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a b s t r a c t

A systematic numerical study of three-dimensional natural convection of air in a differentially heated

cubical cavity with Rayleigh number (Ra) up to 1010 is performed by using the recently developed cou-

pled discrete unified gas-kinetic scheme. It is found that temperature and velocity boundary layers are

developed adjacent to the isothermal walls, and become thinner as Ra increases, while no apparent

boundary layer appears near adiabatic walls. Also, the lateral adiabatic walls apparently suppress the

convection in the cavity, however, the effect on overall heat transfer decreases with increasing Ra.

Moreover, the detailed data of some specific important characteristic quantities is first presented for

the cases of high Ra (up to 1010). An exponential scaling law between the Nusselt number and Ra is also

found for Ra from 103 to 1010 for the first time, which is also consistent with the available numerical and

experimental data at several specific values of Ra.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Natural convection flow (NCF) in a differentially heated cubical

cavity is one of the fundamental flow configurations in heat trans-

fer and fluid mechanics studies, and it has many significant appli-

cations, including air flow in buildings, cooling of electronic

devices, and energy storage systems. In recent years, with the rapid

advance of the computer technology, direct numerical simulation

(DNS) has become a popular and competitive way to study thermal

convection flow problems.

The early numerical studies of NCF were usually restricted to

two–dimensional (2D) configuration with relatively low Rayleigh

numbers ðRaÞ. The pioneering work of de Vahl Davis et al. [1] pro-

vided original benchmark solutions for a square 2D cavity with

103
6 Ra 6 106; afterward, more accurate results were presented

by Hortmann et al. [2] using the multi-grid method with a much

finer mesh. Many others have repeated results with Ra up to 108

[2–6].

As actual flow is always three–dimensional (3D), many efforts

have also been made on 3D simulations. For example, Mallinson

et al. [7] investigated the effects of a certain aspect of a ratio on

flow patterns with Ra up to 106; Fusegi et al. [8] simulated the

NCF in an air-filled cubical cavity for Ra of 104 and 106, and clari-

fied 3D structures of flow and temperature; Labrosse et al. [9]

observed the hysteretic behavior by using a pseudo-spectral sol-

ver; the 3D cavity of aspect ratio 4 with periodic lateral walls

was studied by Trias et al. [10,11], and significant differences were

observed in flow dynamics between 2D and 3D results. They also

emphasized that the NCF in a 3D cubical cavity with adiabatic lat-

eral walls had received comparatively less attentions

[8,12,9,13,14].

The above mentioned numerical simulations of NCF are per-

formed by the traditional computational fluid dynamics (CFD)

methods on the basis of the Navier–Stokes equations (NSEs), which

are a set of second–order nonlinear partial differential equations

(PDEs). Recently, kinetic methods based on the Boltzmann model

equation have become an alternative method to the NSEs with

some distinctive features. Different from the NSEs with a nonlinear

and nonlocal convection term, the Boltzmann equation is a first-

order linear PDE, and the nonlinearity resides locally in its collision

term. These features make kinetic methods easy to realize and par-

allelize with high computational efficiency. Many kinetic methods

have been recently utilized to simulate NCF problem, such as the

lattice Boltzmann methods (LBM) [15–23] and the gas-kinetic

scheme [24].

However, up to date, the study of high Ra (up to 1010) NCF in a

differentially heated cubical cavity is limited to 2D configuration,

while most of the available investigations on 3D NCF are for low

�Ra (up to 107) flows. For the NCF with high Ra, it requires much
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finer mesh adjacent to wall boundary to capture boundary layer

than that in the center of cavity. Therefore, an accurate, stable

and mesh flexible method is preferable for numerical study of

the 3D NCF.

