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Abstract

Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound
events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound
world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore
of associating each event with the appropriate source. There are potentially many different ways in which incoming events
can be assigned to different causes, which means that the auditory system has to choose between them. This problem has
been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of
making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the
alternatives—a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis
at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence.
Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the
basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges
spontaneously from the nature of the competition between these representations. We present detailed comparisons
between the model simulations and data from an auditory streaming experiment, and show that the model accounts for
many important findings, including: the emergence of, and switching between, alternative organisations; the influence of
stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory
streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and
competition between incompatible patterns can account for both the contents (perceptual organisations) and the
dynamics of human perception in auditory streaming.
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Introduction

Ecologically valid acoustic signals exhibit structure on multiple

time scales. For example, the structure in an orchestral symphony

ranges from the sub-millisecond time range (e.g., vibrations of

strings) through layers of melodic and rhythmic patterns measur-

able in seconds, to the overall musical composition that may last

for tens of minutes. Such complex scenarios require the

interpretation of multiscale articulate patterns, demanding that

the brain draw on a wide repertoire of decoding strategies. The

overall perceptual task of analysing an entire sound mixture into

meaningful elements, or auditory objects [1,2], is termed auditory

scene analysis [3]. Intermediate time scales spanning a few hundred

milliseconds to a few seconds serve a special role, as they form our

immediate subjective experience of incoming sounds [4,5],

providing the basis for working memory [6,7]. Patterns emerging

within this time range pose a challenge to the perceptual system, as

detecting and representing them often involves connecting sounds

separated by silent periods. Here we propose a new model for the

perceptual encoding of sequences of discrete sounds presented at

these intermediate rates. Our model focuses on processing

ambiguous input in a manner similar to human listeners, because

such stimulus configurations provide insights into the hidden

mechanics of perceptual processes [8]. The model accounts for the

contents and dynamics of perceptual awareness in auditory

streaming experiments, and provides a new theoretical interpre-

tation of the perceptual strategies underlying our ability to make

timely yet flexible perceptual decisions.

Sequences on the intermediate time scale addressed here are

ubiquitous in both natural and experimental settings. For example,

the sound of a solitary footstep is perceived as a tap, but a regular

procession of footsteps evokes the sense of a persistent and readily

recognisable source [9]. How, then, does the brain group these

footsteps? To explore all possible groupings is to invite a

combinatorial explosion (twelve footsteps can be grouped in over

a million ways); yet to assign all footsteps to a single source is to

neglect the possibility of two or more walkers. Naturally, in trading

economy and flexibility, the brain favours neither extreme;
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instead, it groups sounds on the basis of their similarity and by

searching for ecologically valid patterns into which they could fall

[3,10–14] (cf. the Gestalt grouping principles [15]).

For certain stimuli, a degree of ambiguity remains even after

ecologically unlikely interpretations have been dismissed. This

seems to be especially true for stimuli which have been stripped of

the disambiguating cues that are generally present, such as depth

and shading (a wireframe Necker cube) or a distinctive timbre (a

sequence of pure tones). Sensory input of this sort gives rise to

multistable perception [16,17], which is characterised in conscious

experience by the spontaneous switching of interpretations from

one alternative to another. In vision research, binocular rivalry—a

particular instance of perceptual bistability, in which the two eyes,

when presented with disparate images, compete for dominance

[18]—has been the scene of particularly intensive analysis and

modelling efforts (e.g. [19–23], for reviews, see [24,25]). The

dynamics that govern switching are reminiscent of those that

govern the alternation of a noisy phase particle between two

attractors in an energy landscape [20]. In terms of perception,

attractors are quasi-stable states of the system, each of which is

assumed to correspond to a discrete perceptual state. An attractor can

be stable for some observable period of time, thereby modelling a

perceptual phase, the time during which a particular percept is

experienced. Phenomenological models based on the concept of

attractor dynamics are thus able to reproduce many aspects of the

data and do so in a biologically plausible fashion (e.g. [21,23]).

Recent evidence suggests that multistable perception is governed

by similar processes in the auditory and visual modality [26,27].

Notably, perceptual phase durations tend to conform to a gamma-

or log-normal-like distribution [23,28,29], and successive dura-

tions are only weakly correlated [28,30,31]. However, to our

knowledge the attractor dynamics perspective has not yet been

applied to multistable perceptual phenomena in the auditory

domain.

Auditory perceptual bi-/multistability has been most extensively

studied using the streaming paradigm [26,32–35], introduced by

van Noorden [30], in which sound sequences are presented in the

pattern ABA2ABA2…, where ‘‘2’’ denotes a silent interval

equal in duration to one of the sounds [3,11,30]. The two most

stable percepts are labelled integrated and segregated, depending on

whether one hears the ‘‘A’’ and ‘‘B’’ sounds as arising from a single

source or two separate sources, respectively. The traditional

assumption is that the default perception is that of integration, and

that segregation emerges through differential suppression [36–40]

(i.e., some of the neurons which initially respond to both ‘‘A’’ and

‘‘B’’ subsequently come to respond to a much lesser extent to one

set of sounds than to the other). However, a differential

suppression based view of streaming cannot, of itself, explain

bistability; it does not account for ongoing switching between

qualitatively different perceptual organisations. Therefore, on the

basis of the similarities between auditory and visual perceptual

bistability, we propose a model that provides an attractor

dynamics account of auditory streaming.

If this approach is adopted, the question then is: what are the

attractors, and how are they formed? Models of visual bistability

tend to assume that the attractors (the possible percepts) are known

a priori (e.g. [20,22,23], see [20] for a generalisation to an arbitrary

number of predefined attractors). This simplification may be

reasonable where the attractors are predetermined by organic

correspondence, e.g., the two eyes in binocular rivalry. However,

assuming a priori the identity of fixed percepts for sound sequences

would neglect the fact that most streaming sequences evoke quite

varied percepts in listeners, and thus the attractors, and even how

many attractors there are, may be idiosyncratic (e.g. see [41]).

Therefore, we propose a model that goes beyond previous models

in vision and shapes the attractor landscape dynamically.

Principles of modelling
Conceptually, the model consists of two stages: the first is

concerned with the discovery of the attractors, and the second with

the form of the competition between them. Together they account

for the nature of perceptual awareness. However, it should be

stressed that we envisage both stages as running continuously and

in parallel (Figure 1).

The model that we describe here is limited to a phenomeno-

logical proof of concept that instantiates our previously published

conceptual ideas [42] in a computational form. Although we are

ultimately interested in understanding the neural mechanisms that

underpin perception, here we are concerned with providing some

insights into the dynamic discovery of the constituents of the

competition thought to underlie perceptual organisation, and the

nature of the competition necessary to simulate perceptual

switching consistent with human experience. The first stage of

the model is for now expressed in an algorithmic form, although

we aim in due course to implement the functionality identified

within a neural architecture. What determines the attractors in our

model and how are they discovered? A substantial body of

evidence suggests that the brain detects patterns in the incoming

auditory signal, which are encoded in sensory memory and

subsequently operate in a predictive capacity [13,43–45]. The

hypothesis that predictability underlies auditory object represen-

tations is discussed at length by Winkler et al [1,42], and receives

particular support from studies of mismatch negativity (MMN)

[46] and a number of other electrophysiological indicators that

signal the detection of deviations from expected patterns [47], and

more recently from neurophysiological experiments as well [48].

Motivated by these ideas, the model we propose acts to discover

patterns or regularities in the incoming sequence, and does so by

probabilistically creating links between incoming events to

construct many potential patterns in parallel. Once discovered,

each predictable pattern forms a temporally persistent represen-

tation that generates expectations of incoming events. These

Author Summary

The sound waves produced by objects in the environment
mix together before reaching the ears. Before we can make
sense of an auditory scene, our brains must solve the
puzzle of how to disassemble the sound waveform into
groupings that correspond to the original source signals.
How is this feat accomplished? We propose that the
auditory system continually scans the structure of incom-
ing signals in search of clues to indicate which pieces
belong together. For instance, sound events may belong
together if they have similar features, or form part of a
clear temporal pattern. However this process is complicat-
ed by lack of knowledge of future events and the many
possible ways in which even a simple sound sequence can
be decomposed. The biological solution is multistability:
one possible interpretation of a sound is perceived initially,
which then gives way to another interpretation, and so on.
We propose a model of auditory multistability, in which
fragmental descriptions of the signal compete and
cooperate to explain the sound scene. We demonstrate,
using simplified experimental stimuli, that the model can
account for both the contents (perceptual organisations)
and the dynamics of human perception in auditory
streaming.

Perceptual Organisation in Auditory Streaming
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representations thus represent testable hypotheses about the world

and give rise to the dynamic set of attractors in our model. Each

representation is strengthened by the rate at which it successfully

predicts events and weakened (or eliminated) by erroneous

predictions.

How can competition between attractors account for the

perceptual experience of human listeners? The predictive repre-

sentations discovered by the model form a candidate set of

perceptual objects, or proto-objects [49] that have the potential to

emerge as the perceptual objects in conscious awareness.

However, all proto-objects cannot emerge at the same time. For

example, in the auditory streaming paradigm described above, the

galloping rhythm of the ABA2ABA2…pattern is not generally

perceived when the segregated organisation, consisting of the A2

and B222 patterns, is reported. What form should the

competition take in order to allow only those combinations of

proto-objects that are simultaneously perceived to simultaneously

emerge as dominant in the competition? This question was

addressed by Winkler et al [42], who defined a compatible set of

proto-objects as a set of predictive representations which together

explain the totality of the sensory input without overlap. For any

sound sequence there may be more than one compatible set of

proto-objects; each set essentially defines a perceptual organisation

(i.e., one possible interpretation of the sensory scene). Winkler et al

argued that such perceptual organisations could emerge from a

competition in which attractors competed if, and only if, they

predicted the same event; competition was thus proposed to be

local both in time and in feature space [42]. As a consequence, we

implemented a form of competition amongst the proto-objects that

ensures the emergence of compatible proto-objects and gives rise

to dynamic switching between compatible sets (perceptual

organisations), consistent with human perceptual experience. In

this way our model can account for many important character-

istics of perceptual multistability observed in auditory streaming

experiments, including the typical perceptual organisations

reported, the influence of stimulus parameters on perceptual

dominance and phase durations, qualitative differences between

first and subsequent perceptual phases and the apparent build-up

of segregation. In what follows we refer to the proto-objects

discovered by the model as ‘‘chains’’ [50], a compact term,

descriptive of the way these representations are formed; and we

thus refer to the proposed model as the CHAINS model. (The source

code of the model is available as Supporting Information S1.)

Models

Events and Chains
The elementary units handled by the CHAINS model are called

events. Events correspond to the discrete tokens that comprise a

sound sequence. Event onsets elicit a series of electrical brain

responses starting with the auditory brainstem response and

culminating in the N100 ERP response [51]. For example, the

tones that constitute a tone sequence as well as abrupt spectral

(frequency or intensity) changes in a continuous sound are

considered to be events. It is assumed that the decomposition of

a sound signal into events has already been accomplished at an

earlier stage of processing, and the task of CHAINS is to organise

sequences of events. This is a simplification, as event detection

may also be influenced by the sequences detected in this processing

stage (cf. the ‘‘Events’’ section in Discussion).

