modelocking is the so called
hard-aperture modelocking. In this case a physical aperture is placed inside the laser cavity
so that the loss depends on the intracavity mode. The less focused CW light will experience

greater loss than the more focused intense light, favouring modelocked operation.

3.2.3 The Laser Quantum modelocked laser

The Laser Quantum modelocked laser was based on a titanium-doped sapphire (Ti:Al,O3)
crystal. This crystal is one of the most common gain media for ultrashort pulse generation. It
has broad wavelength tunability from 650-1100 nm [11], a large gain cross section, and excellent
thermal conductivity. The absorption spectrum starts at 400 nm and extends up to 650 nm.
Our commercial Laser Quantum Ti:sapphire laser was pumped by a Finesse Pure 10-W pump
laser which emitts frequency doubled Nd**:YVO, laser light at 532 nm wavelength. The solid
state laser is pumped by diodes located inside the controller. The light from these diodes is
transmitted to the Nd3*:YVO, laser using fibres. An image of the Ti:sapphire laser cavity is

shown in Figure 2.
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Figure 2. The Laser Quantum Ti:sapphire cavity design.

The six mirror ring-type cavity was based on a 5-mm-long Brewster angled Ti:sapphire crystal
placed between two curved mirrors. Both curved mirrors, the focusing lens for the Finesse CW
light and the Ti:sapphire crystal itself were screwed onto micrometer translation stages. The
distance between each element could be changed if necessary. The 532-nm CW light pumped
the Ti:sapphire crystal, causing light at 800-nm wavelength to be generated. The emitted light
propagates around the cavity a total of 901-mm length before again reaching the Ti:sapphire
crystal. This cavity length corresponds to a 333-MHz repetition rate. The mechanical stability
was improved by using a temperature controlled breadboard, cooled by using a chiller set at 22
celsius temperature. The cooled water from the chiller flowed through the breadboard on which
the Ti:sapphire and green Pure Finesse pump lasers were fixed. Both lasers shared the same
breadboard in order to improve the overall stability of the system. For achieving a suitable
modelocking regime, the laser cavity dispersion must be taken into account; normally the high
reflectivity mirrors add group delay dispersion (GDD) and inside the Ti:sapphire crystal there
is self-phase modulation (SPM) because of the Kerr effect. In our laser, all this additional
dispersion is compensated by using specially optimised negative dispersion mirrors inside the
cavity [9]. The average power measured after the output coupler outside the laser cavity was
1.45 W at 800-nm central wavelength. With a repetition rate of 333 MHz, this corresponded
to a pulse energy of 4.35 nJ. Inside the femtosecond laser cavity two piezo electric transducers
(PZTs) were included for repetition rate locking on which high reflectivity mirrors were glued.
One piezo had a much higher modulation bandwidth than the other one. The faster one was
attached to M5 and could change frrp by 2-Hz V~! while the slower one attached to M4 could
change frpp by 20-Hz V~!. The range of the input voltage for both PZTs was from -200 V up
to +200 V. The bandwidth of the faster PZT was around 1-kHz frequency. The slower PZT had
a resonance at around 150-Hz frequency which was identified during experiments at Neuchatel

which will be presented later on in this thesis.
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3.2.4 Characterisation

Outside the cavity several irises were used to maintain the alignment of the ultrashort pulse
beam into the OPO and PCF. Part of the laser light was reflected with a wedge for pulse
characterization. As mentioned earlier, the average output power when the laser was modeloc-
ked was 1.45-W, centered at 800-nm wavelength (750-mW in CW regime). The output in the

radio-frequency (RF) domain recorded with an RF spectrum analyser is shown in Figure 3.
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Figure 3. The repetition rate frgp of the 333-MHz Ti:sapphire laser measured with a high speed
InGaAs photodiode (DSC40S) photodiode: (a) Radio-frequency (RF) spectrum of the repetition
frequency up to 23rd harmonic; (b) RF spectrum of the fundamental 333-MHz repetition rate.
The data were recorded using a resolution bandwidth of 100 kHz.

The RF observations of the modelocked laser suggest that stable Kerr lens modelocking is
ensured since there are no sidebands indicating Q-switching apparent around the main 333-
MHz frequency. The RF spectrum from 0 Hz to 8 GHz shows clean modelocking with the only
frequencies being frgp and its harmonics. No multiple pulsing was observed. The repetition
rate could be slightly tuned with the translation stage located inside the laser cavity. The
spectrum of the pulses measured using an Ocean Optics spectrum analyser is presented in

Figure 4.
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Figure 4. The 32-nm bandwidth of the modelocked femtosecond Ti:sapphire laser.
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The time-bandwidth product is the product of pulse duration and spectral width in frequency
domain (ATAf = TBP). Since the frequency f is related to the speed of light and the wave-

length as ¢ = Af, the Af can be replaced by AA’EC. We can directly relate the pulse duration
OTBP)\%
cAN

on the pulse shape. The TBP for sech? shape pulses is 0.315, while for Gaussian-shaped pulses

to the measured spectral FWHM in nm: A7, =

The minimum possible TBP depends

it is 0.44. There is a pulse duration limit for any given spectral width. The measured full
width at half maximum (FWHM) bandwidth of the pulses was 32-nm and corresponded to
a time-bandwidth product limited pulse duration of 29 fs (26 fs) for Gaussian (sech?) shape

pulses.

Since we did not observe any CW spectral component we could conclude that the laser cavity
was optimised for the modelocking regime. The peak power of the pulse P,cqrpower can be
calculated by dividing the average power P,y erqge by the repetition rate frrp and pulse duration
T (Ppeakpower = ﬁ). The average output power was 1.45 W, repetition rate 333 MHz
and the minimum possible pulse duration 29 fs for the Gaussian-shaped pulse. Therefore the
calculated peak power for the shortest pulse duration was 0.14 MW. Since the femtosecond
pulses leave the laser cavity through an output coupler (OC), the dispersion of the output
coupler must be taken into account when characterising the pulses. The first measurement of
the autocorrelation with the Timewarp (E-750) gave a pulse duration of 32 fs (see Figure 5)
which is not the shortest possible duration since the spectrum of 32-nm supports bandwidth-

limited pulse duration of 29 fs. The pulse duration defined at half intensity point.
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Figure 5. The autocorrelation of the Ti:sapphire pump pulse measured by two-photon absorp-
tion in a Timewarp autocorrelator immediately after the OC of the Ti:sapphire laser.

The pulse was temporally chirped since it was passing the OC placed inside the laser cavity
and the fused silica window to separate the laser system from the environment. In total about
8 mm length of fused silica was introduced which corresponds to a GDD of 290 fs. To com-
pensate the chirp, we used a pair of chirped mirrors having -100-fs?> GDD per double reflection

was implemented after the OC over the 0.75-0.95 um wavelength region. Three pairs of reflec-
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tions were sufficient to compress the pulses to their shortest durations (in total -400-fs*> GDD
compensation), but I added one more bounce for the compensation of additional optics placed
before the OPO and photonic crystal fiber. The autocorrelation of the compressed pulse after
the GTI mirrors is shown in Figure 5 which is still a bit chirped, but it was done in general to
improve the broadening of the pump spectrum in the PCF. The bounce number was changed

and the supercontinuum measured until the broadest spectrum was achieved.
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Figure 6. The autocorrelation of the Ti:sapphire pump pulse measured by two-photon absorp-
tion in a Timewarp autocorrelator after -400 fs> GDD was added.

After compression, a pulse duration of 29-fs was achieved. These compressed ultrashort pulses
were used to synchronously pump an optical parametric oscillator based on a PPKTP crystal
and to generate locked frequency combs from 1.0-4.0 um. A repetition rate increase by a factor
of three was also demonstrated by harmonically pumping this OPO. These results are presented
in Chapters 4 and 5.

3.3 PPKTP optical parametric oscillator

After the laser was characterized a synchronously pumped femtosecond OPO generating pulses
in the infrared region was constructed. The experiments presented in this thesis were done
by employing ring-geometry type OPOs. In this section I now present the design and the

characterisation of the synchronously pumped OPO.

3.3.1 Introduction

Synchronously pumped OPOs have the same cavity length as their pump laser. When the OPO
cavity length is changed, the OPO output wavelength changes due to the intracavity dispersion.
The OPO maintains synchronism with the pump laser but is oscillating at a slightly different
wavelength [12].
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3.3.2 PPKTP crystal design

We chose to build a ring type OPO cavity based on a periodically poled potassium titanyl
phosphate (PPKTP) crystal. Since the Ti:sapphire pump pulses were broadband, we aimed to
generate broadband signal and idler pulses too. The use of the quasi phase matching (QPM)
technique allowed us more flexibility in the output wavelengths than would be possible using bi-
refringent phasematching. The most common nonlinear crystals used for QPM are periodically
poled lithium niobate (PPLN) and periodically poled potassium titanyl phosphate (PPKTP).
In comparison, both are transparent from 330 nm to 4.5 um, the target range for our OPO
frequency comb. PPLN has a greater effective nonlinear coefficient than PPKTP, but PPKTP
has a nonlinear gain comparable to PPLN once the refractive index contribution to the figure
of merit is taken into consideration. PPKTP can operate at room temperature without pho-
torefractive damage [13] and has 3-4 times lower second-order dispersion (GDD) at the same
wavelength in comparison with PPLN (see Chapter 4), so pulse broadening and pulse walk-off
effects are reduced. The net GDD of an OPO must be compensated for the simultaneous ge-
neration of broadband signal and idler pulses. Most of the dispersion is due to the nonlinear
crystal. Our PPKTP crystal was 1.2 mm in length. While a longer crystal length may increase
the gain and therefore might produce more power, it may not ultimately be efficient due to
group delay walk-off. Using too long a crystal length will reduce the bandwidth of the generated
pulses since the parametric gain bandwidth depends inversely on crystal length. All of these

factors were considered when selecting the crystal length for the OPO.

Our goal was to generate a broadly tunable frequency comb in the mid-IR region from 1-4 pum
covered by the signal and idler pulses. Since our pump laser central wavelength was fixed at
800 nm, the signal and idler wavelengths could be calculated using

1 1 1

= + A7
>\pump )\sz’gnal Aidler ( )

Signal frequency combs spanning from 1-1.6 pm correspond to an idler wavelength shift from
1.6-4pm. A phasematching simulation for PPKTP was done in order to determine the approp-
riate QPM grating period. In this way the grating periods necessary to cover a broad range
of the signal wavelengths can be determined. The signal and therefore the idler wavelengths
generated in an OPO depend on the grating period A. Our PPKTP crystal had multiple gra-
tings which allowed the tunability of the central signal wavelength by moving the crystal in
the vertical direction. In total 10 different grating periods were implemented from 25.4-27.25
um. A crystal length of 1 mm was used for the parametric generation of a signal field which
could efficiently generate signal wavelengths from 1-1.6 um (see Figure 7). Here we consider
a practical pump pulse has 32 nm bandwidth from 784-816 nm. Figure 8 shows that the pha-
sematching is efficient for a signal wavelengths from 1.05-1.6 um when the grating period is
26.75 um. Grating periods from 25.4-27.25 um can be adjusted in order to accurately shift

the central signal wavelength according to the central pump wavelength (800 nm). The central
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signal wavelength could be tuned with a stage or PZT across a broad range of wavelengths.
The broadband tunability of the phasematching condition is determined by the pump pulse
bandwidth and the grating period. If the pump pulse is femtosecond, it allows broad signal tu-
nability by using the same grating period when the crystal is short. The grating period change

is not necessary which is not as critical for tuning, unlike the case for ps or ns pump pulses.
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Figure 7. Phasematching condition for a 1 mm length PPKTP crystal with a grating period of
26.75 pm.

The detailed PPKTP crystal design which included OPO, SHG, blank and SFM sections is
presented in Figure 8. The PPKTP crystal was used for a number of different experiments
which will be presented in later chapters. The crystal was AR coated for the wavelengths from
750-850 nm (pump) and from 980-1620 nm for the signal. The multiple grating periods made it
possible to generate signal pulses in a broad range of wavelengths from 1-1.6 wm. The resulting
idler field was generated from 1.6-4 pm. Since our experiments involved locking the fopo of
the idler or signal pulses, the additional gratings for pump+idler SFM and second-harmonic
(SHG) of the signal pulses were implemented so as to provide strong visible outputs which were

necessary in order to obtain a low-noise fogo heterodyne beat.

The crystal was mounted in an aluminium holder with an adapter. The mount ensured maxi-
mum space for the beam going through the crystal which was attached to an optical mount
(see Figure 9). The vertical and horizontal tilting was important for ensuring that the pump
light from the crystal surface could be reflected back to the Ti:sapphire laser. For the purpose
of alignment the reflected light from the PPKTP crystal had much lower power than the pump

beam and was followed around the OPO cavity in the opposite direction. The alignment of
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Length=1.2 mm

Pump

e Thicness=1mm

OPO SHG Blank SFM
(1mm) (50,100 or O um) (50, 100 or O um) (100 um)

(b)

No. | OPO grating (um) SHG grating (um) Blank section SFM grating (um)
1 A=254 (1mm) A=6.8 (50pm) 50pm A=21.1(100pm)
2 A=25.9 (Imm) A=17.1(50pm) 50pm A=21.0 (100um)
3 A=26.4 (1lmm) A=7.5(50pm) 50um A=20.5(100pm)
4 A =269 (Imm) A =82 (50pm) 50um A =20.0 (100pm)
5 A=27.15 (1mm) A=9.0 (50pm) 50um A=19.0 (100um)
6 A=27.25 (Imm) A=10.0 (50pm) 50um A=18.0 (100pm)
7 A=27.1 (Ilmm) A=11.8 (50um) 50um A=16.4 (100um)
8 A=26.85 (1mm) No SHG grating 100pm A=14.5(100pm)
9 A=26.6 (Imm) A=18.2 (100um) 0 A=12.5(100um)
10 A=26.5(Imm) A=23.0(100pym) 0 A =10.5 (100um)

Figure 8. (a) The general structure of a grating section of the PPKTP crystal. It contains
OPO, SHG, blank and SFM sections. The section structure is the same for all 10 grating
periods from 25.4-27.25 wm; (b) The grating periods of the PPKTP.

Figure 9. PPKTP crystal holder: the crystal was glued on an aluminium plate which was
attached to a Newport optical mount by using an adapter. The mirror mount could be moved
by an x-y-z translation stage.
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the reflected beam ensured that the phasematching condition was satisfied as we expected from
calculations. On other hand, the light must not be exactly reflected back to the Ti:sapphire
crystal, since it can disturb and stop the modelocking regime of the laser. The translation
stage which held the mirror and the crystal was used to change the grating periods without
re-aligning the OPO cavity. Nevertheless, since the OPO was tuned across a broad range of
the wavelengths, the alignment had to be repeated for each oscillating wavelength especially if

it was changed from 1.5-1.1 pum.

3.4 Ti:sapphire pumped OPO

The OPO was synchronously pumped by a 333-MHz Ti:sapphire laser (Gigajet, Laser Quantum)
producing 30-fs duration pulses with an average power of 1.45 W. Ninety-percent of the output
power was used to pump a 4-mirror ring type OPO oscillator based on a PPKTP crystal (Raicol

Crystals), which contained multiple cascaded gratings (see Figure 10).

3.4.1 OPO cavity design

The OPO design is presented in Figure 10. The 1.2 mm length PPKTP crystal was coated
with an AR coating from 0.75-0.85 um for the pump (T>95%) and from 0.98-1.62 pum for the
signal (R>99.8%). Mirrors M1-M4 were coated for the same wavelengths and additionally were
highly transmitting for the idler pulse from 1.7-4.5 um (T>80 %).

Curved mirror PPKTP Curved mirror Focusing

M2 crystal M1 Lens
depleted pump

idler pump

ocC
High reflectivity High reflectivity

mirror M4 mirror M3

Figure 10. The OPO cavity design: PZT2 and PZT3 are piezoelectric transducers, OC is
the output coupler, M1 and M2 are -75 mm curvature mirrors and M3, M4 are flat dielectric
mirrors. The OC was AR coated on one surface for signal wavelengths from 1-1.6 pm and had
no coating on the other one.

The pump light was focused with a f=63 mm focal length lens. The 17 um focal spot radius
gave a peak power of 0.14 MW. The damage threshold of the PPKTP crystal is much higher
(about 1-2 MW) and therefore if some damage occurs it is associated with the crystal surface
damage (the coating). The PZT2 (Thorlabs, AE0203D04F) used for the OPO foro locking
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was mounted on a plane mirror M4. For the rough adjustment of the cavity length, a second
piezo (PZT3, Thorlabs AE0505D08F) was placed inside a translation stage on which M4 mirror
was attached. It was connected to a Newport Microdrive Controller (ESA-C) for manual fogo

and wavelength tuning.

The optimum OPO cavity design was found in LCav (in house program). LCav used "ABCD'
ray matrices to calculate the distances between optical elements, calculate the spot size at the
focus, and the stability region. The PPKTP in the modelling was placed perpendicularly to
the pump beam and assigned a refractive index of 1.8253. The distance between one of the
curved mirrors and the PPKTP crystal was changed together with the folding angle in order
to calculate the stability of the OPO cavity [14]. In the modelling a 6 degree folding angle was
used. The same angle which was used in the real experiment. The smaller the angle was, the
smaller the astigmatism that was introduced into the system, but we were limited by the mirror
holders, and other mechanical constraints. The estimated stability region of the OPO cavity
at different folding angles is presented in Figure 11. As the folding angle was increased, the
stability zone of the cavity narrowed because the separation between the vertical and horizontal
stability zones widened, indicating astigmatism. The cavity was less stable for bigger folding
angles because of the increasing astigmatism. The distance D shown in Figure 11 represents

the distance at which the cavity was still stable for the curved mirror M2.
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Figure 11. The stability region of the OPO cavity when the folding angle was changed from 0
to 18 degrees for the same distance between the curved mirror (R=-75 mm) and the PPKTP
crystal. The line in red indicates the OPO operating angle.

At a folding angle of 0 degrees the curved mirror M2 could be placed at a distance from the
PPKTP crystal of between -2 mm to 2 mm from the zero position, whereas for a folding angle of
15 degrees the distance could be changed only by 0.25 mm. In this case the cavity had a much

smaller stability range and, if constructed, the OPO would be less stable and more sensitive to
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external perturbations. The intracavity spot radius of the oscillating signal beam was calculated
in LCav. Tt varied from 25-30 um (1/e* radius) depending on the central wavelength of the
signal oscillating in the OPO cavity. Mirrors M2 and M3 were concave with -75-mm radius
of curvature while mirrors M3 and M4 were planar. The ring cavity confined the oscillating
wave to a 27-um beam radius inside the PPKTP crystal at a signal wavelength of 1.25 pum.
The pump laser beam was focused with an f = 63-mm lens through M1 to produce a beam
waist radius of 17 pm, as required by the Boyd-Kleinman condition [15]. The pump spot size
corresponded to an intensity of 0.14 MWem ™2, which is limited by the PPKTP coatings damage
threshold. A stable regime of the OPO was achieved when the distances between the PPKTP
crystal and curved mirrors were set to 39.07 mm. The beam propagation inside the cavity is

presented in Figure 12.
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Figure 12. The beam profile of the signal pulse oscillating in the 333-MHz OPO cavity (a) full
path; (b) around the nonlinear crystal.

The smallest possible half-folding angle for the OPO was 3 degrees. The detailed final confi-
guration of the 333-MHz OPO oscillating from 1-1.6 um for the signal pulses is presented in
Figure 13. A fused silica window was used as an OC and the output power depended on the
angle of that window, according to the Fresnel loss. We used a 40 degree angle which gave
us power in the signal pulse as high as 60 mW. A reflectivity of 2 % at this angle should be
possible, which suggests the internal power of the signal to be as high as 3 W. On the output we
could see two beams leaving the OPO cavity since the other surface AR coated for the signal,

which was still reflecting the signal light.

The working OPO is shown in the photograph reproduced in Figure 14. In this picture we can
notice a lot of visible color in the OPO cavity. The OPO was built for signal oscillation from
1-1.6 wm, but other frequencies also appear. As the pump propagates in the PPKTP crystal,
not only signal, but also idler pulses are generated. Other nonlinear processes including SFM of
the pump and signal, pump and idler, and SHG of the pump and signal also take place. Even
SHG of the idler occurs but we cannot see this with the eye.
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M2 PPKTP M1
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R=-75 mm crystal R=-75 mm
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Figure 13. The final OPO cavity configuration where the folding angle of 6 degrees was used
and the positions of the optical elements calculated to ensure a stable OPO operation. All units
in mm.

To ensure efficient generation of different nonlinear processes the ring type OPO must be
properly aligned. The distances between elements were determined before the final alignment.
At the beginning the pump beam focused into the PPKTP crystal must be overlapped with
itself for as many round trips as possible. This was done by using a second-harmonic beam of
the pump which is in the visible at 400 nm. The 400 nm beam could be seen on the curved
mirror M1 which was the initial point for the alignment. The beam travelling around the cavity
twice was visible on the mirror M1 surface. When those two beams were overlapped and the
cavity length was the same as the pump laser, oscillation was observed and the OPO could
generate a broad range of visible wavelengths. The pump power for the initial alignment was
limited to avoid damage until oscillation was found. The power and the beam shape of the
signal was observed by moving the focusing lens position, the PPKTP crystal and the cavity
length together with the distance between the curved mirror M2 and PPKTP crystal. All these
parameters must be changed step by step by observing the signal output power reflected from
the OC and the beam shape.

Figure 14. Photograph of the 4-mirror OPO cavity pumped by the Ti:sapphire laser.
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3.4.2 Characterization

The OPO cavity length was about 900 mm. The largest separation between the mirrors was 368
mm. Any large separation means higher instability due to cavity length drift and air currents,
therefore the OPO stability was ensured by boxing it. Once the OPO was finally running in a
stable configuration, a full characterisation was performed. Figure 15 shows the depleted pump

which was measured after the light passed through the curved mirror M2.
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Figure 15. The pump pulse spectrum before the OPO was running (blue) and when the OPO
oscillated (red) at 1450 nm. The spectra were recorded after the curved mirror M2.

The presented spectrum was measured for the grating period of 27.25 um. For this grating
period an efficient phasematching condition was ensured for the pump wavelength at 812 nm.
At this pump wavelength the pump power is most depleted and the central signal wavelength
was 1.46 um. The calculated pump depletion expressed as a percentage from areas of the plots
presented in Figure 15, was 25%. It means that we are not using all the pump power. We
are limited by the phasematching for a relatively narrow wavelength window in comparison
with the ultrashort pulse bandwidth. Details of the OPO characterization such as its tuning,
pulse durations and cavity dispersion are presented in Chapter 4 and Chapter 5. We used this
OPO design for the demonstration of the repetition rate multiplication of a locked frequency
comb from 333 MHz to 1 GHz frequency by synchronously pumping a three times shorter OPO
cavity. The OPO design also formed the basis for the demonstration of tuning covering the

mid-IR region from 1.95-4.0 pum.
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3.5 Conclusions

This chapter has presented details of how a Laser Quantum 333-MHz repetition rate Ti:sapphire
laser was used to pump a 4-mirror ring-geometry OPO. The conditioning of the pump pulses
prior to the OPO using GTI mirrors was described and a subsequent characterisation of the
pump laser was presented. The rationale for the selection of a PPKTP OPO crystal was
discussed and the details of its design and phasematching presented. The OPO resonator
design and alignment were described, and were followed by some initial characterizations of
the working OPO. The following chapters present investigations carried out using this OPO,
extending its operation to 1 GHz repetition frequency (Chapter 5) and to a fully tunable
frequency comb from 1.95-4.0 pm (Chapter 4).
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Chapter 4. Mid-IR 333-MHz frequency comb continuou-
sly tunable from 1.95-4.0 um

This chapter reports a fully stabilized idler comb from a 333-MHz femtosecond optical paramet-
ric oscillator in which carrier envelope offset frequency (fcgo) stabilization was implemented
by using a versatile locking technique that allowed the idler comb to be tuned continuously
over a mid-infrared range from 1.95-4.0 pm. We designed a multi-section and multi-grating
PPKTP crystal which provided phasematched parametric generation, amplification and effici-
ent pump-+idler sum-frequency generation (SFG). The pump+idler SFG light from 570-670 nm
heterodyned with the pump supercontinuum resulted in a strong signal across the tuning range
of the OPO. The idler comb foro was stabilized to a 10-MHz external frequency. A cumulative
phase noise from 1 Hz-64 kHz of <1.3 rad was measured across the full comb operating range.

Average idler output powers of up to 50 mW were obtained.

4.1 Introduction

Many molecules exhibit vibrational absorptions in the mid-infrared (mid-IR) spectral region
where each molecule has a characteristic absorption spectrum which can be used for ‘molecular
fingerprinting”. This chapter is focused on the generation of a continuously tunable frequency
comb in the mid-IR region since such combs are promising sources for dual-comb [1], coherent
FTIR spectroscopy [2] and for molecular spectroscopy, trace gas detection [3, 4]. Combs pro-
ducing longer wavelengths could have applications in laser-driven particle acceleration [5] or
as sources of carrier-envelope-phase (CEP) stabilized seed pulses for injection into high power
amplifiers [6, 7] for extreme ultraviolet (XUV) high harmonic generation [8, 9]. Frequency comb
based techniques can provide hundred-fold improvements in acquisition rates, high spectral re-
solutions and broad spectral bandwidths limited only by the femtosecond laser. Conventional
mid-IR Fourier-transform infrared (FTIR) spectrometers have limited acquisition times and
their spectral resolutions are limited by the mechanical motion of the Michelson interferometer
and the available displacement of the scanning system. Frequency combs comprise many equ-
ally spaced lines in frequency and periodically repeating trains of pulses in time and therefore

are perfect candidates for high resolution spectroscopy.

There are several methods to achieve frequency combs in the mid-IR region. Extremely tunable
combs extending from 3-17 wm can be generated via difference frequency generation (DFG)
but the DFG nonlinear process is not efficient [10, 11, 12]. This method is most efficient
only for high peak power pulses since the interacting pulses travel through the material only
once. Frequency combs can be generated in high-Q-factor optical micro-resonators [13, 14].
In these microscale resonators four-wave mixing and Raman gain generates combs from an
intense CW pump. Wavelengths to 3.1 pm in silicon have been produced in this way [15].
Practical micro-resonators are still on the horizon since a lot of investigations must be done in

order to understand how the comb is generated, and control its exact structure and dynamics.

45



Nonetheless this is still one of the most promising methods to generate combs in the mid-
IR region. Femtosecond lasers emitting light directly in the mid-IR have also been reported,
notably Cr?T:ZnSe [16, 17], Cr?**:ZnS [18] and Tm-/Ho-co-doped fiber lasers [19] operating
from 2.0-2.4 wm, and such systems have been demonstrated as fully stabilized frequency combs
[20, 21]. The highest average power combs with the best conversion efficiency in the mid-IR
region are achieved from optical parametric oscillators (OPOs) [22]. Wavelength coverage of
up to 4.8 wm has been generated [22, 23] with fogo beat linewidths limited to the instrument
resolution of 15 Hz [24]. Such Hz-level linewidths [24] are much better than those obtained from
other mid-IR combs [25, 26]. Degenerate OPOs have been reported which can emit spectra
covering 900 cm™" at 3 pm [27].

Building broadband frequency combs in the mid-IR region is a challenging task involving precise
dispersion and reflectivity control together with sophisticated design of the nonlinear crystal
over a broad range of wavelengths. In this chapter I describe an approach which allows the
generation of a broadly tunable and locked frequency comb in the mid-IR region from 1.95-4 pum,
in which the pump repetition rate frgp and the carrier-envelope offset fogpo frequency of the
idler pulses are locked to a traceable radio-frequency reference. This work proved that the
frequency comb in the mid-IR region was preserved by some careful power spectral density and

cumulative phase noise measurements. Two-sample frequency deviation data are also presented.

4.2 Concepts in phase and frequency control of femtosecond lasers
4.2.1 Repetition rate frgp

A modelocked laser produces pulses which are separated in the time-domain by a fixed spacing.
In the frequency-domain these pulses form a comb: a number of longitudinal modes, separated
by a fixed spacing. Unfortunately, this spacing is not truly fixed because of temperature fluc-
tuations, vibrations and electronic noise. These perturbations couple into the optical system
and effectively modulate the time-dependent output intensity, whose variations can be measu-
red via a relative intensity noise (RIN) measurement. Moreover, these perturbations change
the repetition rate frep of the laser system and the difference between the group and phase
velocities (fopo). Both frequencies must be stabilized to a well known reference, if we want to

achieve a truly stabilized frequency comb.
4.2.2 Carrier-envelope-offset fopo frequency

Definition of the frpo frequency

The second-parameter which must be stabilized to achieve a locked frequency comb is the
fereo frequency. The femtosecond pulses oscillating inside the Ti:sapphire or OPO cavity are
transmitted and reflected from different optical elements. Usually these optical elements are
dispersive and cause the group and phase velocities to be different. This results in a change

of the foro frequency. The ultrashort pulse envelope travels at the group velocity, while the
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carrier wave travels with the phase velocity. The difference between the carrier-wave of a pulse
and the maximum point of its envelope is the carrier-envelope-phase (fcrp). The ultrashort

pulse electric field can be written

E(t) = E’o(t)exp[iwt + iQSCEP] (48)

Because of the difference between group and phase velocities in THE presence of dispersion,

the ¢cgp is changing continuously from pulse to pulse. Usually ¢cgp is not controlled, but if

A¢cep
21

the laser system, the difference between carrier and envelope must be fixed.

I

we want to have the same ¢opp (or fopo=0 since fepo = frEp ) for each pulse leaving

—
q)CEP

Figure 1. The pulse carrier is offset from the pulse envelope by ¢cgp. In a modelocked oscillator,
after each cavity roundtrip, ¢cgp changes by Adcpp.

In the frequency domain the pulse train contains a number of longitudinal modes separated
by the repetition frequency, where the ensemble of modes has an offset from zero hertz of an
amount equal to the fopo frequency. If we lock the repetition rate or the mode spacing frep
and the longitudinal modes offset fogo, we achieve a truly stabilised frequency comb whose
stability is only limited by the reference source. The structure of the locked comb is presented

in Figure 2.

fcro detection

There was no straightforward method for measuring the fcgo until 1999 when microstructure
fibers, today known as photonic crystal fibers (PCF), appeared. These fibers containing air-
holes surrounding a silica core were used to demonstrate supercontinuum generation in 1999 by
Ranka et al. [28]. The PCF structure gives a large core-cladding index difference which results
in strong mode confinement, single-mode operation over an exceptionally wide wavelength range
and a large effective nonlinearity. Moreover, the air-hole pattern determines the dispersion of
the fiber and therefore the GVD can be easily controlled. The optical nonlinearities in the

PCF ensure efficient pulse broadening leading to supercontinuum generation. A variety of
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Figure 2. Evenly spaced modes of an ultrashort pulse train forming a frequency comb which
frep and fopo are locked.

applications were presented where one of them was the optical frequency comb stabilization
[29]. Jones et al. in 2000 demonstrated fogo stabilization of an ultrashort pulse modelocked

Ti:sapphire laser by using a PCF.