Recently, starting from the Boltzmann model equation, a dis-

crete unified gas–kinetic scheme (DUGKS) was proposed for both

hydrodynamic and rarefied flows [25–27]. As a finite–volume

(FV) method, DUGKS can be easily implemented on non-uniform

or unstructured meshes to satisfy the local accuracy requirement

[28–30]. Particularly, although sharing the common kinetic origin,

some distinctive features also exist between DUGKS and LBM. In

fact, several comparative studies of the standard LBM and DUGKS

have been preformed systematically for laminar flows [28,31], tur-

bulent flows [32,33], and natural convection flows [29] in previous

work. Generally, for flows without solid boundaries, for example

the decaying turbulent flow, the accuracy of standard LBM is

slightly higher than the DUGKS [32], while for flows involving solid

boundaries, the DUGKS is even more accurate than the standard

LBM [28,33]. Furthermore, owing to the semi-implicitness in the

construction of gas distribution function at the cell interfaces, the

DUGKS is much more stable and robust than LBM [28,29,32]. How-

ever, with a same regular grid, the standard LBM is faster than the

DUGKS per iteration [28,29]. But benefiting from the FV nature,

non-uniform meshes can be easily employed without loss of accu-

racy and additional efforts in DUGKS, and its efficiency can be sig-

nificantly improved by employing a non-uniform mesh according

to the local accuracy requirement [28,29,32]. This is the main rea-

son why we use the DUGKS, instead of the LBM, to study the high

Rayleigh number natural convection flow, which requires much

fine mesh near walls to resolve the thin boundary layers. Although

the standard LBM has low numerical dissipation [34], it can only be

implemented on regular meshes due to its special streaming pro-

cess, and the existing reported studies of 3D NCF are limited to

low Ra [17,23]. Some FV based LBM have been also developed in

the past decades, but it has been demonstrated that the DUGKS

is obviously superior to the current best FV-LBM [35] in terms of

accuracy and numerical stability [31]. In addition, the kinetic nat-

ure makes DUGKS suitable for parallelized computing. High com-

putational efficiency is essential for large scale 3D simulations. In

order to simulate the incompressible thermal flow, a coupled

DUGKS (CDUGKS) has been proposed using the double distribution

strategy, and its accuracy, efficiency and numerical stability have

been validated by simulating the 2D NCF with Ra up to 1010 [29].

In this work, we will contribute to study the NCF in a differentially

heated cubical cavity with Ra up to 1010 using the CDUGKS. The

method is firstly validated by comparing with available numerical

and experimental data. Flow characteristics and heat transfer are

then to be investigated. Finally, a scaling correlation between Ray-

leigh and Nusselt numbers with Ra up to 1010 will be obtained for

the first time.

2. Numerical method

2.1. Kinetic model equations

The coupled discrete unified gas-kinetic scheme is derived from

the following Boltzmann model equations [24]

@f

@t
þ n �rxf ¼ X � f

eq � f

sv
þ F; ð1Þ

@g

@t
þ n �rxg ¼ W � geq � g

sc
; ð2Þ

where f and g are gas distribution functions for velocity and temper-

ature fields, respectively, and both are functions of space x, time t,

and molecular velocity n; f
eq

and geq are the corresponding equilib-

rium states

f
eq ¼ q

ð2pRT1ÞD=2
exp �ðn� uÞ2

2RT1

 !

; ð3Þ

geq ¼ T

ð2pRT2ÞD=2
exp �ðn� uÞ2

2RT2

 !

; ð4Þ

here R is the gas constant, T1 and T2 are the constant variances. For

convenience, we set T1 ¼ T2 in this study. sv ¼ m=RT1 and

sc ¼ j=RT2 are the corresponding relaxation times, here m and j
are, respectively, the kinematic viscosity and heat conduction coef-

ficient, which determine the Prandtl number Pr ¼ m=j. For low

speed flows, the external force term F can be approximated as [36]

F ¼ �a �rnf � �a �rnf
eq ¼ a � n� uð Þ

RT1

f
eq
; ð5Þ

here a is the acceleration due to buoyancy force, and is approxi-

mated by the Boussinesq assumption

a ¼ g0b T � T0ð Þĝ; ð6Þ

where g0 is the gravitational constant, ĝ is the unit vector in the

gravitational direction.

In computation, the continuous molecular velocity space should

be approximated by a discrete velocity set fniji 2 Zg, so that the

integration on molecular velocity space can be numerically com-

puted. For nearly incompressible flow (i.e., when the Mach number

Ma � 1), the equilibrium states can be approximated using the

Taylor expansion to the second order, i.e.,

f
eq
i ¼ W iq 1þ ni � u

RT1

þ ðni � uÞ2

2ðRT1Þ2
� juj2
2RT1

" #

; ð7Þ

geq
i ¼ W iT 1þ ni � u

RT2

þ ðni � uÞ2

2ðRT2Þ2
� juj2
2RT2

" #

; ð8Þ

where f
eq
i ¼ xif

eqðniÞ; geq
i ¼ xig

eqðniÞ;xi ¼ W ið2pRT1ÞD=2 exp jni j2
2RT1;2

� �

,

andW i is the weight coefficient corresponding to molecular velocity

ni.