The CHAINS framework does not prescribe the format that input

events should take, nor does it rely on access to the absolute value

of any feature of an event. However, it does assume that the

distance between any given pair of events is available. Inter-event

distance measures may be based on a composite of multiple sound

features, such as pitch, location and intensity (see Discussion). At

this point, evidence regarding the interactions between features in

auditory streaming is insufficient for a thorough consideration of

the issue. Therefore, the concrete examples given here rely on

well-documented effects of frequency differences. We assume that

the events are pure tones differing only in their frequency, and that

the distance, d, between two tones with frequencies f1 and f2 (Hz)

is specified in semitones, i.e.,

d f1,f2ð Þ~12 log
f1

f2

� �����
����

As input events arrive, they are incorporated dynamically into

graph-like structures called chains, which describe a temporal

sequence of sound events. We describe two types of chain: an open

chain, that absorbs and grows with input events, and a closed chain,

that does not grow but provides testable predictions of input

events. In this work, an open chain consists of a linear sequence of

events, and a closed chain consists of a loop—although many other

open and closed chain types are undoubtedly conceivable (see

Discussion). Open and closed chains are depicted diagrammati-

cally as graphs whose nodes and arcs correspond to events and

time intervals, respectively (Figure 2A). Under isochronous sound

presentation, chains are notated textually using letters for events,

dashes (2) for silent intervals and r for closure.

Discovering perceptual patterns: Chain assembly
The basic life-cycle of a chain can be sketched in terms of four

stages, depicted in Figure 2B. Firstly, the arrival of an input event

Figure 1. Model overview.
doi:10.1371/journal.pcbi.1002925.g001

Perceptual Organisation in Auditory Streaming
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triggers the formation of a new open chain, which is then

maintained in parallel alongside any other existing chains.

Secondly, a chain grows as time passes, and incoming events

may be either included or excluded (see ‘‘Forming links’’ for the

rules of inclusion and exclusion). Thirdly, if a chain shows

evidence of repetition, it closes to form a loop, which signifies the

discovery of a possibly repeating, hence predictable, sequence (see

‘‘Chain closure’’). The closed chain subsequently predicts events

according to the pattern it encodes, suppresses predicted input

events (making new chains using those predicted events harder to

build) and competes with other chains for dominance (see

‘‘Competition for perceptual dominance: Chain dynamics’’).

Fourthly, chains cannot grow indefinitely: an open chain is

deleted if it grows too long without closure, and a closed chain is

deleted if it makes incorrect predictions. The deletion of chains is a

simplification included in the current version of the model; MMN

studies showing diminishing MMN amplitudes elicited by succes-

sive deviant events [52,53] suggest that incorrect predictions cause

regularity representations to be weakened rather than eliminated,

and furthermore, even regularity representation violations which

no longer elicit the MMN can be reactivated by a ‘‘reminder’’

event [54] (cf. Discussion).

Starting chains
As mentioned above, each time an input event arrives, a new

open chain is created consisting solely of that event. These

singleton chains grow as links with later events are established.

Forming links
With each incoming event, each open chain has the potential to

form two new chains, either by incorporating the event (inclusion),

or by leaving it out (skipping). This include-or-skip principle enables

predictable sub-sequences embedded within a more complex

sequence to be discovered; i.e., open chains can build represen-

tations that skip over events, thus potentially finding repeating

patterns that do not include all sounds within the sequence.

Inclusion. We first discuss the probability of including an event.

Let yend denote the last event in an open chain and yz denote the

event to be potentially added. Let t(y) denote the time of event y
and n(y) denote the number of competing chains that predict

event y. (Note that by predicting event y we refer to a specific

event, including its features as well as its timing). The probability

that an event is included is then given by

Pinc d,t,nð Þ~exp {ad=t{bnð Þ

where d:d yz,yendð Þ, t:t yzð Þ{t yendð Þ, n:n yzð Þ. Inspecting

each component of the exponential in turn, we see that a

connection is less likely to form, if (i) the transition from one event to

the next is abrupt (d=t is large, events are dissimilar); or (ii) the

input event is predicted by many other chains (n is large,

‘explaining away’ [55]). The relative contributions of these two

factors are controlled by the parameters a and b, respectively. The

probability that an event is included in a chain is depicted in

Figure 3A as a function of t and d (assuming n~0).

Figure 2. Building chains. A) A linear chain describing event A, followed by 100 ms of silence, event B, which is then followed by 50 ms of silence;
and a looping chain which alternates between events A and B every 100 ms. The red ‘‘phase’’ triangle indicates that the looping chain is currently
passing through event B. B) The building of chains in response to the input sequence ABAC. Each input event adds a new singleton chain and causes
existing chains to split into two new versions (marked by wide arrows), one adding the event and the other omitting it. When A is input for a second
time, two potential loops are noticed: ABr and A2r. When event C arrives, the first of these fails to predict B correctly and is therefore removed.
doi:10.1371/journal.pcbi.1002925.g002

Perceptual Organisation in Auditory Streaming
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Skip. Similarly, continuing a chain by skipping over an event is

associated with a probability,

Pskip d,t,n0ð Þ~ 0,
yz matches any event

in the chain

1{exp {cd=t{dn0ð Þ, otherwise

8<
:

where d and t are defined as above, and n0: n yzð Þ{n yendð Þj j.
Thus, examining the second expression, we see that a chain that

skips over event yz is more likely to be built, if (i) the transition from

one event to the next is abrupt (d=t is large, events are dissimilar);

or (ii) the yz and yend events differ greatly in the extent to which

they are predicted by other chains (n0 is large). For as long as two

events are predicted by a different number of chains (i.e., n0w0),

there is a contrast between them which provides evidence in

favour of their segregation and thus favours the exclusion of yz

from the chain containing yend (i.e., suppression). In this way the

existence of other chains can support the exclusion of an event

from a given chain; e.g. see [56]. This principle is explained

diagrammatically in Figures 3C and 3D. The relative contribu-

tions of the similarity and suppression factors are controlled by the

parameters c and d , respectively. The first expression (Pexc~0)

means that if a chain incorporates a particular event, it cannot skip

over the same event later. This too is a simplification, and

essentially encapsulates the classical notion of exclusive choice

between integration and segregation (cf. Discussion for further

consideration of this issue). The probability that an event is

omitted from a chain is depicted in Figure 3B as a function of t
and d (assuming n0~0).

In summary, for each input event, any given open chain may

split into two new chains, one which includes the new event, and

one which skips over it but remains able to continue building. A

brief glance at the expressions for Pinc and Pskip (or their graphical

counterparts in Figure 2) reveal that, in general, the easier an event

is to include, the harder it is to skip, and vice versa. Since they are

probabilistic, it is also possible for inclusion and skip to both fail, in

which case the open chain in question is simply deleted; i.e., in

neural terms any activity associated with this sequence is assumed

to be extinguished.

Matching events
In the course of building chains there is the need to make

discrete decisions as to whether two events are the same on the

basis of continuous measures of differences between them (e.g.,

differences in their frequency or timing). Clearly, demanding that

the continuous variables match exactly is ruled out by the

physiological imprecision with which events are encoded, so

instead we introduce thresholds to serve as decision rules.

Specifically, two events y1 and y2 are judged to match if

t2

s2
t

z
d2

s2
d

ƒ1,

Where t:t y2ð Þ{t y1ð Þ, d:d y1,y2ð Þ, and st and sd are

parameters that specify the dimensions of an elliptical matching

region in a time-feature space. Consequently, decreasing either st

or sd results in a stricter matching criterion. If a decision is to be

made as to whether two events occur at the same time (regardless

of their similarity), or are of the same type (regardless of their

timing), then matching is made on the basis of the inequalities

t2

s2
t

ƒ1 or
d2

s2
d

ƒ1,

respectively. Clearly, this is another simplification, as similarity/

matching is context-dependent (e,g., [57]) and thus it may be

affected, for example, by the currently dominant perceptual

organization.

Chain closure
Open chains, which are formed by stringing together input

events, must eventually be discarded or converted to closed chains,

which are immutable and predict input events. This procedure is

called closure and occurs when, following the addition of an event to

a chain, the first and last events match. When obtaining the closed

version of an open chain, it is also converted to a loop by returning

the arc exiting the second-to-last event to the first event in the

chain. (The requirement for discovering periodically repeating

patterns is another relaxable simplification of the current model,

which we consider further in the Discussion.) A copy of the

original open chain is also retained in the chain population.

Closure is illustrated in Figure 2B for the input sequence ABAC.

At the point where the open chains A2A and ABA arise, two

closed chains are constructed: A2r and ABr.

Figure 3. Forming links. A) Profile showing the probability that an
event is added, given the parameters listed in Table 1 and assuming
n~0. The preceding event is denoted using a heavy black dot, the
event to be potentially added is characterised by its temporal distance,
t, and feature distance, d, from the previous event. B) Profile showing
the probability that an event is omitted, given the parameters listed in
Table 1 and assuming n0~0. C) The role of n0 when segregation is
discovered first. Top: the input sequence. Below: Once the A2r chain
is discovered, A is predicted by one chain and B is not predicted, so
n0~1 in the exclusion formula for excluding A from a chain currently
ended by B. This difference thus facilitates the construction of
2B22r, because the A events are easy to exclude. D) The role of n0

when integration is discovered first. Top: the input sequence. Middle:
When the ABA2r chain is discovered, both A and B are predicted by
one chain, so n0~0. Bottom: However, once A2r is also discovered, A
is predicted by two chains and B is predicted by one chain. Thus, n0~1,
again facilitating the construction of 2B22r.
doi:10.1371/journal.pcbi.1002925.g003

Perceptual Organisation in Auditory Streaming
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Closed loop chains continue to cycle periodically through the

list of events they contain, making predictions according to the

temporal pattern that was established during the chain building

process. For each prediction that a closed chain makes, there must

be a matching event in the input sequence. If there is not, then the

chain fails and is removed. (For further consideration of this

simplification, see Discussion.) However, the converse does not

apply: a closed chain need not predict every input event. Thus,

referring to the example in Figure 2B, the ABr chain fails when

the input event C arrives, because the predicted B event is not

matched; but the A–r chain persists, because it makes no event

prediction at that time.

The parameters of chain assembly are summarized in Table 1,

along with sample parameter values.

Chain competition
Once a closed chain completes a single cycle of (correct)

predictions, it either becomes competitive, with probability Pcom, or

it is deleted, with probability 1{Pcom. Prior to becoming

competitive, all incoming events which the chain contains must

be successfully predicted, and all incoming events which the chain

does not predict must be successfully skipped. Upon becoming

competitive, a chain acquires a dynamical state, which allows it to

interact with other chains.