The method for detecting the fopo frequency was called the f-2f self-referencing technique [30].
The idea of detecting fogo is simple: the comb must be broadened to become octave spanning.
This can be achieved in a PCF in which self-phase modulation, Raman and four-wave mixing
effects can broaden the spectrum so much that the second-harmonic of the long-wavelength
end can spectrally coincide with the shorter wavelengths in the spectrum (see Figure 3). The
frequency doubled comb has an offset of 2 fogo while the original comb at the same wavelength
has an offset of only fogo. As a result, by heterodyning the frequency doubled light with the
original comb, we can detect the fogo of the laser pulse if the phase relationship between the
longer and shorter wavelengths/frequencies is maintained during the comb broadening. For
this technique to be possible, the supercontinuum must be octave spanning and coherent. This

technique is now the common method used to measure fogo of a laser frequency comb.

1(f)

fenfrpptfope  2f=2nfpep+2fg  f=mfpeptfeg,
. ~
doubling L ]
|

fCEO

Figure 3. Measurement of fogpo by the f-2f self-referencing method using an octave spanning
pump spectrum.
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The shorter and longer frequencies of an octave spanning comb can be expressed as

fi = feceo + nfrep

(49)
J2 = fero + mfrEP
where n and m are mode numbers. If f; is frequency doubled in a nonlinear crystal then it will

contain

2f1 =2fceo + 2nfrep (50)

As we can see, when 2n &~ m we have two combs in a common spectral region but whose offsets
are different by fogo. Therefore by heterodyning these two combs on an avalanche photodiode
we can detect only harmonics of the frpp and the desired forpo. The obtained fopo signal

may vary between 0 Hz and f’%%

Other self-referencing methods have been used for fogo detection. In the case of fs OPOs
we heterodyned non-phasematched SHG or SFM visible wavelengths with the coherent pump
supercontinuum light. There are three waves interacting with each other: pump, signal and
idler. They possess a fixed phase relationship between the pump, signal and idler ¢cgp. In the

frequency domain it can be expressed as

Lo = foto + 188 (51)
From this equation we can state that all frequency combs are stabilised, when at least two out
of three fogo are locked. If the repetition rate frgp of the pump laser is also referenced, then
we have fully stabilised frequency combs from an OPO too. After the fopo has been detected,
it must be compared to a reference source. We used a phase frequency detector (PFD) circuit
reported by Prevedelli et al. in 1995 to measure the difference between the detected fopo
frequency and a reference frequency [33]. The PFD expresses the frequency/phase difference as
a voltage which we can then use as an error signal. The corresponding voltage is then applied
to steer the fopo via any element that controls the difference between the group and phase
velocities. In our OPO we used a piezoelectric-transducer (PZT), on which was attached a

cavity end mirror.

Controlling fcro

There are several methods by which we can control the detected fopo. The common methods
modulate the pump power [31, 32] or change the nonlinear refractive index of the laser medium
via acousto-optic modulators (AOM) placed in the pump beam. The parameters of the fs laser
are the same, but due to diffraction effects the power is reduced. More efficient control of fogo

can be achieved by directly modulating the pump diode current [34].

We used piezo-electric transducers (PZTs) for the fogo control in our synchronously pumped
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OPOs. The central wavelength of the OPO was tunable with cavity length [35]. Since the OPO

uses only dispersive mirrors, the cavity round trip time/cavity delay is fixed

T(w) = gj = constant (52)

This means that the group delay must change accordingly to the change of the cavity length
L. Therefore the group delay dispersion is:

or 8% 16L

)

L _ Y __-7~Z (53)
ow  Odw? cow
or
ow -1
oL () o
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From the equation above we can see that the cavity central wavelength will tune quickly for a

low GDD cavity and slower for a high GDD cavity.

The spectral phase is given by (see Chapter 2)

0p(w
¢cep = P(w) —w g(bs( ) (55)
w
Then the change with frequency can be expressed as
5¢CEP _ _ 62¢(w> (56)
ow ow?

The equations (54) and (56) can be compared to give

ow c ow
or
dpcep %
ow % (58)
5L

From Equations (54) and (58) it can be shown that the phase will shift much faster than the
oscillating pulse central frequency. Therefore the fopo can be controlled by adjusting the OPO
cavity length without significantly affecting the oscillating pulse central wavelength. This is

done by a PZT via a feedback loop for fogo stabilization.

4.2.3 Phase-noise

Phase-noise measurements were performed for the purpose of determining the noise of the
locked foro and repetition rate frgp frequencies. The laser produces pulses whose phase and

amplitude can be described as
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E(t) = Eoexp[iw°t+i¢(t)} (59)

We can measure the noise of the locked fopo and determine the frequencies at which the noise
is strongest and has the most impact on the linewidth of the comb tooth. For this measurement
we used the output from a PFD circuit and the output from a mixer in the case of the repetition
rate. The PFD output was calibrated in order to calculate the power spectral density (PSD)
of the locked signal. The cumulative phase noise PSD was calculated by summing the noise

across the recorded frequency range.

The phase noise was presented by using a power spectral density (PSD) plot. It describes
the noise power per unit frequency interval relative to the mean rad? Hz~!. The equation for
the PSD calculation can be found in [39]. The Fourier transform for a function h(t) can be

expressed as

H(f) = i h(t)expP™ 1 dt (60)
(t) = 5> H(fexpl>dy (61)

According to Parseval’s theorem, the contained signal energy in time and frequency domains is

the same. Therefore the total power

Eua = Y. |H(NPAf = 3 [b(e) P (62

The power spectral density (power in a frequency interval) can be calculated as

Pu(f) = [H(F)I? + [H(=1)” (63)

for 0 < f < oo. We used a discrete Fourier transform for the PSD calculation since we have a
finite number of points. The discrete Fourier transform containing N points is written as
27rijn]

N-1
Hy = Z hjexp[ N

=0

(64)

Then the phase noise PSD can be normalised using the mean-squared-amplitude. The integral
of the PSD over the range from 0 Hz to the Nyquist frequency is equal to half the mean-squared-
amplitude and this was used to normalise the PSD for each frequency [39]. The resulting phase
noise PSD against frequency is given for the characterization of the locked heterodyne beat.

The cumulative noise is calculated by integrating the normalised PSD over the frequency range

fNyquist

RMSPSD = [ Z an'm(f>df]% (65)

where fnyquist is the Nyquist frequency and P, is the normalised PSD.
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4.2.4 Two-sample frequency deviation

The next important method for the noise characterization of the locked fogo and repetition
rate frpp is the two-sample frequency deviation measurement [36]. The Allan or two-sample
variance is a measure of the stability of an oscillator in the time domain. A frequency counter
is used to count the mean value of a frequency over a several different gate times. It is the
variance of the difference of two fractional frequencies f;,; and f; (see Figure 4). The fractional
frequency f; was measured at time ty+ ¢7 while frequency f;,1 was measured at a later time of
to+ (i +1)7. The Allan variance depends on the gate time 7 and expresses the mean-square of

all frequency counter samples separated in time by 7. The Allan variance can be expressed as

N-1

oy(1) = JZ(Nl—l) > (fix1 = fi)? (66)

i=1
where N — 1 =[Z] — 1 and
= fi(to +;T) —Jo (67)
0

fi is the fractional frequency at sample time tq + i7 and f;(¢) represents the current frequency

averaged over a time interval of 7. fj is the frequency of the reference. It is a variance of N-1
pairs of frequency measurements taken at time ¢ and ¢+ 7. The Allan variance calculated values
depend on the accuracy of the counters used for the measurement and on the timing precision

between any two measurements.

t, tott  ty+2t ty M1
y(0) y(1)  vy(2) y(M)

H

\ J
|

Measurement interval

totT

Figure 4. Time line for frequency counter measurements.

There are two methods of measuring the frequency stability referred as II and A counters
[37, 38]. Both counters provide one value every 7 seconds when programmed to measure over
the time 7. This can lead to assumption that the estimation is always of the II type. The

internal estimation for the frequency error are of the form:
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interpolator

| (68)

_ 2 2
Oy(T) - qurtn \/2(5t)trigger + 2(5t)interpolato7" fOI‘ A counter

1
Uy(T) = ;\/2(5t)t2rigger + 2<5t)2 fOI' 1T counter

where for A counter

n = for when foo < fi and

(69)
n = fit when fo > fi

where f; is of the order of 200 kHz. The two terms inside the square root correspond to
independent white noise processes. In the Il counter, the measurement stops at the first zero
crossing as the measurement time elapses. We have uniform average in the presence of white
phase noise. In case of A counter, it consists of a triangular-weight average. The counter takes
a series of n measurements of f; and expects value of f by averaging. Therefore by using a A
counter we can not calculate the frequency stability for other gate times than we set gate time
of the measurement. The Allan variance for different gate times can be extracted only by using

II counter.

4.3 Ti:sapphire pumped OPO

The OPO was synchronously pumped by a 333-MHz Ti:sapphire laser (Gigajet, Laser Quan-
tum). Details of the OPO design were presented in Chapter 3.

4.3.1 Cascaded-grating PPKTP crystal

In order to achieve comb locking over a broad wavelength range, a strong enough heterodyne
possible for a variety of OPO operating wavelengths. As introduced already in Section 3.3.3 for
this reason we used a new design of PPKTP crystal. The PPKTP crystal was 1.2 mm thickness
with an aperture of 1 x 13 mm. It contained a 1-mm section phasematched for signal generation
from 1.0-1.6 wm, a 50 wm section for second-harmonic generation (SHG) of the signal and a
100-pm section for pump+idler sum frequency generation (SFG) (see Figure 5).

This crystal design enabled the efficient production of pump+idler SFG light, which was hetero-
dyned with common wavelengths in a pump super-continuum (SC) generated in a 30-cm length
of photonic crystal fiber (PCF) to yield the idler fogo frequency employed for comb stabili-
zation. The introduction of the 100 wm thickness additional quasi-phasematched pump+idler
SFG sections was critical for generating a sufficiently strong heterodyne beat signal for idler
foro stabilization. Our electronics required a >30-dB S/N beat between the pump supercon-
tinuum and the SFG light. In previously reported examples of OPO frequency-comb locking
schemes, parasitic SFM has served this purpose, however it cannot be relied on to be generated
with uniform efficiency across a broad tuning range, because it typically originates either from
the last coherence length of the crystal or from high-order phasematching, which is strongly

wavelength dependent.
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Figure 5. PPKTP crystal design, comprising four sections with lengths of 1 mm, 50 wm, 50pum
and 100 um. Sections 1, 2 and 4 were phasematched for OPO, signal SHG and pump + idler
SFG respectively, with Section 3 being unpoled except for Gratings I and J, in which it was
phasematched for signal SHG.

To illustrate the importance of phasematched SFG section in the crystal for ensuring efficient
pump-+idler frequency mixing we present here a simulation for section G using a nonlinear
envelope equation model [40] introduced in Section 2.2.3. The simulation presented in Figure
6 reached steady state after 80 roundtrips. Figure 6 presents the evolution of the p+i mixing
field as the pump and idler propagate through the 1.2-mm length PPKTP crystal. As we can
notice, at the beginning the pump+idler field is weak. The light is weakly generated in the
1000um OPO section of the crystal. We can notice a forward and backward pump-idler field
energy exchange which happens over one coherence length. The pump+idler SFG starts to grow
rapidly in the 50-um SHG section and in the 100-um SFG section at 1100 um. Between the
SHG and SFG sections a 50-um blank section does not change the strength of the pump-idler
field. Once we start introducing gratings, the crystal is better phase-matched for frequency
mixing and it gives an advantage as the power goes up by nearly two orders of magnitude
compared to the parasitic SFG which is sufficient to ensure a strong heterodyne beat for fogo

locking across a broad range of wavelengths in the mid-IR region.

4.3.2 OPO tunability in the mid-IR region

The idler pulses were output coupled through cavity mirror M3 and their tunability was eva-
luated by directing the collimated idler beam into a Fourier-transform spectrometer. A second
beam from a 632.8 nm HeNe laser was coupled into the interferometer for absolute delay calibra-
tion. Mid-IR and HeNe calibration interferograms were recorded, with idler spectra measured
as the OPO cavity length was tuned. Operation close to degeneracy was unstable and unsui-
table for comb stabilization. We note however that, with suitable intracavity dispersion control

and cavity stabilization, degenerate femtosecond OPOs can operate stably over a broad instan-
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Figure 6. Simulated OPO output spectrum for Grating G, expressed as a logarithmic density
plot, showing its evolution through the crystal once steady-state has been reached. The upper
line plot shows, on a linear scale, the fundamental, second-harmonic and sum-frequency fields
of the pump (p), signal (s) and idler (i) waves. The line plot left of the main figure shows
the evolution of the p + i sum-frequency field, illustrating how its amplitude is enhanced
substantially by the inclusion of both the SHG and SFG gratings.

taneous bandwidth [41, 42]. Figure 7 shows the idler spectra and corresponding average power

for the 1.95-4.0 pm tuning range over which frequency-comb stabilization was possible.
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Figure 7. Cavity-length-tuned OPO idler spectra measured using a Fourier-transform spect-

rometer. Symbols specify average output coupled idler power. The resolution of the FTIR

interferometer was 2 cm™1.

As the idler wavelength was changed from 1.95-4 um, the wavelength of the pump-idler light
was changed from 570-670 nm accordingly (see Figure 8). The new design of cascaded-grating
PPKTP crystal could easily generate a strong pump+idler field across the full tuning range
of idler. A strong foro heterodyne beat note was obtained for every idler wavelength. The

heterodyne beat signal was maintained at a sufficiently strong level as the idler wavelength was

55



tuned from 1.95-4 pm. Selection of a common wavelength on the photodiode over such a broad
wavelength range was ensured by introducing a monochromator. There was no need to use
optical filters in order to overlap the same wavelengths from the PCF and OPO, allowing the
fero signal-to-noise ratio to be maintained at a high level (>35 dB at 100kHz RBW) across
the OPO tuning range.

o
o

Normalised intensity, a.u.
B

o
o

500 550 600 650 700

Wavelength &, nm

Figure 8. Spectral overlap of the pump+idler SFG light (green to red) and the pump super-
continuum (blue). The 570-nm SFG light (green) was overlapped with the super-continuum
light component on one edge giving the fogpo frequency of the idler pulse at 1.95 pm. Simi-
larly, the 670-nm SFG light (red) on the other edge was overlapped with the super-continuum
component for fogo stabilization of the idler at 4.0 um.

The full spectrum recorded from 417-1600 nm for the pump supercontinuum from the PCF is
presented in Figure 9. The data are plotted from the measurements taken by two Ocean Optics
visible spectrometers and an optical spectrum analyser (OSA). The pump supercontinuum
generated in the photonic crystal fibre spanned from wavelengths as low as 510 nm and as high
as 1200 nm.

4.4 Stabilization of the mid-IR frequency comb continuously tunable
from 1.95-4.0 pm

Stabilisation of the OPO was done by stabilising the frrp of the Ti:sapphire laser and then
with a nonlinear interferometer locking the signal or idler fogo by interfering the pump su-
percontinuum with pump+idler or signal SFM pulses [43]. For example, the interference of
the pump-+signal SFM pulses with the pump supercontinuum results in the fogo of the signal
pulses since the noise of the pump pulses vanish because of common-mode rejection [43]. In
this chapter I focus on the stabilisation of the idler comb and therefore only the idler pulses
are considered. Here we have only one nonlinear interferometer for heterodyning the pump

supercontinuum with the pump-+idler SFM pulses from the OPO.

An optical scheme for detecting the fopo of the idler pulses is presented in Figure 10. The
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Figure 9. Spectrum of coherent pump supercontinuum from the photonic-crystal-fiber (PCF).
The wavelengths from 417-732 nm (in green) were recorded with an Ocean Optics visible spect-
rometer (Ocean Optics, USB4000-UV-VIS) while the wavelengths from 732-937 nm (in red)
were recorded using a second Ocean Optics spectrometer which covered the range from 661-937
nm (Ocean Optics, USB4000-VIS-NIR). The near-infrared spectrum spanning from 937-1600
nm (in blue) was recorded with an OSA (Ando AQ6317B Optical Spectrum Analyzer).

333-MHz Ti:Sapphire pump laser produced 30-fs pulses with 1.45-W average power centered
at 800 nm. The Ti:sapphire pump pulse was divided at a 90 % reflecting beamsplitter (BS1)
into two channels. The majority of the power (90 %) was used to synchronously pump the
OPO while the remaining 10 % was launched it into 30-cm length of photonic crystal fibre
with a core diameter of 2 um and zero dispersion at 740-nm wavelength (NKT, NL-2.0-740)
for supercontinuum generation. The nonlinear crystal was placed perpendiculary to the pump
beam.

Before transmission through BS1 the light was bounced off a pair of GTT mirrors for a dispersion
compensation (-200 fs?). The light transmitted through BS1 was propagated through a half-
wave plate before being focussed into the PCF. The spectrum from the PCF was optimised by
adjusting the average power and the chirp of the pump pulses to give the shortest wavelengths
in the supercontinuum. The strength of the heterodyne beat was improved by small half-
waveplate adjustments. In addition a number of different focal length aspheric lenses were
tested to improve the coupling efficiency into the PCF. A transmission efficiency of up to 60 %
was achieved. After the fiber, the output coupled light’s polarization was rotated with quarter-
and half-wave plates which changed the polarization from circular to horizontal. The use of
wave-plates made it possible to maximise the light transmitted through the polarising cube
(PBS) and increased the strength of the heterodyne beat detected at the avalanche photodiode
(APD). On the other arm the pump-+idler SFM pulses passed through OPO cavity mirror
M3 since it was not coated for the visible range. For the collimation of the beam, a 60-
mm focal length lens was placed after mirror M3. To ensure the same beam sizes from the
OPO and PCF, +50-mm (f3) and -20-mm (f4) lenses were placed before the half-wave plate.
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Figure 10. Layout of the PPKTP OPO: PD, photodiode; PBS, polarizing beam splitter; DG,
diffraction grating; APD, avalanche photodiode; PCF, photonic crystal fiber; BS, beam splitter.

The light polarization was optimised with a half-waveplate which improved the transmission
of the pump-idler light through the beamslitter (PBS). After it the pump-idler beam was
overlapped with the supercontinuum beam, and the common wavelengths were isolated with a
diffraction grating (Thorlabs, 1800 lines per mm, 12.7x12.7x6 mm). This ensured that only a
narrow-bandwidth of light reached the APD. A polariser was rotated in front of the APD to
maximise the S/N ratio of the heterodyne beat for foro detection. It balanced the two arms
of the interferometer, ensuring that the strengths of the two signals at the APD were the same.
Finally, the alignment of the beams was ensured over several meters distance to ensure a strong
beat. The path difference between them was optimised with a delay-line.

The fcpo of the pulses was acquired by heterodyning non phase-matched light from the
OPO with the coherent pump supercontinuum light from PCF. As presented in Figure 8,
the lowest pump-idler wavelength was 570 nm which could be quite easily acquired from
the PCF. As the OPO was tuned, we acquired fogo of the idler pulses by heterodyning the
phasematched pump+idler light tuned from 570-670 nm with the coherent pump superconti-
nuum light. A typical heterodyne beat obtained at the APD is presented in Figure 11. As we
acquired a heterodyne beat from the 333-MHz OPO, we could detect the fogo drift. The fogo
of the idler typically would drift by 100 MHz in several tens of seconds. With a fast Si photo-
diode the repetition rate of the 333-MHz Ti:sapphire was detected. As a result, the frequency
comb was fully stabilised by locking the frgp and the fogo frequencies. The feedback loops

for the comb stabilization are illustrated in Figure 12.
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Figure 11. fopo of the idler was maintained at a high level (>35 dB) across the entire tuning
range from 1.95-4 um. RBW=100 kHz.
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Figure 12. Comb stabilization scheme, showing the separate control loops used for fogo and
frep locking. LPF stand for low-pass-filter, BPF is band-pass-filter, PFD is phase-frequency
detector, PI controller is proportional-integral controller, SSG1 is synthesized signal generator.

4.4.1 Repetition rate stabilization

Firstly the frgp of the Ti:sapphire laser was stabilized. If the pulse repetition rate is stabilized,
the mode spacing between each pair of neighbouring comb modes will be exactly the same. For
this purpose a small fraction of light, leaving the photonic crystal fiber (PCF) was reflected
from BS2 to photodiode (PD) (see Figure 10). This fast Si photodiode acquired the 333-MHz
repetition rate and moreover, gave higher order harmonics of frpp up to the 6th harmonic (2
GHz). The detected 2-GHz frequency was isolated with a band-pass filter (BPF) and mixed-

down with a 2-GHz reference frequency obtained from a synthesized signal generator (SSG1).
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The difference frequency output of the mixer was low-pass-filtered (LPF) at 50-MHz and entered
a proportional-integral (P-I) amplifier as an error signal. The output from the P-I controller was
used to actuate a piezoelectric transducer (PZT1) in the Ti:sapphire laser. The active tracking
of frep with PZT1 made it possible to stabilize the repetition rate which could remain locked
for several hours without additional cavity length adjustments. The implemented feedback
loop locked frep. The best phase noise PSD measurement of the locked repetition rate was
obtained when the P-I amplifiers parameters were set to LF jginiimit= 30 dB, Gain = 5.0 and
foorner frequency= 3 kHz. We used both PZTs available inside the laser cavity (see Chapter 3).
The results are presented in Figure 13. The phase noise measurements were done in-loop. The
limitation is that in in-loop measurement the phase noise of the locking loop is measured. It
is relative measurement since the noise of the reference source is not taken into account. The
overal phase noise performance is better or the noise is lower in comparison with out-of-loop

phase noise measurement.
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Figure 13. Cumulative phase noise of the locked frgp.

The Allan deviation was also measured for the locked repetition rate. A frequency counter
(Hameg Instruments, HM8123) recorded the instabilities of the locked frrp over different gate
times. The two sample frequency .deviation was calculated. A 10 MHz Rubidium (Rb) clock
provided reference to SSG1, SSG2 and the frequency counter (see Figure 14).

The frpp stability was measured after a BPF which removed the 333-MHz and other harmonics
of it transmitting only 1.996 GHz frequency, and provided one input for the frequency mixer.
The results are presented in Figure 15. When the Ti:sapphire cavity length is fixed, frgp cannot
change due to temperature drifts or mechanical perturbations and therefore the frequency is
stable. The Allan deviation of the locked repetition rate for a 1-second gate was 1.5 mHz which
results in a fractional stability of 4.5¢7!2. Before the repetition rate was locked, it could drift
by several hundreds of Hz in frequency. The locking improved the repetition rate stability by
a factor of more than 10,000. For a synchronously pumped OPQO, if the repetition rate frgp of

the fs laser is stabilised, the repetition rate frgp of the optical parametric oscillator (OPO) is
stabilised too.
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Figure 15. Allan deviation of locked Ti:sapphire repetition rate frep.

4.4.2 Carrier envelope offset fopo frequency stabilization
The detection and amplification of the fogo frequency

After the heterodyne beat between the pump supercontinuum and the pump+idler SEM light
was detected with a APD (Hamamatsu C5331-11s, f.=100 MHz), it was stabilised to a referen-
ce. The detected signal from the APD was monitored with an RF spectrum analyser (Rigol,
DSA1030A, 9 kHz-3 GHz) when the fopo of the idler pulse was tuned from 0-333 MHz with
a Newport Microdrive Controller (Model ESA-C) via PZT3. The detected frequency spect-

rum contained frpp and fopo — frep frequencies (see Figure 11). The absolute strength of
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the detected heterodyne beat signal was about -25 dBm. The detected fopo frequency was
low-pass-filtered (LPF) at 50-MHz frequency to attenuate the frpp signal and amplified to
increase the detected signal power level up to -10-dBm with at least a 30-dB S/N ratio (at 100
kHz RBW) which is necessary for our analog to digital converter (Pulse Research Lab L-350
TTL Dual-Channel Converter). A THS3202 RF amplifier module was modified to increase the
strength of the signal from the APD. The modified circuits could increase the signal level by
+20 dB and 440 dB. The cut-off frequency of the amplifiers was about 500 MHz. Into the
second channel we introduced a 10-MHz frequency signal from a synthesized signal generator
(Agilent synthesized signal generator 8664A, 0.1-3000 MHz). The synthesizer was referenced
to a Rb-clock. The comparator output was a TTL signal with a voltage of 0 or 5 V (see Figure
16).
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Figure 16. (a) A 10 MHz signal from the APD; (b) The TTL signal from the comparator.

fcro stabilisation

The detected, amplified heterodyne beat after the comparator was introduced into a phase
frequency detector (PFD). The digital phase-frequency detector (PFD) takes TTL signals of
the heterodyne beat and the reference, and outputs a DC voltage depending on the frequency
difference of the introduced signals. The PFD circuit had a linear phase range of £327 (about
+100 rad). We could not lock the foro of the idler pulses at higher than 32 MHz and at lower

than 5 MHz frequencies. The frequency was limited by a digital to analogue signal converter
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functioning in the 5-32 MHz frequency range. As the analog signal was generated, it was used as
an error signal to a proportional-integral (P-I) amplifier (New Focus LB1005 Servo Controller).
The PZT used for the stabilisation could be driven directly by the P-I amplifier (see Figure 17)
with no further amplifier between them. The P-I amplifier could output a voltage from 0-10 V
which was enough for the fcgo locking. The P-I amplifier provided a signal used to actuate
PZT2 in the OPO cavity for fcgo control.

s LB1005 Servo Controller

! ﬁ\|§
= A-B + Offs

Figure 17. New Focus LB1005 P-I amplifier: (a) error input; (b) input offset control; (c) P-I
corner frequency; (d) proportional gain control; (e) gain regime; (f) P-I amplifier output; (g)
low frequency gain limit; (h) output offset.

Firstly, before closing the loop, the P-I amplifier was set properly. By terminating the input
channel (a) the output voltage was set to zero by using the output offset control knob (on the
rear side of the P-I controller). The same adjustment was done for the upper voltage limit (10
V). The voltage range from 0-10 V ensured that only a positive voltage could be applied to
the PZT2. A 10 V range was sufficient to capture the fluctuating fopo frequency. After these
adjustments were done, the error signal from the PFD was introduced into the P-1 amplifier. In
between the P-1 amplifier and the PFD a 10-dB attenuator was used before the input channel -B
since the signal from the PFD was too strong. Then the output channel of the P-I amplifier was
connected to PZT2 (Thorlabs, AE0203D04F). The input offset was set to 5.0 which corresponds
to a zero offset of the input signal. The locking of the signal was enabled by setting the gain
to the LFGL regime (low frequency gain limit) which limited the DC gain.

Before the feedback loop was activated, the fogo signal was set at 10-MHz frequency by chan-
ging the cavity length with a long travel (9.1 um) PZT3. The default P-I amplifier parameters
were optimised until the fogo of the idler comb was stabilised. Figure 18 presents the stabilised
fereo frequency at 10-MHz reference. As we increased the proportional gain, the lock of the
heterodyne beat improved. The bandwidth of the locked signal was reduced. If the gain was
too high, the output from PFD would oscillate and add additional noise. The RF spectrum

analyser would measure a much broader signal locked at the 10-MHz reference. Therefore after
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Figure 18. fogo of the idler pulses when locked to a 10-MHz external reference. RBW=10 kHz

careful optimisation of the parameters, the corner frequency, low frequency gain limit and the
gain were set at 10 kHz, 90 dB and 5.15 accordingly. The fopo frequency could remain locked
from several seconds to half an hour depending on the overall noise level in the laboratory.
After the experiment, presented in this chapter, we introduced a second piezo into the locking
loop and therefore the fogo could remain locked for more than several hours. Even so, any

loud noise such as a door slam could stop the locking.

4.5 Frequency comb phase noise PSD measurements
4.5.1 Bandwidth of the locked foro

The typical locked fogo of the idler pulses over the range from 1.95-4.0 um in RF spectrum is
presented in Figure 19. We can see a finite linewidth of a locked heterodyne beat on the RF
spectrum analyser. The quality of the locking is determined by the S/N ratio and the bandwidth
at the -3-dB level. Both parameters can be monitored on the frequency analyser. The stabilised
signal was measured with a Rigol DSA 1030A spectrum analyser which had a resolution limit
of 10 Hz. The locked signal at 10-MHz reference frequency had 10-Hz bandwidth which was
limited by our spectrum analyser. The result was taken when the frgp of the Ti:sapphire laser
was also locked which led to an increase in the noise for the fogo frequency lock.

Figure 20 shows the RF spectrum of the stabilized foro beat note against a 10-MHz reference
frequency, recorded using an instrument limited bandwidth of 10 Hz at -3-dB level with a
span of 400 Hz. The locked idler comb fcgo frequency with different spans and resolution
bandwidths is shown in Figure 20. As we see, there are noise peaks at 25-34 kHz and 0.5-2 kHz
frequencies which can be properly identified only from phase noise PSD measurements. Those

measurements are presented in the next subsection of this chapter.
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Figure 19. RF spectrum of the locked idler fogo recorded with an instrument-limited 10-Hz
resolution bandwidth. Inset: 400-kHz bandwidth scan showing locked forpo with 25-35 kHz
sidebands.
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Figure 20. RF spectrums of the locked idler fopo at 10-MHz frequency: (a) span 400-Hz,
resolution 10-Hz; (b) span 12 kHz, resolution 100 Hz indicating a noise at 0.5-2 kHz frequencies;
(c) span 100 kHz, resolution of 300-Hz indicating a noise at 24-35 kHz frequencies; (d) span
600 kHz, resolution of 1 kHz indicating higher order harmonics of the 24-35 kHz signal.

The locked fogo of the idler indicates a very narrow bandwidth lock in comparison with other
near-IR Cr:forsterite [44], Er:doped fiber laser [45] frequency combs. OPO combs can produce
Hz-level heterodyne beat linewidths [46], whereas typical Cr:forsterite [47, 44] and Er:fiber [26]
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near-IR combs typicaly generate >100-kHz linewidths. Higher bandwidth feedback loops could

reduce the locked fcgpo bandwidths even further.