In the present study, we use nineteen velocities in three dimen-

sions, i.e., the D3Q19 model, with

ni ¼
ð0;0Þ i ¼ 0

�1;0; 0ð Þc; 0;�1;0ð Þc; 0;0;�1ð Þc i ¼ 1� 6;

�1;�1;0ð Þc; �1;0;�1ð Þc; �1;�1;ð Þc i ¼ 7� 18;

8

>

<

>

:

ð9Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffi

3RT1

p
, and the corresponding weight coefficients are

W0 ¼ 1=3;W1;...;6 ¼ 1=18 and W7;...;18 ¼ 1=36. The discrete distribu-

tion functions f iðx; tÞ ¼ xif ðx; ni; tÞ and giðx; tÞ ¼ xigðx; ni; tÞ satisfy

the following equations

@f i
@t

þ ni �rxf i ¼ Xi �
f
eq
i � f i
sv

þ F i; ð10Þ

@gi

@t
þ ni �rxgi ¼ Wi �

geq
i � gi

sc
: ð11Þ

The fluid density, velocity, and temperature can be obtained

from the discrete distribution functions,

q ¼
X

i

f i; qu ¼
X

i

nif i; T ¼
X

i

gi: ð12Þ

2.2. DUGKS for velocity field

The DUGKS is a FV method in which the computational domain

is divided into a set of control volumes. We integrate Eq. (10) over
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a control volume V j centered at xj from tn to tnþ1 (the time step

Dt ¼ tnþ1 � tn is assumed to be a constant), and use the midpoint

and trapezoidal rules for time integrations of the convection and

collision terms, respectively, so we get the updating equation as

[25]

~f nþ1
i;j ¼ ~fþ;n

i;j � Dt

jV jj
Fnþ1=2
i ; ð13Þ

where

Fnþ1=2
i ¼

Z

@V j

ni � nð Þf i x; tnþ1=2

� �

dS; ð14Þ

is the micro–flux across the cell interface, and

f
�
i ¼ f i �

Dt

2
Xi; f

þ
i ¼ f i þ

Dt

2
Xi: ð15Þ

Since the collision term Xi is mass and momentum conserva-

tive, the density q and velocity u can be computed by

q ¼
X

i

~f i; qu ¼
X

i

ni
~f i þ

Dt

2
qa: ð16Þ

The key ingredient in updating ~f i is to evaluate the interface flux

Fnþ1=2
i , which is solely determined by the distribution function

f iðx; tnþ1=2Þ there. In DUGKS, after integrating Eq. (10) along the

characteristic line of molecule within a half time step ðh ¼ Dt=2Þ,
the evaluation of f iðx; tnþ1=2Þ can be traced back to the interior of

neighboring cells,

�f iðxb; tn þ hÞ ¼ �fþi ðxb � nih; tnÞ ¼ �fþi xb; tnð Þ � hni � rb; ð17Þ

where

�f i ¼ f i �
h

2
Xi;

�fþi ¼ f i þ
h

2
Xi; ð18Þ

�f i
þðxb; tnÞ and the gradient rb ¼ r�f i

þðxb; tnÞcan be approximated by

linear interpolation.

Again using the conservative property of Xi, the density q and

velocity u at the cell interface can be obtained from

q ¼
X

i

�f i; qu ¼
X

i

ni
�f i þ

Dt

2
qa; ð19Þ

from which the equilibrium distribution function f
eq
i xb; t

n þ hð Þ is

determined. Therefore, based on Eq. (18) and the obtained equilib-

rium state, the original distribution function f i at the cell interface

can be determined from �f i,

f iðxb; tn þ hÞ ¼ 2sv
2sv þ h

�f i xb; tn þ hð Þ þ h

2sv þ h
f
eq
i xb; tn þ hð Þ

þ svh
2sv þ h

F i; ð20Þ

from which the micro–flux Eq. (14) can be evaluated.

In computation, we only need to follow the evolution of ~f i in Eq.

(13). The required variables for its evolution are determined by

�fþ ¼ 2sv � h

2sv þ Dt
~f þ 3h

2sv þ Dt
f
eq þ 3hsv

2sv þ Dt
F ð21Þ

~fþ ¼ 4

3
�fþ � 1

3
~f : ð22Þ

2.3. DUGKS for temperature field

DUGKS for Eq. (11) can be constructed similarly as for Eq. (10).