A parallel to this two-stage processing of closed chains can be

found in deviance detection experiments. Some studies have

shown that the deviance detection process reflected by the MMN

event related potential (ERP) response is only elicited by a deviant

sound arriving after at least two repetitions (three presentations) of

the regular sound [53,58,59]. One could argue that the first

repetition forms a possible predictive regularity (‘‘closing the

chain’’), whereas the second repetition activates it (i.e., enters it

into the competition). However, when the sounds are attended,

deviants encountered after a single repetition elicit the MMN [60].

Thus by means of attention one may vouchsafe a regularity

representation and so skip the ‘‘sanity-check’’ cycle.

Competition for perceptual dominance: Chain dynamics
Having described how chains are initially built, make predic-

tions, and become competitive, we now discuss how the

competition is mediated. Each competing chain (hereafter, simply

‘‘chain’’) is represented by a population of excitatory and

inhibitory neurons [61,62], associated with eight state variables:

E, I , A, U , S, C, X and R (see Table 2 for a short description).

Throughout the text, we will indicate the chain to which a state

variable belongs by a subscript i. The way in which the dynamics

of a single chain is modelled using the two hypothetical

populations of neurons is illustrated in Figure 4. The Ei and Ii

state variables represent the activation levels of the excitatory and

inhibitory neuronal populations of chain i, with 0vEi,Iiv1, and

their dynamics are governed by the following equations:

tm
dEi

dt
~{EizQ aS

Si

Ri

zaX
Xi

Ri

zaEE(1{Ai)EizaU Ui{aIEIi

� �
ð1Þ

tm
dIi

dt
~{IizQ aC

X
j=i

CijEj

Ri

zaEI Ei{2

" #
ð2Þ

where Q½x�~(1{e{x){1 is the standard sigmoid function, which

constrains the range of excitation (and inhibition) to the target

range ½0,1� and ensures smooth asymptotic, rather than abrupt,

convergence to these limits. Note that Riw0 (see below),

preventing divisions by zero in both equations. Equations (1)

and (2) calculate the amounts by which the levels of excitation and

inhibition associated with each chain i (see Figure 3) change

during the characteristic time period, tm, as a result of the previous

excitatory/inhibitory state and the additive effects modelled

(including interaction with other chains). Thus (1) and (2) take

the form of differential equations, relating the rate of change of

excitation and inhibition to the state variables (modelled effects).

The level of excitation for each chain (Ei) determines

dominance among chains and thus which percept appears in

perception. Ei is the ‘output’ term for each chain and the only

globally accessible quantity; all other terms and variables are

internal and private to the model for each chain. The level of

inhibition for each chain (Ii) mediates the competition between

them. By passing all the inhibitory contributions to the excitatory

population through a local inhibitory population we prevent

excessive inhibition and ensure that the level of inhibition is

constrained to lie between 0 and 1; the {2 term is necessary to

avoid saturation. The various effects governing the dynamic state

of each chain are modelled as additive processes, mediated by the

sigmoid function. The role of each of the variables, their intuitive

meaning, and associated parameters are described and motivated

in the paragraphs that follow. The t (time constant) and a (effect

magnitude) parameters which appear in (1) and (2) are listed in

Table 3.

For a suitably chosen set of parameters (see Tables 1 and 3), the

interplay of the modelled effects defines an attractor landscape

Table 1. Chain building parameters.

Name Description Value

a effect of rate-of-change on Pinc 0.00015

b effect of number of times an event was predicted on Pinc 1

c effect of rate-of-change on Pskip 0.0055

d effect of difference in number of times two events were predicted on Pskip 8

st temporal matching width 30 ms

sd event distance matching width 0.5 semitones

Pcom probability of chain first entering competition 0.2

Parameters that control the construction of chains and the matching of events. (See the ‘‘Discovering Perceptual Patterns: Chain assembly’’ section in Models for
details.).
doi:10.1371/journal.pcbi.1002925.t001
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whose stable states correspond to the perceptual experience of

listeners. The excitation variables of the chains tend to assume

either relatively ‘‘low’’ or ‘‘high’’ values (corresponding to the

attractor states), with intermediate ones only very fleetingly

present. We refer to the highly-excited chains as dominant. Consider

the interactions between the three chains that most often form in

response to an ABA2 sequence; i.e. ABA2r, A2r and

2B22r. In this case, two stable states are possible. In the first,

the ABA2r chain is dominant (i.e., it is in a highly excited state)

and the A2r and 2B22r chains are non-dominant (i.e., they

are in low-excitation state); in the second, the A2r and

2B22r chains are both dominant, and the ABA2r chain is

non-dominant. These two network states are illustrated in

Figures 5A and 5B, respectively. We refer to these stable

configurations of the excitation states of chains as organisations, by

analogy with the perceptual organisations that spontaneously

emerge when a listener is presented with an ambiguous stimulus.

Successes (S) and collisions (C)
The competition between chains depends primarily upon

successes and collisions in their predictions. A success occurs

whenever a chain correctly predicts an event. Correctness of a

prediction is decided by checking whether an input event occurs

within the matching region of the prediction (i.e., it is close to the

prediction both in time and in its feature values; see section

‘‘Matching events’’). A collision occurs between two chains

whenever they both predict the same event: a prediction of one

chain is within the matching region of a prediction by the other

chain. If predictions are separated by either temporal or featural

differences, or both, then they do not collide. As was mentioned

before, during competition, chains interact with each other only

when they predict the same incoming event (i.e., they collide with

each other). Successes and collisions of chains form separate point

processes, assessed by the state variables Si and Cij , respectively,

which are essentially running averages of these occurrences

maintained by leaky integration, i.e.,

tS
dSi
dt

~{Si

tC
dCij

dt
~{Cij

Figure 4. Dynamics associated with a single chain. Each chain, i,
is associated with an excitatory and inhibitory population of abstract
neurons (discs). The termination of each arc onto a population denotes
an additive term, which affects the activity in a population (see
equations 1 and 2). A red terminal indicates that the influence is always
positive. A blue terminal indicates that the influence is always negative.
A green terminal may be positive or negative in its influence. The
source of each arc in the diagram denotes an additive term in equation
(1) or (2), the expression attached to each arc is the coefficient which
scales that effect. Note that this diagram shows the dynamics
associated with chain i, and all other chains are referred to as j.
doi:10.1371/journal.pcbi.1002925.g004

Table 2. Dynamical state variables.

Name Description

Ei excitation

Ii inhibition

Ai adaptation

Ui noise signal

Si success rate

Cij collision rate with chain j

Ri input event rate

Xi rediscovery rate

Eight continuous variables (functions of time) that describe the dynamical state
of chain i at any given moment. Note that all variables except Ui are always
non-negative, and 0vEi ,Ii ,Aiv1. All dynamical variables are initialised to zero
upon a chain entering the competition. (See the ‘‘Chain Dynamics’’ section in
Models for details.).
doi:10.1371/journal.pcbi.1002925.t002

Table 3. Dynamical system parameters.

Name Description Value

Time constants

tm excitation and inhibition 50 ms

tS success rate 1 s

tC collision rate 1 s

tU noise fluctuation 500 ms

tA adaptation 5 s

tR input event rate 5 s

tX chain rediscovery rate 5 s

Coefficients

aIE inhibition to excitation 8.1

aEI excitation to inhibition 1

aEE self-excitation 3.2

aS success rate 3.8

aC collision rate 3

aU noise 3.4

aA adaptation 0.1

aX chain rediscovery 7

b denominator term 0.1

Parameters that control the dynamics of competing chains. The a parameters
control the magnitude of the corresponding effect, and the corresponding t
parameters are time constants associated with the same effects. (See the ‘‘Chain
Dynamics’’ section in Models for details.).
doi:10.1371/journal.pcbi.1002925.t003
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and

Si~Siz1 if chain i succeeds

Cij~Cijz1 if chains i and j collide:

Notice that Si and Cij are expressed in units of successes or

collisions per second, respectively, and they are incremented when

the corresponding event occurs.

Returning to equations (1) and (2) above: the term Si

contributes positively to the excitatory variable Ei , and the term

Cij contributes positively to the inhibitory variable Ii. Conse-

quently, chains are excited to the extent that they succeed in their

predictions, and are inhibited to the extent that they collide with

other excited chains. Cij appears in the product CijEj , so the

effectiveness of the collision upon chain i is modulated by the level

of excitation of chain j. That is, the size of the inhibitory effect of

one chain on another chain with which it collides is proportional

to its current level of excitation, weighted by the coefficient aIE .

The coefficients aS in equation (1) and aC in equation (2) are the

parameters which control the magnitudes of the success and

collision effects on excitation and inhibition, respectively; tS and

tC are the time constants that determine how long these effects last

(see Table 3). As described above, the inhibition associated with

each chain is private to that chain, and simply keeps track of the

rate of collisions with other chains. It is also driven by its associated

excitatory population, mediated by the coefficient aEI .

Chain rediscovery (X)
Since the chain building process is assumed to be ongoing, any

chain that has entered the dynamical competition may be

discovered again later. Rather than allowing two (or more)

equivalent chains into the competition, a chain i is formed just

once, and if duplicates arise later, the variable Xi is incremented,

and the copy is discarded. This variable is governed by

tX
dXi

dt
~{Xi

Xi~Xiz1, if a copy of chain i arises,

and it constitutes a moving average of the rate at which a

particular chain is rediscovered. This term ensures that the

Figure 5. Dynamical system formed in response to an ABA2 sequence. A and B) Collision and success rate effects shown on the excitation/
inhibition (dynamics, top; see Figure 4) and the sound-group depiction (chains, bottom; see Figure 2) of the chains formed in response to a repeating
ABA2 sequence. Columns represent the three most stable chains formed: ABA2r, A2r, and 2B22r, from left to right. DYNAMICS (top panels):
The inhibitory neuronal population is shown at the top, the excitatory one at the bottom of the panel. The strength of each population is marked by
the filling of the circles (empty circle = weak, filled circle = strong). The size of the suppressing effect of the inhibitory population on the excitatory one
is marked by the width of the blue line connecting them. The inhibitory population of a chain is strengthened by collisions with other chains (see
section ‘‘Successes (S) and Collisions (C)’’); the number of collisions and the amount of strengthening they provide to the inhibitory population of the
given chain are noted over the inhibitory population. The effects of collisions are marked by red arcs connecting the excitatory population of each
chain with the inhibitory population of those chains with which it collides (A2r and 2B22r don’t collide, all other pairs do). The size of the
strengthening effect to the inhibitory neuronal population (dependent on the strength of the excitatory population of the other colliding chain) is
marked by the width of the arc. Excitation is strengthened by the rate of successful predictions made by the given chain; the number of successful
predictions is noted below the excitatory population. For simplicity, the rediscovery, noise and self-excitation terms are not depicted here. CHAINS

(bottom panels): Blue shading marks the currently dominant chain (i.e., the chain(s) whose excitatory population is stronger than that of the other
chains). A) Integrated organisation dominant. Whilst the ABA2r chain dominates, the excitatory activity associated with the A2r and 2B22r
chains is low. B) Segregated organisation dominant. Whilst the A2r and 2B22r chains dominate, the excitatory activity associated with the
ABA2r chain is low. The events in the A2r and 2B22r chains do not collide with each other, so they have no inhibitory effect on each other. C)
System state showing the various trajectories that the Ei variables associated with the three chains (represented by and marked on the three axes)
take, given 20 randomly-chosen initial values (green dots). In the absence of noise, the system permanently settles into one of the two organisations
associated with diagrams in (A) and (B) (red dots), moving along a deterministic trajectory (blue lines). That is, some time after the start of the
sequence either ABA2r becomes highly excited with A2r and 2B22r becoming weak (lower left red dot) or vice versa (upper right red dot) and
the excitation and inhibition values of the three chains do not change anymore (i.e., the model without a noise effect would predict stable
perception).
doi:10.1371/journal.pcbi.1002925.g005
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competitiveness of each grouping is related to their likelihood of

discovery and thus provides an estimate of the ‘‘strength’’ of the

grouping represented by the chain; i.e. those patterns that are

easiest to discover tend to dominate the competition. The

coefficient aX in equation (1) is a parameter which controls the

extent to which a chain being rediscovered supports its dominance

in the competition (excitation value); tX is a time constant that

determines how long this effect lasts.