4.5.2 Phase-noise PSD measurements

While the frequency comb was fully stabilised, in-loop phase noise PSD measurements were
carried out and the cumulative phase noise calculated for the locked idler fogo. The phase
noise power spectral density (PSD) data were taken when the idler comb was locked. For
the phase noise PSD measurements a signal from the PFD circuit was taken. The signal was
amplified and recorded with a 12-bit acquisition card. For the best possible resolution, before
taking the data, the dynamic range of the acquisition card was filled. The output from the
PFD was calibrated in phase in order to calculate the phase error between the locked fopo
of the signal and the 10-MHz reference frequency. The calibration of the PFD circuit to the
phase was done by introducing two identical 10-MHz frequencies into the circuit with an offset
of 1 Hz. Then the output from PFD was changing from minimum to its maximum value. As
a result, we had a slope of voltage against phase (V rad™!). The knowledge of the slope let us
change the recorded voltage in the phase noise PSD measurements into phase.

The fcgo frequency phase-noise PSD was recorded as the idler was tuned from 1.95-4.0 pm,
and representative measurements (blue) are shown in Figure 21. The integrated cumulative
phase noise from 1 Hz-64 kHz was around 1.2 rad over an observation time of 1 second. The
primary noise contribution appeared in the 25-35 kHz range. This noise increase was caused
by intensity fluctuations in the pump source for the Ti:sapphire laser which couple into the
OPO as both intensity and phase noise [40]. These fluctuations lay outside the bandwidth of
our locking loop, which was limited to 1 kHz by the response of PZT2 in the OPO cavity. The
noise around 1-kHz frequency is associated with environmental vibrations and acoustic noise.
The range of measured cumulative phase noises is presented in Figure 22. The upper and lower
bounds of the cumulative phase noise of the idler across the entire tuning range are shown in
red. The characteristic of each locked idler comb is the same: we observed dominant noise cont-
ributions at 27-kHz and 1-kHz frequencies. The noise at 27-kHz could be removed by replacing
the pump source and the noise at 1-kHz frequencies could be suppressed by increasing the loc-
king loop bandwidth. The foro could be stabilised via pump laser diode-current adjustments.
In this way a bandwidth up to 100-kHz could be achieved.

The cumulative phase noise for the repetition rate frgp integrated from 1-100 kHz over a
1-second was around 1.1 mrad, which corresponds to 0.18 mHz. The cumulative phase noise
for the fopo was 0.2 Hz. The repetition rate of the Ti:sapphire was 333 MHz, therefore for
the optical frequency of 200 THz (about 1.5 um) it would give us a mode number of 600,600.
Now we can estimate the contribution of the noise to the comb line position. This value of
frep implies an uncertainty of 108-Hz, while the fogo only increases it by 0.2 Hz. The fogo
frequency phase noise measurement shows that its contribution to the uncertainty of the comb
line is negligible. The uncertainty of comb line position in the frequency domain is determined

by the quality of the repetition rate locking. A more detailed discussion on comb line uncertainty
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Figure 21. Characteristic in-loop phase noise PSD at every locked idler wavelength (blue) over
frequency range from 1 Hz-64 kHz (1-second observation time): (a) 4000 nm; (b) 3100 nm; (c)
2600 nm; (d) 2250 nm; (e) 1950 nm.

is presented in Chapter 8.

4.6 Conclusions

The repetition rate frepp and carrier-envelope offset frequency fogo frequency of the idler
pulses from an OPO were stabilized to a reference source to obtain a fully locked frequency
comb in the mid-IR region from 1.95-4 um. Here I have presented a frequency comb locked
across a broad range of wavelengths in the mid-IR region which was not done before. Phase

noise PSD and cumulative phase noise calculations were carried out for the characterization of
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Figure 22. Characteristic in loop phase noise PSD for the idler fogo frequency (blue, left) from
1 Hz to 64 kHz (1-second observation time). Upper and lower bounds for the cumulative phase
noise across the entire idler tuning are shown in red (right axis).

the frequency comb. By combining an optimized nonlinear interferometer with a multi-section
PPKTP crystal we produced pump-idler SFG powers far exceeding those from parasitic SFG.
The implementation of a new design of PPKTP crystal enabled us to produce continuously
tunable combs operating across >2000-nm in the mid-IR, which could be used for spectrosco-
py/metrology in this region. The results of this work have been published in Optics Letters
48].
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Chapter 5. Fundamentally and harmonically pumped fem-

tosecond optical parametric oscillator frequency combs

In the previous chapter the OPO frequency comb was fully locked by heterodyning the phase-
matched p+i SFG light from OPO with the supercontinuum light from the PCF for a broad
range of idler wavelengths from 1.95-4-pm. What if we want to increase the mode spacing of the
comb? Here we present for the first time a locked femtosecond frequency comb achieved from a
harmonically-pumped OPO. A 333-MHz Ti:sapphire laser was used to achieve a stabilized signal
comb at 1-GHz mode spacing at 1.46 pm. The fopo of the signal pulses and the frgp locking
of the comb resulted in uncertainties over 1s of 0.27-Hz and 5-mHz respectively, which were
comparable with those of 0.27-Hz and 1.5-mHz achieved for 333-MHz fundamental pumping.
The phase-noise power-spectral density of the CEO frequency integrated from 1 Hz to 64 kHz
was 2.8 rad for the harmonic comb, 1.0-rad greater than for fundamental pumping. The results
show that harmonic operation does not substantially compromise the frequency-stability of the

comb. The results of this work have been published in Optics Express [1].

5.1 Introduction

Tunable frequency combs with a wide mode spacing [2, 3, 4, 5] are in demand for such ap-
plications as astronomical spectrograph calibration [6], optical arbitrary waveform generation
[7], direct comb spectroscopy [8], microwave frequency generation [9] and optical coherence
tomography [10]. The usual method to achieve multi-GHz mode spacing is by implementing
Fabry-Pérot cavities. By filtering the modes of lower repetition frequency combs, mode spa-
cings of >1-GHz have been demonstrated [11, 12]. Other approaches were implemented using
a phase-matched nonlinear fibre seeded by the modulated optical carrier [13] or by using a
micro-resonator [14, 15, 16], but these methods lack tunability and often require additional

electronic and mechanical locking loops to achieve useful stability.

It is challenging to achieve GHz mode spacing from OPOs and the reason is that the nonlinear
processes are very sensitive to the amount of pulse peak power. As we increase the repetition
rate the pulse peak power falls and therefore the conversion efficiency. Moreover, there are two
nonlinear processes involved which require high peak power — one is the parametric gain in the
nonlinear crystal and the second one is the supercontinuum generation in the PCF used as a part
of the frequency comb locking scheme. We have here two nonlinear effects involved in achieving
frequency combs and obviously when we try to pump with higher repetition rate pulses the peak
power falls and these nonlinear effects become more challenging. In this chapter we describe
one solution to this problem, which uses a 333-MHz pump laser to produce a 1-GHz frequency
comb. As I will show, it is possible to obtain similar phase noise and jitter performance from

a harmonically pumped OPO compared with another, which is pumped fundamentally.

Harmonically pumping an optical parametric oscillator (OPO), makes it possible to extend
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the mode spacing to GHz frequencies and with broad wavelength coverage [17], short pulse
durations [18] and access to low-noise frequency combs [19, 20]. As shown by other research, it
is possible to operate an OPO at a harmonic when the OPO cavity length is an integer multiple
[21, 22] or integer fraction [23, 24] of the pump cavity length. Specifically, in this work a 333-
MHz repetition rate femtosecond Ti:sapphire laser was used to to harmonically pump a three
times shorter OPO cavity resulting in a 1-GHz mode spacing. Fundamentally and harmonically
pumped OPOs were characterized and the frequency comb stability compared. More details on
the detection, electronics and characterization of the heterodyne signal fogo and the repetition

frequency frep were already presented in Chapter 4.

5.2 Fundamentally and harmonically Ti:sapphire pumped optical

parametric oscillators

Optical parametric oscillators (OPOs) are used to shift the wavelength of the pump pulse to
the infrared (IR) region via photon splitting into signal and idler pulses whose wavelengths are
longer. These OPOs are pumped synchronously when the OPO cavity length is the same as
the pump lasers cavity length [25]. In the case of harmonically pumped OPOs, there are two
routes to obtain repetition rates higher than that of the pump laser. In the following section I
will explain the comb structure achievable from harmonically pumped OPOs, and explain the

design of the OPO cavities and the locking scheme used for frequency comb stabilization.

5.2.1 Harmonic operation of synchronously pumped OPOs

In the synchronously pumped regime the modelocked pump laser cavity length is the same as
the optical parametric oscillator cavity length. In this case we are fundamentally pumping the

PPKTP based OPO. The oscillating signal pulse is amplified after every round trip (see Figure

==

f REP

pump laser

PL 'MP PL 'MP

Figure 1. Fundamentally pumping the OPO.

We can also harmonically pump the OPO. Usually OPOs are synchronously pumped and the-
refore are limited by the repetition rate of the pump laser, but it is possible to operate the OPO
at a harmonic of the pump laser when the OPO cavity length is an integer or integer fraction

of the pump cavity length. Harmonic operation can be described as

L
Lopo = n]gMP (70)
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where L represents the pump and OPO cavity lengths, () and n are positive integers, and % is an
irreducible fraction. The relation describes an OPO cavity with n independent circulating pulses
forming a pulse sequence @) times the repetition rate. We can achieve higher repetition rates
by pumping shorter and even longer cavities (see Figure 2). The only difference is that when
n is not equal to one, each set of pulses grows independently from noise leading to a random

relative phase between each sequence, which is undesirable for frequency comb generation.

pump laser
(a)
>
1
PL MP fREP LPL MP fREP
pump laser OPO
—>
(b) |
(—
>
1
Pl AP fRJ;'P PL \[P fREPQ
Q

Figure 2. Harmonic operation of a synchronously pumped OPO, configured as a standing wave
cavity: (a) an OPO (green) the same length as the pump cavity length (blue) (synchronous
pumping); (b) an OPO (green) % times the pump cavity length (blue) (shorter cavities).

In simple harmonic pumping, when n = 1 and @ > 1 the OPO cavity length is () times shorter
than the pump laser and the signal pulses transit the cavity () times before interacting with the
next pump pulse [22, 27] (see Figure 2(a)). Shorter cavities are harder to design since smaller
radius of curvature mirrors must be used for ensuring mode-matching between the pump and
oscillating inside the OPO cavity beams. In the case of longer cavities (Vernier cavities), when
n #1 - each set of pulses grows independently from noise, leading to a random relative phase
between each sequence, which is undesirable for frequency comb generation (see Figure 2(b)).
Each pulse interacts with a pump pulse every () round trips resulting in a pulse train with
a repetition rate Qfrpp. If @ > n the OPO is shorter than the pump cavity, but if Q@ < n
the OPO is longer. As demonstrated by Kokabee et al [24, 27|, designs where both @ and
n are large allow high harmonic repetition frequencies to be obtained from a cavity which is
sufficiently long to permit optimum pump signal mode matching and the insertion of dispersion

compensating optics.

5.2.2 Frequency comb structure in a harmonically pumped fs OPO

While attractive for these reasons, the Vernier approach (n>1) leads to the formation of n
independent frequency combs of equal inter-mode spacing. The absolute phase of each comb

is random, determined as the signal pulses build up from quantum noise, however the relative
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phase between each resonant comb is fixed as they share a common cavity. The pulses of
a modelocked laser contain equally spaced frequencies separated by the repetition rate. For
synchronously pumped OPOs it is the same - they produce signal and idler pulses for which
the spacing between the modes is the same as the pump laser’s repetition rate (see Figure
3(a)). In the case of simple harmonic pumping where n=1 and @ > 1, only one signal pulse
oscillates in the OPO cavity and experiences gain after every round trip @ (see Figure 3(b)).
Since the oscillating pulse is leaving the OPO cavity after every round trip and experiences the
gain only after () round trips, a ring-down effect writes sidebands at + frgp onto comb lines
spaced at () frep. In Vernier cavities, we have n oscillating signal pulses inside the OPO where
each signal pulse experiences gain after () round trips (see Figure 3(c)). In this case the phases

of each signal pulse sequence are random since each set of signal pulses grows from quantum

noise.
(a) {Eﬁ
[\ N L]
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ws | N L
¢ > f
(b) Ufrep @
w N L
1/Of rep Vrr
N
- NAAN L]
t f
(c)
frep frrp
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)

Signal 1 / ; /\
Signal 2 /\ /\ Ofrep

Signal 3

AN
s AN N AN /

Figure 3. OPO frequency comb structure. (a) strictly synchronous pumping; (b) simple har-
monic pumping; (¢) Vernier harmonic pumping.

In this experiment the comparison of fundamentally and harmonically pumped OPOs, used
shorter cavities where n=1 and )=3. The OPO cavity length was three times shorter than the
pump laser’s cavity resulting in a three times higher repetition rate. One pulse oscillating in

the cavity (n=1) experienced gain after every three round trips (Q=3).
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5.2.3 Cavity design

For this study we utilized the short-cavity configuration with Q= 3 and n = 1. The 4-mirror ring
OPOs were based on a 1.2-mm long periodically poled potassium titanyl phosphate (PPKTP)
crystal (Raicol Crystals), which was antireflection (AR) coated at both the pump and signal
wavelengths. The PPKTP crystal was attached to an XYZ translation stage. Mirrors M1, M2,
M3 and M4 for the 333-MHz OPO were half-inch diameter, while for the 1-GHz OPO the M1
and M2 mirrors were quarter-inch to provide a smaller angle for the beam reflected from mirror
M2. The generalized cavity design is shown in Figure 4. The Ti:sapphire pump beam was

focused by a 63-mm focal length lens placed before one of the cavity mirrors, M1.

Curved mirror PPKTP Curved mirror Focusing
M2 crystal M1 Lens
depleted pump
idler pump
signal
High reflectivity High reflectivity
mirror M4 mirror M3

Figure 4. The optical layout of the 333-MHz and 1-GHz OPOs.

Fundamentally and harmonically pumped OPOs were modelled in LCav. The final parameters
used for the OPOs are presented in Figure 5(a), (b).

(a) feeomm M2 PPKTP M1

R=-75mm crystal R=75mm |03 Mm

39.07 39.06 ‘

(b) M2 PPKTP M1
f=30 mm R=-36 mm crystal R=-36 mm f=36 mm

18.26 18.25
6° I 6°

M4 M3

Figure 5. The initial parameters for the spot size and beam profile determination in LCav for:
(a) 333-MHz OPO; (b) 1-GHz OPO. The distances are in mm.

The beam propagation inside the cavities for a fundamentally pumped OPO is presented in

7



Figure 6 (a), (b), while for a harmonically pumped OPO it is shown in Figure 7(a), (b). As
a result, a stable regime of the OPO could be achieved when the minimum beam radii for the
fundamentally and harmonically pumped OPOs were 30 um and 21 pwm respectively. We used
-35-mm curvature mirrors for the three times shorter OPO cavity, because the signal pulse is
traveling around the cavity three times before it gets amplified. The loss experienced in the
cavity for the pulse is higher than in the case of the fundamentally pumped OPO. The threshold
with the same curvature mirrors (-75-mm) for the 1-GHz OPO is also higher. In addition, the
three times shorter cavity limits our design freedom, because quite small diameter holders must
be used in order to ensure a sufficiently short distance between the M1 and M2 mirrors. A
1-GHz cavity corresponds to roughly 333-mm length, which limits the distance between the

two curved mirrors.
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Figure 6. (a) The beam profile of the signal mode supported in the 333-MHz OPO cavity full
path; and (b) through the nonlinear crystal.
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Figure 7. (a) The beam profile of the signal mode supported in the 1-GHz OPO cavity full
path; and (b) through the nonlinear crystal.
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5.2.4 The OPO characterization

The operating OPO is shown in Figure 8. Here 90 % of the Ti:sapphire pump laser (Gigajet,
Laser Quantum) power centered at 800-nm was used to pump a 333-MHz repetition rate OPO,
with 1.3 W of pump power steered into the OPO.

Figure 8. OPO running at 1550 nm. The green color represents the pump and signal SFG
light.

Both the harmonically and fundamentally pumped 4-mirror ring OPOs (Figure 8, inset) were
based on a 1.2-mm long periodically poled potassium titanyl phosphate (PPKTP) crystal (Rai-
col Crystals), which was antireflection (AR) coated at both the pump and signal wavelengths.
In the fundamental 333-MHz configuration the OPO operated with a threshold of 250 mW and
was cavity length tunable from 1100-1600-nm in the signal (Figure 9(a)). Harmonic opera-
tion was implemented by reducing the cavity length to 1/3 of the pump laser’s cavity length,
producing a 1-GHz output. For fundamental pumping the OPO was configured with -75-mm
radius-of-curvature focusing mirrors, while for harmonic pumping this value was reduced to -
32-mm to provide similar intracavity spatial mode conditions. The mirror coatings used in both
cases were identical. The threshold at 1-GHz increased to 500 mW due to the increased losses
from multiple cavity round trips, however the OPO tuning performance remained comparable
(see Figure 9(b)). Both OPO configurations produced pulses with durations of 60-90 fs across

the tuning range, depending on the cavity dispersion.
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Figure 9. Signal spectra from cavity-length tuning of the (a) 333-MHz fundamental and (b)
1-GHz harmonic OPOs.

A 2-mm-thick fused silica plate, with an anti-reflection (AR) coating over the signal wavelength
range on one surface, was placed in the cavity as an output coupler in order to extract some
of the signal power for pulse duration, wavelength tuning and signal repetition rate measure-
ments. This output coupler provided an average power of 10-45 mW depending on the signal
wavelength. The centre wavelength of the signal could be tuned from 1.1-1.6 um using a stage
forming part of the OPO cavity. The OPO with the OC is shown in Figure 10.

Figure 10. Harmonically pumped 1-GHz OPO cavity.

The measured central wavelength of the signal pulses did not tune smoothly with cavity length
due to oscillations in the net cavity dispersion. In Figure 9 the OPO was tuned manually by a
stage. The signal pulses covered the wavelength range from 1.1-1.6 um. The bandwidth of the
pulses was around 25-30 nm. The wavelength tuning was not smooth across the full range and
exhibited sudden wavelength shifts around 1.425 pum and 1.55 um. To have a more accurate
tuning curve characteristic, the tunability around these wavelengths was investigated by using
a PZT. Figures 11 and 12 show this tuning behaviour of the 1-GHz and 333-MHz OPOs along

with the calculated net dispersion for the cavities respectively.

The PZT voltage was changed from 70-160 V and with that change in cavity length, the output
wavelength shifted from 1.3-1.6 um. On the lower side of the wavelengths the tuning was slow,
a 70 V change on the PZT from 160-90 V shifted the output wavelength only by 150 nm while
a further decrease of the voltage on the PZT by 20 V from 90-70 V shifted the wavelength by
almost 250 nm (see Figure 11(a)). This behaviour is related to the net cavity dispersion. Figure

11(b) presents the net cavity dispersion for the 1-GHz OPO. The dispersion is not flat across
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all of the tuning range. It is positive at 1.0 pm and falls below zero for wavelengths above 1.1
um. It stays negative until the OPO wavelength is tuned to 1.425 wm. Here we have the first
region where the OPO does not oscillate at 1.425 um. Instead of oscillating at 1.425 um the
OPO jumps to 1.45 um. Beyond this we see a narrow 30-40 nm window where the OPO tunes

smoothly and then jumps again.
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Figure 11. (a) Tuning curve of the 1-GHz harmonic OPO, showing a similar a distinct gap over
the 1.4-1.6um range. (b) Dispersion curve of the 1-GHz OPO.
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Figure 12. (a) Tuning curve of the 333-MHz OPO, showing the distinct gap over the 1.4 -1.6-pum
range. (b) Dispersion curve of the 333-MHz OPO.

The tunability of the 333-MHz OPO was similar. The output wavelength covered the range from
1.1-1.6 pm. We noticed the same pattern: the PZT voltage was changed from 60-195 V (see
Figure 12(a)). The OPO again did not oscillate at wavelengths where the net cavity dispersion
was positive. Figure 12(b) presents the net cavity dispersion for the 333-MHz OPO. In this
case we have three times smaller positive/negative dispersion for the same wavelength because
the signal pulses travel only once around the cavity while in the 1-GHz OPO the signal pulse

propagates three times around the cavity until it sees the next pump pulse and is amplified.
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The net cavity GDD for the 1-GHz OPO at 1.22 pum was -3000 fs? while for the 333-MHz OPO
it was only -1000 fs?. The tunability of the cavity could be improved by introducing additional
optics inside the OPO for net cavity dispersion reduction. In Figure 13 I show the net cavity
dispersion calculated if two 6-mm thickness BK7 windows are introduced into the OPO cavity.
In this case the positive dispersion at most wavelengths is suppressed down to zero. This was
implemented and improved the OPO tuning. The tuning was much smoother, but apparently

not negative enough since a wavelength jump in the tuning from 1.42-1.5 pm was still observed.
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Figure 13. Net cavity dispersion after introducing 2 x 6-mm thickness BK7 windows.

Pulse duration measurements were taken as the OPO cavity length was tuned for both fun-

damentally and harmonically pumped OPOs. The autocorrelation traces are shown in Figure
14.
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Figure 14. Pulse duration measurements of the signal pulses at different wavelengths: (a)
333-MHz OPO, (b) 1-GHz OPO.

The pulse durations varied from 66-92 fs depending on the net cavity dispersion. At 1.11 um
the net cavity dispersion was close to zero and therefore the pulse durations for both OPOs

were the same. At 1.275 um the dispersion is much bigger for the 1-GHz OPO and as result
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the pulse duration was longer in comparison with that measured for the 333-MHz OPO. There
is a 10-fs difference in pulse duration at 1275 nm. When the net cavity dispersion decreased
again at 1375 nm, the pulse durations became closer to each other. The 1-GHz OPO emitted

signal pulses which were longer in duration by several fs.

5.3 Stabilization of a harmonically pumped femtosecond OPO comb

The exact experimental configuration is shown in Figure 15. A Ti:sapphire pump laser (Gigajet,
Laser Quantum) produced 30-fs pulses with 1.45-W average power centered at 800-nm with a
full-width half-maximum (FWHM) bandwidth of 32 nm and a repetition rate of 333-MHz. A
90 % reflector was used to steer 1.3-W of pump power into the OPO, with the remaining 10 %

coupled into a photonic crystal fibre (PCF) for supercontinuum generation.
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Figure 15. Stabilization layout and (inset) cavities of fundamental / harmonically-pumped
OPO combs. OC, output coupler; M, dielectric mirrors; PCF, photonic crystal fiber, BS, beam
splitter; PBS, polarizing beam splitter; IF, interference filter; PL, polarizer; L, focusing lenses;
PD, photodiode; APD, avalanche photodiode; LPF, low pass filter; PFD; phase frequency
detector; BPF, bandpass filter; PZT, piezo-transducer; SSG, synthesized signal generator.

Both frep and fopo must be detected and stabilized in order to achieve fully stabilized frequen-
cy combs. The electronic feedback loops were the same for both the fundamentally and the
harmonically pumped OPOs. More details on the locking of the frpp and fopo frequencies

were presented in Chapter 4.

5.3.1 Repetition rate stabilization

The pump repetition rate (frgp) was sampled with a fast Si photodiode (PD) and its sixth
harmonic (2-GHz) isolated with a bandpass filter (BPF) then mixed with a 2-GHz reference
from a synthesized signal generator (SSG1, Agilent 8664A). The low-pass-filtered error signal
from the mixer entered a proportional-integral (P-I) controller, generating a control signal which
was used to actuate PZT1 in the Ti:sapphire laser. The repetition rate remained locked for

about 2 hours without adjustments. The frgp stabilization was quite straight forward.
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5.3.2 Carrier envelope offset fopo stabilization

Carrier-envelope offset (fcro) frequency stabilization of the OPO signal pulses was implemen-
ted by heterodyning light from the pump supercontinuum with non-phasematched pump-signal
sum-frequency light from the OPO, as described in [28] and selected using a diffraction grating
(DG). The CEO frequency, fcro, was filtered, amplified and passed through a comparator to
provide an input to one channel of the phase-frequency detector (PFD) [29]. The 10-MHz clock
output from SSG1 was used as the CEO reference frequency and served as the second PFD
input. The PFD output provided an error signal to a second P-I controller, the output of which
was connected to PZT2 in the OPO cavity to control fogo. The OPO wavelength and feopo
could be manually tuned using a long-travel PZT stage, allowing the fogo to be brought into

the locking-loop capture range.

Beat note survey for 333-MHz OPO

Before choosing the locking wavelength, a beat note survey over a broad range of wavelengths
was carried out. In the PPKTP crystal different frequencies can be mixed and therefore different
heterodyne beats can be acquired: we have signal pulses oscillating in the cavity; we have the
idler wave which is the product of pump and signal waves and also the pump pulses from
Ti:sapphire laser. Our 1.2-mm length crystal had special sections (detailed in Chapter 4) for
sum frequency mixing for p+i and second harmonic generation of signal pulses. We can expect
many different interactions but at the end we are interested only in obtaining a beat strong

enough for locking.

iy M11

M10 i PBS
' ' 7852\l

Figure 16. A diffraction grating was used for the beat-note survey as signal, idler and p+2s
foreo frequencies were obtained at different wavelengths.

For that reason we decided to measure the beat strength for different interactions at different
wavelengths. The generated p+i, 2s and p+s waves were overlapped with the light from the
PCF. The beats were acquired by spectrally selecting common wavelengths of light propagating
from the OPO and PCF with a diffraction grating (DG) (see Figure 16).
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The results for different fopo frequencies are shown in Figure 17-19. To trigger our electronics,
the fopo S/N ratio must be at least 30 dB (at RBW=100 kHz). Figure 17 shows the interference
between the pump supercontinuum and the p+i pulses. From the measured beat strengths
(data recorded by Mr. Stewart Leitch, a summer student whom I supervised), we can see that
the beat at 1.13 wm is not strong enough for fogo locking. On other hand, the measured
heterodyne beats reached a 40-dB SNR between 1.15-1.5 um. The beat was weaker only at
1.35 um because of the water absorption in the band from 1.3-1.4 um. In case of the 2s and
pump supercontinuum beat, the results were similar: we observed weak beats on the edge of
the lower wavelengths and also around 1.3-1.4 um (see Figure 18). The last results for the p+s
and supercontinuum heterodyne beats acquired on the APD are presented in Figure 19. We
detected lockable beats in the region around 1.4-1.55 pum. Below 1.4 um there was no efficient
p+s mixing inside the PPKTP crystal since the crystal only had additional sections for p+i
and 2s generation but not for p+s. We measured strong beats above 1.4 um only because at

these wavelengths a strong parasitic interaction between the pump and signal pulses appeared.
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Figure 17. Heterodyne beats between pump+idler SFG and the pump supercontinuum light
from the PCF. The acquired beats represent the actual fogo frequency for the idler pulses.
Using these beats we could lock the idler fopo in broad wavelength range from 1.9-3.0 pm.
RBW=100 kHz.

In Figure 20 an overall survey map of beat notes for all three heterodyne signals is presented.
From these results we can claim that a heterodyne beat across the full tuning range of the
OPO can be acquired for p+i and 2s nonlinear interactions. This survey shows the quality of
the heterodyne beats which can be acquired for each interaction. The strength of the beats
The size of the

circle represet the strength of the obtained heterodyne beat at certain wavelength for different

could always be improved by some careful adjustments and optimisations.

interactions.
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Figure 18. Heterodyne beats between the second harmonic (SHG) of the signal and the pump
supercontinuum light from the PCF. The acquired beats represent the fopo difference between
the pump and 2s pulses. Using only this beat we cannot directly lock any pulses, however if
the pump laser is self-referenced then this beat can be used to lock the OPO signal pulses.
RBW=100 kHz.
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Figure 19. Heterodyne beats between the pump + signal sum-frequency light from OPO and
the light from the PCF. The acquired beats represent the fopo frequency for the signal pulses.
Using this beat frequency we can directly lock the fogo of the signal pulses. RBW=100 kHz.
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Figure 20. Results of the heterodyne beat note survey over a broad tuning range.
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fceo of the signal pulses stabilization

Following the beat note survey, we concentrated on evaluating the frequency comb locking for
the signal pulses at 1.45-um. The p+s wavelength at 515-517 nm from OPO was heterodyned
with the same wavelength from the PCF (see Figure 21), to give a beat note containing only the
signal pulse fogo frequency fluctuation. Another limitation for fopo locking was the PCF. It
was challenging to extend the supercontinuum broadening below 500 nm and with our PCF we
could reach 490-nm at the most. An example of this limitation would be if we wanted to lock
the signal fopo at 1.2 pm, we would need to have supercontinuum light from a fibre around

460 nm, which in our case would be impossible.
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Figure 21. foro detection and locking to an external reference approach.

For the comparison of fundamentally and harmonically pumped OPOs the wavelength does
not matter. In both configurations we measured 35-40 dB beat notes for the signal fogo from
1.45-1.55 pm. For a comparison of the two OPOs at 333-MHz and 1-GHz we locked the signal
feeo at 1.46 um. The characteristic RF spectrum of the heterodyne beat after filtering by a
50-MHz low pass filter and then amplification is shown in Figure 22(a). The beat was then
passed through a dual channel comparator to provide a TTL signal to one channel of a phase-
frequency detector (PFD). To the second channel of the PFD a 10-MHz reference from SSG1
was introduced. The PFD output was used as an error signal to a P-I controller whose output
provided a signal to PZT for fopo locking. The locked heterodyne beat at 10-MHz frequency
is presented in Figure 22(b).

The fogo frequency could remain locked for several minutes, however any sudden noise increase
such as a knock on the optical bench or door slamming made the locking drop out. We expect
that engineering improvements would considerably improve this long term stability. Results
presented later in this thesis which report using a divide-by-N circuit to improve the locking

capture range have also suggested that locking over hours could be achievable.
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Figure 22. (a) The detected signal fopo of 1-GHz OPO was low-pass filtered. RBW=100 kHz;
(b) and locked to 10-MHz reference. RBW=10 kHz.

5.4 Frequency comb instability and phase noise measurements

Harmonically and fundamentally pumped OPOs were characterized by measuring the two samp-
le frequency deviation (the Allan variance) and and in loop phase noise PSD of the locked feogo.
From these measurements the repetition rate and fogo fractional instabilities were calculated.
Separate measurements of the phase noise PSD provided information about which frequencies

contributed most to the instability of the comb.