Eq. (11) is firstly integrated in the same control volume V j from tn
to tnþ1, then, the same integration rules are employed to approxi-

mate the time integrations of convection and collision terms, one

can get the updating equation for gi,

~gnþ1
i;j ¼ ~gþ;n

i;j � Dt

jV jj
F
nþ1=2
i ; ð23Þ

where F is the micro–flux,

F
nþ1=2
i ¼

Z

@V j

ni � nð Þgi x; tnþ1=2

� �

dS; ð24Þ

and

~gi ¼ gi �
Dt

2
Wi; ~gþ

i ¼ gi þ
Dt

2
Wi; ð25Þ

are auxiliary distribution functions. Based on the conservative prop-

erty of Wi, the temperature can be computed as

T ¼
X

i

~gi: ð26Þ

In order to evaluate the micro–flux F, we again integrate Eq.

(11) within a half time step h along the characteristic line with

an end point xb at the cell interface, and use the trapezoidal rule

to approximate the time integration of collision term,

�gi xb; tn þ hð Þ ¼ �gþ
i ðxb � hni; tnÞ ¼ �gþ

i ðxb; tnÞ � hni � �rb; ð27Þ

where

�gi ¼ gi �
h

2
Wi; �gþ

i ¼ gi �
h

2
Wi; ð28Þ

and �rb ¼ r�gþ
i xb; tnð Þ. The Taylor expansion for �gþ

i xb � nih; tnð Þ is

made around the cell interface xb. Based on Eq. (28) and the com-

patibility condition, the temperature at the cell interface can be

computed as

T ¼
X

i

�gi: ð29Þ

Together with the conserved variables in velocity field, the

equilibrium distribution function geq
i ðxb; t

n þ hÞ can be fully deter-

mined. Then, the original distribution function gi can be obtained,

gi xb; tn þ hð Þ ¼ 2sc
2sc þ h

�gi xb; tn þ hð Þ þ h

2sc þ h
geq
i xb; tn þ hð Þ; ð30Þ

from which the interface numerical flux F is determined.

In computation, it only needs to follow the evolution of ~g

according to Eq. (23). The required variables for its evolution are

determined by

�gþ ¼ 2sc � h

2sc þ Dt
~g þ 3h

2sc þ Dt
geq; ð31Þ

~gþ ¼ 4

3
�gþ � 1

3
~g: ð32Þ

2.4. Kinetic boundary conditions

In this study, kinetic boundary conditions for velocity and tem-

perature fields are required. For the velocity field, no–slip bound-

ary on the fixed wall (xw) can be realized by the bounce–back

rule, which gives

�f iðxw; t þ hÞ ¼ �f�iðxw; t þ hÞ; ni � n > 0; ð33Þ

where n is the unit vector normal to the wall pointing to the cell.

As for the temperature field, two types of boundaries i.e., fixed

temperature and adiabatic walls are considered. For the constant

temperature boundary, the distribution function for molecule leav-

ing the wall can be given by [37]
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�giðxw; t þ hÞ ¼ ��g�iðxw; t þ hÞ þ 2W iTw; ni � n > 0; ð34Þ

where Tw is the wall temperature. The adiabatic boundary, which is

a Neumann boundary condition, can be realized by the bounce–

back rule [21],

�giðxw; t þ hÞ ¼ �g�iðxw; t þ hÞ ni � n > 0: ð35Þ

The distribution function �giðxw; t þ hÞ for molecules moving

towards the wall, i.e., ni � n 	 0, can be obtained following the pro-

cedure described in Section 2.3.

2.5. Algorithm

For clarify, we now list the computational procedure of DUGKS.

Specifically, with initialized ~f 0j;i and ~g0
j;i in all cells centered at xj, the

procedure of the DUGKS at each time tn reads as follows:

(1) Compute the distribution functions �fþ;n
j;i (Eq. (21)) and �gþ;n

j;i

(Eq. (31)) in each cell.

(2) Compute the distribution functions �f nþ1=2
i ðxbÞ (Eqs. (17)) and

�gnþ1=2
i ðxbÞ (Eq. (27)).

(3) Compute the original distribution functions f
nþ1=2
i ðxbÞ (Eq.

(20)) and f
nþ1=2
i ðxbÞ (Eq. (30)).

(4) Compute the microflux across the cell interfaces from

f
nþ1=2
i ðxbÞ (Eq. (14)) and f

nþ1=2
i ðxbÞ (Eq. (24)).

(5) Update the distribution functions �fþ;n
j;i and �gþ;n

j;i via Eqs. (13)

and (23), respectively, where ~fþ and ~gþ are computed

respectively according to Eqs. (22) and (32).