Comparing two chains requires matching the events that they

contain to ensure that the first chain does not contain any event

that the second chain does not, and vice versa. Special attention is

required when comparing looping chains, as the events they

contain may match initially but drift out of phase over a long time

period. Here for simplicity we compare two chains over a time/

event ‘‘horizon’’ of two cycles; that is, two chains match if they

predict matching events over the course of two cycles.

Normalisation (R)
It is desirable that the model remain well-behaved when the

same sequence is presented at different presentation rates. The

divisive factor Ri, which is attached to the success, rediscovery and

collision terms in equations (1) and (2), serves the purpose of

normalising the switching of the model when events are presented

in the same pattern but at different rates (similar to the rate

normalisation applied in [63]).

The variable R is computed by integrating the overall rate at

which input events arrive, according to the following equation

tR
dRi

dt
~{Rizb

Ri~Riz1,if any event occurs:

The normalisation variable is averaged over a longer time scale

than the success and collision variables (i.e., tRwwtS,tC ; see

Table 3). This means that the model can be tuned for the ratios

Si=Ri and Cij

�
Ri, which are invariant with respect to rate for a

given input pattern, rather than Si and Cij . The constant bvv1

is included purely to prevent division by zero.

Note that this normalization does not eliminate all effects of

presentation rate. Presentation rate determines the rate at which

the system has opportunities to form links, and thus there is

inevitably a slower discovery of chains with slower presentation

rates. In the Results section we provide empirical evidence,

captured by the proposed model, suggesting that, whereas the

choice of the initial percept and its duration is governed by

variables (including presentation rate) affecting the discovery of the

alternative proto-objects (chains), competition between the already

discovered alternatives is far less sensitive to these variables and

thus to presentation rate. However, some effect of the link-

formation variables (amongst them presentation rate) on the

ongoing competition is detectable in perceptual behaviour and this

is modelled through the rediscovery rate (represented in the model

by Xi).

Noise (U)
For any given initial condition, the dynamics of the model as

described thus far will eventually settle into one of the

organisations. This is demonstrated for the ABA2 example in

Figure 5C. In order for CHAINS to exhibit multistable switching, a

source of noise is required to destabilise the system to a degree

which suffices to ‘‘jolt’’ the system’s state from one attractor to the

other. This source of noise is provided by the state variable, Ui,

which evolves according to the state equation

tU
dUi

dt
~{Uizu

where u is a Gaussian random variable with zero mean and unit

variance. The noise signal Ui belongs to the class of Ornstein-

Uhlenbeck random processes [64] and appears as an additive term

in the net input to the excitatory activity Ei. These slowly

fluctuating noise processes have been previously employed in

perceptual bistability models [20]. All noise signals are decorre-

lated and there is no direct noise input to the inhibitory

populations. The corresponding coefficient in equation (1), aU ,

regulates the relative impact of the noise and hence how often the

model switches; the larger aU is, the faster the switching rate. The

time constant tU controls the fluctuations in the noise signal; large

values for tU (i.e., slower time constants) preclude fast fluctuations.

Self-excitation and adaptation (A)
In addition to the basic switching behaviour established as

described above, we also introduce a self-excitation term, which

prolongs the time spent in a given attractor by reinforcing the

current state. Self-excitation is proportional to the current

excitation level. Cross-inhibition and self-excitation can lead to

the dominant percept remaining stable indefinitely within certain

parameter regimes [19]. Hence, models of bistability generally

include some form of adaptation. Adaptation is a well-known

phenomenon both in behavioural and neural studies of sensory

processes. Repeated exposure to the same input reduces the

response to this input (see, e.g., stimulus-specific adaptation

[65,66]). In a similar vein, several mechanisms are capable of

bringing about adaptation within a neuronal population, including

neuronal fatigue (typically modelled by firing rate adaptation; cf.

adaptation-LC model in [67]), self-excitation with synaptic

depression ([68] and the present work), increasing levels of

recurrent inhibition, or adapting inhibition from competing

populations. These various forms of adaptation and their impact

upon bistability are explored in depth in [19,67]. It is not

uncommon for models to incorporate multiple sources of

adaptation (e.g., [68]). Our model incorporates two: an adapting

self-excitation, and a form of adaptation mediated via the

inhibitory population and controlled by the parameter aEI .

Adapting self-excitation is a sufficient but not a necessary

condition for producing gamma-like phase distributions [69].

The self-excitation and its adaptation both depend on the level

of current excitation, although they have the opposite effect on the

excitation level of the chain. The adaptation state variable, Ai,

modulates the efficacy of the self-excitation and evolves according

to the equation

tA

dAi

dt
~{AizaAEi

Consider the state of the system immediately following a switch

into the attractor associated with excitation for ABA2r in the

three-chain description of the ABA2 sequence as shown in

Figure 6. Initially, this chain is little adapted as the level of

adaptation declines when the chain is in a low excitation state, so

upon switching to the high excitation state, self-excitation is

initially high; this drives the excitation level of the chain up and

makes it unlikely that a switch to the opposite organisation will
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occur. Whilst E remains high, the chain adapts and thus self-

excitation subsides; at the same time, due to the low E values

associated with the A2r and 2B22r chains, they recover

from adaptation. When a switch eventually occurs, the same self-

excitation/adaptation cycle occurs again. The panels in the right-

hand column of Figure 6 illustrate how the dynamical variables

change during a switch (in this case, from integrated to

segregated).

In summary, adaptation coupled with self-excitation encourages

the system to remain in the same state in the period immediately

following a switch; this reduces the likelihood of very short

perceptual phases and produces a distribution of phase durations

consistent with a gamma distribution (see Results). The parameters

aA and tA control how rapidly adaptation rises and falls. The level

of influence that self-excitation and adaptation has on the

excitation of the chain is determined by the coefficient aEE in

equation (1).

Simulating human perception
The output of the CHAINS model is the set of chains together

with their dynamical state at each point in time. This raises the

question of how to relate these chains and their states to the

responses of listeners in auditory bi- or multistability experi-

ments (e.g., see [41]). Whereas the excitation levels, Ei, of the

ABA2r, A2r and 2B22r chains are continuous and

visible to the modeller, the moment-to-moment responses of

experimental participants are discrete (i.e., they only record

the current organisation reported by the listener), being

conveyed via button presses (see the next section). The

excitation levels of all other alternative organisations are

hidden from the experimenter, although ERP studies may shed

some light on the non-dominant sound groupings (see, e.g.,

[70]). Thus, it is necessary to devise a rule which turns the

chain excitations into categorical responses. In the experiment

reported here listeners were required to mark their perception

Figure 6. Dynamical switching. The left panels show the excitation and other dynamical state variables of the chains that arise in response to a
four-minute long ABA2 sequence with Dt~200 ms, Df ~16 ST. The excitation variables (Ei) alternate at random intervals between two stable
organisations once they are both discovered (at around 40 seconds): ‘‘integrated’’ (blue only) and ‘‘segregated’’ (red [‘‘B’’] and green [‘‘A’’] together).
The percepts that would correspond to the chain with maximum momentary excitation are plotted above, calculated from low-pass filtered
excitation time-courses (to avoid bouncing). Segregation dominates 74% of the time; the mean phase duration is 23.7 s. The right panels plot the
changes in the state variables during a perceptual switch at 110 seconds on a magnified time-scale. The corresponding time period in the left panels
is highlighted in bright yellow. Chain excitations are modulated by the noise variables Ui (not shown). The inhibitory populations (with activities Ii)
serve to achieve exclusivity of the stable organisations by suppressing chains colliding with the dominant one. The adaptation and self-excitation
state variable (Ai) renders switches in close succession unlikely (self-excitation) while increasing the probability of a switch as the duration of the
perceptual phase grows (adaptation). The probabilistic rediscovery of a chain supports its excitation through the rediscovery rate (Xi).
doi:10.1371/journal.pcbi.1002925.g006
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as either integrated or segregated, therefore, we use the following

rule for mapping:

model response~
00integrated00 EABAwEA, EB

00segregated00 otherwise:

�

Once this final transformation is included, the model receives a

sequence of sound events as input and returns a sequence of

perceptual states as output.

Auditory streaming experiment
The experiment that we use for comparison with the model

simulations has not been previously reported, but closely resembles

experiment 1 in [41]. All experimental procedures were the same

as those reported previously, except for the instructions to the

participants, as explained below.

Fifteen healthy young volunteers (9 male, 18–26 years of age,

average 21.8 years) with normal hearing participated in the

experiment, and received modest financial compensation for their

participation. The study was conducted in the sound-attenuated

experimental chamber of the Institute for Psychology, Hungarian

Academy of Sciences. It was approved by the Ethical Committee

of the Institute for Psychology.

The experiment was designed to investigate the distribution of

perceptual switching across a relatively large parameter space.

Participants were presented with 4-minute long trains of the

ABA2 structure, where A and B were pure tones of 75 ms

duration, including 5 ms linear onset and offset ramps. The

frequency of the A tones was kept constant at 400 Hz for all

stimulus conditions. In separate trains, the B tones were 4, 10, 16

or 22 semitones (ST) higher in frequency than the A tones. The

onset to onset time interval was 100, 150, 200, or 250 milliseconds

(ms). Therefore, altogether, 4 | 4 ~ 16 different stimulus com-

binations were tested (all the stimulus sequences are available in

the Supporting Information, Audio S1). The parameters Df and

Dt denote the frequency separation and the event onset-to-onset

times, respectively.

Participants were instructed to depress one response key so long

as they experienced an integrated percept and the other key when

they experienced a segregated percept. Thus in this experiment

participants essentially had an exclusive choice between integra-

tion and segregation and responses with both buttons being

simultaneously pressed (occurring less than 2% of the time) were

excluded from the analyses. In the experiments reported in

[12,14,41,71,72] this forced choice was relaxed with the result that

participants quite often reported other organisations too; we

consider this issue further in the Discussion. When participants

heard no repeating tone pattern, they were instructed to release

both keys. These null responses (appearing less than 4% of the

time) were discarded from the analyses. The two percepts

(integration and segregation) were explained to participants using

auditory and visual illustrations. The experimenter made sure that

participants understood the instructions during the training period

before the start of the experiment. The state of the two response

keys was sampled at 100 ms intervals. Participants were instructed

to mark their perception throughout the duration of the stimulus

sequence and not to attempt hearing the sound according to one

or another perceptual organisation.