5.4.1 Two sample frequency deviation

A frequency counter (HM8123) recorded the instabilities of the locked frgp and fopo over
different gate times, and their two sample frequency deviation was calculated. In our locking
loops a 10 MHz Rubidium (Rb) clock [30] provided an external reference to SSG1, SSG2 and
the frequency counter (see Figure 23(a)). The fopo signal after a low pass filter (LPF1) was
split into two channels to lock it to the 10-MHz reference frequency and at the same time
sample its fluctuations. The frpp stability was measured after a BPF which removed the 333-
MHz or 1-GHz harmonics depending on the OPO configuration, and provided one input for the
frequency mixer. The other frequency from SSG2 was introduced into the mixer with a 2-kHz

offset frequency to enable counting at high resolution (see Fig.23(b)).
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Figure 23. Configuration for recording the frequency stability data for (a) fepo and (b) frep.
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First I present the frequency stability measurements of fopo and frgp for a 1 second gate
time. The Allan variance in fogpo when locked to a 10-MHz reference was close to 0.27-Hz
This result
is comparable with the one achieved by Ferreiro et al [28] where for a 280 MHz OPO a value

for both the fundamental and harmonically pumped OPOs (see Figure 24(a,b)).

of 0.17 Hz was obtained. The calculated instabilities in frgp were 1.5-mHz and 5-mHz for
the 333-MHz and 1-GHz harmonic OPO respectively (see Figure 24(c),(d)). The noise limit of
the locking loop was measured by replacing the photodiode in Figure 23(b) with a synthesized
signal from SSGI.
for a 1-second gate time, which is in this case limited by our locking loop. The measured
instabilities of the Rb referenced synthesized frequencies at 333-MHz and 1-GHz were 1.5-mHz

The resulting frequency fluctuations gave a 5e—12 fractional instability

and 4.5-mHz respectively, confirming that the stability of the OPO repetition frequency was
limited by the locking loop itself since clock source gave the same Allan deviation for different
gate times. In-loop measurements were done by referencing the SSG and frequency counter
to the same clock. The increase of the repetition frequency by three times resulted in a three
times higher frequency fluctuations. We therefore conclude that the repetition rate instability
of the harmonically pumped OPO increases proportionally with frrp due to an increase in the

fractional change in the cavity length of the OPO relative to the pump laser.
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Figure 24. fogo frequency instability measurements around 10-MHz over a 1-second gate time
for the (a) 333-MHz and (b) 1-GHz OPO. Repetition frequency instability measurements over
a 1-s gate time for the (c¢) 333-MHz and (d) 1-GHz harmonic OPO.
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The fero and frep fractional frequency comb instabilities for different gate times are presented
in Figure 25. The fractional stability data calculated from the raw data for the Rb clock are also
plotted for comparison. The fractional instability of the locked foro for both the fundamentally
and harmonically pumped OPOs over a 1-second gate was 1.35e—15. The fractional instability
of frep over a l-second gate time was 4.5e—12 for 333-MHz OPO and 5.0e—12 for the 1-
GHz harmonic OPO. These results demonstrate that the frequency stability obtained from the
harmonically pumped OPO comb is comparable with that from the fundamentally pumped
OPO, despite the fact that the signal pulses are making multiple round trips around the OPO
cavity, which might be expected to enhance the contribution of environmental effects to the

repetition rate frep phase noise.
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Figure 25. Fractional frequency comb stability from the in-loop frpp and fogo signals. The
data for the Rb clock show the limiting instability in the frgp locking. Frequency comb
instability is shown for: (a) the 333-MHz OPO (f,, = 200 THz, n = 600000) and (b) the 1-GHz
harmonic OPO (f,, = 200 THz, n = 200000).

5.4.2 In loop phase noise PSD measurements

The RF spectrum of the stabilized fopo frequency for the 1-GHz harmonically pumped OPO
was recorded using a 400-Hz span and 10-Hz resolution bandwidth (RBW), showing an inst-
rument limited bandwidth of 10 Hz at the 3 dB level (Fig. 26(a)), which is comparable to the
performance reported in [28]. In loop phase noise measurements of foro were carried out when
frep was locked by acquiring the PFD output signal with a 12-bit DAQ card. The output
from the PFD was split into two channels. One of them was used for the PSD measurements.
The signal before the 12-bit acquisition card was first amplified to fill the dynamic range of
the DAQ card. PSD phase-noise plots for the fundamental and harmonic OPOs are shown
in Figure 27. The integrated phase noise from 1 Hz-64 kHz was 1.8 rad and 2.8 rad for the
333-MHz and 1-GHz harmonically pumped OPOs respectively. Both PSD plots show increased
phase noise in the 25-32 kHz range, which arises from 27-kHz intensity fluctuations in the pump
laser (see Figure 26(b)). This noise caused the cumulative phase noise to increase by 1 rad for

both the fundamentally and harmonically pumped OPOs. These fluctuations couple into the
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Ti:sapphire laser as RIN and into the OPO as both RIN and phase noise [31]. Noise above 1
kHz lay outside our locking loop bandwidth, which was limited by the response of the fast PZT
in the OPO cavity (PZT2). The noise contribution around the 1 kHz frequency increased from
0.8 rad for the 333-MHz OPO to 1.8 rad for the 1-GHz OPO. Frequencies around 1 kHz are
usually related to acoustic or electrical noises source which can couple into the feedback loop
or the OPO itself. For a shorter cavity, the impact of acoustic noise and thermal vibrations
is more obvious in comparison with the 333-MHz OPO. For the feedback loop in the 1-GHz
OPO it is harder to stabilize the foro drift caused by vibrations since the repetition rate of the
shorter OPO cavity will change faster and further. Not only must the bandwidth of the PZT
be increased, but also capture the range of the PFD for fogo stabilization. If the pump noise
could be reduced then the fopo PSD for the 333-MHz OPO would be comparable to previously
published results [28].
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Figure 26. RF spectra of the locked fopo signal recorded with (a) 400-Hz span, 10-Hz resolution
bandwidth; (b) 400-kHz span, 1-kHz resolution bandwidth, for 1-GHz OPO.
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Figure 27. In loop 1-second observation time of the phase noise PSD for fepo of the (a) 333-
MHz and (b) 1-GHz harmonically pumped OPO, for which the cumulative phase noise values
from 1-Hz to 64-kHz are 1.8-rad and 2.8-rad respectively.

From the 333-MHz and 1-GHz OPOs phase noise PSD measurements we locked with PZT2

we could suppress the noise only if its frequency was below or close to 1-kHz. We were able
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by some careful optimization to suppress the noise at 1 kHz down to 0.4 rad, but the 27-kHz
noise never changed: it always increased the cumulative phase noise by 1-rad. We were able
to prove this by changing the so called "Pure Gain" parameter of the Ti:sapphire pump laser
(Laser Quantum Finesse) controller. According to the manufacturer, the increase of the Pure
Gain parameter shifts the frequency noise floor from low to high frequencies which can be seen
from its effect on the locked fopo heterodyne beat. The noise at certain frequencies can be
suppressed or increased. This setting was changed manually. By default the Pure Gain was
set to 22.1 % which we used for all the experiments presented earlier. It gave us the lowest
RIN in range from 1 Hz to 1 MHz according to the detector placed inside the pump laser.
As a demonstration that the noise around 27-kHz could be changed, the Pure Gain parameter
was changed from 0.1-32 % when the 333-MHz OPO was completely locked (see Figure 28).
The locked beat shape changed together with the Pure Gain parameter. The beat note was
noisy when the Pure Gain was close to 0 % and decreased when it was changed from 0-32 %.
Therefore the optimum Pure Gain setting was found to be 32 %, because it gave the best SNR
between the middle peak (10 MHz) and the sidebands sitting at 27-kHz frequency. The best
phase noise PSD measurement with the optimised Pure Gain setting is presented in Chapter

8, in which we report a cumulative phase noise of less than 300 mrad.
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Figure 28. Locked fogo beat at 10-MHz reference dependence on Pure Gain parameter.

Table 1. Comparison of the fundamentally and harmonically pumped OPOs.

333 MHz 1 GHz
Tuning range 1.1-1.6 pm 1.1-1.6 pm
Pulse duration 66-81 fs 66-92 fs
feeo noise (1 second, 0-64 kHz) 1.8 rad 2.8 rad
fcro stability (1 second, 0-64 kHz) 1.35% 107" 1.335% 107"
frep stability (1 second, 0-64 kHz) 4.38 1071 5.3 %102
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5.5 Conclusions

The results presented in this chapter demonstrate for the first time a femtosecond OPO frequen-
cy comb exploiting harmonic pumping to multiply its repetition frequency by a factor of three
(1 GHz) compared to that of its Ti:sapphire pump laser (333 MHz). Allan variance measu-
rements of the fully phase-stabilized signal pulses from both the fundamentally-pumped and
harmonically-pumped OPOs showed that the use of harmonic pumping does not substantially
degrade the frequency stability of the comb. The integrated phase noise (1 Hz—64 kHz) of the
fcro frequency increased by around 1-rad under harmonic pumping, with the increase arising
in the 300-1000 Hz band associated with acoustic noise contributions to the resonator stability,
which couples directly to fepo in a femtosecond OPO. The foro phase noise was reduced by
optimising the setting of the internal gain of the pump laser. Extension of this technique to

higher repetition rates should be possible by using cavities with higher values of Q).
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Chapter 6. Atomically referenced 1-GHz optical para-

metric oscillator frequency comb

OPO frequency combs covering the near- to mid-infrared (mid-IR) region are promising sources
for high-resolution spectroscopy and astrophotonic spectrograph calibration. These applications
require wide mode spacing and absolute frequency traceability. This chapter reports the de-
monstration of a fully stabilized 1-GHz OPO frequency comb for the signal, idler and pump
pulses by locking the repetition rate and the carrier-envelope-offset (foro) of the Ti:sapphire
laser, and the frequency of an OPO internal fopo beat. In this way all the outputs from the
OPO and the pump laser were locked and fully stabilized frequency combs for the signal, idler
and pump pulses achieved. The novelty of this work is a promising alternative locking scheme
which uses an absolute optical reference at 780.2 nm for the Ti:sapphire laser fogo locking. The
frequency comb of the Ti:sapphire laser is phase locked to the absolute optical frequency of the
Doppler-free 8 Rb Dy F=2-2 transition line. By referencing it to a Rb-stabilised external cavity
diode laser (ECDL), we demonstrated a fully stabilized Ti:sapphire and OPO comb stable over
several hours. Carrier-envelope-offset frequencies were locked within the sub-MHz linewidth of

the Rb transition and more importantly without the need for supercontinuum generation.

I personally made a final design of the ECDL and improved the stability of this system which
was used for the experiments presented in this chapter. The description of the Rb-locking to
the D, transition crossover resonance of 87Rb is given. In collaboration with Thomas Christian
Schratwieser we were able to lock the fopo of the Yb-doped fibre laser directly to a 8"Rb
transition line. We built the nonlinear interferometer which was used for the fopo detection
and locked. Subsequently a frequency comb of an OPO was fully referenced to the Rb transition
line. Together with Richard A. McCracken an atomically referenced 1-GHz optical parametric

oscillator frequency comb was developed. The results were published in Optics Express [1].

6.1 Introduction

In this chapter we present an alternative approach to OPO comb stabilization, where the OPO
comb was fully-stabilised when a single-tooth of the pump comb was locked to an atomically
referenced single-mode CW laser (ECDL) referenced to the well-known 3Rb 5 F=2-2 transition
line. The absolute optical frequency of the 8"Rb D, F=2-2 transition is well-defined and
therefore represents a traceable reference. The use of this system allows the carrier-envelope-
offset (fero) of the pulse to be acquired and locked without the need for supercontinuum

generation, since nonlinear interferometer for fogo detection is not needed.

As mentioned earlier, high-repetition-rate frequency combs are becoming more in demand due
to the emergence of new application fields such as spectroscopy [2, 3] and astrophotonics [4, 5],
where wide mode-spacing is preferred. In these areas individual comb modes must be resol-

ved. As we demonstrated earlier, optical parametric oscillators [6] can be used for nonlinear
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down-conversion into the mid-IR spectral region [7, 8]. A number of OPO combs have been
experimentally demonstrated [9, 10, 11]. Normally, focgo detection of the pump pulses requi-
res an octave spanning supercontinuum, typically generated in photonic crystal fibre (PCF
[12]) [13]. In a nonlinear interferometer a second-harmonic or sum-frequency generation (SHG,
SFG) light from the OPO is heterodyned with the pump supercontinuum providing a foro
beat frequency that is used for OPO stabilization [14, 10]. For this reason generating a cohe-
rent supercontinuum generation in the blue-green wavelength region is the limiting factor for
achieving stabilized high repetition rate frequency combs. A sufficient peak power for the octa-
ve spanning supercontinuum generation is needed for carrier-envelope-offset (fcgo) detection
[15, 13]. This limitation becomes more critical at higher repetition frequencies [16]. High repeti-
tion rate modelocked lasers are available, but to achieve pulses with sufficiently short durations
and high peak powers for a coherent octave-spanning spectrum becomes more challenging. On
the other hand the power per comb mode increases with the repetition rate, therefore a linear
based approach for fogo stabilization becomes more appropriate. The offset frequency of a
Ti:sapphire laser has been locked to a CW laser via a 1064 nm iodine-referenced Nd:YAG laser
[17]. Similar techniques were presented for Er:fibre comb stabilization where researchers used
a 780-nm Rb stabilized ECDL [18]. In our case, the 1-GHz repetition rate Ti:sapphire laser
output couples 1.4-W average power. For the fogpo detection almost half of the available pump
power is needed to pump the PCF and therefore the pump power focused into the OPO is
reduced significantly, and consequently the tunability as the threshold stays at the same peak
power level. For these reasons the use of a nonlinear interferometer becomes more difficult
but the wider mode spacing ensures a higher power-per-mode which means a linear optical

heterodyning becomes easier.

The chapter is organised as fallows. The experimental configuration and locking results of the
ECDL are presented in the first part. An initial attempt to use an ECDL as a reference for
frequency comb locking was performed with a 1030 nm Yh:fibre frequency comb operating at
a pulse repetition rate of 375 MHz without using a nonlinear interferometer. Following this,
I present a fully stabilized OPO comb: the pump comb is directly locked to a Rb-stabilized
ECDL where the fogo of signal and idler pulses are fixed by locking their internal beat frequency
(19, 20].

6.2 Rubidium stabilized external cavity diode laser
6.2.1 Locking the frequency of the external cavity diode laser

The emission line of a free running diode laser is too wide for accurate frequency locking.
Moreover, the free-running diode laser is unstable in terms of its optical frequency and power.
In our case this is a good thing, because this gives us the possibility to construct a tunable laser.
The diode laser emission wavelength can be controlled through the temperature and current of

the laser. In order to increase the wavelength selectivity, we introduced a diffraction grating
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(DG), which provided considerable control of the diode-laser emission wavelength [21, 22, 23].
This additional optical element in the diode laser gives us a so called external cavity diode
laser. The extension of the cavity provides wavelength selective optical feedback into the diode
laser with a quality factor higher than that of the external cavity. Moreover, diode lasers have
a high sensitivity to optical feedback, and their gain is only weakly dependent on wavelength.
Consequently, the laser frequency can be easily steered by the injection of a few photons in
the cavity. This gives us the possibility to use an ECDL for probing atomic energy states. By
slightly turning the diffraction grating (DG), we can tune the diode-laser output wavelength
[24]. The steering of the diffraction grating is done by a piezoelectric transducer (PZT). We
can also change the temperature and current, which in conjunction with grating tuning may

provide wavelength tuning over many nm.

With an active feedback loop we can control the output and stabilize the wavelength of the
diode laser. For the wavelength stabilisation we used a Doppler-free absorption technique in
Rubidium gas. The 3 Rb isotope provides well defined absorption lines, which are perfect for
ECDL frequency locking and therefore can provide a stable optical frequency reference ensuring

high quality fopo frequency locking.

Operating principles of external cavity diode lasers

For a diode-laser to be useful for frequency comb stabilisation, it must be single-mode and
tunable. The laser must be capable of operating at a single frequency and it must be possible
to vary the frequency by a certain amount. There are a lot of tunable lasers [25], but diode
lasers are the best for frequency locking due to their broad gain profile and therefore tunability.

They are perfect for spectroscopy applications and also cheap, small and have high gain.

Collimating lens

Diode {\ H
FU ©

0,

Diffraction
grating

Laser Output
Figure 1. The ECDL design.
To make a tunable diode-laser, we need to extend the optical cavity of the laser and use optical

feedback for mode selection. This is done in a Littrow configuration by using a DG placed at

one end of the external cavity (see Figure 1). The DG spatially separates the light based on
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wavelength. The wavelength, which is sent back to the laser diode, can be varied by adjusting
the angle of the diffraction grating relative to the light in the cavity. Modes coupled back
into the lasing cavity interfere with each other and form standing waves. These modes in the
extended cavity are enforced and other modes are suppressed. This gives us a tunable single-
mode laser [26]. Moreover, the DG is oriented so that the polarisation it receives from the
diode-laser is diffracted with a relatively low efficiency (<50%), leaving the zero-order beam as
the useful output for foge locking [27].

The broad semiconductor laser emission spectrum gives us the possibility to create a tunable
wavelength source. The diffraction grating selects the lasing cavity wavelength, which is critical

for the performance of the laser. The grating equation is [24]

D(sinb; + sinfy) = mA (71)

where ) is the wavelength, 6; is the incident angle of the laser beam, 6, is angle of the diffracted

laser beam, D = % is the distance between slits, if N is the number of lines per unit length
and m is the order of the DG. In order for a light to be reflected back into the lasing cavity,

the angles #; and 6; have to be equal, which is known as the "Littrow configuration”

g = 2sinb; (72)

The diffracted wavelength depends on the incident angle of the laser beam. By changing the
diffraction grating angle 6;, we select a desired wavelength to be injected back into the diode
laser (see Figure 2). The external cavity diode laser amplifies only the diffracted wavelength,
which gives us a much narrower linewidth of the emission spectrum than the free-running diode-
laser provides itself. In the Littrow configuration the first order diffraction is coupled back into
the diode laser to provide optical feedback. The diode laser output wavelength was adjusted to
be around 780.24 nm and the diffraction grating had 1800 lines per mm.
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Figure 2. The spectrum of the ECDL light, showing the free-running output of the ECDL
adjusted to a wavelength close to the transition of 8"Rb.
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Frequency selective optical feedback

The most important laser characteristics determining the operating wavelength are the laser’s
cavity modal properties, the bandwidth and the gain of the semiconductor material. Mode
properties in general are described in terms of longitudinal and transverse modes. Longitudinal
modes refer to the discrete frequencies in the laser cavity. All of these modes compete with
each other for gain dominance. Each mode has a Lorentzian intensity distribution with the
given frequency bandwidth characterized by the full width at half maximum (FWHM) of the
peak. The laser cavity free spectral range (FSR) describes the frequency spacing between these
neighboring peaks.

Interacting gain and loss mechanisms determine the operating wavelength of an ECDL (see
Figure 3). The semiconductor material contributes a broad gain bandwidth, while the loss is
modulated by the modes of the short internal cavity formed by the semiconductor die facets
and the long external cavity formed by the DG and the end facet. Single-mode operation is

possible when the gain and loss curves combine to provide net gain at a single, well defined

wavelength.
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Figure 3. Schematic representation of different contributions to the net diode laser gain.

Temperature and current tuning

In addition to grating tuning, other tuning parameters are the diode laser temperature, injection
current and the band-gap of the chip. The band-gap can be changed by changing the device
temperature. An increasing temperature causes an expansion of the semiconductor lattice
constant and slightly modifies the band-gap. The band-gap is responsible for determining the
centre wavelength of the gain profile of the laser medium. When we change the diode laser

temperature, we are shifting the entire gain profile by modifying the band-gap

aT?
T+q

Ey(T) = E,(0) (73)

where the E,(0) is the band-gap at absolute zero, a and ¢ are the constants for given semicon-

ductor, T is diode laser temperature. We know that £ = hr and then
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where h is the Planck constant and Ay is the peak laser wavelength. So, by changing the
band-gap, we can change the output wavelength of the diode laser.

A temperature variation may also change the optical path length (nL) of the laser cavity

SL(T) = zL(0)8T (75)

where x is the thermal coefficient of linear expansion. The refractive index n also depends on

the temperature

n(T) = n(0) + pT (76)

where n(0) is the refractive index at absolute zero and p is constant of proportionality. The
last tuning parameter is the current, which alters the temperature of the laser chip through the

Joule heating

P(I) = IR? (77)

where R is the effective resistance of the laser chip and [ is the injected current. By changing the
injection current, we can indirectly change the temperature of the diode laser. The increased
injection current also increases the carrier density within the lasing medium, affecting the
refractive index. When the current reaches threshold (in our case around 40 mA), it impacts
the laser only through the temperature. As the injection current changes the temperature
internally, this gives us a much faster response than other tuning parameters. The injection

current also changes the gain profile.

From Eq. (73) - Eq. (75) we notice that these tuning variables affect the wavelength differently,
but act together. As current, temperature and grating position are varied we observe stepwise
wavelength tuning — mode hopping. The laser longitudinal modes change from time to time
as the laser heats up or cools down. Mode hopping appears after every degree, because the
optical path length changes by about 0.06 nm/K, while the gain curve changes by about 0.3
nm/K [29]. When the diode laser temperature is changed, the gain curve and the lasing cavity
modes shift at different rates. Each hop represents the slow tuning rate of the optical cavity
path length over a single cavity mode or/and the hops represents the quicker tuning rate of the

gain curve, which occurs through the hopping effect from one longitudinal mode to another.

The transitions of the Rubidium atom

Rubidium (Rb) is the chemical element with atomic number 37 and belongs to the alkali
metal group with an atomic mass of 85.4678. It is a highly oxidizing element in air and

because of that Rubidium has only one stable 8°Rb isotope. Another — 8"Rb — composes
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almost 28% of naturally occurring rubidium [30]. For ECDL frequency locking we used a
quartz reference cell (Thorlabs GC19075-RB) containing both Rb isotopes. The ground state
electronic configuration of Rubidium is 1522522p%3523p%3d'%4524p% 5s'. Rubidium has only one
electron in the valence shell (5s'), which can interact with the light. When the valence electron
jumps from one level to another, energy is released. There are two possible energy levels Py
and Py [31]. This splitting into the two levels appears because of the magnetic field. The
ground state has (5p)®P; 2 quantum numbers. The second energy level has (5p)*Ps /> quantum
numbers. This splitting of the S=1/2 and L=1 state into two states is known as the magnetic
fine structure states of the atom (J=1/2 and J=3/2 ). The J=1/2 represents the transition
from the ground state with the wavelength of 794.9788509 nm and the J=3/2 represents the
transition from the ground state with the wavelength of 780.241209686 nm [32]. The transition
from the ground state to the excited state takes place only when the electron absorbs photons
with right amount of energy. Our diode laser works around 780.24 nm wavelength, so we are
interested only in the Dy transition (see Figure 4). These well known lines can be used as a
reference for ECDL frequency locking. In reality to lock the wavelength at the level mentioned
before is extremely opsimistic since the sensitivity of the locking loop or the stability of the
wavelength can be adjusted about 4 digits after point. The reproduction of the ECDL is also
quit challenging since it depends on for example magnetic fields, locking loops, signal strengts,

active elements used in locking loop.
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Figure 4. The hyperfine structure for the spectroscopic lines of Rb.

Moreover, the energy of the nuclear magnetic dipole moment in the magnetic field generated
by the electrons and the energy of the nuclear electric quadrapole moment in the electric field
gradient due to the distribution of charge within the atom causes an additional splitting of the
energy levels [33]. This is the so called atomic hyperfine structure. The ground state splits
into two energy levels and the excited state splits up into four hyperfine energy levels. There
are only six possible transitions in each Rubidium isotope, because not every transition from
ground states to an excited state is allowed. The transition rule is that quantum number F

can change only by 0, +1 and -1. Some transitions are prohibited by a quantum mechanical
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selection rule. Figure 4 shows the hyperfine structure for absorption in Rb. When the transition
from a ground state to an excited state exists an absorption spectrum may be observed. The
transition in Rb vapour (**Rb 72%, ¥ Rb 28%) occurs at 780.24 nm wavelength. In the 780
nm D, transition we should see four peaks [31]. In order to observe these peaks, we need to
continuously tune the ECDL and sweep quickly across the range of these peaks, which can be

done by driving the diffraction grating angle using a piezoelectric transducer (PZT).

In Figure 5 we see four peaks known as the Doppler broadened spectrum which represent
transition for both Rb isotopes. In our case we are interested only in the D, transition. There
are six possible transitions from the ground states to excited states, because not every transition
from ground states to an excited state is allowed. All of them consist of two sets of transitions,
because we have two isotopes — 8"Rb and ®Rb. Within each peak we have three excited states.
These peaks broaden, because the Rubidium atoms are moving randomly. If Rb atoms are
travelling towards an observer with velocity vy, then the frequency, at which the transition

actually occurs, f, can be calculated from the frequency at which it is observed, f; [34]:

fi= -2 (78)

C

:\
S i
2 —
-~ L.
a ~N L ]
o 1l ~ x
< w — I o
a 3 e
oc o0 0
5 1 o
= 2
o
o
n
-]
0 2 4 6 8

Relative frequency (GHz)
Figure 5. Doppler-free absorption spectrum of Rb D, transition.

This is the Doppler Effect. Rb atoms are moving in a cell and these atoms have a Maxwell

velocity distribution. This results in Doppler line broadening [34]:

Af = 2T, (79)

cm
where m is atomic mass, T is temperature and k is the Boltzmann constant. This means
that for some atoms the frequency of the laser light will be blue or red shifted. This causes

the absorption frequency to occur either a little bit above or below the natural absorption
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frequency. Because the atoms are moving back and forward, there will be an absorption line

broadening, which is caused by the Doppler effect.

For accurate fopo frequency locking the transition bandwidth must be as small as possible.
Therefore the saturation spectroscopy has to come into play, which reduces the FWHM of the
Doppler broadened peaks. This is done by reflecting the laser beam back along its incident
path. The incident beam is called pump beam. It produces the Doppler broadened peaks and
the counter-propagating beam is called probe beam, which samples the saturated absorption.
The pump and probe beams interact at the same time in the Rubidium vapour cell with zero
velocity atoms. These beams are counter-propagating to each other and the light interacts
with the atoms, whose velocities are also opposite to each other. So each beam interacts with
opposite sides of the Doppler profile — with the blue-shifted or red-shifted light. It depends on
the propagation direction of the beam. When the probe and pump beams interact with different
sets of atoms at the same time, they do not have an effect on each other. But not all the atoms
move. Some of the atoms have zero velocity for both beams. Then the probe and pump beams
interact with the same set of atoms. As the result, the probe beam absorption is reduced at one
frequency along the Doppler broadened peak. The photodiode will indicate that the absorption
of the light is reduced and the intensity will go up as the scan reaches the transition of the
zero velocity atoms. This happens, because the stronger pump beam will excite zero speed
atoms and the absorption of the probe beam will be reduced and the photodiode (PD) will see
a stronger signal at certain frequencies. On the screen we will see small dips called Lamb dips,
which corresponds to the absorption frequencies of the zero velocity atoms. This gives us the
natural linewidth of the atomic transition, which has a Lorentzian lineshape. The Lamb dips

are much narrower and more suitable for precise frequency locking [34].

The average frequency for the Dy transition is 384.23 THz (780.24 nm). All other hyperfine
peaks will have an offset from this one. The 3Rb excitation from the F'=2 ground state was

used to lock the external cavity diode lasers wavelength at 780.24 nm [35].

Cross-over resonances

It is important to notice, that in a saturated absorption spectrum, a sharp signal increase
is obtained at frequencies halfway between two different hyperfine transitions (see Figure 6).
Those cross-over peaks appear between each real absorption peak and arise when there is more
than one hyperfine transition. The cross-over resonances are obtained, because the laser beam
has the possibility of interacting with two different velocity atoms at the same time. The
diode laser frequency will be Doppler shifted to both transitions of the atom at the same time.
The spacing between the hyperfine transitions results in the possibility for the single beam
to interact with atoms moving in the opposite direction for the cross-over peak to appear. It
means that the light is blue shifted and red shifted depending on the propagation direction

of the atoms. We can excite two different hyperfine transitions with the same pump beam
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at the same time. We have two different hyperfine transitions, but it is impossible for single
mode diode laser to be red shifted and blue shifted to the same transition frequency. Moreover,
we have not only the probe beam, but also the saturating beam. Fach of them will interact
with two groups of atoms moving in opposite directions. As a result, we have four groups
of atoms since probe beam interacts with +wv; and -vs velocity atoms, while saturating beam
with -v; and 4wvy velocity atoms. Here -v1=-v5 and v;=vs since the frequency of the probe
and saturating beam is the same. We have a situation where the probe and saturating beam

interact with the same set of velocity atoms. As a result a cross-over occurs when a single mode

laser frequency interacts with -v velocity atoms (red shifted, f; = 1{ L) and with +v velocity

atoms (blue shifted, f; = 1{ L) at the same time. The measured freqilency of the diode laser

will be f;, = %, which results in a cross-over peak placed halfway between each hyperfine

transition.
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Figure 6. A cross-over resonance occurs at X which is the midway between two saturated
absorption peaks. At the cross-over the hole burnt by the pump beam acting on transition 1-2
reduces the probe beam absorption on transition 1-3, and vice versa [37].

The pump beam has two sharp decreases depending on the velocity. This corresponds to an
appearance of two peaks in the pump spectrum when the laser frequency overlaps with those
two transitions. This is what we expect to happen. In reality, an additional peak appears. A
hole caused by one transition reduces the absorption for the other transition. The symmetry of
this situation means a cross-over. It occurs exactly midway between two saturated absorption

transitions. When data are taken, we are measuring the crossover resonance.
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Dither locking of the ECDL

The dither locking technique allows us to lock the laser output power or in our case the output
frequency of the external cavity diode laser. The ECDL frequency was locked to the 8'Rb D,
transition. In order to lock it, first we must monitor the frequency change and then control it
to ensure the stability of the variable [36, 38, 39].