3. Numerical results

In this work, natural convection of air in a differentially heated

cubical cavity with the adiabatic lateral walls is studied in 3D. As

illustrated in Fig. 1, the configuration is a cubical box with a cold

wall ðT ¼ TcÞ on the left side (x ¼ 0) and a hot wall ðT ¼ ThÞ on

the right side (x ¼ H), and the other four walls are adiabatic. The

gravity is along the y�direction. The Rayleigh number is defined

as Ra ¼ g0bDTH
3=ðmjÞ, where DT ¼ Th � Tc is the temperature dif-

ference between the hot and cold walls, and H is the length of

the cavity.

In the simulations, we set the length of the box H ¼ 1, the

Prandtl number Pr ¼ 0:71, the temperature Tc ¼ 0 and Th ¼ 1 on

the cold and hot walls, respectively. In addition, we set RT1 ¼ 10

and g0b ¼ 0:1 so that the Mach number Ma ¼ u0=
ffiffiffiffiffiffiffiffi

RT1

p
is small

enough to satisfy the incompressible approximation, where

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gbDTH
p

is the characteristic velocity. The velocities are nor-

malized by the characteristic velocity u0 unless otherwise stated.

The velocity boundary condition, Eq. (33), is applied to all walls;

the temperature boundary conditions, Eqs. (34) and (35), are

applied to the isothermal and adiabatic walls, respectively. The

time step is determined by the Courant–Friedrichs–Lewy (CFL)

condition, i.e., Dt ¼ gDxmin=nmax, where g is the CFL number, Dxmin

is minimum grid spacing, and nmax is the maximum discrete molec-

ular velocity. We set the CFL number g ¼ 0:95 in the following

simulations.

The FV nature of DUGKS make it easy to vary mesh resolution

according to the local accuracy requirement. In our simulations, a

set of non-uniform meshes are adopted with N grid points in each

direction, and the mesh gradually becomes finer from the center to

walls of the cavity. The location of a control volume center

Fig. 1. Configuration of the 3D natural convection in a cubical cavity.

Fig. 2. Schematic illustration of the mesh distribution.

Table 1

Comparison of the CDUGKS results of the characteristic quantities on the symmetry

plane of z ¼ 0:5 with those data from the literature [8]. The velocities are normalized

by the characteristic velocity u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gbDTH
p

.

Ra 103 104 105 106

umax present 0:1315 0:1968 0:1426 0:0816

Ref. [8] 0:1314 0:2013 0:1468 0:0841

Errð%Þ 0:0761 2:2354 2:8610 2:9727

y present 0:1919 0:1799 0:1493 0:1403

Ref. [8] 0:2 0:1833 0:1453 0:1443

Errð%Þ 4:05 1:8548 2:752 2:7720

vmax present 0:1326 0:2218 0:2442 0:2556

Ref. [8] 0:132 0:2252 0:2471 0:2588

Errð%Þ 0:4545 1:5097 1:1736 1:2364

x present 0:8301 0:8873 0:9317 0:9653

Ref. [8] 0:8333 0:8833 0:9353 0:9669

Errð%Þ 0:3840 0:452 0:3849 0:1654

Num present 1:0880 2:2478 4:5995 8:7795

Ref. [8] 1:105 2:302 4:646 9:012

Errð%Þ 1:5358 2:3503 1:0005 2:5791

Nuo present 1:0700 2:0535 4:3248 8:5428

Ref. [8] 1:085 2:1 4:361 8:77

Errð%Þ 1:3752 2:2119 0:8279 2:5895
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(xi; yj; zk) is generated by xi ¼ ðfi þ fiþ1Þ=2; yj ¼ ðfj þ fjþ1Þ=2;
zk ¼ ðfk þ fkþ1Þ=2;0 6 i; j; k < N, where fi is defined by

fi ¼
1

2
þ tanh½aði=N � 0:5Þ


tanhða=2Þ ; i ¼ 0;1;2; . . . ;N � 1; ð36Þ

in which a is a constant that determines the mesh distribution. Here

a is set to 2:5, and the mesh distribution is shown in Fig. 2. In our

simulations, a suitable mesh should be adopted to make a balance

between computational accuracy and efficiency. For the cases of

103
6 Ra 6 106;Ra ¼ 107, and 108

6 Ra 6 1010, we use 503;1003

and 2003 mesh points, respectively. The grid independence tests

show that the given mesh resolutions are adequate. All simulations

are performed by using the Message Passing Interface (MPI) tech-

nique on a cluster (Dual Intel Xeon CPU E5-2680 v3 with 64 GB

RAM memory).