The experimental data was analysed as previously reported

[41]. Perceptual phase durations (i.e. the time during which a

percept was continuously reported), and the corresponding

percepts, were extracted. All phases with durations ,300 ms

were discarded as these were assumed to stem from inaccurate

synchronisation of button presses rather than conscious percepts

[41,73]. From this data, we extracted the mean perceptual phase

durations and mean proportions of the segregated percept, for

each participant and condition. The behaviour of participants

during the first perceptual phase was found to be qualitatively

different from that during subsequent phases [41], so where

indicated we analysed first phase and subsequent phase data

separately. Note that in some participant-condition combinations,

the number of subsequent perceptual phases were low. These cases

introduce some measurement error into mean phase durations.

When there were no subsequent phases reported, the missing data

were replaced by the participant’s average proportion of the

segregated percept and average perceptual phase durations across

all the conditions in which a subsequent phase was experienced.

For the analysis of the temporal dynamics of the percepts we

calculated the mean probability of reporting segregation across all

participants for each point in time. We then smoothed this data

using a moving average with a sliding window of 2 seconds.

In the Results section, in order to compare the model responses

with the empirical data, we report simulations from model

experiments and take the mean model responses over 15 repeats

(cf. 15 subjects; variability in the model responses depends on the

noise term) of the 4 minute long stimulus trains for each

experimental condition.

We performed the same statistical tests on the simulated and

empirical data and compared the significant effects across the two

datasets. Specifically, we tested whether the phase durations were

drawn from a log-normal distribution by means of Shapiro-Wilk

W tests on the logarithms of phase lengths (in milliseconds) in one

of the experimental conditions (Dt = 200 ms and Df = 16 ST). The

effect of Df and Dt on the choice of the first reported percept were

analyzed using Cochran’s Q tests, both for all conditions and for

all possible pairs of the four conditions corresponding to the

corners of the parameter space (short Dt and small Df , short Dt
and large Df , long Dt and small Df , and long Dt and large Df ).

Repeated measures analyses of variance (ANOVAs) were carried

out on the first-phase durations and the proportions of segregation

and mean durations in the subsequent phases with Df and Dt as

dependent factors. When applicable, degrees of freedom were

adjusted with the Greenhouse-Geisser correction factor (e). These

and the partial g2 effect sizes are reported. Post hoc comparisons

for significant ANOVA effects were performed using Tukey’s

HSD tests. All analyses were carried out at the 0.05 alpha level.

Selection of model parameters
The assembly of chains and their dynamic competition are

controlled by the parameter sets listed in Tables 1 and 3,

respectively. Although it is technically possible to perform a

machine-based optimisation of the free parameters to minimise the

distance between the empirical and model data, we chose to fit the

parameters empirically in order to gain insight into the influence of

each one. Here we review the procedures by means of which the

model parameters were determined.

First phase choice. The first percept reported corresponds to

the first repeating pattern discovered by the model. This is

determined by the parameters a and c, which control the extent to

which the rate of change of stimulus features from one event to the

next affect the probability of inclusion or exclusion, respectively.

The values of parameters a and c determine whether the influence

of temporal proximity (favouring the ABA2r pattern) or

similarity (favouring the A2r and 2B22r patterns) predom-

inates. Note that first phase choice is not affected by rediscovery,

collisions, adaptation or noise, so the a and c parameters can be
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chosen without reference to the other parameters (although of

course the converse is not true; a and c do influence the dynamics

of subsequent phases).

First phase duration. The duration of the first phase is largely

determined by the time taken for other chains to be discovered and for

them to join the competition. Once the parameters a and c are

chosen, first phase duration is controlled by the parameters b and d
(which determine how sensitive the model is to an imbalance between

the number of chains predicting each of the events), and Pcom (the

probability for a chain that has been formed to enter the competition).

Subsequent phases: perceptual switching. Once all chains

have been discovered the ongoing competition dynamics is

influenced by a number of factors including the rate of successful

predictions, collisions, and rediscovery, as well as adaptation and

noise. A minimum level of noise, determined by the parameters tU

and aU , is necessary in order to achieve any switching at all. These

parameters were set to ensure that switching occurred, and

adjusted later on to fine-tune overall switching rates. The

coefficients aIE , aEI , aS , and aC control the excitatory/inhibitory

interactions in the populations associated with each chain and the

influence of successful predictions and collisions on these

interactions. These parameters were adjusted so that competition

was balanced for all combinations of Dt and Df , and the mean

phase duration was close to the empirical value in the centre of the

feature space. Although the influence of the stimulus features on

subsequent phase durations is weaker than in the first phase [41],

there is nevertheless some effect. This is modelled by means of the

chain rediscovery term, controlled by the parameter aX ; larger aX

results in larger feature-related differences in dominance dura-

tions. Finally, the adapting self-excitation term (controlled by aA

and aEE ) controls the suppression of switching for a period of time

after a switch has been made, and the observed approximately

gamma-distributed phase durations.

Time-constants. The time constants, tS , tC , tX and tR, associated

with the state variables S, C, X and R, essentially encode the rate of

processing in the system; the low-pass filtering controlled by these

time constants ensures that the impulses associated with each event

enter smoothly into the model dynamics. Consequently, the precise

choice of time constants is not important, provided that: (i) they are

long enough to encompass a few events in a typical sequence (§1 s),

otherwise they cannot establish a rate, and (ii) tR is somewhat longer

than tS and tC , otherwise it cannot serve to normalise the success and

collision rates. (Chain rediscovery tends to occur less frequently than

successes and collisions, so the time constant tX must be somewhat

longer in order to provide a running average.)

It should be noted that the perceptual switching behaviour of

participants in bistability experiments, both in vision and in audition,

varies widely (e.g., see [14,74]); there may be an idiosyncratic bias

towards one or other organisation, and typical switching rates can be

very different. The model we propose, with the parameters shown in

Tables 1 and 3, qualitatively captures the mean behaviour of human

listeners in the streaming experiment reported. While a more precise

match may be obtained, we were concerned primarily with exploring

the insights the model provides into the principles underlying

perceptual organisation, rather than precisely matching a specific

data set. However, the parameters used are reasonable and, where

possible, constrained by biological plausibility. The same set of

parameters was used for all the results reported.

Results

Switching organisations
Figure 6 provides an example of the alternation between

perceptual organisations that emerges from the competition

amongst chains in the model. The simulated data shown

correspond to a ‘‘neutral’’ stimulus condition that does not

strongly promote either integration or segregation

(Dt~200 ms,Df ~16 ST). Consequently, all three chains are

discovered within the first minute and proceed to compete. The

competition yields two stable perceptual organisations, one in

which the ABA2r chain dominates (integrated), the other in

which the A2r and 2B22r chains dominate (segregated).

Perceptual switches occur at random intervals (see Figure 6

caption for statistics).

Figure 6 also shows how the activity of the excitatory and

inhibitory populations of the three chains evolves over time, as well

as the time-course of self-excitation and adaptation, success rate,

collision rate, and re-discovery rate. Note that the excitatory and

inhibitory variables associated with each chain remain positive

between events. This is due to the fact that dynamical variables (Si,

Cij , Xi, etc.) are filtered with time constants on the same order of

magnitude as the inter-event intervals for typical presentation rates

(that is, from 100 ms to 1 s). Furthermore, with the exception of

self-excitation, the direct contributions to a chain’s dynamics (via

successes and collisions, etc.) do not dependent on Ei, that is,

whether the chain is dominant or suppressed. Consequently, even

suppressed chains show a degree of excitation.

The left-hand column of panels in Figure 6 show how the

variables evolve throughout a full four-minute simulation.

However, when viewed on a fine time scale, as in the right

column, oscillations in some of the state variables are apparent.

For example, success rates (Si) are leaky integrators that oscillate

around the number of successful predictions in unit time. The ‘‘A’’

chain predicts an A tone every 400 ms (2Dt). Every time an input

event falls within the matching region of the ‘‘A’’ chain’s

prediction, a success is registered, and SA is increased by one.

Note that in this model auditory events correspond to tone onsets

and predictions are evaluated at these moments. As a result of

implementing Si as leaky integrators, the average of success rates

over at least Dt time reflect running averages of successful

predictions per unit time. In our example, the ‘‘A’’ chain makes

four correct predictions per second (two in an ABA2 cycle), the

‘‘B’’ chain two, and the ‘‘ABA’’ chain six as it predicts all the input

tones. Similarly, the collision rate variables are leaky integrators

oscillating around the number of collisions per second for each

pairs of chains. That is, Cij is increased by one every time chains i

and j predict the same event. Because the equations governing the

excitatory and inhibitory state variables include Si and Cij as

additive terms, the former inherit the oscillations present in the

latter to some extent.

The magnified time period plotted in the right-hand column of

panels in Figure 6 highlights not only the presence of fine structure

in the state variables, but also their dynamics during a switch. As

the excitation (E) of the ‘‘ABA’’ chain (blue) falls, its adaptation (A)

begins to decline, albeit with a longer time constant. Conversely, as

the excitation of each segregated chain (‘‘A’’, green; ‘‘B’’, red) rises,

the degree to which it is adapted also increases. The rate that a

chain adapts depends on its excitation. For example, the ‘‘B’’ chain

adapts more gradually than the ‘‘A’’ chain, because it is less

excited on average (owing in turn to fewer successes per second).

The slower build-up of adaptation for the ‘‘B’’ chain relative to the

‘‘A’’ chain is particularly apparent when each one first appears.

(See the four-minute graph of Ai in Figure 6, left column.)

The distribution of the phase durations, plotted in Figures 7A

and 7B for the experimental and model data, respectively, reveal

the gamma-like or log-normal distribution of phase durations

generally reported for bistability experiments. However, it should

be noted that our experimental data only approximates this
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distribution rather roughly. According to the Shapiro-Wilk W

tests, one cannot reject the null hypothesis that both the empirical

and the simulated logarithmic phase durations for this stimulus

condition are drawn from a normal distribution (W = 0.989,

p = 0.540 and W = 0.992, p = 0.975, respectively). In the CHAINS

model, short phases are rendered improbable by the self-excitation

term, which is least adapted when an organisation first becomes

dominant. The long tail of the distribution is caused by the noisy

switching process that can sometimes result in the system getting

stuck for rather long periods of time in one state.