Dither locking is based on modulation by a signal with a known amplitude, phase and frequency.
This modulation signal is transferred into the output signal obtained from PD. In our case this
low amplitude modulation signal introduces a small voltage amplitude modulation on the PZT.
Therefore we can see a small amplitude modulation on top of the Rb gas absorption spectrum.
In this way this modulation signal is directly transferred into the output signal on top of the
Rubidium absorption line. This is the key for frequency locking. On other hand this introduced
modulation signal must be as small as possible, because using a small amplitude modulation

ensures the smallest possible frequency noise in the system.

In our external cavity diode laser the PZT is attached to the DG and the modulation signal to
the PZT is provided through a frequency generator (FG). The diode laser output spectrum is
monitored with a Si photodiode (PD). The diode laser beam goes through the Rb gas cell and
therefore is absorbed by Rb gas. On the oscilloscope we see six absorption peaks (see Figure
7).
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Figure 7. Measured absorption peaks of 8"Rb from the F'=2 ground state (left) and ¥Rb from
the F'=3 ground state (right): (1) corresponds to the transition F'=2-1; (2) F'=2-2; (3) F=2-3;
(4) F=3-2; (5) F=3-3; (6) F=3-4.

When the dither locking technique is used for frequency locking, a clear error signal is needed.

Let’s say we have Gaussian-form absorption lines:
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—(z—=z )2
P, =exp 27 (80)

where zq is the PZT position at zero point, z is the offset of the frequency from zero position
and v is the variance. As we can imagine, the diode laser output signal is not stable in
frequency — the output frequency is always moving around zero. This zero position of the
frequency is marked by a Rb gas absorption line at 780.241209686 nm. When the temperature
in the room is changing, the laser diode temperature changes too and then we can see a slow
output wavelength drift from zero position. The feedback loop locks and actively corrects the
frequency drift by the PZT. The voltage variation changes the wavelength returned by the DG
to the laser cavity and therefore it amplifies photons at this zero position. All other photons
except photons at 780.241209686 nm are suppressed. The required wavelength will occur at the
voltage setpoint level and will increase or decrease as the output wavelength tries to drift from
the zero position (780.241209686 nm). In this way, spectral or temperature fluctuations of the

ECDL are compensated to maintain maximal possible accuracy of the output wavelength.

Once the PZT displacement is brought within the locking range of a feedback loop, locking
to the zero of the signal derivative will always coincide with the edge of the output intensity
(see Figure 8). The locking range will be limited by the amplitude of the dither signal, but the
smaller modulation amplitude minimizes the frequency fluctuation, resulting in lower frequency
noise. Any temperature or air current fluctuations must be minimised to maintain passive

frequency stability of the external cavity diode laser.
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Figure 8. Transmission peak (1) with the low pass filtered derivative signal (2) from the mixer.

The applied dither frequency voltage was about 240 mV. A higher amplitude signal with lower
frequency — in our case 8 Hz — was applied on the PZT in order to resolve the absorption peaks.
The applied low frequency voltage amplitude on the PZT was 15 V to be sure that the right
absorption line of the Rb gas was selected for dither locking. When the right peaks have been
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identified, the 8 Hz frequency signal amplitude was reduced from 15 V to 0 V until the locking
to the exact peak could be ensured. A small drawback of dither locking is that there always

will be some fluctuations in the intensity of the peak used for locking.

6.2.2 Experimental configuration of the ECDL
Optical design

The light source in the ECDL system was an AlGaAs diode laser which operated at around
780.2 nm wavelength. For this diode laser the Thorlabs LD1255R driver was used as a low
noise power supply. Also 200 F and 100 nF capacitors were placed in parallel to the diode
laser to reduce any fluctuations in the injection current. The 200 uF capacitor acts as a charge
reservoir, ensuring that if the current demand is high and or sudden then this can be provided
without being limited by the power supply. The 100 nF capacitor works as a high-pass filter.
If there is high frequency noise from the power supply, it will not reach the diode. Therefore
the capacitors improve the diode laser stability and can ensure the performance of the ECDL.
The injected current was adjustable and monitored by the voltage across a 10 ohm resistor (see

Figure 9).

Thorlabs LD1255R diode driver

0.1pF

200pF

Laser
100 Diode

1
~|—I: <
Voltmeter ‘

Figure 9. Circuit diagram of the diode laser driver.

The diode laser maximum output power was around 20 mW. The light from diode laser was
collimated using an aspheric lens and the polarization was oriented in the vertical axis. The
polarization of the diode laser light was parallel to the lines of the DG to maximise the reflection
efficiency and the wavelength tunability [24]. The kinematic mount, which consisted of the
diode laser, collimator and DG, was placed onto a Peltier element to improve heat conduction
and stabilise the temperature of the ECDL (see Figure 10). By changing the temperature we
could control the diode laser emission spectrum. The temperature was optimised to give the

smoothest tuning over the 780.2 nm wavelength and at the same time the most stable output.
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For the temperature monitoring we used a thermistor. The thermistor and Peltier element were
connected to an Arroyo Instruments temperature controller. With the controller we changed

the temperature of the mount and stabilised the temperature at 24.88 celsius.

Kinematic mount
Laser mount
%% Laser mount
mumfls O Tapy b | [~ Gratg
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Mount transducer

Silicon mat-"'\":IPelﬁer element

Heat sink

Figure 10. ECDL design.

The DG had 1800 lines per mm and was glued into the kinematic mount. There were two
adjustment screws which provided rough adjustment of the DG position. For fine adjustment
we used a piezoelectric transducer (PZT), which allowed a maximum of 9.1 um displacement
of the grating. This allowed us to change the diffracted wavelength back into the diode laser
to lock the output frequency of the diode laser. By varying the voltage on the PZT, we were
able to change the output wavelength untill it overlapped with the Rubidium gas absorption
lines. Then the dither signal for the frequency locking on the PZT was introduced by the
P-I controller. Because the voltage from P-I controller can be negative, an additional positive
voltage source was connected. This ensured that the PZT would never receiver an overall
negative voltage. This is important, because a PZT can be damaged by a negative voltage.
This positive low noise offset voltage was introduced by a Tektronix PWS 4323 power supply.

All voltage sources were connected into series to provide a net positive voltage to the PZT.

Zero-order reflected light from the DG passed through a LINOS isolator. This optical element

blocks light which is reflected back into the ECDL, which could damage the diode laser or

A
5

This wave plate rotates the light’s polarization and reduces the intensity of light which is used

destabilize the frequency locking. After the isolator the output entered a half-wave plate

for the observation of the absorption lines. Only a small fraction of the light is needed for
saturation in the Rb gas cell. The majority of the laser output was transmitted. We used a
glass window with reflectivity of around 1%. The rest of the light is transmitted by the glass
and can be used for fopo locking. After the Rubidium gas cell the light hits the beamsplitter
(BS). This BS reflects half of the light back into the Rb gas cell. The path of the incident and
reflected beams are the same. Only then we can see Rb gas absorption lines on the oscilloscope.
The remaining part of the light after the BS is reflected on to the Si photo detector (see Figure
11). After optical optimisation, the ECDL frequency locking was achieved. By observing the
Rb gas absorption spectrum peak, the ECDL frequency was stabilized. We used an 8 Hz
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Figure 11. Optical configuration for frequency locking of the ECDL.

frequency and 15 V amplitude triangular signal to scan the voltage on the PZT. This slow scan
helped to find the right absorption lines. The current of the diode laser was also varied to
find the absorption lines. Finally the system was enclosed with a box in order to increase the

temperature stability of the ECDL and protect it from air currents (see Fig.12).

Frequency locking

The frequency locking of the ECDL was achieved by using a New Focus LB1005 Servo Control-
ler. This is a proportional-integral (P-I) amplifier. It has a slow sweep, an input for the deriva-
tive signal from the mixer and a modulation input on the back for the modulation frequency.
For the slow sweep we used a TG215 function generator. The triangular (8 Hz frequency and
15 V amplitude) signals were used for the initial observation of the Rb gas absorption lines,
but were turned off for locking. A 7455-Hz modulation signal was generated in a low noise SRS
lock-in amplifier (SR810 DSP) and introduced into the P-I controller through the modulation
input channel on the back of the controller. The fast modulation signal amplitude was 0.24
V. This modulation signal could be seen on the top of the slow scan frequency from the P-I
controller (see Figure 13).

We can see the 7455-Hz frequency modulation on top of a slow 8-Hz frequency scan. This low
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Figure 13. 7455 kHz modulation signal on top of the slow scan.

amplitude modulation signal is the main key to achieving the frequency locking. This signal
from the lock-in amplifier was split into two channels — one of which was directed into the P-I
controller and another which was used as an input for a mixer. Before mixing both signals,
they were high-pass filtered (HPF), to get rid of the low frequency signal. To ensure that the
strongest derivative signal was achieved, the gains for both inputs in the mixer were adjusted.
We also used inverting amplifiers to match the phases of these two modulation signals before
they were mixed. After the mixing a low-pass filter (LPF) was used to get only the error signal
with no modulation frequency. The derivative signal was used as the input into channel —-B on
the P-I controller. The output voltage from the P-I controller was used for the ECDL frequency
locking. The feedback loop for ECDL frequency locking is shown in Figure 14.

When the Rubidium gas absorption peak was in the middle of the scan, the sweep was smoothly

turned down till only the peaks from 3"Rb were monitored (see Figure 15). Then the offset from
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Figure 14. Feedback loop for ECDL frequency locking.

low noise DC power supply was adjusted to bring the strongest peak into the middle position
of the scan. The scan was further reduced until only the derivative of the observed Rb gas
absorption peak was in the middle of the scan. At that moment the offset on the P-I controller

could be used to adjust the position of the derivative signal.
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Figure 15. The observed Rb gas absorption peaks, when the scan amplitude was 8 V (left) and
1V (right).
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The scan was reduced further on the oscilloscope until there was only a small fraction of the
absorption peak observed. Then the feedback loop was closed by switching the P-I controller
to the LFGL position to initiate frequency locking. When the P-I corner frequency and the
gain are optimal, the P-I controller locks the frequency of the diode laser immediately. The
scan was fully turned down and the P-I controller switched into the "Lock-On" mode. Once
locked on the oscilloscope we could see a stable flat line at the same level where the maximum
of the absorption peak was observed. This indicated that we locked at the right absorption
peak. By knocking on the table we could easily see that the ECDL system remained locked. A
disturbance can be seen, but the system adjusts accordingly (see Figure 16). The feedback loop
is able to hold the frequency locking properly without any jumps from one peak to another.

When the system is not properly adjusted mode hopping can be observed.
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Figure 16. Output voltage from PD showing that the system can easily absorb an external
disturbance without losing the locking.

6.2.3 ECDL locking results

When the ECDL frequency was locked, it could remain locked for at least 24 hours. The
main reason why we cannot increase the locking time is the wavelength drift caused by the
temperature drift in the laboratory. The temperature should stay always at 20 C, but the
temperature stabilisation system is imperfect. The real temperature can fluctuate by around
1-2 C. By using the PZT we can stabilize the wavelength, but the P-I controller was limited
by its voltage range, which was 10 V. The ECDL system was much more stable in terms of
frequency during the weekends. At that time there is less equipment which is turned on than
during the weekends increases much more slowly. In order to maintain the temperature at
20 C the temperature stabilisation system turns on less frequently than during working days.
This gives us longer time periods before the cooler comes into play. It is pretty convenient,
because during working days the wavelength of the diode laser always moves to one side of the
frequency and in the morning the wavelength is on the other side of the 780.2 nm wavelength
central position. During weekends the wavelength varies much less. The quality of the frequency

locking was determined by recording the relative intensity noise (RIN) and cumulative standard
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deviation measurements. The cumulative standard deviation reflects the locking stability at
certain frequencies. For proper ECDL frequency locking the standard deviation should be as
small as possible, which is particularly important for the fogo locking, because the noise from
the ECDL frequency locking can be transferred to fopo locking noise. High RIN and high
cumulative standard deviation increase the noise of the fcgo locking. The instability of the
diode laser frequency increases the uncertainty in fopo. We have two different feedback loop
controllers. The LaselLock is a digital one and the New Focus one is analog. The Laselock
gives us the possibility to change the modulation signal frequency and amplitude. LaseLock
also contains a function generator for a slow loop scan. It even has a mixer and low pass
filter, which provide us with the derivative signal for ECDL frequency locking. Moreover,
the LaseLock gives us the possibility to vary independently proportional P, integral I and
derivative D coefficients. This is an advantage compared with the analog New Focus LB1005
servo controller. By introducing an external disturbance into the locking loop, we can find the
best PID parameters. This is the reason why first we tried the digital controller. We used a
4 degree wedged mirror and a 40 mm focal length lens to focus part of the light into the Si
photo detector. The recorded light was observed on an Agilent Infiniium 54833A oscilloscope.
Time spans of 1 to 200 seconds were used to calculate the RIN and the cumulative standard

deviation (Figure 17).
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Figure 17. The RIN measurements from locked ECDL. The left axis shows frequency-dependent
relative intensity noise to the frequency and the right axis shows the cumulative standard
deviation of the RIN data. (top) Results for a 1 second data acquisition. (bottom) Results for
a 200 second data acquisition.

When the frequency of the ECDL system was locked, we changed the modulation frequency
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till we found the strongest derivative signal. The strongest derivative signal was observed at
7455 Hz frequency and this frequency value was used for frequency locking with the analog
New Focus LB1005 servo controller. The relative intensity noise and the cumulative standard
deviation were the same. The 1 second data acquisition shows us that the biggest noise peaks
arise in both cases from the mains at 50 Hz and 100 Hz, and at the modulation frequency of
7455 Hz. With both controllers the measured cumulative standard deviation for 1 second and
200 seconds data acquisition time was 0.04 %. When longer data acquisition times were used,
other noise peaks at lower frequencies than 100 Hz were observed. The noise at 50 Hz could be

suppressed by using batteries. The only bad thing is that the batteries do not last forever.

The ECDL system was located on a table which was not an optical bench. It was easy to see
that the locked system was very sensitive to mechanical vibrations. There was a working air
conditioner over the ECDL system all the time. These air currents also had an effect on the
quality of the frequency locking as the temperature varied in the laboratory. Still, it was a

convenient way to compare analogue and digital controllers.

After some time the ECDL system was placed on the optical bench. This suppressed mechanical
vibration and the system was better protected from direct air currents. Moreover, further
PZT improvements were implemented. We used a small piece of steel to increase the PZT
resistance from the screw tip. This slowed down the response time of the PZT, but increased
the PZT lifetime. By the use of screw we ensure that the PZT is always in contact with the
diffraction grating. We also increased the overlapping area between the PZT and the DG. On
the other end of the PZT we placed double-sided sticky tape and a washer. All these small
improvements increased the ECDL frequency locking quality in terms of mechanical vibrations

and temperature fluctuations (see Figure 18).
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Figure 18. Results for a 1 second data acquisition. (Right) Results for a 200 second data acqui-
sition. Black and blue colors represents RIN and deviation measurements after improvements.
Red and green represent data before improvements.

The ECDL frequency locking could not be maintained for a longer time than before. On the
other hand we increased the noise at higher frequencies, but this is not so critical in our case.

For us the biggest problem was the locking sensitivity to mechanical vibrations and temperature
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fluctuations, which we suppressed. The diode laser output wavelength was always less sensitive
to the diode current variations or noise from the mains. Instability was always more associated
with the temperature fluctuations and mechanical vibrations. These small improvements led
to better long term frequency locking stability. The relative intensity noise at lower frequencies

was reduced by sacrificing lower noise at higher frequencies.

Once the frequency of the ECDL system was locked an external disturbance was implemented
into the locked system. This gave the possibility to find the best parameters of the controllers
for proper frequency locking. For this we used a GW Instek GFG-8015G signal generator. We
used a 17 Hz square-wave signal to disturb the ECDL frequency locking through the PZT.
The disturbance signal amplitude was increased up to 300 mV. When the disturbance of the
PZT was in place, the signal from controller output was monitored on the oscilloscope. The
disturbance was implemented for both feedback loop controllers. For Lasel.ock and New Focus
controllers the PID parameters were changed directly till the best response was achieved. In
Figure 19 we see a disturbance signal and the response for an analogue New Focus LB1005

servo controller.
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Figure 19. ECDL frequency locking optimisation by using external disturbance. Black line
represents external disturbance signal and red line — output voltage from New Focus controller.

The response of the PZT depends on the proportional P, integral I and derivative D coefficients.
These three coefficients were changed in the LaseLock separately till the best response was
achieved. In the case of the New Focus LB1005 servo controller, we have only two options - P-1
corner frequency and the gain. If the P-I corner frequency was too high the PZT response had
more fluctuations, because the voltage on PZT has been increased too quickly. The response
lasted for a shorter time period but with oscillations. If the P-I corner frequency was too low,
the response was too slow — it was hard for the New Focus controller to maintain the frequency
at zero position. The response of the P-I controllers was found to be much slower. The response
curve covers a much longer time period and it was not good for proper frequency locking. This
could cause a bigger fopo phase noise. On other hand we have the gain coefficient. If the
gain was too low the disturbance signal causes the P-I controller to increase the voltage on

PZT by a much bigger value. Slower response is again not a good thing for proper locking.
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Then the system has bigger frequency drift and it can more easily lose the frequency locking.
The best results were achieved by leaving P-I corner frequency at 1000 Hz, LF gain limit at 20
dB, the gain at 5.55 and the input offset at 4.82. The output from the New Focus controller
was optimized for stable ECDL frequency locking. The ECDL system could easily stabilize the
frequency even after a hard knock on the table without losing the locking. The modulation
signal amplitude from the lock-in amplifier was as small as 240 mV. The ECDL stability was
confirmed by heterodyne beating two ECDL lasers light on the APD. The acquired signal was
stable within 1 MHz region at RBW=100 kHz.

6.2.4 S"Rb stabilized 375-MHz Yb:fibre femtosecond frequency comb

When the ECDL was ready, an alternative to the nonlinear self-referencing method for fogo
locking was investigated. A femtosecond 375 MHz Yb:fibre laser comb was referenced to the
Rb stabilized ECDL [40]. The experimental configuration of the experiment is presented in
Figure 20. The Yb:fibre laser was built by Dr. Thomas Schratwieser and Dr. Cal Farrell.
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Figure 20. Configurations of the Yb:fibre laser and Rb-referenced ECDL (upper and lower
blue boxes) and the comb stabilization scheme. PBS, polarizing beamsplitter; PC, personal
computer; DAC, digital to analog converter; ADC, analog to digital converter [40].

The sampled repetition frequency frgp was low-pass filtered (LPF) and mixed with a 375 MHz
signal from a synthesized signal generator to give an error signal for the PI controller whose

output was connected to a piezo-electric transducer (PZT). In this way the repetition rate was
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stabilized. A 5.8 mHz Allan deviation was measured for a 50-second averaging time (in-loop
measurement). For full frequency comb stabilization, the fopo of the pump laser also had to
be locked. The ECDL presented earlier was locked to the 8"Rb D, F=2-2 transition line at
780.2 nm by using the dither locking technique. The absolute frequency of the transition is
384,227,981.9 MHz [35]. The Rb stabilized ECDL light was combined with the Yb:fibre laser
light in a 1.5 m photonic crystal fibre (NKT SC-3.7-975) via a dichroic beamsplitter (HR 1030
nm, HT 780 nm).

High peak power fs pump pulses at 1030 nm were extended using supercontinuum generation
to the visible generating a coherent 10 nm bandwidth component at 780 nm. With this laser
it was too challenging to generate an octave spanning and coherent spectrum for foro to be
stabilised using self-referencing. By implementing an ECDL, a coherent beat between the sub-
octave supercontinuum and the ECDL could be acquired. An efficient heterodyne beat was
ensured by implementing quarter- and half-wave plates before a monochromator containing an
1800 lines mm™*! diffraction grating and 500 mm focal lens. A heterodyne beat was detected
using an avalanche photodiode (APD) placed in the focal spot of the lens. The detected foro
of the Yb:fibre laser was isolated with a 200 MHz LPF, amplified and acquired by a 12-bit
analogue-to-digital converter sampling 2048 points at 500 MS/s resulting in 244 kHz frequency
resolution. An algorithm compared the acquired frequency with a set-point and accordingly
provided an error signal through a 14-bit digital-to-analogue converter. This signal was used
to actuate the angle of the intracavity dielectric filter placed inside the Yb:fibre laser. A
galvomotor tuned the filter angle causing a carrier-envelope-offset fopo frequency change at a
rate of 150 MHz mrad—!. The stability of the locked frequency comb fc o is presented in Figure
21. The locking the fopo of the pump obtained by heterodyne beating the Rb-ECDL with the
comb, which contained not only fogo, but also and uncertainty in frgp. The heterodyne beat
contains not only the ¢go of the pump as it was done earlier. Still, since the frgp is locked,

the biggest impact comes from the fopo uncertainty which was locked to the Rb-ECDL.
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Figure 21. The RMS deviation (blue) and two-sample frequency deviation (red) of the comb-
offset beat signal for comb-offset stabilization turned on (filled symbols) and turned off (open
symbols). The data were recorded while the repetition frequency of the Yb:fibre was stabilized
40].
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The Allan deviation and RMS deviation for multiple averaging times were calculated when
frep was locked. We measured better frequency stability at longer averaging times and poorer
at shorter time gates. The noise at lower averaging times appeared because the galvanometer
motor experiences 100 purad level disturbance due to internal noise. This periodic modulation

introduced an additional noise to fogo.

In Figure 22 we present a long term stability measurement of the locked frequency comb. The
blue symbols corresponds to the fluctuations of the unlocked fogo while the green symbols
correspond to the locked comb heterodyne frequency fluctuation relative to the mean of fogo.
The air conditioning cycling was responsible for the unlocked heterodyne beat oscillation. As
we locked the system, the fogo could remain stabilized about a set-point for at least 60 minutes.
An Allan deviation of 235 kHz was calculated where the RMS was 236 kHz. In comparison
the unlocked heterodyne beat was fluctuating by up to 10 MHz. The fractional frequency
stability with a 50 second gate time was 6.1e—10 which is by one order of magnitude greater
than presented in a previously reported Rb stabilized Er:fibre system [18]. The foro of the
pump was measured in-loop which is relative phase noise measurement since it does not take

into account the reference instabilities.
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Figure 22. Comparison of the fluctuations in the beat frequency relative to the mean with comb
offset stabilization turned on (green symbols) and turned off (blue symbols) for averaging times
of 50 s over a period of 60 minutes. All data were recorded while the repetition frequency of
the Yb:fibre was stabilized [40].

6.3 Atomically referenced 1-GHz optical parametric oscillator frequen-

cy comb

With the ECDL stabilized to a Rb transition line, a well-defined optical frequency was available
which could be directly heterodyned with the 1-GHz Ti:sapphire laser comb. The acquired beat
frequency was stabilized resulting in a locked Ti:sapphire OPO pump frequency comb. The
locking scheme and results are described below. The characteristic noise of the locked carrier-

envelope-offset (fcgo) frequency is also presented.
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6.3.1 A Rb-stabilized Ti:sapphire frequency comb

An interferometer was constructed in order to obtain the fogpo beat frequency between the
Ti:sapphire laser and the Rb stabilized ECDL. Before locking the fogo of the comb, the frep
was stabilized and the ECDL locked to Rb transition. Therefore by beating the comb with
ECDL, we are obtaining the fluctuations of fogo. The experimental configuration is shown in
Figure 22. In order to lock the foro of the pump pulse, a beat frequency between a pump
comb line and single mode diode laser locked to the F=2-2 transition (384,227,981.9 MHz [35])
must be acquired. For this reason an interferometer was developed. A partial reflector was
used to synchronously couple 95% of the pump power (Gigajet, Laser Quantum, 1 GHz, 1.4 W,
30 fs) into an OPO based on a 1.2 mm PPKTP crystal (Raicol Crystals). The OPO output
was tunable from 1.1-1.6 wm producing 80-fs pulse duration signal pulses. The remaining 5%
(0.07 W) of the power was coupled into a 2-m length of FC/APC single-mode patch core fibre
(P3-630AR-2). The Rb stabilized ECDL light was coupled into the same type of fibre. The
fibre had an angled input facet since it was necessary to avoid feedback to ensure stable diode
laser performance. The beams were combined using a 50/50 beam-splitter (BS). After the light
reached a DG (Thorlabs, GH25-24V), it was spectrally dispersed. To ensure efficient diffraction
and a suitable power balance between the two arms, half-wave plates were introduced into the
two channels before the BS. A 750-mm focal length lens focused the beams onto the APD
(APD210). A slit placed before the APD was used to ensure a maximum of 30 modes beating
on the APD.
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_
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laser ) ,
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\ PPKTP APD
N OPO

Figure 22. Optical schematic of the Ti:sapphire and Rb-ECDL interferometer. APD, avalanche
photodiode; BS, beam spliter; DG, diffraction grating; FC/APC, angled fibre patch cord; PR,
partial reflector; WP, waveplate.
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Figure 23 presents the electronic locking loop for fogo frequency locking of the Ti:sapphire laser.
The signal from the APD was low-pass filtered (Minicircuits, VLF-400+) to remove frequencies
above frpp/2. The filtered signal was amplified by 20 dB (Farnell, THS3202EVM) and mixed
(in a Minicircuits ZP-3) with a strong (+10 dBm) signal from a synthesized signal generator
(SSG, Agilent 8664-A) to produce a frequency at around 10 MHz. This 10 MHz difference
frequency was amplified by 20 dBm and low-pass filtered (Minicircuits, BLP-30+). This LPF
signal was introduced into one channel of a comparator (Pulse Research Labs, PRL-350TTL)
to produce the square wave signal which is necessary for the phase frequency detector (PFD).
The reference 10 MHz signal was taken from the same SSG and passed through a comparator
to provide a reference frequency for the PFD. As a result, the output from the PFD was varied
according to the frequency difference between two signals. The output from the PFD was
plugged into a proportional-integral amplifier (Newport, New Focus LB1005) which provided
the error signal for the Ti:sapphire fopo comb stabilization. The fogpo was locked via diode

current modulation of the Finesse Pure pump laser.
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Figure 23. Locking loop for Rb-ECDL stabilization of the Ti:sapphire laser frequency comb.
APD, avalanche photodiode; BPF, band-pass filter; LPF, low-pass filter; PD, photodiode; PFD,
phase frequency detector; PZT, piezo-electric transducer; SSG, synthesized signal generator.

6.3.2 Stabilization of an optical parametric oscillator frequency comb

After the fopo of the Ti:sapphire laser was locked to a Rb transition line, we attempted to
lock the 1 GHz OPO in a similar way. As we demonstrated earlier, for the fogo locking of
the OPO we do not need a PCF. We simply need to generate an output from the OPO at 780
nm wavelength so that we can detect the beat between the OPO and the ECDL locked to the
Rb transition line. If the signal wavelength of the OPO is oscillating at 1560 nm, parasitic or
phase-matched SHG can be generated in the PPKTP crystal. The only problem is that the
Ti:sapphire pump pulse bandwidth also reaches 780 nm, which means we cannot separate SHG

and pump light since they share the same wavelength. We tried to output couple the signal
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pulse and externally frequency double it to 780 nm, but these attempts were unsuccessful due
to the low average powers achievable at 1560 nm (<20 mW). An alternative approach was

therefore employed.

An investigation was launched into whether a beat between the Rb stabilized ECDL and the
OPO SHG (fego—25) could be achieved. Light exiting an OPO folding mirror was focused into
the FC/APC fibre previously used for the Ti:sapphire beat detection, as shown in Figure 24. A
second APD2 (Hamamatsu, APM-400, 0.042 mm? active area) was placed in the spectrometer
so that both beats could be locked simultaneously by employing different RF filtering processes.
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Figure 24. Modified spectrometer configuration for simultaneous Ti:sapphire and OPO locking
to the Rb-ECDL.

The signals on both APDs were optimized by changing the OPO cavity length. When there was
no oscillation in the OPO, only pump light left the OPO and entered the mode-matching fibre.
The same beat strength was detected as demonstrated with one APD (see earlier sub-section).
After this, the OPO cavity length was tuned to a signal wavelength of 1560 nm. The resulting
RF trace is shown in Figure 25(a). There are two pairs of beat frequencies - one stable (the
Ti:sapphire laser fopo) and one very mobile (the OPO foro_a5). Moreover, even by blocking
the Rb stabilized ECDL light we could not get rid of the mobile beat (see Figure 25(b)). The
mobile beat arises due to a spectral overlap between the idler and signal wavelengths close to

1560 nm. Near 1560 nm both waves can oscillate in the OPO cavity resulting in an internal beat
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which is evident on the APD. A small change in cavity length AL causes a A fcro change. If the
foEopump of the pump pulse is stabilized, the conservation of energy [41] requires that the non-
resonant idler fogpoiqier frequency must shift by —A fogo. This means that the internal beat is
changing by 2A fcEointernai- Therefore our acquired heterodyne beat shift is mobile. Moreover,
near degeneracy the resonant signal and non-resonant idler pulses are frequency doubled in
the PPKTP crystal and the overlap in wavelength results in an internal beating at 780 nm
wavelength ( foro(swsignal)-foro(smidier))- Frequency doubling means that fcgointernar changes
twice as fact. It means that the AL change in the cavity length will result in a 4A fcEointernal
change at 780 nm. The acquired internal beat prevents the detection of a separate beat against
the Rb stabilized ECDL. On other hand, this beat can be used for the stabilization of the entire
system. By locking the Ti:sapphire laser to the Rb stabilized ECDL and separately stabilizing
the internal beat of the OPO, we could stabilize the fcgpopump of the pump, signal and idler
pulses without the need for a PCF.

(a) | | | | foer

fCEO(SHsignaI)'fCEO(SH'ldIer) fREP'(fCEO(SHs'\gna\)'fCEO(SHid\er)

fRE P_( Rb_‘|:CEO)

Power (dBm)
A
jan]

—60}
sy
% 200 400 600 800 1000
0 : . : :
(b) frep
20}

fCEO(SHs'\gnaI)_fCEO(SHidIer) 1:REP_(fCE('_?(SHs'{\gr'la\)_fCE('_?(SHit:IIer))

Power (dBm)
A
o

vy

~80 ! ' ' - -
0 200 400 600 800 1000

Frequency (MHz)

Figure 25. (a) Beat between Rb-ECDL and collinear pump and SHG signal beam; (b) Collinear
pump and SHG signal beam only, with the remaining beats at 300 MHz and 700 MHz due to
an OPO internal beat between signal and idler pulses.
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This rapidly moving internal beat, while strong, moved too fast to be captured by the locking
electronics. A frequency divider (HMC394LP4) was used to increase the capture range of the
locking circuitry by reducing the frequency excursions by a factor of n==8. This divider greatly
improved the stability of the locking, which could be maintained for many hours at a time
without loss due to the 8x increase in the capture range of the locking loop. The stability of

the heterodyne beat improved by several orders of magnitude.