In order to make a quantitative study, we will measure some

important quantities of the NCF, including the maximum horizon-

tal velocity at the vertical centerline of the midplane (z ¼ H=2),

umax, and the corresponding y�coordinate, the maximum vertical

velocity at the horizontal centerline of the midplane (z ¼ H=2),

vmax, and the corresponding x�coordinate, the mean Nusselt num-

Fig. 3. Temperature distribution on the symmetry plane of z ¼ 0:5 for Ra ¼ 105 . The finite–difference (3D FD) result [8] and the experimental data (Exp.) [38] at 1:89� 105 are

included for comparison.

Fig. 4. Velocity distribution on the symmetry plane of z ¼ 0:5 for Ra ¼ 105. The finite–difference result (3D FD) [8] and experimental data (Exp.a [39]: Ra ¼ 1:03� 105 , Exp.b

[38]: Ra ¼ 1:89� 105) are included.
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ber, Num, and the overall Nusselt number, Nuo, where Num and Nuo

are defined by

NumðzÞ ¼
Z H

0

Nulðy; zÞjx¼0 or x¼Hdy; Nulðy; zÞ ¼
@Tðy; zÞ

@x
; ð37Þ

Nuo ¼
Z H

0

NumðzÞdz; ð38Þ

in which Nul is the local Nusselt number.

3.1. Validation

The comparative study with the available results in the litera-

ture is firstly performed to validate the 3D CDUGKS code. Initially,

we set the flow velocity u ¼ 0 and the temperature T ¼ 0:5 for the

whole flow field. To assess whether the flows have reached the

steady–state, the following criterion is applied,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

uðtÞ � uðt � 1000DtÞk k2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P kuðtÞk2
q < 10�8: ð39Þ

Table 1 shows the quantities of interest on the symmetry plane

of z ¼ 0:5, as well as the mean Nu (Num) and the overall Nu (Nuo) on

the hot wall for 103
6 Ra 6 106. The results of a high–resolution

finite–difference (FD) method [8] are included for comparison. As

can be seen, good agreements are achieved with the benchmark

results, and the maximum relative error is less than 5%, which is

acceptable for engineering applications. Also, it is found that sim-

ilar to the LBM [17], the CDUGKS almost overall underestimates

the results of these quantities when compared with the same ref-

erence solution. The deviation can be attributed to the difference in

the numerical methods. The reference solutions were obtained by a

third-order QUICK scheme for the incompressible Navier-Stokes

equations on a fine non-uniform mesh of 623 , while the DUGKS

is a second-order accurate method, and a relatively coarse non-

uniform mesh of 503 is employed in the validation. However, the

deviations between the results of DUGKS and reference solutions

are still acceptable (less than 5%).

In addition, we compare the temperature and velocity profiles

given by CDUGKS with those from the experiments or the NS solver

that are available at some specific values of Ra. It should be noted

that cavities with large depth aspect ratios were usually employed

in the experiments, which precludes the precise comparisons of

each set of data. Fig. 3 shows the temperature profiles on the sym-

metry plane z ¼ 0:5 for the case of Ra ¼ 105, in which the experi-

mental data at Ra ¼ 1:89� 105 acquired by a Mach-Zehnder

interferometry technique [38] and the NS solver results obtained

by FD method [8] are also included for comparison. It is found that

Fig. 5. Isotherms on the symmetry planes for 103
6 Ra 6 106 .
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the respective temperature distributions at the mid–lines y ¼ 0:5

and x ¼ 0:5 agree well with the FD results [8], and are in good

agreement with the experimental data at the mid-line y ¼ 0:5.

However, there is a noticeable discrepancy at the mid–line

x ¼ 0:5 between the two numerical and experimental results, and

the derivation increases when approaching the horizontal walls.

This may be attributed to the unavoidable heat transfer through

adiabatic walls in the experimental situations [38] and slight dif-

ference in Ra between the numerical simulations and experiment.

Fig. 4 shows the velocity profiles on the symmetry plane z ¼ 0:5

for the case of Ra ¼ 105. In addition to the above mentioned refer-

ence results, another set of experimental data at Ra ¼ 1:03� 105

[39] are also included. It is clearly seen that the CDUGKS results

are in excellent agreement with the FD results, and agree reason-

ably well with two sets of experimental data, despite slight devia-

tions in the peak values of velocities.

3.2. Flow characteristics and heat transfer for 103
6 Ra 6 1010

The flow characteristics and heat transfer are two important

features of the 3D NCF, but systematic investigation is still lack

in the literature, especially for the cases of high Ra (larger than

106). In this subsection, a detailed study of the flow characteristics

and heat transfer of NCF in a 3D cavity is performed for

103
6 Ra 6 1010.