First phase choice
The initial probability of linking events to form chains is

determined by a combination of temporal proximity and similarity

(rate of feature change from one event to the next), as shown by

Cochran’s Q tests on all conditions for both the empirical and the

model data (Q = 56.669, df = 15, p,0.001, and Q = 102.608,

df = 35, p,0.001), and by pair-wise Cochran’s Q tests comparing

the extreme conditions (see below). Temporal proximity favours

integration, hence the first chain built is most often ABA2r. Both

human listeners and the model have a bias towards first phase

integration, as shown in Figure 8, top row. Figure 8A shows the

proportion of instances in which experimental participants

reported segregation as their first response as a function of Dt
and Df . The corresponding results from the model are provided in

Figure 8C. When Dt is short and Df is large, listeners readily

perceive a segregated sequence and take a long time to report

integration. Conversely, when Dt is long and Df is small, they

readily perceive an integrated sequence and take a long time to

report segregation. Cochran’s Q test of the perceptual reports

showed that participants’ first-phase choices significantly differ

between these two parameter combinations (Q = 4.500, df = 1,

p,0.034) as well as between small Df and large Df at short Dt
(Q = 4.500, df = 1, p,0.034). In the CHAINS model, this is

determined by the probability of being able to form the links in

the chains belonging to the integrated and segregated organisa-

tions, respectively. For example, when Dt is short and Df is large,

the sequence contains abrupt changes in stimulus features, which

make it less likely (though not impossible) that successive events

will be incorporated into a single, integrated chain [75]. In this

region of the feature space segregation is found first in a

considerable fraction of the model runs (73.3%, significantly

higher than in conditions with short Dt and small Df (bottom-left

corner), with long Dt and small Df (bottom-right corner), and with

long Dt and large Df (top-right corner); Q = 10.000, df = 1,

p,0.002, Q = 8.333, df = 1, p,0.004, and Q = 10.000, df = 1,

p,0.002, respectively), similar to the reports of human listeners.

First phase duration
Figure 9 (top row) plots the mean durations of the first

perceptual phases (‘‘integrated’’ and ‘‘segregated’’ combined) for

the experiment and the model. The ANOVAs showed significant

interaction between Df and Dt for the empirical data and a

significant main effect of both Df and Dt for the simulated data

(F(9,126) = 3.733, p = 0.004, e= 0.564, g2 = 0.210, F(5,70) =

8.480, p,0.001, e= 0.613, g2 = 0.377, and F(5,70) = 2.023,

p = 3.013, e= 0.699, g2 = 0.177, respectively). The longest first

phases coincide with the extreme conditions, small Dt, large Df

(top-left corner) and small Df , large Dt (bottom-right corner),

respectively. The integrated first phases in this latter region of the

feature space are particularly long (.120 s and significantly

longer, according to Tukey’s HSD tests, than with more balanced

parameters in the centre of the grid; df = 126, p#0.049 for the

empirical results, df = 70, p#0.011 for Df and df = 70, p#0.048

for Dt in the model simulations). This is largely due to the fact that

under these conditions, the segregated chains are very difficult to

discover since when Df is small and Dt is large, the rate of stimulus

feature change is very small, hence the probability that an event

can be excluded from the building chains, which is necessary to

discover A2r and 2B22r, is very low. In addition, when Dt is

large, the time between successive B sounds is especially long

(4 | 250 ms~1 s), so the opportunity to form the B2r chain

actually only occurs infrequently, thus it takes a long time to form

Figure 7. Phase length distributions. A) Distribution of the
perceptual phase durations obtained from the perceptual experiment
data with Dt~200 ms and Df ~16 ST (110 phases from 15 partici-
pants). B) Distribution of the ‘‘perceptual’’ phase durations obtained
from the model for the same Df and Dt parameters as in panel A) (53
phases from 15 simulations). Note that a small number of outliers are
not visible (a 213 and a 223 seconds-long perceptual phase on panel A
and a single 179 seconds-long phase on panel B). *Empirical phases
exclude ‘‘both’’ and ‘‘neither’’ responses.
doi:10.1371/journal.pcbi.1002925.g007

Figure 8. Proportion of time spent in the segregated organi-
sation. A) An image displaying the proportion of experimental subjects
(N ~ 15) that reported hearing segregation first for the 4 | 4
combinations of the stimulation parameters. B) An image displaying
the proportion of time spent perceiving the segregated percept after
the first perceptual phase has ended. C), D) The results from the CHAINS

model (15 simulations) depicted in a 6 | 6 grid of the same parameter
space corresponding to those presented in (A) and (B), respectively.
Colour calibration of proportions (in %) is shown at the upper right
corner.
doi:10.1371/journal.pcbi.1002925.g008

Perceptual Organisation in Auditory Streaming

PLOS Computational Biology | www.ploscompbiol.org 13 March 2013 | Volume 9 | Issue 3 | e1002925



the links necessary for building the 2B22r chain. Often, A2r
does form in this corner, albeit after a long period. For example, at

Dt~250 ms and Df ~22 ST, the A chain formed in all 15 model

runs, after an average delay of 39 s. However, without the

2B22r chain, the A2r chain cannot overpower the

integrated chain and dominate in the dynamical competition

because its success rate is lower than that of the ABA2r chain (2

predicted events per cycle as opposed to 3). In the opposite (top-

left) corner, the probability of discovering the ABA2r chain is

low, but here temporal proximity helps somewhat in its discovery,

whereas in the bottom-right corner, temporal proximity favours

the integrated percept.

Subsequent phases: Mean proportions of segregation
The strong tendency to report integration first for the majority

of the parameter space results from the relative ease with which

the integrated chain can be built in comparison to the segregated

chains. However, once all three chains are built, they persist, and

the competition becomes more balanced. Figure 8B shows the

proportion of time that the segregated percept was experienced

during the phases subsequent to (and excluding) the first phase.

Figure 8D presents the results obtained from the model. They are

very similar; the majority of the space reflects a more balanced

competition (i.e., segregation reported roughly 50% of the time;

light green shades in the colour map). ANOVA tests found no

significant effect of the parameters on the overall proportions of

the segregated percept (F(3,42) = 2.441, e= 0.835, p = 0.90;

F(3,42) = 0.950, e= 0.713, p = 0.403; and F(9,126) = 1.729,

e= 0.589, p = 0.135 for the factors Df and Dt and their

interaction, respectively). Similarly, in the model data, neither

the main effect of Df , nor its interaction with Dt were significant

(F(5,70) = 0.684, e= 0.693, p = 0.586, and F(25,350) = 0.700,

e= 0.337, p = 0.698, respectively). Besides the overall balance in

competition, a gentle diagonal gradient is apparent across both

images (from which only the decrease in the proportion of

segregated phases with increasing Dt reached significance,

F(5,70) = 2.905, e= 0.650, p = 0.041, g2 = 0.172), such that

segregation is more prevalent in the top-left, whereas integration

is more prevalent in the bottom-right corner. In CHAINS, the

reason for the continuing influence of stimulus features on

perceptual dominance during subsequent phases stems from the

rediscovery term; the likelihood of rediscovering a particular

pattern enters into the dynamics of the model via the X state

variables.

Subsequent phases: Mean phase durations
The mean proportion plots in Figures 8B and 8D show that a

balanced competition is established once all three chains have

been discovered. Balanced competition leads to more frequent

switching [20], which means that the durations of phases

subsequent to the first phase are considerably shorter on average.

The mean durations for the subsequent phases are plotted in

Figures 9B and 9D for the experiment and model, respectively.

The experimental and model durations span a range of values with

similar orders of magnitude (*10 s). Phase durations generally

increase as Dt decreases (F(5,70) = 14.876, e= 0.610, p,0.001,

g2 = 0.515 for the model data, with a strong tendency in the

experimental data, F(3,42) = 3.076, e= 0.605, p = 0.068). No other

effect or interaction was significant either for the empirical or the

model data. The longer durations of the segregated phases in the

region of the parameter space with small Dt and large Df (top left

corner) are the result of additional input via the X state variables

to the segregated chains; i.e. a higher rediscovery rate for the

segregated chains.

In Figure 10 the distribution of phase durations for integration

and segregation is displayed separately as two intersecting surfaces

for the experimental and model data. The first phase and

subsequent phases are now combined. Qualitatively, the results

for the model (A) and experiment (B) are very similar: the

‘‘integrated’’ and ‘‘segregated’’ duration surfaces show an expo-

nential-like decay along the same diagonal gradient, but in

opposite directions, such that they reach maxima in opposite

corners and intersect in the middle. As expected from the

discussion thus far, the longest integrated phases occur when Dt

Figure 9. Durations of all perceptual phases. A) An image
displaying the group-average (N~15) durations of the first perceptual
phases, as reported by experimental subjects N~15 for the 4 | 4
combinations of the stimulation parameters. ‘‘Integrated’’ and ‘‘segre-
gated’’ phases were analysed together. B) An image displaying the
mean durations of the perceptual phases subsequent to the first phase.
C), D) The results from the CHAINS model (15 simulations) depicted in a
6 | 6 grid of the same parameter space corresponding to those
presented in (A) and (B), respectively. Colour calibration of phase
durations (in s) is shown at the upper right corner.
doi:10.1371/journal.pcbi.1002925.g009

Figure 10. Durations of integrated and segregated phases. A)
Surfaces showing the group-average (N~15) mean perceptual phase
durations for integrated and segregated phases (cells outlined in black
and white, respectively) as reported by listeners N~15. The first and
subsequent phases were analysed together. B) The corresponding
results obtained from the CHAINS model (15 simulations). Both surfaces
were based on a 4 | 4 grid of the stimulation parameters (x and y
axes). Phase durations are calibrated in seconds on the z axis.
doi:10.1371/journal.pcbi.1002925.g010
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is maximal and Df is minimal; the segregated durations are longest

when the parameters fall at the opposite extreme. Viewing this

figure we can also see that consistent with recent refinements to

Levelt’s second proposition [76], we find that changes in stimulus

parameters mainly affect the dominance durations of the dominant percept.

The time course of the probability of segregation
In classical streaming experiments a great deal of attention has

been paid to the ‘‘build-up’’ of streaming, with the notion that

initially, a new stimulus sequence is perceived as integrated (the

‘‘default’’ organization) while segregating two or more streams

requires gathering evidence from cues promoting separate

grouping of subsets of sounds [3]. Results were typically presented

by plotting the probability of segregation as a function of time for

various combinations of Dt and Df (see, e.g., [37,77]). Figures 11A

and 11B follow this procedure for the experimental and model

data, and include a set of curves corresponding to the four

extremes in the parameter space, i.e.,Dt[ 100, 250f g ms,

Df [ 4, 22f g ST. The trends are similar for the experimental and

model data.

For Dt~100 ms and Df ~22 ST (blue curve; top-left corner of

the parameter space), the probability of reporting segregation

quickly rises to a large value after the onset of the sequence. In

CHAINS, this reflects the fact that the chains that make up the

segregated percept are easily built and, once active, suppress the

building of the integrated chain. At the opposite corner of the

parameter space, Dt~250 ms and Df ~4 ST (green curve), both

in the experimental and model data, the probability of reporting

segregation rises slowly and reaches an asymptote at a rather low

value. Note that this does not mean that some participants never

perceive segregation, but that segregation is not experienced at the

same time by all participants. In the model, the slow rise in the

curve represents the fact that the integrated chain is discovered

early and suppresses the building of the segregated chains. In the

other two corners of parameters space (corresponding to the red

and yellow curves), neither integrated nor segregated is favoured.