6.3.3 Locking quality and noise characterization

After the repetition rate of the Ti:sapphire laser was stabilized, the detected fopo beat was
passively stable. The slowly drifting beat frequency was mixed down below 30 MHz, because
of the operational region of our electronics. The locked beat is presented in Figure 26. The
bandwidth of the locked beat note was about 1 MHz, which is what we expected since the
linewidth of the Rb transition is around 500 kHz. The quality of the Ti:sapphire comb lock
was investigated via a phase noise power spectral density (PSD) measurement at the output
of the PFD (Figures 26 and 28). The stability of the locked comb was determined by taking
Allan deviation measurements [42] over several different gate times (Hameg, HM8123). The

calculated Allan deviations are presented in Figure 29.
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Figure 26. Locked beat note between the Ti:sapphire laser and the Rb-ECDL.

The PSD plot in Figure 27 shows a cumulative phase noise of 3.67 rad over 1 second, when
we integrated over a frequency range from 1-64 kHz. Most of the noise came at >10 kHz
frequencies. The corner frequency of the Pl-controller used for locking was 10 kHz. The
theoretical bandwidth of the Ti:sapphire locking loop was about 1 MHz (since we were using
diode current control), but the bandwidth of the beat signal prevented better locking at higher

corner frequencies. We can notice a great increase in the noise at 7.5 kHz frequency, which can

125



be traced back to the dither frequency used for stabilization of the Rb stabilized ECDL. We
used the smallest possible voltage amplitude for the dither signal, but this frequency was still
present in the locked loop. With quieter electronics the dither signal could be removed and the
cumulative phase noise could be reduced down to 2.85 rad (see Figure 28). In addition the use

of a piezo with a higher resonance frequency could allow the use of a higher dither frequency.
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Figure 27. Phase noise PSD plot of the Rb-Ti:sapphire lock.

10 40 5
N <
E 10—3 N

o Q
E N 3.0 2
~ _5 \I—> =
A 10 Q
g , 20 £
210 °
g z
; 10° 1.0 E
g

107" — — = = 0.0 ©
10 10 10 10

Frequency (Hz)

Figure 28. Phase noise PSD plot of the Rb-Ti:sapphire lock filtered to remove the strong
7.5-kHz contribution from the dither lock.

The calculated Allan deviations shown in Figure 29 illustrate the improved stability of fogo
by nearly four orders of magnitude when locked to the Rb stabilized ECDL over a range of
different gate times. The passive stability of the 1-GHz Ti:sapphire laser is also shown for
comparison. We are actively stabilizing the fopo frequency, but over longer time periods the
beat frequency could deviate out of the range of the locking electronics. The reason is that
the repetition rate of the Ti:sapphire laser is slowly drifting due to thermal drift. This shift
changes the comb lines relative position. The slow drift of fogpo can be traced back to small
changes in the frpp of the Ti:sapphire laser when its repetition rate is not locked. As presented
in Figure 23, the second order of the detected Ti:sapphire repetition rate was referenced to 2

GHz frequency taken from the SSG. The cavity length of the Ti:sapphire laser and therefore
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the repetition rate was stabilized by a PZT placed inside the cavity. A corner frequency of
10 Hz was used. As can be observed in Figure 29, the repetition rate locking improved the
stability of the fogo locking in a long term measurement. We are suppressing the slow drift of
the frep which improved the long-term stability. A fractional stability of 5e—15 was achieved

in a 10-s gate time.
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Figure 29. Allan deviation measurements of Rb stabilized ECDL locking of the 1-GHz

Ti:sapphire laser.

The linewidth of the locking signal is wider in comparison to a supercontinuum based f-2f
locking scheme, but the comb could remained locked for hours. The reason is the high-quality
locking of the ECDL which could remain locked to the Rb transition line for 24 hours without
any adjustments. On other hand we also benefited from a passively stable pump laser. The
Allan deviation results show a comparable performance with self-referenced systems, but here
we are getting rid of PCF from the system. We can lock the fogo of the pump pulse without
the need for nonlinear fibre, and without the need for supercontinuum generation. This means
we can lock higher repetition rate frequency combs much more easily than we could by using
PCF.

Phase noise PSD measurements of the internal heterodyne beat locking are presented in Figure
30. The calculated cumulative phase noise from the phase noise PSD profile resulted in 1.6 rad
in range from 1 Hz — 64 kHz over a 1-second observation time. The quality of the locking is
limited by the bandwidth of the electronics (through the signal formatting stages) or physically

(by the travel range and resonance frequency of the PZT used for cavity length control).

The noise data presented in Figure 31 and Allan variance data presented in Figure 32 were
measured in-loop after the frequency divider. The in-loop phase noise PSD of the locked
internal fopo showed a cumulative phase noise of 1.59 rad in a 1 second acquisition time
integrated from 1-64 kHz. The corner frequency of the Pl-controller was set to 3 kHz. The
limiting factor was the resonance of the PZT used for the cavity length stabilization in the OPO.
The real bandwidth of the PZT was in the 500-1000-Hz frequency range. The Allan deviation
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Figure 30. PSD spectrum from the 1-GHz OPO locked to the divided internal beat frequency.

calculations of the frequency divided and locked internal fopo are shown in Figure 32. The
fractional stability slightly was slightly noisier than what was reported for the 333 MHz OPO
[11]. The presented Allan deviation was measured for the frequency-divided 10-MHz signal.
The division of the acquired frequency increased the capture range of the locking allowing an

excellent long term stability to be obtained.
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Figure 31. Locked beat frequency measured: (a) after, and (b) before the g divider.

An out-of-loop measurement of the phase noise PSD was done by splitting the amplified signal
before the frequency divider (80 MHz when locked) and mixing with a 70 MHz RF signal to
generate a new 10 MHz beat frequency. This new frequency was passed through a comparator
and into a second PFD along with a second 10 MHz reference signal, generated by the same
RF source as the reference signal for the locking loop. The output from this out-of-loop PFD

was used to measure the PSD of the undivided signal, which is shown in Figure 33, after a
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Figure 32. Allan deviation measurements of the locking stability of the 1-GHz OPO when
stabilized to an internal beat frequency.

scaling consideration that accounts for the divider used for locking [43, 44]. As was discussed
previously, the detected and locked internal beat frequency corresponds to a change in signal
carrier-envelope offset frequency of 4A foro. The noise data presented in Figure 33 represent
a worst-case scenario for the locking stability of the OPO, as there is also a noise contribution
from the Rb-locked Ti:sapphire forpo. The measured value of 3.4 rad can be considered as an

upper limit on the phase noise of the OPO frequency comb.
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Figure 33. Out-of-loop phase noise PSD measurement of the internal beat lock for the 1-GHz
OPO. The cumulative phase noise has been divided by 4, as discussed in the text. Observation
time was 1s.
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6.4 Conclusions

A Rb gas absorption line was used for ECDL frequency locking at 780.24 nm. The ultimately
achieved frequency locking had low noise, was quite stable and could persist for at least 24
hours. The limitation of the locking time was that the New Focus LB1005 servo controller
had a voltage range from -10 V to +10 V. The temperature in the laboratory is varying quite
substantially for the ECDL and in order to increase the locking time further we need to increase
the voltage output range or increase the temperature stability in the laboratory. Apart from
these limitations, the frequency locking was stable and it could last long enough to be useful it

for other experiments.

We have presented a new method for stabilizing the offset frequency of a 1030 nm Yh:fibre laser
comb. When the comb was locked to a Rb transition line, the fogo exhibited an Allan deviation
of 235 kHz at a 50-s gate time. A software-based feedback loop actuating the intracavity filter
enabled a wide capture range and therefore foro could remain locked for hours. The locking
performance could be improved by implementing a hardware-based approach and by replacing

a quite noisy galvanometer motor with a PZT actuator.

We have decribed a linear fopo stabilization method for a 1-GHz OPO synchronously pumped
by a Ti:sapphire laser. An ECDL was developed and characterized which was used as an optical
reference in an fope locking scheme for the pump pulses. An additional locking of the internal
heterodyne beat of the OPO resulted in a fully stabilized frequency comb spanning from the
visible to the mid-IR region. This method bypasses the nonlinear interferometer limitations
related to pump-supercontinuum generation in a PCF as the repetition rate increases, which
is important because operation at 1-GHz frequency begins to reach a limit at 1 GHz in the
conventional OPO comb locking scheme. The direct comb stabilization to an optical standard
(3"Rb Dy F=2-2 transition line) is promising as the repetition rate of the pump laser increases
even further. In our demonstration the 1-GHz OPO comb was locked to a Rb stabilized ECDL
and could remain locked up to several hours. The phase noise PSD measurements revealed
a poorer locking in comparison with when a supercontinuum based lock was used due to the
MHz-level linewidth of the ECDL used as the optical reference. Nevertheless, the demonstrated
stability of the comb is sufficient for many spectroscopy applications. By implementing a low-

finesse Fabry-Pérot cavity a multi-GHz mode spacing could be achieved.
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Chapter 7. Generation of 10.66-GHz frequency combs by
Fabry-Pérot filtering

One of the most promising applications of the locked frequency comb is high resolution spect-
roscopy. If the comb mode spacing is sufficiently wide, a high resolution Fourier-transform
infrared (FTIR) spectrometer can resolve the individual comb lines, with potential applications
in comb-line spectroscopy. In this chapter I describe, a fully stabilized Fabry-Pérot (FP) ca-
vity used for the generation of a 10-GHz frequency comb where the initial mode spacing was
333-MHz (see Chapter 4, 5). Firstly, a passively stable FP cavity was locked to a Rb-stabilized
CW laser and could be controlled in length so that efficient 10-GHz frequency comb filtering
was achieved. Later we locked the FP cavity length directly to the comb where the ECDL light
was used only for the FP cavity alignment so that the comb was filtered efficiently to 10.3 GHz.
Here I will present the construction of a stabilized FP cavity and demonstrate 10-GHz longi-
tudinal mode spacing using a 1-GHz spectral resolution FTIR spectrometer operating near a
wavelength of 1.5 um. The demonstration of this narrow linewidth and well defined frequency
comb confirms FP filtering as an effective option for high resolution spectroscopy or precise

frequency metrology.

7.1 Introduction

Multi-GHz frequency combs are in demand for applications such as spectroscopy [1, 2|, ast-
rophotonics [3, 4, 5], calibration for spectrographs [6], microwave frequency generation [7] or
optical coherence tomography [8]. The individual modes of a higher mode spacing comb can be
more easily resolved which enables techniques like direct comb spectroscopy. For most of the
applications, optically coherent sources covering the wavelength range from the visible up to
the far-infrared region are required which is not readily achievable from laser combs. Therefore
OPOs represent a convenient alternative route via frequency conversion from the visible to the
mid-IR region [9]. Femtosecond OPOs are tunable [10, 11], generating narrow linewidth combs
[12], but the mode spacing increase to multi-GHz frequencies was always limited by the pump
laser’s repetition rate. OPOs are synchronously pumped devices and therefore their repetition
rate is limited by the repetition rate of their pump laser. It is possible to generate 1-GHz OPO
frequency combs [13, 14, 15], but higher repetition rates becomes much more challenging. The
mode spacing can be also increased by using cascaded Mach-Zehnder interferometer [16]. We
decided to use a routine route to achieve multi-GHz mode spacing. Frequency combs with
higher than 1-GHz mode spacing have been demonstrated by Fabry-Pérot filtering of lower
repetition rate frequency combs [17, 18, 19]. From the low repetition rate frequency comb a
high repetition rate frequency comb can be generated where the mode spacing of mfrep is

determined by the free spectral range (FSR) of the Fabry-Pérot cavity.

Our aim was to demonstrate a stabilized Fabry-Pérot cavity which could be used to filter a

333-MHz repetition rate frequency comb of the OPO up to a 10-GHz comb. This approach
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of generating high repetition rate frequency combs requires a lot of additional electronics for
direct stabilization of FP cavity length to the incident fundamental comb. The length of
the FP cavity was dither locked to a single-frequency ECDL and later on directly to the OPO
frequency comb. For the direct locking to the comb, the ECDL light was used for the alignment
of the comb: a Rubidium (Rb) stabilized CW laser emitting at 780.2-nm wavelength was
overlapped with the comb before the FP cavity. The ECDL design was presented in Chapter
6. The dither locking technique was the same as we used for the ECDL wavelength locking
[20, 21, 4, 22]. The work presented in this chapter was partly carried out by Dr. Zhaowei
Zhang. My personal contribution was to ensure that the 333-MHz frequency comb was fully
stabilized before the FP filtering and the ECDL maintained a stable lock to the Rb-transition
line during the experiments. I was involved together with Dr. Zhaowei Zhang in aligning the
ECDL and comb into the FP cavity, and locking the FP to the ECDL, and directly to the comb,
resulting in a 10.3-GHz mode spacing. The filtered comb was resolved by a Fourier transform
spectrometer with a spectral resolution of 0.83 GHz, which was constructed by Dr. Zhaowei

Zhang.

7.2 Fabry-Pérot filtering theory

The FP filtering method was proposed by Charles Fabry and Alfred Pérot at the University of
Marseille in 1897 [23]. It is the most common method used for optical filtering. A Fabry-Pérot
interferometer produces an interference pattern when a number of beams are in coherence with
each other. Here I will describe the physics of FP filtering and introduce the Airy formula
[24]. The Airy function presents the relationship between the power and phase containing
multiple resonances spaced by 27, which are produced due to interference of the wave with

itself. Attenuated copies of the wave are reflected back and forward between the two FP

Eo’r Eott1’r1 Eott1’r13 Eott’r15 Eott'r17
n
EotTf EOtT13 Eot'r15 E0t7"17
B
N, L
IEot Eot'r12 Eot?"j‘l Eot'r'18

Eott,
Figure 1. Multiple reflections in a FP etalon from two plane parallel mirrors resulting in
interference.

mirrors (see Figure 1).

Eo

ott s
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As shown in Figure 1, two mirrors are placed parallel to each other with a spacing L between
them. The medium between the two mirrors may have a refractive index n. which must be
taken into account. When the beam reaches one of two mirrors the incident light is partially
reflected and transmitted to form an infinite series since each mirror has a reflection coefficient
r. The transmitted and reflected beams interfere constructively or destructively depending on
their phases and frequencies to produce a periodic transmission function which can be changed
depending on the FP cavity construction. The FP cavity separation between the two mirrors

can be varied resulting in a tunable optical filter.

Even after one round trip, the internal waves between the FP mirrors are interfering. Depending
on how many reflections any wave experiences, it will be attenuated more or less strongly than
other waves, but it will always participate in the interference process. For example, after
propagating four distances of L, the reflected waves Fyr, Eypttir; and Egtt;r? will interfere.
The transmitted Eptt and Eytt;r? waves also interfere with each other. The electric field of

the transmitted waves can be expressed as

Ey = E,T
Ey = EyT Rexp®
Ey = EyTR?*exp™® (81)

E,, = E;T R™exp™

2 = r? is the reflectivity of one partially reflecting

where T' = tt; is the transmittance, R = r
optical surface (mirror) and r and r; are the amplitude reflection coefficients where ¢ and ¢;
are the amplitude transmission coefficients. Here we assumed that both mirrors are the same
(r =71). As the incident wave is reflected between two FP cavity mirrors, it travels a distance
of 2mL travel distance (m is the round trip number). The total electric field of the reflected

wave can be expressed in a geometric series with the ratio Rexp® based on the identity

s 1
m=_—— if <1
P L (52
to obtain
E,T
E'rcms = T 55 83
! 1 — Rexp® (83)

The incident beam reduces in amplitude after each interaction with the mirrors. The elect-
ric field reduces to zero as the field is reflected an infinite number of times. The intensity
transmitted by the PF etalon is

1,72

Livans = 75 84
! |1 — Rexp®|? (84)

where
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Iy = |Ey|? (85)

Since exp™ + exp™® = 2cosé and sin?$ = 1(1 — cosd), Equation (81) can be simplified to
T2 1
Itroms = ]0 : 86
(1-R)?1+ 7(1f1;)252n23 (86)

Real optical surfaces are not only transmitting and reflecting, but also absorbing and therefore

A+ T+ R = 1. If wave absorption is small enough the second term can be neglected

T? 1-A—R A
s = e L =l ) (87)
(1-R) (1-R) 1—-R
equation (84) can be rewritten to
I I ! (88)
trans — 407 5 . o5
1+ Fsin?3
where
4R
F=0"rp (89)
The cavity transmission is therefore
= ! 90
1+ F sin2g (90)
and the intensity of the reflected wave can be written as
Fsin??
Ire ected — —2 91
Jlected Ol—i-FsinQ% (1)
with the cavity reflectivity being
. 2§
cav — Fsin 2 (92)
1+ F sng

In a system with no absorption, energy conservation is valid for the reflectivity R and the
transmittivity 7' (R+7'=1). Equation (90) is called the Airy function and it expresses the total
reflected power dependence on the phase, which in turn depends on the path difference, 9. We
can calculate the optical path difference § between two beams transmitted by the FP cavity

from the geometry in Figure 2.
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OA = \/43282'7126 — 525in%(2f3) = 2ssinfy/1 — cos? = 2ssin’j3
ABC = 2s — 2ssin®f = 2scos?3 = 2Lcos3

The path length difference is associated with the phase shift according to

2
§ = TﬂnCQLcosB (94)
The Fabry-Pérot mirrors must be chosen to contribute low (ideally zero) dispersion because
every reflection from the optical surface adds an additional phase shift 5,55. The sum of the

phase difference is

8 = B+ Badd (95)

which means if the dispersion of the mirrors is not flat across the full spectrum, the mode
filtering is not efficient for all of the pulse. Different comb modes will therefore experience
different phase shifts leading to a spectral narrowing since only part of the spectrum will
experience efficient filtering. Let’s go back to Equation (86). At certain phase differences,
interference peaks appear. From Equation (86) it is obvious that interference is constructive if

% = 7 or an integer multiple of 7

2
%nCQLcosﬁ =2mmn

2n,

A

LcosB=m
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In this case maximum intensity is equal to

T2

Imaximum = T o 97
For minimum transmission, the phase difference must be g = 7 or an odd integer multiple of
it. Then sin?2 = 1 resulting in
T2
Iminimum = T o 98
(1+ R)? (98)
The full-width at half maximum (F'W H M) intensity, can be expressed as
=2mm + % (99)
From Equation (86)
1 1
1+ Fsin?¢ 2
.o 0o
sin— ~ —
; (100)
o
F—=1
1
4
o=—=

VF
When we compare this extracted relation with the 27 separation of the maximum peaks, the
FP cavity finesse can be expressed as
]—“:2127“/7: ™R (101)
o 2 1-R

We can notice that the FP cavity transmission and reflection is a function of wavelength (see

Equation (91)). The transmission profile contains multiple fringes which depend on the reflec-
tivity R (see Equation (83)).

There are several other important features of the Fabry-Pérot cavity. The first one is the
capability to resolve two very similar wavelengths. The resolving power (RP) can be defined
as

A

RP = — 102

) (102)
Two wavelengths are resolved if the curves of two transmission fringes meet each other at their
FWHM. In this case the sum of the two intensities of the fringes is equal to the intensity of
a single fringe. This can be related with the interval A. First we differentiate Equation (89)
4dmn.Lcosf AN

AN =2mm= (103)

18] = -

from Equation (95) and if |Ad]| = o
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AN

2mrm— =

4
A VF (104)
A MR

AN 2
Since # = F and for 6 =0
L _ 2n.LF
AN\

AN =

Fm F22n.Lcosp
Another important parameter of the FP cavity is the free spectral range (F'SR). This is the
frequency difference between two maxima in the transmission profile of the FP interferometer.
In order to calculate the F'SR, the difference in phase is taken as 27. Then
FSR = AAFSR) = — >~ 2 (106)
2n.Lcosd  m
The FISR, FW HM and finesse F are related according to

FSR=F x FWHM (107)

The characteristics of the FP cavity are defined by the parameter m (see Equation (94)) and
the finesse F. Once we have defined the wavelength and the incident angle, the only parameter
which can be varied is the spacing L. After the spacing is chosen, the F'SR is fixed. In our
experiment we want to increase the mode spacing from 333 MHz up to 10 GHz frequency. The
FW HM is then determined by the ratio between the F'SR and the finesse F. The higher the
reflectivity of the mirrors, the higher is the finesse . This results in narrower peaks and a

higher resolving power for the FP cavity.

FSR
j jk
j k N

frequency

>

transmission .

0

Figure 3. FP cavity transmission spectrum illustrating the FW HM linewidth and the free
spectral range F'SR.
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7.3 Construction of the Fabry-Pérot cavity
7.3.1 Source comb at 333 MHz

The signal frequency comb from the 333-MHz OPO described in Chapter 5 was locked at
1.46 um and was used as the source comb for an external FP cavity employed to increase
the mode spacing to 10 GHz. The design of this Ti:sapphire-pumped OPO was presented in
[15]. Before mode filtering, the repetition rate frpp and carrier-envelope-offset fopo of the
frequency comb at 1535 nm were stabilized to a radio-frequency (RF) reference. Following
this, the cavity length of the FP was locked to the Rb-stabilized diode laser emitting light at
780 nm wavelength, leading to a demonstration of comb filtering to 10.66 GHz. Subsequently
the FP cavity was locked to the comb directly. In this case a Rb-stabilized diode laser was
used for FP cavity alignment to ensure efficient comb filtering at 10.3 GHz. In all FP locking
experiments the fopo was detected by heterodyning the supercontinuum light from the PCF
with the non-phase-matched pump-signal sum-frequency light from the OPO. The frequency
frEp was acquired with a fast Si photodiode. For a 1-second gate time Allan deviations of 0.27
Hz and 1.5 mHz were measured for fopo and frpp respectively. The locking of fopo in the

comb filtering is important, because of the

7.3.2 Fabry-Pérot cavity specification

We considered a range of cavity designs employing different free spectral ranges (F\SR). Since
our goal was to demonstrate 10-GHz mode spacing frequency combs, the calculated standing

wave resonator length L had to be 15 mm. The free spectral range (F'SR) can be calculated as

_C
2L

We decided to employ a plane-plane cavity design because mode matching requires no more

Av (108)

than beam collimation and the cavity length can be adjusted to any value, enabling combs
of flexible spacings to be realized. In the case of the FP cavity locking to the ECDL, it was
composed of two low-dispersion flat mirrors, with a reflectivity of 99% over 1.0-1.1 um and a
GDD of less than 2 fs? over that region. At 1.050um the GDD was -30 fs?. The FP cavity
length was tuned to around 15 mm to achieve an FSR of 10 GHz, the 30th harmonic of the
repetition rate of the incident comb source. The feogo locking is important in coupling the
comb to the Fabry-Pérot cavity. The comb spacing must be sub-harmonic of the FP cavity
spacing and this can be ensured by locking the fopo
frp

fREP = W (109)

nfrep + foceo = mfrp
For efficient frequency comb filtering, the actual comb mode offset (foro) must changed so that
the filtering is efficient (see Figure 4). On other hand the FP cavity length can be changed so

that it matches the comb modes.
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Figure 4. Fabry-Pérot filtering by matching the su-harmonic comb mode spacing with the FSR.

Our FP cavity had a FSR of 10 GHz which corresponded to a mirror separation of 15 mm. Such
a cavity will pass every 30th mode of the frequency comb with all other modes being suppressed
resulting in a 10-GHz mode spacing. Firstly, the OPO and ECDL beams were recollimated
down to 4-mm in diameter which corresponded to a Rayleigh length of 8.18 m for Gaussian
beam at 1535 nm wavelength. The beam from the OPO was overlapped with the single mode
ECDL beam before they were coupled into the FP cavity (see Figure 5).

Pump laser and OPO  Nonlinear interferometer

;h PBS IFP APD
1.45W, 333 MHz, 30 fs ' I I Z
Ti:sapphire laser I I

;\/2 —
1.4-1.6 um, 333MHz

OPO

Loop for fceo

e Pl controller 10 MHz
stabilization <—.
reference
/ 9.2 kHz N\
dither

10 Hz PI
slow sweep

controller

PZT;IIPZTZ I'

m2 BS1 BS2
,

J
\

Figure 5. Comb-filtering system, showing the locking scheme of the OPO and FP cavity. A
nonlinear interferometer was used for detecting the fopo frequency of the signal, a loop for
stabilizing the fopo and a stabilized comb filter. PCF, photonic crystal fiber; PBS, polari-
zation beam-splitter; IF, interference filter; P, polarizer; APD, avalanche photodiode; PZT,
piezoelectric transducer; PI controller, proportional-integral controller; PFD, phase-frequency
detector; LPF, low-pass filter; HPF, high-pass filter; Amp, amplifier; PD, photodiode; ECDL,
external cavity diode laser.

10-GHz comb

J
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In the case of the ECDL, the Rayleigh length was 16 m since the central wavelength of the
ECDL was 780 nm. The ECDL was used not only to lock but also to align the FP cavity
since the angular alignment of the mirrors using the comb was made difficult by the extreme
sensitivity of the transmitted intensity to the FP length. After the FP cavity, another dichroic
mirror separated the OPO frequency comb and the ECDL beams. The first FP cavity mirror
was mounted on a ring type PZT1 so that the OPO and ECDL beams could pass through
the centre of the mirror (see Figure 6). The maximum piezo displacement was 3 um for 150
V applied voltage. The outer piezo diameter was 15 mm and the inner diameter 8 mm. The
unloaded resonant frequency of the PZT is above 300 kHz. On this piezo a dither frequency
was applied which changed the cavity length for the purpose of locking to the peak transmission
of the cavity. After acquiring the dithered ECDL light, we were able to stabilize the cavity
length via a feedback loop. The second FP cavity mirror M2 was mounted onto a translation
stage enabling several millimetres manual cavity length tuning. A second PZT2 (9.1um, 0-
150V, EO0505D08F, Thorlabs) was placed inside the translation stage for fine cavity length
adjustment and enabled adjustments of the free spectral range (FSR). The PZT2 maximum
displacement was 9.1 wm for 100 V and its dimensions were 6.5-mm X 6.5-mm x 10 mm.
The voltage on PZT2 was driven via a low noise piezo-driver (Newport Microdrive Controller,
0-150 V). For acoustic noise isolation, rubber mounts were placed between the 20 cm x 20
cm aluminium breadboard and the post holders. The use of rubber mounts improved the
passive stability of the FP cavity. Before the use of rubber mounts, an obvious acoustic noise
frequency around 1 kHz could be measured when the cavity length locking loop was activated.
Subsequently, because of improved passive stability we were able to stabilise the FP cavity

length directly to the comb.

Figure 6. Fabry-Pérot cavity, showing the low-profile design and the breadboard supported on
rubber isolators.

The FP cavity output was split into two channels using a dichroic mirror (BS1) which reflected
780-nm wavelength on the PD3 and transmited broadband pulses from 1-1.5 um. The signal
acquired on the PD3 was used for the FP cavity locking to the ECDL and BS2 was used to
reflect the comb from 1.3-1.6 um for direct FP cavity locking to the comb. The OPO light was
detected with the PD1 detector (InGaAs, DET 10C/M, Thorlabs) where the locked and filtered
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frequency comb was focused onto detector PD2 (GaAs, ET-4000 from EOT). PD1 provided an
error signal for the FP cavity length locking directly to the comb while PD3 provided the error
signal for the FP cavity length locking directly to the ECDL, and PD2 was used to monitor
the filtered frequency comb.

(b) (@)

J 390 nm

(€)

Voltage (a.u.)

iy

| | | | | |
-5 0 5 10 15 20
Time (ms)

Figure 7. (a) The sweep voltage applied onto the PZT, (b) the transmitted ECDL power
through the FP cavity, (c) the transmitted comb power through the FP cavity.

As the triangular drive signal was applied to PZT2, the transmitted ECDL light together with
transmitted comb was monitored (see Figure 7). The frequency comb signal detected by PD1
is presented in Figure 6(c). This signal was used for the angular alignment of the ECDL and
OPO light into the FP cavity. A triangular voltage of 10 V applied onto PZT2 corresponded to
a displacement of 910 nm. The two transmission peaks in Figure 7(b) are separated by 390-nm
displacement which equals half of the ECDL wavelength. The simultaneously measured signal
of the filtered frequency comb contained 16 transmission peaks. Those multiple transmission
peaks at slightly different FP cavity length arise because the frequency comb contains not single,
but multiple evenly spaced frequencies. When the frequency comb is stabilized to a reference
the transmitted light of the comb has a stable average power and repetition rate frequency. If
the comb is not locked the output power fluctuates due to the Vernier effect because even a
25 nm FP cavity length change results in a different set of modes being passed by the filter.
A slight change of the FSR selects a different set of comb modes and therefore changes the

transmitted power.
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Figure 8. The simulated FP transmission as the cavity length is scanned and when the incident
comb has a repetition rate of 333.3 MHz and the free spectral range of the FP cavity spacing
is 10.66 GHz. The simulation done by Dr. Zhaowei Zhang.

The comb power transmitted as the filter cavity length is scanned can be compared with a
simulation (see Figure 8) in which an initial 333-MHz mode spacing frequency comb at 1500 nm
wavelength is filtered by a 14.07-mm FP cavity resulting in a 10.66-GHz mode spacing. The
simulation shows good agreement with the experimental results presented in Figure 6(c). In
both cases 16 transmission peaks are observed over a 390 nm displacement. The fringe intensity
mismatch between the simulated and experimental data is thought to be caused by a slight
misalignment and/or by imperfect mode matching of the OPO light into the FP cavity for the
OPO.

7.4 Length stabilization of the Fabry-Pérot cavity
7.4.1 FP cavity locked to the ECDL

The filtered comb was detected by a fast photodiode and its RF spectrum is shown in Figure 9.
It is clear that a comb with a mode spacing of 10 GHz was generated. This result was achieved
without the FP cavity length locking. The FP cavity was composed of two low-dispersion flat
mirrors, with a reflectivity of 99% over 1.0-1.1 um and a GDD of less than 2 fs?> over that
region. The FP cavity length was tuned to around 15 mm to achieve an FSR of 10 GHz, the
30th harmonic of the repetition rate of the incident comb source. The side mode suppression
was 15 dB. Optical spectra of the incident (red dashed line) and filtered output (blue solid line)
combs are shown in Figure 10. The wavelength shift appeared due not exactly flat dispersion

curve of the FP mirrors.
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Figure 10. Optical spectra of the incident (red dashed curve) and filtered (blue solid curve)
combs. The shift between the instant and filtered spectrum thought to be associated with the
dispersion of FP mirrors. RBW=100 kHz.