Figs. 5 and 6 show isotherms or instantaneous isotherms on the

symmetry planes for 103
6 Ra 6 106 and 107

6 Ra 6 1010, respec-

tively. It can be seen that as Ra increases, isotherms change from

almost vertical to be horizontal in the center of the symmetry

plane z ¼ 0:5, and are vertical only adjacent to the isothermal

walls, which indicates that the dominant heat transfer mechanism

changes from conduction to convection. In addition, temperature

boundary layers are developed near the isothermal walls, and

become thinner as Ra increases. However, such phenomenon does

not appear near the adiabatic walls. Furthermore, as Ra reaches to

109 and 1010, the isotherms become oscillatory, which means that

the heat transfer has turned to be time–dependent. Moreover, as

shown on the symmetry planes of y ¼ 0:5 and x ¼ 0:5, the temper-

ature adjacent to the lateral adiabatic walls is lower than that in

the center region, suggesting that the adiabatic walls inhibit heat

transfer, but such effects reduce as Ra increases. It is also noted

that for the cases of Ra 6 106, isotherms on the symmetry plane

of z ¼ 0:5 are very similar to the 2D results [17,40].

Figs. 7 and 8 show velocity magnitude distributions on the sym-

metry planes for 103
6 Ra 6 106 and 107

6 Ra 6 1010, respectively.

We observe that the flow motion in the 3D cavity is complicated

due to the effect of lateral walls. For the cases of low Ra, flow tun-
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Fig. 6. Instantaneous isotherms on the symmetry planes for 107
6 Ra 6 1010 .
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nels are developed near the center of walls, and as Ra increases,

they move to the corners of the cavity. For example, as shown in

Fig. 8ðaÞ, the maximum velocity is located adjacent to two corners

of the isothermal walls, which means two tunnels have been devel-

oped there. In addition, we also find that similar to the tempera-

ture field, velocity boundary layers are formed near the

isothermal walls, which become thinner with increasing Ra, but

no apparent velocity boundary layers are developed adjacent to

the adiabatic walls. Furthermore, when the Ra reaches 109, the

flow field is evolving to chaos.

Heat transfer in the cubical cavity is characterized by the Nusselt

number (Nu), which is ameasure of the relative strengths of the con-

vective and conductive heat transfer processes. The heat transfer is

dominated by conduction in the flow domain where Nu < 1, and

by convection as Nu > 1. Fig. 9 shows the contours of the local Nus-

selt number (Nul) on the hot wall. It can be seen that the value of Nu

at the symmetry plane of z ¼ 0:5 is higher than the other regions,

suggesting that the lateral adiabatic walls suppress the convective

heat transfer in the 3D cavity, but such effect is gradually reduced

as Ra increases. It is also observed that the higher local Nusselt num-

ber appears near the bottom of hot wall, which means that convec-

tion is the dominant heat transfer process in this region. This is

because that with anticlockwise vortex rolling, the cold fluid near

the bottom of cavity is closer to the hot wall than that in the vicinity

of upper region, see Figs. 5 and 6, so the convective heat transfer is

more intensive at the bottom of hot wall.

Quantitatively, we present time–averaged characteristic quan-

tities of interest on the symmetry plane of z ¼ 0:5 for

107
6 Ra 6 1010 in Table 2, which is absent from the literatures.

Note that the provided results are already mesh independent,

and the time–averaged operation is preformed over a long enough

period. It is found that the maximum horizontal velocity is located

near the bottom adiabatic wall, and the maximum vertical velocity

moves to the hot wall as Ra increases. Also, the vertical velocity

near the isothermal hot wall is about one order of magnitude larger

than the horizontal one near the adiabatic wall, which indicates

that contrary to the results near the adiabatic wall, a boundary

layer is formed adjacent to the isothermal wall. This result is con-

sistent with the phenomenon we have observed in Fig. 7. More-

over, the conservation of heat transfer in the cubical cavity is

critical to the DNS of high Ra NCF. Therefore, the mean and overall

Nusselt numbers on cold and hot walls are included in Table 2 to

validate the conservation property of our simulation. It is found

that the maximum difference of Num or Nu0 between the cold

and hot walls is less than 0:5%, suggesting that the heat transfer

conservation in the cavity is well predicted by the CDUGKS.