As a result, the rate at which the probability of reporting

segregation rises falls between the two extremes just mentioned,

and the asymptotic values are close to one half, meaning that, on

average, integration and segregation are roughly balanced.

The effect of the model parameters on the results obtained are

illustrated on Figure 12. By changing the chain building

parameters, it is possible to influence the balance between the

two organizations. The integrated chain needs to connect different

events, while the chains corresponding to segregation must omit

events. The cost of these operations are set by parameters a and c,

respectively. The weights of success rate, inhibition, and noise in

determining the change in the excitations influence both the

balance of the two percepts in subsequent phases and the stability

of the competition.

Discussion

The data show that the CHAINS model simulates the perceptual

behaviour of human listeners in streaming experiments very well,

accounting for both the contents and the dynamics of perceptual

awareness. To our knowledge this is the first computational model

of auditory streaming that is able to do so. Influenced by the

notion of a perceptual decision, argued very persuasively by

Bregman [3], previous computational models (e.g. [78–82]) all

focussed essentially on the first perceptual phase, and the time

course and feature dependence of the probability of segregation.

None of these models is able to account for perceptual switching

between integration and segregation as they all have one stable,

fixed, feature-dependent attractor. Moreover, none of these

models addressed the fundamental question we have identified

here and in previous theoretical work [1,42] regarding the nature

of the attractors and how they are discovered. Instead all previous

models of auditory streaming have assumed two possible decisions;

i,e., integration or segregation. Thus, in general, they do not really

touch upon the notion of auditory objects as temporally persistent

representations built up from regularities detected in the sensory

input, as defined by Winkler et al [1], and they do not have much

to say about the principles underlying perceptual organisation.

The exception is the Kalman-filter model of Elhilali & Shamma

[79], which captures the notion of temporally persistent represen-

tations of regularities in the filters that are derived from the input

sound sequence, and also uses the predictions made by the filters

to refine these representations. Thus far this model has not been

extended to simulate perceptual switching; nevertheless there are

some important commonalities between their approach and the

model we propose here.

Although similarities between the perceptual switching behav-

iour in visual and auditory bistability experiments has previously

been reported [26], models of visual bistability cannot be trivially

applied to auditory streaming. The most obvious reason is that in

audition the stimulus is experienced over time, and all parts of the

object are not simultaneously present, whilst in binocular rivalry

(the most frequently simulated example), there is an assumption

that the stimulus is continuously present in its entirety. Therefore,

while being inspired by the attractor dynamics approach employed

by a number of models of visual multistability (e.g. [20,22]), the

CHAINS model, by necessity, extends those models in two

important ways. Firstly, CHAINS shows how attractors can be

discovered, and secondly, how the nature of the competition

between them ensures the simultaneous emergence of compatible

Figure 11. The time course of the probability of segregation. A)
Four curves showing the group-average probability by which listeners
(N~15) reported hearing the segregated percept at various times
during a trial. The parameter combinations for each coloured curve are
shown on the side map. B) The corresponding results from the CHAINS

model (15 simulations). The probability of the streaming percept is
always zero at the onset of the stimulus train as there is a delay to the
first reported/modelled percept. This does not mean that listeners
necessarily report (or that the model would find) the integrated percept
before the segregated one (i.e., the probability of the integrated
percept is also zero at the onset of the stimulus train).
doi:10.1371/journal.pcbi.1002925.g011
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Figure 12. Illustration of the role of some model parameters. The left columns show the proportion of time spent in the segregated
organisation separately for the first and subsequent phases, while the right columns display the durations of all perceptual phases (again, in separate
columns for the first and subsequent phases). A) Results obtained with the original parameter set, specified in Tables 1 and 3. These charts are
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proto-objects into dominance (perceptual awareness). CHAINS thus

accounts for the emergence of perceptual organisations, each of

which can contain an arbitrary number of perceptual objects. It

should be noted that although the model is currently expressed in

a rather abstract way, it has been formulated with a view towards

understanding perceptual processes as they occur in the brain.

We shall now review CHAINS in the light of previous theoretical

and experimental work, noting points where the model should be

extended to cover a wider set of perceptual phenomena and more

ecologically valid stimuli. Proceeding in a ‘‘bottom-up’’ fashion, we

consider: what might constitute an elementary ‘‘event’’ in

physiological terms; how the events are grouped into chains;

how the build-up and failure of chains relate to the time course of

streaming; and the nature of the dynamics that ensues between

concurrently active (closed and predicting) chains. Finally we

conclude with a summary of the theoretical contributions of the

model.

Events
The basic elements handled by the CHAINS model are discrete

sound events. We assume that event decomposition is largely based

on instantaneous cues of sound segregation [3,83] (such as

common onset and harmonicity) which are processed before the

sequential regularities modelled in CHAINS are detected. The series

of auditory ERP responses reflecting the detection of event onsets

as they are triggered by abrupt acoustic changes [51,84] precede

and overlap the ERP marker of sound segregation by instanta-

neous cues (the object-related negativity; ORN [83,85]), both of

which precede prediction-based detection of sequential deviance

(MMN [84]). There is evidence showing that deviations occurring

300 ms or farther from the last N1 are not flagged as prediction

errors by MMN [86–88]. This suggests, as assumed in our model,

that event decomposition is tied to event onsets and it is a

prerequisite for extracting sequential regularities from a sequence.

The way in which continuous sounds can also be included in this

time-localised framework requires further consideration.

Event similarity
We posit that it must be possible to measure similarity

relationships (featural distance) between any two events. The

feature we have made use of in this modelling study is frequency,

for which a natural perceptual measure of distance is the

frequency ratio, measured as an absolute frequency difference

on an octave scale. Although we have not included other acoustic

features in the model presented here, we assume that all features

(e.g., loudness, location, pitch, etc) are bound together into a single

event representation even outside the focus of attention [89–92]. It

is therefore necessary for simulating the perceptual organisation of

complex sounds to formulate distance measures that encompass all

the features of relevance. This is outside the scope of the current

model, but depends upon the reasonable assumption that

relationships rather than absolute features form the basis for the

perception of similarity [43]. Therefore, a full model of auditory

scene analysis will need to include two-way links between the

sequential grouping processes (modelled by CHAINS) and the

assumed pre-processing steps that establish the event components

(instantaneous grouping) and inter-event relationships (rate of

change).

Chains
Once events are extracted, there remains the question of how

they come to be linked. There is compelling evidence that simple,

chain-like rules are encoded within the brain [84,93] and they can

be studied using the MMN ERP component elicited in response to

rule violations. Evidence from MMN studies has demonstrated

that several rules can be maintained concurrently even outside the

focus of attention [53,94,95], and, in keeping with our model, that

the length of a stored pattern is restricted to a few items, or in total

duration [4,96–99].

A legitimate objection at this point is that CHAINS is overly

restrictive, in that it can only represent rules in the form of

deterministic periodic patterns, whereas, in fact, MMN can be

elicited by a host of non-periodic stimuli [93]. Furthermore,

auditory bistability can be elicited by non-periodic patterns; e.g.

with randomly jittered tones having a predictable distribution [71].

In response, we note that the looping chain representation was

chosen initially, because it most naturally accommodates the

format of the repeating tone stimuli used in auditory streaming

experiments. However, periodic sequences are not the essence of

the model, which consists of the following: (i) the parallel encoding

of regularities; (ii) predictions based upon those regularities; and

(iii) competition amongst the predictors at the level of individual

(local) events, resulting in the spontaneous (global) emergence of

stable organisations. A more comprehensive version of the model

would employ a wider repertoire of predictors, which encode non-

periodic sequential predictions (e.g., whenever A occurs, B follows

100 ms later), relative and second-order changes (e.g., frequency

changes that alternate in sign [94], or ‘the higher the pitch the

lower the intensity’ [100]), statistical distributions, and so forth.

The model we present here provides a flexible framework for these

extensions.

A notable aspect of the chain building process is the

probabilistic exclusion term. This is important, as without being

able to skip over events, the model would not be able to discover

patterns consisting of non-adjacent events embedded within

sequences [101]. Detecting embedded regularities is clearly

ecologically relevant; for example, in conversations the utterances

of different speakers typically interweave in the ongoing interac-

tion. It is also possible that the exclusion function is actually time

varying. This is suggested by neurophysiological experiments

identical to panels C) and D) of Figure 8 and the same panels of Figure 9, respectively. B) Chain building parameter a is changed from 0.00015 to
0.00075. Increasing the effect of rate-of-change on the inclusion probability renders it more difficult to form the ABA chain and thus the segregated
percept is more prominent (especially with small Dt and large Df in the first phase and small Dt and Df in subsequent phases). C) Chain building
parameter c is changed from 0.0055 to 0.0035. Decreasing the probability of skipping over auditory events promotes the chains of the integrated
organization, especially when rate of change is small. D) The weighting coefficient of success rate aS is changed from 3.8 to 3.9. As the number of
successful predictions a chain makes in unit time have a larger effect on its excitation, the integrated percept (with the highest success rate) is more
dominant in subsequent phases than with the original parameter value. E) The weighting coefficient of the inhibitory signals towards the excitatory
populations aIE is changed from 8.1 to 8.2. The resulting increase in the effectiveness of collisions in lowering chain excitation is manifested by a
small bias towards the segregated percept (whose corresponding chains incur fewer collisions) in subsequent phases. Further, switches are less
probable, i.e. phase durations are higher, when inhibition is more efficient in suppressing momentarily non-dominant chains. F) The weighting
coefficient of noise aU is changed from 3.4 to 3.0. As noise is responsible for the perceptual switches, decreasing its contribution to the excitation of
the chains lengthens subsequent phases (especially when Dt is small). Note that adjusting the weighting coefficients of the dynamical state variables
in panels D), E), and F) has no influence on the first phases (that is governed exclusively by chain discovery). Colour calibration is shown on top.
doi:10.1371/journal.pcbi.1002925.g012
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showing the development of differential suppression, i.e. the

gradual reduction in responses to one or other of the tones in a

streaming sequence [37,102,103]. Clearly the formation of links

between non-adjacent events would become more likely as the

activity associated with intervening events becomes weaker; and

this could be modelled by a time-varying exclusion function.

The exclusion function as presented here introduces a

simplification. The first condition that prevents the exclusion of

an event that matches any of the events already included in the

building chain is overly restrictive. If it is removed then the model

discovers other repeating patterns, and other organisations, e.g.

{AB22r and 22A2r}, {2BA2r and A222r}. These

organisations are not well described by the classic integration/

segregation distinction employed in most streaming experiments to

date. In our experiments [12,14,41,71,72] we found that if

participants are not instructed with an implied forced choice and

are told they may sometimes hear other organisations that include

both A and B tones in one stream as well as a separate stream

containing only A’s, then they report hearing these other

organisations too, and do so with a probability which can be

rather high (up to ca. 30% with some stimulus configurations).

Similar results have also been reported in visual bistability [76].