The passive stability of the FP cavity was monitored with a slow photodetector (PD1). We
monitored the average output power from the FP cavity. A typical result is shown in Figure
11. The photodetector was not saturated, and it can be seen that the transmission power
was changing around the maximum value. The transmitted power was not stable, varying by
a significant amount over a 1-ms time scale. Under these conditions it would be extremely
challenging to use the transmitted average comb power as an error signal for FP cavity length

stabilization.
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Figure 11. Photodetector signal, indicating the transmission of the comb through the passive
FP cavity.
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We evaluated the potential for stabilizing the FP cavity to a single-frequency Rb-stabilised
external cavity diode laser (ECDL). The mirror spacing was tuned to 15 mm to achieve an
FSR of 10 GHz. When the ECDL was transmitted through the FP cavity, a low-frequency (10
Hz) sweep signal was applied to the PZT through the ‘Sweep In’ port of a proportional-integral
(PI) amplifier used for the locking experiment. Large transmission peaks were detected when
one of the cavity modes matched the central wavelength of the ECDL. A high-frequency dither
signal (7.4 kHz, V,_,=200 mV) generated from a low-harmonic-distortion oscillator was applied
to the PZT. After the ECDL light passed through the FP cavity, PD3 detected the dithered
ECDL signal. The acquired signal was high pass filtered, amplified and mixed with the same
amplified 7.4 kHz frequency. The low pass filtered (LPF) output from the mixer generated a
derivative signal of the ECDL transmission peak (see Figure 12). The acquired derivative signal
was used as an error signal. It was connected to the ’error in’ input of the PI amplifier. The
output signal from the PI controller was applied to PZT1 for the cavity length stabilization.
As a result, the FP cavity was locked to a single-frequency ECDL.
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Figure 12. The transmission peak from PD1 (right scale) presented with the derivative from
the mixer (left scale).The FP length was scanned via PZT1.

Since the FP cavity length was only locked to the ECDL transmission peak, it does not mean
that it will necessarily match with the frequency comb transmission maximum. The repetition
rate of the pulses from the OPO is 333 MHz which means there is a certain cavity length of
the FP which is necessary for the 333-MHz repetition rate comb to fulfil the filtering condition
for the FP cavity. To ensure efficient frequency comb transmission an additional low noise
DC-voltage was applied to PZT2. The signal recorded on the photodetector (PD3) is presented
in Figure 13. Over a measurement time of 10 ms, the standard deviation was 0.01 mV, corre-
sponding to a cavity stability of better than 0.6 nm, which would be more than sufficient to
stabilize the transmitted frequency comb,assuming its mode spacing was stabilized to another

reliable reference.
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Figure 13. Measured signal on the photodiode while the cavity was locked.

7.4.2 Direct comb locking

The mirrors used to lock the FP cavity were not coated for the OPO signal wavelength. The-
refore, although stabilized, the current embodiment could not be used to filter the OPO comb.
Mirrors with appropriate reflectivity at both 0.78 um and in the OPO wavelength-band would
be required to implement the comb filtering. Laseroptik (LO) designed mirror coatings to sa-
tisfy the requirements. Together with improved passive stability of the FP cavity, these mirrors
allowed it to be stabilized directly to a maximum in the frequency comb transmission. We used
the same dither locking electronics as were used in the FP cavity locking to the ECDL to ensure
stable transmission of the filtered frequency comb (see Figure 5). For locking the FP directly

to the comb, the mirrors were changed (see Figure 14).
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Figure 14. Time-delay curve

The FP cavity contained two low dispersion planar 99 % reflectivity mirrors covering the wave-
length range from 1.35-1.6 um. High reflectivity mirrors reduce the output power, but ensure

narrower transmission peaks with good frequency sideband suppression. These mirrors were
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also coated for 780 nm wavelength with 99 % reflectivity, corresponding to the wavelength of
the Rb-stabilized external cavity diode laser (ECDL) which was used for FP cavity alignment
since the ECDL is single mode laser and it is easier to use it for alignment than the comb.
Before the FP cavity, the ECDL and comb beams were overlapped. Then the efficiently filtered
comb was used for locking the FP cavity. The time-delay curve of the mirrror coating is shown
in Figure 14. A constant time-delay is critical for insuring an invariant free spectral range
(FSR) across the full bandwidth of the OPO pulses. As we can notice from the presented data,
the time-delay is quite flat for the wavelengths from 1350-1560 nm.

The FSR of the FP cavity was locked to the 31st harmonic of the OPO frequency comb. A
New Focus (LB1005) proportional-integral (PI) amplifier was used for the FP cavity length
locking. The output from the PI amplifier containing the dither signal was connected to PZT1
in the FP cavity. A 10.66-Hz sine wave was introduced to the ’sweep in’ of the PI amplifier
to produce a transmission peak at PD1 for the filtered frequency comb. The high frequency
dither modulation (9.2 kHz, 40 mV peak-peak , corresponding to 0.8-nm cavity length change)
was generated in a low noise lock-in amplifier (SRS810 DSP). The dither signal was applied
on to PZT1 to generate a low distortion oscillation on top of the transmitted comb signal via
the 'mod in’ port of the PI amplifier. The acquired signal was high pass filtered, amplified and
mixed with the same amplified 9.2 kHz frequency. The acquired derivative signal was used as
an error signal. It was connected to the ’error in” input of the PI amplifier. The output signal
from the PI controller was applied to PZT1 for the cavity length stabilization. As a result,
the FP cavity was locked directly to the comb. When the frequency comb was fully stabilized
together with the FP cavity length, a stable transmitted power was obtained. The filtered and

fundamental signals from PD2 are presented in Figure 15.
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Figure 15. The power of the fundamental and filtered frequency combs over 10-seconds obser-
vation time.

Over 10 seconds the measured photodetector signal gave a peak to peak variation of 7%. This

variation corresponds to a cavity length change of around 0.6 nm (from simulation). The filtered
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frequency comb power instability is determined by fundamental frequency comb instability. The
relative intensity noise (RIN) power spectra of the fundamental and filtered frequency comb
are presented in Figure 16. Over a 10-seconds time window an RMS power variation of 0.99%
and 1.3% for the fundamental and filtered frequency combs was recorded. This suggests that
our FP cavity length locking loop does not add significant noise. The FP cavity length could
remain locked for several tens of minutes. The limitations for maintaining the locking were
sensitivity to strong vibrations or the PZT1 drifting out of locking range since the FP cavity
length would thermally expand or contract over time. In this case, the locked FP could track
the unlocked repetition rate of the Ti:sapphire laser. Spectral filtering results for the FP locked

directly to the comb are presented in the following section.
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Figure 16. (a) Relative intensity noise and (b) power variation of the the fundamental and
filtered combs.

7.5 10-GHz comb generated by filtering with a stabilized Fabry-

Pérot cavity

The filtered frequency comb was detected and stabilized on the signal from the fast photodio-
de PD1 and the corresponding filtered frequency comb spectrum in the radio-frequency (RF)
domain detected by PD2 is presented in Figure 17. The RF spectrum shows a frequency comb
with a 10.66-GHz mode spacing with a side mode suppression of 19 dB. Cascaded FP cavities
can be implemented for obtaining higher side mode suppression. The optical spectrum of the
fundamental and filtered stabilized frequency combs were recorded after beam splitter BS1 and
are indicated in Figure 18. The measured power of the transmitted frequency comb was 0.3 mW
where in comparison the fundamental power before FP cavity was 20 mW. The transmitted
power corresponds to 1.5 % of the fundamental power. A 96.8 % decrease in power is expected
due to the spectral filtering from 333 MHz to 10.66 GHz, however a small additional decre-
ase in power might be related to imperfect mode-matching of the fundamental and harmonic

combs associated with the use of plane-plane mirrors in the FP cavity. The measured FWHM
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bandwidth of the spectrum was 25 nm which was quite similar to the bandwidth measured for

the fundamental OPO comb spectrum.
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Figure 17. RF spectrum of the transmitted comb at 10.66-GHz frequency, recorded by PD1
with a resolution of 1-kHz.
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Figure 18. The incident (red curve) and filtered (blue curve) optical spectra of the frequency
combs. The measurement resolution was 2 nm.

The 10.3-GHz mode spacing frequency comb achieved by directly locking the FP cavity to
the comb was resolved with a high-resolution Fourier transform infrared (FTIR) spectrometer
25, 26] (see Figure 19). A long travel motorized stage (Thorlabs Part No.: DDSM100/M)
containing two retroreflectors was used to change the optical path difference (OPD) of the two
interferometer arms by up to 40 cm, resulting in a spectral resolution of 0.025 cm~!. This

spectral resolution corresponds to 0.75 GHz in the frequency domain.
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Figure 19. (a) Measured interferogram of the 10.3-GHz comb, and (b) one of the sub-
interferograms (zoomed).

The FTIR interferometer was calibrated by a 632.8-nm He-Ne reference laser. The apodized
optical path difference for the calculation of the spectrum was 36-cm which corresponds to a

1

resolution of 0.028-cm™" or 0.83-GHz. The interferograms were sampled with a 16-bit digital

acquisition card at a sampling rate of 2-Msamples per second.

The generated interferogram of the comb is presented in Figure 19(a). The pulse spacing in the
time domain was about 97 ps which means with a 36-cm OPD we can acquire 13 interferograms
of the filtered combs. The time window is equal to 36 cm divided by the speed of light, resulting
in a 1200-ps gate time. The satellite interferograms are due to the small reflections from the Ge
and Si windows which were used as long pass filters. These satellites were removed manually
before the calculation of the transmitted spectrum via Fourier transforming the interferogram.
An arbitrary interferogram is shown in Figure 19(b). The retrieved spectrum contained comb
lines which are too closely spaced to see therefore we zoomed in (see Fig. 20(a), (b), (c)).
We can clearly distinguish individual modes separated by 10.3 GHz frequency. The spacing of
10.3 GHz corresponds to about 14-mm distance between FP cavity mirrors. Therefore, in this
result, the use of high reflectivity plane-plane mirrors resulted in effective mode filtering to the

31st order harmonic of the 333-MHz fundamental frequency comb.
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Figure 20. Spectra of the 10.3-GHz comb shown with spans of (a, b) 300 GHz and (c) 40 GHz.

The resolution of the FTIR measurement is 1.0 GHz which matches the measured linewidth of
the frequency comb line (see Fig. 20(c)). This result represented the first example of a comb

line resolved spectrum from an OPO based frequency comb system.

7.6 Conclusions

The longitudinal modes of a 333-MHz OPO frequency comb were filtered to >10 GHz by
employing a Fabry-Pérot cavity whose length was locked to the ECDL and directly to the
fundamental frequency comb. The FP cavity was locked to filter the comb up to 10 GHz. In
this way we achieved reliable multi-GHz laser frequency combs by FP filtering. A 333-MHz
sideband suppression of up to 19 dB was measured which could be improved by a factor of two
if a double-pass system were used. The FP cavity locking stability was improved by increasing
the vibration isolation of the system which was essential to achieve good locking performance of
the cavity and therefore the filtering of the comb. The filtered comb modes were resolved with a
0.83-GHz resolution Fourier-transform spectrometer. Such a fully stabilized multi-GHz optical
frequency comb can potentially be used in precision spectroscopy, as a wavelength calibrator

of spectrometers or in other metrology applications. This work was reported in reference [19].
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Chapter 8. Absolute frequency measurement

All absolute frequency measurements are carried out relative to a ceasium fountain primary
frequency standard, which realises the SI definition of the second. The best ceasium standards
have instrict uncertainties of 1076 [1, 2]. The microwave transition at 9.2 GHz frequency
is transfered to optical domain by a frequency comb and used for a measurement of optical
frequencies. The spectrum of frequency combs consists of thousands well-defined longitudinal
modes separated by the repetition rate of the laser. Since extremely stable frequency standards
have been demonstrated [3], these well-defined optical frequency standards can be used in a
number of applications such as atomic spectroscopy or astronomy [4, 5, 6, 7, 8, 9]. Narrow
linewidth fully stabilized ultrashort laser combs are used in atomic physics, high resolution
spectroscopy and frequency metrology. CW lasers linewidths down to several Hz have been
measured [10, 11]. Optical frequency standards based on ions with alkali atomic structure
(Ca™, Sr™, Yb* and Hg') have natural linewidths from 0.2-3 Hz. An optical lattice clock
based on Sr atoms has been reported with systematic uncertainty to 1.5 x 1076, The optical
lattice clock was measured against a NIST Cs fountain clock via phase coherently locked fs laser
based optical frequency comb. Fractional frequency uncertainties of 1.9 x 1077 and 2.2 x 10717
have been achieved for the (199)Hg™ and (88)Sr™ ions by beating these two optical frequencies
with one optical frequency comb referenced to ceasium fountain clock [12, 13]. The best to date

frequency uncertainty of 8.6 x 107'® was measured by comparing two (27) Al* ion clocks [14].

In this chapter I present the results of absolute frequency of a CW laser obtained by heterody-
ning a frequency comb line from an OPO with the CW laser light referenced to a Rb transition.
The acquired heterodyne beat in the radio frequency (RF) region can be easily compared with
the well-known Rb reference. The linewidth of the comb line was determined by heterodyning
a frequency comb line with an ultra-narrow linewidth CW laser. From frequency noise PSD
measurement a spectral distribution of the noise was determined. This noise characteristic was
used to identify external/internal noise sources [15]. Moreover, from such acquired data the
linewidth of the comb lines could be calculated. The feedback loop bandwidth of the locked sys-
tems could be estimated and compared with unlocked systems from the frequency noise PSD.
The difference in the acquired PSD data showed at which frequencies the noise was suppressed,

allowing the real servo loop bandwidth to be estimated.

8.1 Introduction

It has been challenging to establish well-defined frequencies in the optical domain because of
the complicated connection between optical and microwave frequencies until the invention of
modelocked femtosecond Ti:sapphire laser in 1991. Different methods have been developed over
decades but the real breakthrough was achieved after the development of ultrafast lasers which
enabled frequency metrology. Using these sources a direct, phase-locked relationship between

the optical and microwave domains could be made [16]. For the contributions to the develop-
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ment of laser based precision spectroscopy including the optical frequency comb technique John
L. Hall and Theodor W. Hénsch received a Nobel Prize in 2005 [16, 17]. High accuracy frequen-
cy standards become an important method not only for new generation optical clocks [18, 19],
but also for such applications as high resolution spectroscopy. Very accurate frequency domain
comb lines with narrow linewidths can be used to determine the exact spectroscopy of atoms
and molecules from the UV to the mid-IR region. Broadband and tunable pulses from OPOs
can cover broad wavelength ranges in the near- and mid-IR region at once which enables simul-
taneous C'O,, acetylene, HyO and other molecular detection. Since the frequency comb from
an OPO is linked directly with the microwave source, the resulting phase locked relationship

ensures high precision frequency combs [20, 21].

Frequency combs can be achieved by locking the carrier phase of the modelocked laser and
repetition rate to a frequency standard based on Cesium or Hydrogen. In the measurements
described later in this chapter our frequency comb was referenced to a hydrogen maser (H-
maser) optical reference. The H-maser clock oscillates at 10 MHz frequency which was the
reference frequency for all of our devices used in the laboratory. The use of the H-maser clock
can ensure the fractional stability of the frequency comb’s repetition rate or carrier-envelope-
offset to 1 x 10712 for a l-second gate time. The H-maser clock can be referenced to a GPS
disciplined rubidium oscillator which has better long term stability (>100s). The referenced
frequency combs can be used in metrology directly for measuring transition frequencies [22, 23,
24, 25, 26, 27, 28, 29]. There were a number of experiments at National Institute of Standards
and Technology (NIST) and other facilities proving that the performance of the optical clocks
are not limited by locked frequency combs [30]. Two-comb comparison has been demonstrated
by measuring the ratio of two optical frequencies. By comparing two combs an uncertainty of
3 x 1072 was obtained [31].

The first ever self-referenced high peak power optical frequency combs were based on Ti:sapphire
lasers [32, 33]. The phase-locked frequency combs opened new ground for spectroscopy [34].
The repetition rate of these lasers could be tuned up to tens of GHz [35]. After several years
self-referenced fiber based frequency combs were developed [36] which are now the most common
practice in commercial systems since such systems are compact, efficient and relatively cheap.
However, the drawback of fiber based systems are high frequency noise and relatively broad
linewidth of the comb lines. Low quality factor cavities and nonlinear effects increase the
linewidth which is not the case for solid state lasers. In general much faster feedback bandwidth
must be employed in order to compensate the noise, unless the system is extremely stable
and isolated from environmental noise sources [37]. Many other frequency comb sources for

molecular spectroscopy have been developed during the following years [39, 40, 41, 42, 43, 44].

In this metrology study we used a femtosecond OPO based on a PPKTP crystal pumped

by a 30 fs Ti:sapphire laser to produce frequency combs with a 1560-nm central wavelength.
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This OPO was developed to generate broadly tunable frequency combs from 1.0-4.2 pum for
high resolution spectroscopy but it can be used for optical frequency metrology as well. For
this reason we shipped our 333-MHz repetition rate OPO together with the pump laser to
the Laboratoire Temps-Frequence based in Neuchatel (Switzerland) to do absolute frequency
measurements, investigate the noise properties of an optical frequency comb and the stability
of it. The development and full stabilization of the frequency comb from the OPO is presented
in Chapter 3-5. Here we tuned the OPO wavelength output to 1560 nm. The stabilization of
the femtosecond OPO was achieved by locking the repetition rate of the Ti:sapphire laser and
the carrier-envelope-offset frequency of the signal pulses at a 1560-nm central wavelength. In
the first place we did an absolute frequency measurement by heterodyning the comb line from
an OPO with a Rb stabilized CW laser operating at 1560 nm wavelength. The OPO frequency
comb was used to phase coherently measure the absolute optical frequency of the 8Rb Dy F=2-
3 transition line. The mode number of the frequency comb was determined and therefore the
absolute frequency of the CW laser calculated. In addition, the noise properties of foro, freEP
and the linewidth of a comb line at 1557 nm of phase-locked system were measured. The comb
line properties were determined by acquiring the heterodyne beat signal between the cavity
stabilized ultra-narrow linewidth CW laser and the comb line. The properties were retrieved
through the frequency discriminator technique which was applied on the frequency noise PSD
of the heterodyne beat. The comb linewidth experiences a substantial increase because of
repetition rate noise and an insignificant increase because of fcpo locking. A linewidth of
70 kHz with fractional instability of 10712 for a 1-second gate time for an optical comb line at
1557 nm was measured. The measured fractional stability of the repetition rate was limited by
the stability of the RF oscillator.

8.2 Experimental setup

For determining the absolute frequency of the frequency comb line, exact knowledge of the laser
repetition rate frepp and carrier-envelope-offset frequency fogpo are needed. Every stabilized

frequency comb can be expressed as

f(n) =nfrep + foro (110)

where the carrier-offset-frequency fcpo represents the shift of the comb from 0 Hz. The sign
of the fogo in the experiment is determined by the observation of the heterodyne beat as the
reference frequency is changed. The determination of the sign will be explained in detail later

on. Each frequency comb mode can be controlled and stabilized through the variation of frgp

and foro.
For an absolute frequency measurement, a fully stabilized frequency comb of the OPO can be

achieved by stabilizing both the repetition rate frgp of the Ti:sapphire laser and the carrier-

envelope-offset (CEO) frequency fopo of the signal pulses oscillating in the OPO cavity. In this
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experiment a frequency comb at 1560 nm central wavelength was achieved by synchronously
pumping a 4-mirror ring type optical parametric oscillator (OPO) with a 333-MHz repetition
rate Tiisapphire pump laser centered at 800 nm wavelength (see Figure 1). The repetition
rate directly scales up with the change of the cavity length which can be locked via cavity-
length control. Approximately 20 mW of the depleted Ti:sapphire laser’s power was used to
detect the repetition rate with a high speed InGaAs photodiode (DSC40S). We used the third
harmonic of frep since we did not have a bandpass filter (BPF) for higher order harmonics.
Nevertheless the third harmonic enhanced the sensitivity to frep fluctuations and therefore
the locking quality. After amplification, the acquired third harmonic was phase-compared with
a 1 GHz reference frequency in a frequency mixer (an analog phase comparator). This 1-
GHz external reference from a frequency synthesizer was phase-locked to an active 10-MHz
H-maser. When the feedback loop was activated, the repetition rate of the laser was locked
to the 10-MHz reference source. The acquired error signal from the frequency mixer gave an
output depending on the phase error. The output was amplified in a high voltage amplifier by
employing Laser Quantum’s TL-1000 [45] unit whose output was connected to two PZTs placed

inside the Ti:sapphire cavity for frep locking. frpp was stabilized via the combination of these

two fast and slow piezoelectric transducers (PZTs). The tuning coefficients were %:2 Hz

V! for the fast PZT1 and 5/AE2=20 Hz V! for the slow PZT.

Frequency mixer BPF

10 MHz from H-master| @ "“ <
Ref synthesizer Amp

(1GHz/2GHz)

"\ |LPF

Ref synthesizer
(10MHz)

i OPOL
' w

H
SFG

Figure 1. Layout of the PPKTP based OPO: OC, output coupler; PD, photodiode; PBS,
polarizing beam splitter; DG, diffraction grating; APD, avalanche photodiode; PCF, photonic
crystal fiber; BS, beam splitter. The frequencies frrpp and fopo were stabilized with two
separate control loops.

We observed that fogo scaled up with the repetition rate. As the repetition rate changed,
a change of forpo was also noticed on the order of 11 MHzV~!. When the repetition rate is
locked, the phase and group velocity mismatch is still in play. Every optical element placed

inside the laser cavity will affect the carrier-envelope-offset via the group velocity and phase
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velocity mismatch. When the repetition rate of the Ti:sapphire laser is stabilized, the acquired
foro must be locked to achieve fully stabilized frequency comb. This stabilization was achieved
with a feedback applied to PZT3 placed inside the OPO cavity.

The foro of the signal pulses was acquired by heterodyning coherent pump supercontinuum
light at 529 nm with non-phasematched pump-signal sum-frequency generation (SFG) light
from the OPO [46]. A home-made phase-frequency-detector (PFD) was used for the phase
stabilization of the fcgo to a 10-MHz reference frequency (H-maser). As the phase fluctuations
between the reference frequency and the fopo were obtained, the corresponding output from
the PFD was acquired. Our PFD could measured phase fluctuations of up to +327. The large
range of the PFD makes it easier for the feedback loop to track large phase changes which can
be suppressed via a servo-controller (LB1005 servo controller) whose output is connected with
PZT3 placed inside the OPO. Once the frequency comb was fully stabilized, the output coupled
signal centered at 1560 nm was coupled into a single mode fiber and combined on an InGaAs
biased detector (Thorlabs DET01CFC) with a common CW laser wavelength for heterodyne
beat detection (see Figure 2).
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Figure 2. (a) The OC broadband pulse from OPO in comparison with a CW light, (b) The
heterodyne beat between the CW laser and OPO for absolute frequency measurement.

The CW laser wavelength was frequency doubled and locked to a Rb D transition line. From
the mode number determination and the beat frequency an absolute frequency of the Rb Dy
transition line could therefore be calculated. The beat between the CW laser locked to a Rb
transition and the frequency comb spectrum from the OPO at 1560-nm are shown in Figure 2
(b). The bandwidth of 3 MHz was measured because of the wide Rb transition line used for the
CW laser’s wavelength locking and the additional noise contribution because of the feedback
loop.

In Figure 3 the scheme for the optical frequency measurement of a frequency doubled 1.6 um
DFB-CW-laser [47] is shown. The CW laser was stabilized to a D, transition line by absorption
spectroscopy. The CW laser mode was heterodyned against one OPO comb line resulting in a

heterodyne beat frequency. As mentioned already, if the carrier-envelope-offset, repetition rate
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optical filtering
DFB 1560 nm
D |
; PD ted

|I||||l | L1,

A A Fully stabilized OPO

Frequency comb

Figure 3. Measurement scheme for the absolute frequency measurement of Rb-transition sta-
bilized CW laser. DFB is 1560-nm laser, whose second harmonic frequency locked to the Rb
transition line; SHG: second-harmonic generation; FRU: frequency referenced unit; PD: photo-
diode.

and the beat frequency with the comb are known, an absolute frequency of the CW laser from

the OPO frequency comb mode number can be extracted.
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Figure 4. (a), (c), (e) represents frgp, foro and fppar raw data and (b), (d) and (f) represent
fractional instabilities accordingly calculated from Allan variance at different gate times.

To ensure that only common wavelengths were heterodyned on the detector, a bandpass filter
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was used. The acquired beat note was increased in strength by optimizing waveleplates, band-
pass filters and polarizations. We managed to increase the strength of the beat note between
one comb tooth and the Rb locked CW laser so that the four channel Menlo counter FXM50
was able to measure it. The acquired 20-dB signal to noise ratio (RBW=100 kHz) beat note
was used to determine the comb number and then to calculate the absolute frequency of the Rb
transition. We simultaneously counted the repetition rate frgp, carrier-envelope-offset foro
and the beat note fgrpar frequencies. The fractional frequency instabilities or Allan variance
of the measured frequencies are presented in Figure 4. The left side of Figure 4 shows the raw
data of the frep, fcro and fprpar measurements correspondingly and the right side presents
the calculated Allan variance of each data set. The fractional frequency instability was calcula-
ted for 1-second gate time. From the raw data the Allan variance for other gate times up to
1000 seconds was calculated. The frequency fluctuations were measured simultaneously using a
multi-channel digital frequency counter (Menlo frequency counter FXM50). The FXM50 coun-
ter is a II-type counter which was measuring the frequency wihout averaging it. The data was
recorded for 1-s gate time. From the measurement the Allan deviation was extracted for diffe-
rent gate times. The difference between the Il-type and A-type counters explained in Chapter
4.

The fractional instability of the repetition rate and carrier-envelope-offset frequency were cal-
culated by dividing their Allan variance by the repetition rate frgp harmonic (we detected
the 45th harmonic) and the 10-MHz reference frequency for the frgp locking accordingly. The
measured frequencies of frpp and fprpar can be stabilized to 1072 level for a 1-s gate time.
The locking of frgp was limited by the RF oscillator used as a reference source for all locking
loops. The fppar fractional stability was calculated in optical domain (Allan variance divided
by 384.228-THz frequency). In the case of the carrier-envelope-offset fopo the fractional insta-
bility was as low as 107'°. It is more important to achieve better stability of frzp than the
stability of fopo. For example, the fractional instability for mode number of 1,000,000 will be
much higher since the measured fractional instability of frzp must be multiplied by the mode
number. As a result, comb instability is mainly affected by the quality of frgp than the fogo
locking and by the H-Maser’s stability [48].

With the frequency counter we were able to calculate fractional fluctuations of the measured
frequencies from the absolute values. These absolute frequencies were used to calculate the
mode number of the frequency comb line. From the beat note the optical frequency of the Rb
transition can be expressed as

f2Rb =nfrep £ foro £ fBEAT (111)

where fr, = 192.114 THz since the CW laser frequency was locked to the Rb D, F=2-3
transition line. When we heterodyne the modes, the beat can appear on both sides of the comb

line tooth. For this reason a sign determination is needed. If the beat note when the repetition
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frequency of the Ti:sapphire laser is increasing is also increasing, the Rb locked laser’s frequency
is on the lower side of the comb tooth. The fgrar has negative sign. If a repetition rate increase
reduces the fgpar frequency, it means that the sign is positive i.e. the CW laser’s frequency is
higher than the comb line frequency. The CW laser frequency is on the higher frequency side of
the comb tooth. For the determination of the fcgo sign, the reference frequency for the fogo
locking was increased by 1 MHz and the frequency of the fgpar beat measured. The increase
of the beat frequency gave negative sign while a decrease yielded positive sign for fogo. Once
all signs were clarified and frequencies identified, the mode number n of the frequency comb

line could be calculated using

Im 4 +
n = 2 feepo £ [BEar (112)
fREP

n should be an integer number, which from the experimental data was found to be true to
about 0.0001. There are many small uncertainties which limit the accuracy of determining
the exact beat frequency, repetition rate or carrier-envelope-offset frequencies and therefore the
mode number n. For example, our CW laser, which was locked by saturation absorption to a
Rb line, was not stable (see Figure 5(a)). Figure 5(b) illustrates oscillations which correspond
to the fluctuations of the CW laser frequency at 780 nm. The Rb locked CW laser was not
stable. The low frequency drift of the fgppar was evident for every measurement. We think
the variation of the CW laser’s frequency was due to etalon fringes in the laser setup which
can shift with temperature fluctuations. Up to a 20-kHz fpgar variation was measured. This
shift couples into the measurement of the beat note and therefore to the uncertainty of the
determination of mode number and the calculation of the Rb transition line. These two beats
were measured in different labs with different counters. They were roughly adjusted in order
to compare quantitatively the two measurements. The goal at this point was only qualitative.
Once the measurement was running, the beat could stay locked for several hours until the fogo
of the frequency comb degraded below the 35-dB signal-to-noise ratio (at RBW=100 kHz)
necessary for our electronics. The loss of the beat strength was due to the thermal drift, and
the temperature of the laboratory. The fogo frequency locking could be be quickly reacquired
by some careful adjustments. Here we present frep, foro and fggar measurements obtained

at the same time.

8.3 Absolute mode number and frequency determination

The absolute mode number can be measured using two methods. The first one involves a
second well known frequency source (reference). In this case we are measuring the frequency
within the uncertainty of the repetition rate of the laser and fogo. It is easier to use this
method for higher repetition rate systems since the spacing in terms of frequency between comb
lines is bigger. On the other hand we can use a method which does not require a reference.
We can determine the absolute frequency or/and the mode number by slowly changing the

repetition rate so that different comb modes will heterodyne beat with the same CW laser.
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Figure 5. (a) The heterodyne beat frequency between the CW laser and the OPO, (b) The direct
measurement of the CW laser frequency at 780 nm between the frequency-doubled laser locked
to the Rb transition and another 780-nm reference laser (locked to another Rb transition).