We are currently conducting an experiment to tease out the full

range of patterns that participants perceive. Therefore, and also in

order to facilitate comparison with the classical auditory streaming

literature, we did not explore this issue here: the experimental data

reported in this paper was acquired using the traditional ‘exclusive

choice’ instruction set.

The other simplification of the model presented here is the

deletion of chains whose predictions fail. As noted previously this is

overly restrictive, and there is evidence from MMN studies for the

persistence of regularity representations through multiple consec-

utive deviant events (e.g., [53]) and even for a dormant (currently

inapplicable) state of the representations, which can, however be

reactivated (brought back to an active state) by a single ‘‘reminder’’

event [54]. Thus we suggest that in the future, chains should be

penalised by weakening rather than removing them. Such soft

penalties will require the introduction of further parameters, for

which we have insufficient experimental data at this stage.

Nevertheless, relaxing the current ‘death penalty’ is necessary for

enabling the model to form representations of distributions and to

track perceptually acceptable changes and variations in the

features of auditory objects. Within the larger picture, this

extension of the model can be regarded as a step towards

accounting for the observed stability of perception.

One further simplification of the model, when compared to the

auditory streaming experiment, is that whereas each simulation is

started afresh, human listeners may retain some information from

preceding stimulus blocks. Specifically, if a proto-object has been

formed in a stimulus block, it may still be available at the

beginning of the next one following the typical short breaks used in

psychophysics experiments, including our own. If at least some of

the sounds are identical between the stimulus blocks, as was the

case in our experiment, then these act as reminders, activating the

proto-objects including the common stimuli. As it has been

mentioned above, reactivation of auditory regularity representa-

tions (proto-objects) was demonstrated in both behavioural and

ERP studies, even after a silent interval of 30 s (for a review, see

[54]). The carry-over of proto-objects from one 4-minutes long

stimulus sequence to the next benefits the perceptual alternative

that would have otherwise been discovered only later during the

new stimulus sequence: in most cases, the segregated percept.

Indeed, Snyder and colleagues found a significant carry-over effect

from one trial to the next in a similar study [104]. In our context,

this claim can be tested both experimentally, by changing the

parameters of the tones between the sequences, and in the model,

by retaining the chains from the previous condition when

simulating the next one. However, this raises questions about

chain generalisation that are beyond the scope of the current

paper.

Dynamics and multistability
Tone sequences of even a modest complexity, such as the

ABA2ABA2… tone pattern employed in this work, contain

within them many different embedded patterns. In the CHAINS

model, each pattern discovered is encoded as a chain. It is

important to recall that ‘‘conflict’’ between two chains does not

mean that they predict different tones at the same moment; on the

contrary, they each predict the same tone, but assign it to a

different causal pattern. Chains are mutually inhibitory to the

extent that their predictions collide, and this in turn leads to the

formation of stable subsets of chains (organisations) whose

predictions are complementary. The presence of noise in the

dynamics means that an organisation cannot dominate perception

indefinitely; instead, it will eventually collapse, and during the

momentary instability that ensues, a different set of chains will

emerge as the dominant perceptual organisation.

Once a chain forms, its prominence is governed by a set of

dynamics which interacts with the dynamics of the other chains.

The variables that steer the dynamics (listed in Table 2) correspond

to running averages of event-related incidents, such as successes and

collisions. The proposal that these variables could in some way be

represented in the brain gains credibility when one considers that

they require only local computations [42], both in terms of time

(computation is memoryless, except for a leaky integration), and in

terms of representation (computation is local to a chain; there are no

global interactions or parameters). It could be argued that the chain

matching operation required for computing the rediscovery term

(X ) is not a local computation, and, in the rather abstract

algorithmic version of the model presented here, this is true.

However, we would argue that the instantiation in the brain of such

a process is likely to be more straightforward, and involve only local

computations that simply equate to short term learning which

(temporally) strengthens the links on the neural pathways that

represent the chain in ‘synfire chain’-like structures [105].

Competition amongst chains is implemented along the same

lines as a number of models of visual bistability [20–23]: cross-

inhibition, self-adaptation and noise. The relative importance of

these factors, and the precise way they interact, has been the

subject of much discussion [20,22], although there is a general

consensus that all three must be present. Cross-inhibition and

adaptation without noise leads to periodic deterministic dynamics,

and although cross-inhibition and noise without adaptation (i.e., a

noise-driven attractor model [20]) is sufficient for random phase

alternations to occur, detailed analysis of the phase statistics

provides evidence for an adaptation process in addition to the

noise [106], or a noisy adaptation process [22]. Specifically, it has

been argued that a relatively slow adaptation process accounts for

weak correlations in consecutive perceptual phases of the same

type [19] and the gamma-like shape of the phase distribution [20].

The CHAINS model includes both noise and adaptation (see the

‘‘Chain Dynamics’’ section in Models). Disabling noise abolishes

switching altogether, whereas disabling adaptation does not,

although phase durations are substantially lengthened as a

consequence, and their distribution reverts to an exponential

shape (results not shown).

The major difference between the dynamics in CHAINS and

other models lies in the nature of the cross-inhibition. Because
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models of visual bistability generally use predefined attractors,

either cross-inhibition between the attractors or global inhibition is

hardwired, and inhibition acts continuously. In CHAINS, we

discover the attractors and their points of conflict (i.e. attributing

events to different causes), and inhibition only occurs between

conflicting attractors. Inhibition is thus dynamic, and its time

course is determined by the occurrence of conflicting events.

The most important factor in ensuring the emergence of

perceptual organisations and perceptual switching is the balance

of the success and collision variables, determined by aS and aC ,

respectively. Specifically, we found that increasing aS promotes

integration, whereas increasing aC (or aIE ) promotes segregation.

This is reasonable in light of the fact that: (i) the ABA2r chain

receives 3 successes per cycle (compared to the 2 and 1 successes per

cycle of the A2r and 2B22r chains) so increasing aS favours

ABA2r (integration), and (ii) the A2r and 2B22r chains

together exert a large degree of inhibitory influence on ABA2r, so

increasing the inhibitory weights favours A2r and 2B22r
(segregation). (For an illustration, see Figure 5.) In summary, a

specific balance of excitation, inhibition and adaptation is required

to yield bistable switching, and a distribution of perceptual

dominance that matches human experience.

‘‘Build-up’’ of streaming
The model was not explicitly tuned to simulate the assumed

build-up of streaming. However, by correctly simulating the

characteristics of the first phase, including the initial perceptual

decision (first phase choice) and first phase duration, the model

also simulates the typical build-up patterns reported in the

literature (for example, see [37,41,77,107]).

The first phase is dominated by integration for most sets of

parameters. This occurs because temporal proximity favours the

discovery of the ABA2r chain, while discovery of the A2r and

22B22r chains requires skipping over intervening events. On

the other hand, similarity favours the A2r and 2B22r chains

and thus when the A and B tone features are very dissimilar, there is

a chance that the influence of similarity will override temporal

proximity, and the A2r chain will be discovered first (followed

closely by the 2B22r chain, thanks to the n0 term in the exclusion

function). However, because of the way the data is plotted (i.e. as a

probability of reporting segregation), and because the first point is

always zero (i.e. with no sounds the probability of segregation is

zero), plots that display the probability of segregation averaged

across participants as a function of time can give the misleading

impression of a gradual ‘build-up’ rather than an initial perceptual

decision in favour of segregation or integration.

Behind the morphological similarity between the simulation data

and the well-known results supporting the classical notion of the

build-up of streaming [3,77], there is a fundamental theoretical

difference between our model and previous work. CHAINS does not

make any assumption about a default sound organization, nor does

it ‘‘gather evidence’’ only for segregation. ‘‘All chains are equal’’ in

how they are discovered. The time necessary for their discovery

depends only on the parameters of the model and the actual sound

sequence. Thus, properly speaking, our model suggests that there is

no ‘‘build-up’’ of streaming; there is a build-up of chains, whether

they represent the integrated or the segregated percept.

In auditory streaming experiments, the special character of the

first perceptual phase has been previously noted [41,108], with the

influence of stimulus features being far stronger during the first

phase than subsequent phases. In their experiments, Hupé and

Pressnitzer [108] showed that first percept choice and the duration

of the first phase (inertia) were independent. This is consistent with

our model in which the first percept is determined by which

pattern is easiest to discover, while first phase duration is largely

determined by how long it takes the system to discover other

patterns and pattern combinations.

Conclusion
The principal contribution of the CHAINS model is to show that

a process with two parallel stages, pattern discovery, and

competition between incompatible patterns, can account for both

the contents (perceptual organisations) and the dynamics of human

perception in auditory streaming experiments. In this, our model is

compatible with Bregman’s theoretical framework [3]. However,

we suggest an alternative to Bregman’s specific proposal that

auditory perception works by ‘accumulating evidence’ in favour of

some perceptual decision. Instead we suggest that perception

emerges from a process that creates, possibly many, alternative

interpretations of the sensory scene in parallel, and samples these

interpretations with a probability that is related to their likelihood

(ease of discovery). The proto-objects (chains) that form and

compete with each other do not necessarily all enter conscious

awareness, and those that are incompatible cannot do so

simultaneously. Proto-objects that win the competition become

the auditory objects of perception. Thus if the stimulus is rather

short or if it changes, then there may be time for only the most

likely proto-objects to be perceived. This may explain our

everyday experience that, in general, perception tends to provide

an unambiguous and stable interpretation of the world.

Although the dynamics in the model are governed by similar

factors employed in a number of visual models of bistability, the

model we present here goes beyond previous work in proposing

mechanisms by means of which competing representations can

emerge, rather than being predetermined. This allows us to also

account for the qualitative differences between first phase and

subsequent phase behaviour [41]. Perhaps it is this ability to

discover and simultaneously represent a number of different

interpretations of the world and to flexibly switch between them

that underlies the robustness of natural perception.

Supporting Information

Audio S1 The stimulus sequences used in the auditory
streaming experiment. Each sequence is a 4-minute long

cyclic repetition of an isochronous ABA– pattern, where A and B

are pure tones of different frequencies and – denotes a silent gap.

The names of the sound files specify the combinations of Dt and

Df stimulus parameter values for each tone sequence, with the

former one referring to the frequency difference between the tones

(A tones were kept constant at 400 Hz and the frequency of B

tones was varied according to Df ) and the latter denoting the

onset-to-onset time interval.

(ZIP)

Protocol S1 The source code of the CHAINS model. The

model is implemented in C, with a Matlab interface. After

compilation, it can be used to run model simulations with arbitrary

repetitive pure tone sequences. A brief tutorial and example scripts

are included. The source code is also available for download at

http://sites.google.com/site/chainsmodel/.

(ZIP)
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47. Bendixen A, SanMiguel I, Schröger E (2012) Early electrophysiological
indicators for predictive processing in audition: A review. Int J Psychophysiol

83: 120–131. doi: 10.1016/j.ijpsycho.2011.08.003.

48. Jaramillo S, Zador AM (2011) The auditory cortex mediates the perceptual
effects of acoustic temporal expectation. Nat Neurosci 14: 246–251.

49. Rensink RA (2000) Seeing, sensing, and scrutinizing. Vision Research 40:

1469–1487.
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