Unfortunately the mode number n must be changed by a significant amount which means the
modelocked laser’s repetition rate must remain stable when it is changed by at least several
tens of thousands Hz which is not easy to do in our case. Our modelocked laser lost repetition
rate locking if the repetition rate was changed by more than 5 kHz. Ring type cavities are more
sensitive to cavity length tuning than linear ones. Lets say, if our mode number is 600,000, then
the different comb modes will be heterodyne beat with the Rb locked CW laser only when the
frep reference frequency on the synthesizer will be changed by 555 Hz. It means that only 9
different modes will be heterodyned with the CW laser before losing the repetition rate locking.
The laser cavity length cannot be changed by a significant amount. Also the uncertainty of
the heterodyne beat is higher than 5 kHz which makes it much harder to determine when the
CW laser mode is heterodyned with a second, third and so on frequency comb line. The gate
time of the frequency counter must be increased by a significant amount in order to reduce the
heterodyne beat uncertainty. Therefore we decided to use the first method for mode number

and absolute frequency determination.

As the heterodyne beat was acquired, the sign of the fogo and fggar must be determined. For

this frep was increased by 40 Hz in frequency and the fogo increased by 1 MHz. As a result, the
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measured fppar frequency was shifting depending on which side of the frequency comb mode
the CW laser frequency was located (see Figure 6(a)). As we increased the repetition rate by
40 Hz, the heterodyne beat shifted in frequency by almost 8 MHz. This was the case since
we are beating about the 500,000th mode with the single mode CW laser. Consequently the
40-Hz increase must be scaled up by 600,000 in order to see the real shift in frequency domain.
Notice, we are using the third harmonic for repetition rate locking and therefore the calculated
value must be divided by 3 in order to know the exact change in the frequency domain of the
heterodyne beat. The heterodyne beat is shifting with the carrier-envelope-offset too. As we
increased the reference frequency for fopo locking, the heterodyne beat also reduced by 1 MHz.
The heterodyne shift can be imagined by looking into the RF spectrum presented in Figure
6(b). As the repetition rate of the Ti:sapphire laser was increased, the distance between the Rb
locked CW laser and the comb line reduced resulting in a smaller fggpar frequency. It means
that the CW laser’s frequency is bigger than the comb tooth frequency. As we increased the
fceo frequency by 1 MHz, the fgpar frequency was reduced by 1 MHz. The sign is therefore
determined to be negative too.
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Figure 6. (a) The measured frequency of beat note when the repetition rate and carrier-
envelope-offset frequencies are changed by 40 Hz and 1 MHz accordingly, (b) The frequency
comb mode spacing in frequency domain in comparison with a Rb stabilized CW laser.

As the sign of the variables was defined, we were able from the measured absolute frequencies of
freP, focEo and fprar to calculate the frequency comb mode number which was heterodyned
with the common CW laser frequency. The calculated mode number was 576,445 (see Table
1). This corresponded to a frequency of 192,114,057,632.8 Hz. The theoretical frequency of the
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well-defined Rb locked CW laser is 192,114,057,601.6 Hz. This result has a frequency offset
of 31.2 kHz. The uncertainty comes from a fluctuating Rb locked CW laser since the Allan
deviation of the repetition rate frpp was 0.00046 Hz resulting in a 265.16-Hz uncertainty for
a 576,446 mode number. The fopo instability adds 0.084-Hz instability, but the main noise
comes from the CW laser since the calculated Allan variance of the beat note fppar was
37.5 kHz. The heterodyne beat had a linewidth of about 1 MHz which results in an absolute
frequency measurement uncertainty. The main reasons for the frequency shift of the laser from
the reference Rb frequency are probably the Doppler background in the error signal of the laser
stabilization, the effect of the residual amplitude modulation of the laser that results from the
current modulation applied to generate the error signal, and of course the effect of the etalon

fringes due to some fibered components.

Table 1. Absolute frequency calculation and comparison with a commercially available fiber

laser based frequency comb.

OPO measurement Menlo comb measurement

frep [HZ] 333'261°'086.66666 + 0.00046 250'000'413.00000 + 0.00039
feeo [HZ] 10°000°000.000 + 0.084 20'000'000.000 + 2.271
foeat [HZ] 28'785'300.558 + 37'478.230 29'731'235 + 28’500

N (calculated) 576'447 (576°446.999906) 768’455 (768'454.999844)
Measured frequency [Hz] 192'114'057'632 * 37.5 kHz 192'114'057'640 * 28.5 kHz
Theoretical value [Hz] 192'114'057°601'610.0

Frequency offset [Hz] +31°200 +39°070

The frequency counter measures with mHz resolution. We did not measure directly frep due
to the lack of sensitivity of the counter. For frep, we used a high harmonic at 15 GHz (45th
harmonic) and frequency down-converted it in the counter measurement range (<50 MHz).
This enabled us to measure the frequency with mHz resolution. The value of frep was obtained
by (feounter + fsyntn)/45. That is the reason why we got a better resolution and can give fe,
at the bth digit after the point. The f.., and fy..; are measured at the mHz level buy directly

pluging the signal into the counter.

The absolute frequency measurement of the OPO was compared with an Er-fiber comb (FC1500-
250 from Menlosystems, 250 MHz repetition rate). The measured frequency offset was similar
for both combs. We think the main contribution of the uncertainty came from the Rb stabilized
CW laser stabilization scheme. Both extracted values exhibit an offset to a few tens of kHz due

to interferometric noise in the Rb-stabilized laser.

By counting frep, focro of the frequency comb and fggar of the heterodyne signal between an
OPO comb line and a 1557-nm CW laser (frequency doubled and stabilized to a 8"Rb Dy F=2-3
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transition via saturated spectroscopy setup), we were able to demonstrate the first metrology
application of a femtosecond OPO frequency comb. A frequency of 384,228, 115.347 + 0.015
MHz of the CW laser was calculated. This result overlaps with the frequency determined using

a commercial Er:fiber comb.

8.4 Frequency discriminator

The analysis of the noise properties of a heterodyne beat signal can be made using a phase
locked loop (PLL) [15] where the PLL is based on a frequency to voltage converter. This
type of frequency discriminator is based on a voltage-controlled oscillator (VCO). The VCO
(Mini-Circuits ZX95-209-S+) was phase locked to the RF heterodyne beat signal via a high
bandwidth PI controller whose output was connected to the VCO. As a result the VCO follows
the frequency fluctuations of the heterodyne beat since the voltage on the VCO corresponds to
the fluctuations of the frequency noise of the heterodyne beat. If the feedback loop bandwidth
is high enough, the VCO can track any frequency fluctuations év(¢) which represent different
processes going on in the system. As a result frequency fluctuations will be followed by vol-
tage fluctuations 0V (¢). The discriminator slope D, [V/Hz| is the main parameter of such a
frequency discriminator. It possesses the sensitivity to convert frequency fluctuations v (t) to
voltage fluctuations 0V (¢). Different devices have different discriminator slopes. The higher
the discriminator slope, the better conversion of the frequency noise which is achieved. If we
know the PSD output voltage and the discriminator slope D, [V /Hz], the frequency noise PSD

can be calculated

Sv(f)
D3
where Ss,(f) [Hz? Hz7'] is the frequency noise PSD of the input signal and Sy (f) [V? Hz™!]
is the voltage noise PSD. A voltage from the PI controller can be calibrated to the frequency
noise within the bandwidth of the feedback loop if the [+-] relationship is known. The PLL

characteristics are adjusted via the PI controller for which the gain and bandwidth can be

Séu(f) =

(113)

adjusted over a large scale. An operating schematic of the PLL discriminator, used for the

linewidth determination of the frequency comb tooth, is presented in Figure 7.

Output
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VCO e

Figure 7. PLL configuration: VCO - voltage-controlled oscillator; FFT - fast Fourier transform.
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The VCO operated in the 199-210 MHz region with a 1.5-MHz V! sensitivity. A ZAD 1+
mixer was used for phase detection. The difference frequency was low pass filtered (LPF) at
10-MHz frequency so that high frequencies were affected. Then the signal was used as an error
input for a high bandwidth proportional-integral (PI) servo controller whose corner frequency

(low pass frequency) could be adjusted from 10 Hz to 1 MHz.

8.5 Frequency comb linewidth and noise characterization

The frequency noise PSD of the heterodyne beat signal between the comb line of the OPO
centered at 1557-nm and the cavity stabilized ultra narrow linewidth CW laser was analyzed.
The noise properties of the comb line could be extracted from the frequency noise PSD measu-
rement. The schematics for detecting the heterodyne beat were the same as mentioned earlier
except we changed the CW laser from Rb locked one to an ultra stable one with a linewidth of
less than 10 Hz. A 50/50 splitter (AFW Technologies, FOBC-2-15-50-C) was used to combine
the light from the OPO and the CW laser. Before it, the broadband pulse from the OPO was
spectrally filtered to about 0.3-0.4 nm (37-49 GHz) width by a diffraction grating (DG), which
corresponded to about 130 comb lines passing the filter. Then the comb was combined with the
single mode CW laser on the fiber coupled photodiode (Thorlabs DET01CFC). A heterodyne
beat at 20-25 MHz frequency with a SNR of more than 30 dB for a 100-kHz RBW was detected
(see Figure 8).
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Figure 8. (a) Spectrum of the pulse from OPO in comparison with the ultra stable narrow
line CW lasers linewidth, (b) Heterodyne beat between an OPO comb line and an ultra stable
narrow linewidth CW laser. RBW=10 kHz.

After the heterodyne signal had been acquired, it was filtered, amplified and mixed with a refe-
rence signal to give a frequency around 207 MHz. Then this signal in the ZAD 1+ mixer (Mini-
circuits) was demodulated with the PLL based frequency discriminator at 207-MHz frequency
[49]. After the frequency mixer the filtered error signal was plugged into the New Focus PI
controller (LB1005 servo controller) whose output was split into two channels. The first signal
was used to adjust the voltage controlled oscillator so that the mixed frequency was locked at

0 Hz. The second demodulated beat signal was connected to a FET spectrum analyzer (SR770
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FFT Network Analyzer) for the frequency noise measurement. The measured optical comb line
Sy (f) noise could therefore be demodulated by the analog PPL frequency discriminator. The

measured Sy (f) noise PSD was used to determine the linewidth of the comb tooth.

The frequency noise contribution of the ultra-stable CW laser to the measured heterodyne beat
frequency noise is insignificant. The frequency noise of the heterodyne beat corresponds only
to the frequency noise of the comb line. The retrieved frequency noise spectral power density
(PSD) of the locked fppar is presented in Figure 9. The noise contribution of the frequencies
to the linewidth are represented in the dotted black line [38]. The calculated value of the
comb linewidth was about 70 kHz. The linewidth of the tooth was determined by noise in the
repetition rate N frepp and fopo. In case of frgpp, noise was acquired in the range from 200
Hz to 3000 Hz, the frequency noise PSD which is present in the optical line noise spectrum.
These noise peaks contributed the most to the optical linewidth calculated from the measured
frequency noise spectrum. The repetition rate noise was scaled up to the frequency of the
N-th comb line and showed that repetition rate locking is the main noise source to the optical
linewidth. The residual integrated phase noise had a servo bump at around 1 kHz frequency
which was related to the bandwidths of the PZTs placed inside the Ti:sapphire laser. We
measured the transfer function of the frgp control via the fast PZT. The measured feedback
bandwidth was limited by the PZT resonance to 2 kHz frequency. The frequency noise PSD
of the heterodyne beat confirms this. In our configuration, the noise of the optical line at low
frequencies (below 3 kHz) is determined by the repetition rate noise while the fopo impact
is small. The fcgpo impact to the linewidth lies around the 27-30 kHz frequency band. This
noise is associated with our green pump source used to pump the Ti:sapphire laser (presented
in Chapters 4 and 5). The servo bump of the fopo feedback loop should be limited to several
hundreds of Hz to kHz range [37].
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Figure 9. Frequency noise PSD of an optical line of the OPO at 1557 nm and corresponding
contribution of fopo and N frepp. The optical linewidth retrieved from the frequency noise
PSD using the approximation of Di Domenico et al [38] is also shown on the right vertical axis.
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Repetition rate stabilization to an RF reference was achieved by applying a feedback voltage
via a PI controller to two PZTs placed inside the Ti:sapphire laser cavity. In the first place, the
third harmonic of frEpp=333 MHz was detected with a high speed InGaAs photodiode (DSC40S,
up to 16 GHz). Once the repetition rate was stabilized, the frequency noise of the repetition
rate was measured by the SpectraDynamics noise measurement system controller (SDI-NMSC
equipment from SpectraDynamics). The signal was compared with the reference frequency.
The schematic of the principle is shown in Figure 10. We took the same third harmonic and
compared it against a 1-GHz frequency from a synthesizer referenced to the same H-maser
with the SDI-NMSC unit. A 1-GHz frequency was taken directly from a TL-1000 commercial
repetition rate locking device provided by Lasers Quantum and was amplified by +10 dB with
an LNA-4050 RF amplifier to provide the +0 dBm signal strength required for frequency noise

measurement.
_®— SSG1 1GHz

f \ 3 X fep=1GHz

Amp BPF
@1 GHz

SDI-NMSC

Figure 10. Schematics of the repetition rate phase noise measurement. The band-pass-filtered
(BPF) 3rd order repetition rate harmonic was compared with 1-GHz reference.

The reference signal of 1-GHz frequency was taken from synthesized signal generator which was
used for frpp locking. Since we used the same synthesizer and detected signal for phase noise
measurement as for repetition rate locking, it was an in loop phase noise measurement. The

measured PSD of the locked and free-running repetition frequencies is shown in Figure 11.
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Figure 11. Frequency noise PSD of the stabilized and free-running repetition rate frep.
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Our feedback loop could suppress frequencies below 100 Hz. This is the frequency where the
measured locked and free-running frequency noise PSD curves separates. After the improvement
of our feedback loop by employing a commercial TL-1000 unit for repetition rate locking, we
were able to increase the bandwidth of our feedback loop to about 1 kHz, which is evident in
Figure 12. The low frequency noise was reduced by our feedback loop in the range from 1 Hz to
1 kHz compared to the H-maser. An out of loop measurement for the locked repetition rate was
done for comparison. With the high speed InGaAs photodiode we could detect repetition rate
harmonics up to 16 GHz (DSC40S). The signal at 15-GHz frequency was too low to mix in the
7X05-24MHz-S+ frequency mixer and therefore we used four LNA-14G (4+5V power supply)
amplifiers to amplify the acquired signal so that we could efficiently extract an error signal. Into
the second channel of the mixer a +12 mdB signal strength from an Agilent synthesizer (Agilent
Technologies E82570, 250 kHz-40 GHz) at 14.99667510 GHz frequency was introduced. The
error signal was set at 0 Hz. This error signal was used for phase noise and then for the frequency
noise of the locked repetition rate measurement with the FFT network analyzer (SR770). The
frequency noise PSD data for the out of loop measurement are presented in Figure 12. The
servo bandwidth was around 1 kHz frequency, except in this case the low frequency noise was
limited by the RF reference. For comparison the measured frequency noise of the heterodyne
beat is presented. The frequency noise of the heterodyne beat at frequencies lower than 1
kHz was determined by the repetition rate locking quality and the RF reference noise floor.

An improvement could be made by stabilizing the repetition rate to a better performance RF

reference.
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Figure 12. Out of loop (blue), in-loop (red) frequency noise measurements of the repetition
rate frep compared with the heterodyne beat frequency noise.

The cumulative phase noise of the locked repetition rate in out of loop measurement is presented

in Figure 13. The total measured phase noise from 1 Hz to 100 kHz was 1.1 rad.
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Figure 13. Cumulative phase noise of the locked repetition rate in out of loop measurement.

Along with the repetition rate phase and frequency noise PSD measurements, a noise cha-

racterization of the locked fopo was performed. The locked fogpo acquired with avalanche

photodetector and recorded by RF spectrum analyzer is presented in Figure 14 showing tight

foro locking limited by the resolution of the device.
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Figure 14. RF spectrum of the locked signal fopo at 1560-nm central wavelength recorded with
100-Hz resolution bandwidth. Inset: instrument limited 1-Hz resolution bandwidth showing
locked foro at 10 MHz frequency

A digital phase detector (DXD 200 MenloSystems module) was used to detect the phase fluctu-

ations between the locked carrier-envelope-offset fopo and a 10-MHz external H-maser reference

source. The DXD 200 module can be used not only for fogo stabilization but also for frequency

noise detection. The phase detector can track £32 x 27 phase difference of two introduced sig-
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nals. The output signal from the phase counter was plugged into an analog to digital converter

to generate a signal in voltage. The phase discriminator factor was D, = 3323;; = 0.016[%].
The voltage noise PSD is related to the phase noise and frequency by
Ssv(f) = Di(f)Ss.(f) = DL(f)Ss0(f) (114)

where D, is frequency discriminator slope, Ss, is the frequency noise PSD, D,, is the phase
discriminator and Ss, is the phase noise PSD. The frequency noise PSD and phase noise PSD
are related by

Ssu(f) = [*S54(f) (115)
resulting in a frequency sensitivity of the phase discriminator of
D
D, =250 (116)

The error signal was sent to a SR770 FFT network analyzer for phase noise measurement.
By knowing the phase discriminator slope, we could calculate the frequency sensitivity for the
DXD200 device and therefore the frequency noise PSD of the fogo which is presented in Figure
15.
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Figure 15. Frequency noise of the locked fopo of the OPO. The integrated cumulative phase
noise of 300 mrad measured. The inset shows the coherent peak in the CEO RF beat (500-Hz
span with 1-Hz resolution bandwidth).

The fcpo frequency of the signal pulse was locked via a fast piezo (PZT3) placed inside the
OPO cavity. As we presented, the carrier-envelope-offset contribution to the linewidth of the
comb line was about 10 kHz. The main contribution of the noise was measured at 27-30 kHz
frequencies which is related with our Pure Finess green pump laser. For a frequency comb from
an OPO a reversal point in the fcgo relation with the pump alignment was found similar to that
presented in [50]. The reversal point was important for achieving better fogo stabilization and

therefore reducing the linewidth of the comb line. There is a particular point of alignment where
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we are reducing the relative intensity noise (RIN), which leads to a much better stabilization
of the fepo. At that point the contribution of the Ti:sapphire pump power fluctuations to the
fcro noise can be minimized ensuring the smallest possible linewidth of the comb line. This
effect was measured during the optimization of the heterodyne beat locking. As one of the
adjusment mirrors for the green Pure Finesse CW laser light was adjusted, a better locking of
the focpo was acquired. There was a certain position where better locking could be achieved
and it was related with the better overlap between the green pump and modelocked pulse
oscillating in the Ti:sapphire laser resulting in supression of high frequency noise fluctuations

of the Ti:sapphire laser which were coupled to the OPO.

8.6 Conclusions

We have carefully measured the absolute frequency of the 8’Rb D, F'=2-3 transition, by coun-
ting frep, fcro and fppar acquired by heterodyning one comb line from an OPO with a
1557-nm CW laser, which was locked to a Rb cell using a saturated absorption method. A
frequency of 192, 114,057.632 £+ 0.037-MHz of the CW laser was calculated which overlaps with
the frequency determined using a commercial Er:fiber comb. The measured uncertainty of the
absolute frequency was 15 kHz. The frequency stability of the beat note was 107! at a 1-s gate
time in the optical domain while the repetition rate fractional instability was 10712 and for the
carrier-envelope-offset was 107%. The H-masers stability was 107'2 for a 1-s gate time. The
reduction of the CW laser sensitivity to temperature fluctuations could increase the stability
of the beat note and therefore reduce the uncertainty in the absolute frequency determination

of the comb line.

Fully characterized noise properties of the frequency comb at 1557 nm were presented. The
ultrashort pulses at 1557 nm were generated in a PPKTP based synchronously pumped OPO.
These pulses were fully stabilized and referenced to a H-maser source via repetition rate and
carrier-envelope-offset feedback loops. For the purpose of characterization, the heterodyne beat
between the comb line from the OPO and the ultra narrow cavity stabilized laser was acquired.
The tight lock of the optical comb line resulted in a 70 kHz linewidth (1 second). In comparison
a 100-kHz linewidth of the Er-fiber comb (FC1500-250 from Menlosystems) was measured. The
noise properties demonstrated that the linewidth is mainly limited by the repetition rate since
fcro contribution is almost negligible for all frequencies. The main noise contribution is at
frequencies lower than 4-5-kHz compared to 100-kHz in case of the fiber comb, which means
that it should be much easier to achieve a tight phase lock characterized by the linewidth of
the comb line. A feedback bandwidth of 100-kHz is challenging to achieve whereas 4-5-kHz
is relatively easy. In our system the main limitation are PZTs which can not reach higher
bandwidth than 1 kHz. The implementation of diode current feedback or a new type of PZT
holder could increase the feedback bandwidths up to thousands of kHz resulting in much better
feceo and frep locking. Better stability performance could be obtained by referencing the

frequency comb to an ultra narrow linewidth CW laser.
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Chapter 9. Conclusions

This chapter reviews the experimental work presented in the thesis and contains conclusions
from the results. I will discuss the performance of the frequency comb systems based on OPO,
the results from Fabry-Pérot filtering, locking the foro of the comb to an optical frequen-
cy (ECDL), absolute frequency measurement of a diode laser, and future work which should

improve the system performance.

9.1 Technical summary and conclusions

In Chapter 3 the 333-MHz repetition rate Ti:sapphire laser and the OPO system were presented.
A modelocked Ti:sapphire laser emitted 32 nm bandwidth pulses at 800 nm centre wavelength.
The measured pulse duration was 29 fs with an average output power of 1.45 W. The laser was
used to pump a ring-type 4-mirror PPKTP-based OPO. The OPO was able to produce visible

sum-frequency pulses, which were necessary for fogo detection.

Chapter 4 presented a fully stabilised frequency comb in the mid-IR region tunable from 1.95-
4.00 um. Part of the pump pulse was used to generate supercontinuum in a PCF, which was
combined with the OPO sum-frequency mixed light for fogo detection. The fopo of the idler
pulse was stabilised to a 10-MHz external reference via a feedback loop. The implementation
of a new design of PPKTP crystal enabled us to produce continuously tunable combs operating
across >2000-nm in the mid-IR. The integrated cumulative phase noise from 1 Hz-64 kHz was
1.2 rad over an observation time of 1 second. The primary noise contribution appeared in the
25-35 kHz range. This noise increase was caused by intensity fluctuations in the pump source
for the Ti:sapphire laser which coupled into the OPO as both intensity and phase noise. The
results showed a broadly tunable and lockable frequency comb at every idler wavelength in
the mid-IR region. The new crystal design made it possible to ensure a strong heterodyne
beat for every idler wavelength which was not demonstrated before. This technology can be
applied for every periodically poled nonlinear crystal and therefore a strong SFM light can be
generated which is needed for fopo detection. The results were presented at CLEO:2015 USA
and CLEO:Europe Munich and published in Optics Letters.

In Chapter 5 I demonstrated for the first time a femtosecond harmonically pumped OPO
frequency comb, whose repetition frequency was increased by a factor of three (1 GHz) com-
pared to its Ti:sapphire pump laser (333 MHz). Allan variance measurements from both the
fundamentally-pumped and harmonically-pumped OPOs showed comparable results. The in-
tegrated phase noise (1 Hz—64 kHz) of the fopo frequency increased by around 1-rad under
harmonic pumping, with the increase arising in the 300-1000 Hz band associated with acoustic
noise contributions to the resonator stability. The results showed that harmonic operation did
not substantially compromise the frequency-stability of the comb. In this way I showed that it

is possible to obtain similar phase noise and jitter performance from a harmonically pumped
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OPO compared with another, which is pumped fundamentally.

Chapter 6 demonstrated a new method to stabilize the fogo of a 1030 nm Yhb:fiber laser comb
which used an ECDL. I also decribed a linear fogo stabilization method for a 1-GHz OPO
synchronously pumped by a Ti:sapphire laser. An external cavity diode laser was developed
and characterized for use as an optical reference in an fopo locking scheme for the pump
pulses. An Allan deviation of 235 kHz at a 50 s gate time was measured for the Yb:fiber laser.
This method bypasses the nonlinear interferometer limitations related to pump-supercontinuum
generation in a PCF as the repetition rate increases, which is important because operation at
1-GHz frequency begins to reach the limit of the conventional OPO comb locking scheme. Such
direct comb stabilization to an optical standard is promising as the repetition rate of the pump
laser increases even further. In a linear stabilization method there is no nonlinear process
involved which is unlike the case for the f-2f method, where we are using a nonlinear crystal
within the interferometer. Here we are not limited by the nonlinear effects which are extremely
sensitive to the pump pulse peak power. This enables us to use higher repetition rate lasers,

which have lower peak power.

In Chapter 7 a low-finesse Fabry-Pérot cavity was implemented to achieve a multi-GHz mode
spacing. The longitudinal modes of a 333-MHz OPO frequency comb were filtered to >10 GHz
by employing a Fabry-Pérot cavity whose length was locked to the ECDL and directly to the
fundamental frequency comb. A 333-MHz sideband suppression of up to 19 dB was measured
after a single pass of the Fabry-Pérot cavity. The use of a Fabry-Pérot cavity enables us to sig-
nificantly increase the mode spacing of the comb from the multi-MHz to the multi-GHz region,
which is extremely important for such applications as astronomical spectrograph calibration.
At the moment there is only one company, which produces 10-GHz modelocked Ti:sapphire
lasers and the use of simple Fabry-Pérot cavity bypasses the need for a high repetition rate

laser which is not cost effective in comparison with a Fabry-Pérot cavity.

Finally, in Chapter 8 an absolute frequency measurement was performed. We measured the
absolute optical frequency of the 8"Rb D, F'=2-3 transition, by counting the frgp, foro and
fBEAT frequencies acquired by heterodyning one comb line from the OPO with a 1557-nm CW
laser, which was locked to a Rb cell using the saturated absorption method. A frequency of
192,114,057.632 4+ 0.037 MHz of the CW laser was inferred from this measurement, a result
which overlaps with the frequency determined using a commercial Er:fiber comb. The measured
uncertainty of the absolute frequency was 15 kHz. The frequency stability of the beat note was
10~ at a 1-s gate time in the optical domain while the repetition rate fractional instability was
1072 and for the carrier-envelope-offset was 1078, The H-maser stability was 10712 for a 1-s
gate time. The measurement accuracy was limited by the stability of the microwave frequency
standard and by interferometric noise in the fiberized setup of the Rb-stabilized laser. The tight
lock of the optical comb line resulted in a 70 kHz linewidth. The main limitation was the PZTs
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which could not reach a higher bandwidth than 1 kHz. The main result is that we determined
the frequency of a Rb transition, which was in good agreement with the value retrieved using a
commercial Er:fibre comb. The OPO comb showed great potential in these measurements and
moreover, demonstrated that it could surpass the current systems available in the market by

careful improvements.

9.2 Future improvements

The integrated phase noise (1 Hz-64 kHz) of the fogo frequency for the idler pulse was around
1.2-rad, while for the harmonic operation the cumulative phase noise was around 2.7 rad. The
best performance of the comb stabilisation was obtained by some careful adjustments and by
optimising the setting of the internal gain of the pump laser which resulted in a cumulative
phase noise of 0.3 rad for the signal pulses locked at 1.56 um. Nevertheless, the characteristic
increase of the noise was the same: the noise was increasing in the 300-1000 Hz band associated
with acoustic noise contributions to the resonator stability, which couples directly to fogo in
a femtosecond OPO. The dominant noise for all the measurements was at 27-kHz from the
pump laser. We could improve the results straight away by replacing the pump source and
the noise at 1-kHz frequencies could be suppressed by increasing the locking loop bandwidth.
The environmental stability in the laboratory is critical for suppressing the noise at 1-kHz
frequency. In the OPO two PZTs were used for locking the forpo which as we found out could
not suppress higher than 1 kHz frequency noise. The stability of fogo could be improved by
using a position-sensitive-detector (PSD) [1]. The approach uses low-cost components, requires
no nonlinear interferometry, offers long-term stability to the few-MHz level (or 1% of frgp),
has a wide capture range and is compatible with feed-forward techniques which can enable
foro stabilization at MHz loop bandwidths.

In the new method for stabilizing the offset frequency of a 1030 nm Yhb:fibre laser comb, the
comb was locked to a Rb transition line. In the first experiment, we measured an Allan deviation
of 2 MHz at a 1 s gate time. The locking performance could be improved by implementing
a hardware-based approach and by replacing a quite noisy galvanometer motor with a PZT
actuator. In a second experiment, the fopo of a 1-GHz OPO was stabilised. The measured
Allan deviation was several Hz at a 1 second gate time which was a huge improvement. In both
experiments, an ECDL was used as an optical reference in an fogo locking scheme for the pump
pulses. The Rb-stabilised ECDL could be improved by using more sensitive electronics, which
could require less dither amplitude which is obvious in the phase noise results. The phase noise
PSD measurements revealed a poorer locking in comparison with when a supercontinuum based
lock was used due to the MHz-level linewidth of the ECDL. Nevertheless, the demonstrated
stability of the comb without the need for a nonlinear interferometer reduced the complexity
of the detection scheme and increased the range of pump sources, which could be used in fogo

stabilisation. The stability of the comb was sufficient for spectroscopy applications.
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All those generated combs could be filtered to multi-GHz mode spacing in a low-finesse Fabry-
Pérot cavity. A 333-MHz sideband suppression of 19 dB could be improved in a double-pass
system. The FP cavity locking stability could be improved by isolating it better from mechanical
and vibrational noise. For example, rubber mounts between the breadboard and post holders
could further improve the stability of the system. This is essential in order to achieve good
Fabry-Pérot cavity locking and therefore effective filtering of the frequency comb. Moreover,
introducing boxing and beam pipes around the optical beam path could shield the system from

air turbulence and sudden temperature changes.

9.3 Outlook for OPO frequency combs

One of the main areas of emphasis in this thesis is the generation of novel frequency combs in
the mid-IR region. An extension of the wavelength into the longer wavelength mid-IR region
is inevitable with the main application being focused on spectroscopy. For example, materials
like OP-GaAs allow fs OPOs to reach 5.6 um [2]. Potentially a very atractive nonlinear crystal
is ZGP, which can be pumped only above 2 um but offers longer mid-IR wavelengths which can
be used in the sensing, security and medical sectors. The comb extension to higher wavelengths
drives the evolution of the modelocked pump lasers too. Modelocked lasers such as Cr?*:ZnSe
or Cr?":ZnS have been improving over the last years and their longer wavelengths (2.3 pwm)
enabled crystals like ZGP to be pumped. Increasing the pump repetition rate of the comb is
also beneficial, because higher repetition rate combs with high average power are in demand
for applications in astronomy and metrology. In the future we can expect to see the frequency
comb wavelength being pushed further into the infrared with mode spacings reaching 10 GHz

and above.
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