3.3. Nu–Ra correlation

Ra and Nu are two important parameters in description of heat

transfer. For the 3D NCF in a cubical cavity, it has been demon-

strated that there is an exponential relation between Nu and Ra
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Fig. 7. Velocity magnitude contours on the symmetry planes for 103
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for 103
6 Ra 6 106 [8], but it is yet to be investigated for the higher

Ra. Based on the present simulation results, the scaling laws to cor-

relate Ra and Nu with Ra up to 1010 can be obtained as below

Num ¼ 0:1522Ra0:2942 103
6 Ra < 107;

Num ¼ 0:3533Ra0:2395 107
6 Ra 	 1010;

ð40Þ

and

Nuo ¼ 0:1270Ra0:3052 103
6 Ra < 107;

Nuo ¼ 0:3408Ra0:2410 107
6 Ra 	 1010:

ð41Þ

In Fig. 10, the fitting relationships of Num � Ra (Eq. (40)) and

Nuo � Ra (Eq. (41)), as well as the numerical results computed by

CDUGKS, are shown. The available numerical and experimental

data at some specific values of Ra are also included. As shown,

the predicted results given by Eqs. (40) and (41) are in good agree-

ment with the solutions obtained by the spectral Chebyshev

method [13,14] and the experiment data [14], which validates

the proposed scaling laws. Note that the scaling relationship for

107
6 Ra 6 1010 reported here is given for the first time, which

may help in thermal engineering applications.

4. Conclusions

In this paper, the natural convection of air in a differentially

heated cubical cavity with the adiabatic lateral walls is studied

by the coupled discrete unified gas–kinetic scheme (CDUGKS).

The validation of our 3D code is carefully performed. It is shown

that the CDUGKS results are in good agreement with those from

the traditional CFD solvers and experiments. Particularly, the

CDUGKS can accurately capture the temperature and velocity

boundary layers adjacent to the isothermal walls. In addition, some

important quantities computed by the CDUGKS also agree quanti-

tatively well with the available numerical and experimental data.

The flow characteristics are studied systematically for

103
6 Ra 6 1010. It is found that the temperature and velocity

boundary layers are formed near the isothermal walls, and become

thinner as Ra increases, while no apparent boundary layer is devel-

oped near the adiabatic walls. In addition, it is observed that flow

tunnels are developed close to the center of isothermal walls, and

they move to the cavity corners in the joint of isothermal and adi-

abatic walls as Ra increases, meanwhile, the flow evolves from the

steady–state to time–dependent state. When Ra approaches to 109,

the flow motions turn to be fully turbulent. Moreover, it is also
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6 Ra 6 1010 .
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found that the lateral adiabatic walls have an inhibition on the dis-

tribution of temperature in the cavity.

By studying the local Nusselt number distribution on the hot

wall, we observe that the lateral adiabatic walls apparently sup-

press the heat transfer. Particularly, the Nusselt number on the

hot wall has an instant drop near the adiabatic walls, which means

that the convective intensity in the center of cavity is stronger than

that close to the adiabatic walls. But, the effect of adiabatic walls

on overall heat transfer decreases as Ra increases.

Moreover, the time–averaged characteristic quantities of inter-

est on the symmetry plane for the Rayleigh number up to 1010 is

presented for the first time. The results of Nusselt number on the

cold and hot walls show that the heat transfer predicted by our

simulations is well conserved in the cavity.

Finally, the scaling laws between the Nusselt number (local and

overall) and Rayleigh number in the air filled cubical cavity for Ra

up to 1010 are revealed. The predicted results agree well with the

available numerical and experimental data at several specific

Fig. 9. Contours of the local Nusselt number (Nul) on the hot wall: (a) Ra ¼ 104; (b) Ra ¼ 106; (c) Ra ¼ 108; (d) Ra ¼ 1010.

Table 2

Time–averaged characteristic quantities on the symmetry plane of z ¼ 0:5 for 107
6 Ra 6 1010 . Here Numcand Numh denote the mean Nu on the cold and hot walls, respectively.

Likewise, Nuoc and Nuoh denote the overall Nu on the cold and hot walls, respectively. The velocities are normalized by the characteristic velocity u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gbDTH
p

.

Ra 107 108 109 1010

umax 0:0558 0:0443 0:0237 0:0166

y 0:1169 0:0515 0:0513 0:0515

vmax 0:2590 0:2619 0:2565 0:2477

x 0:9767 0:9875 0:9928 0:9961

Numc 16:3909 29:7261 52:2029 89:0555

Numh 16:4153 29:9169 52:3006 89:4852

Nuoc 16:1872 29:6782 52:0079 89:0350

Nuoh 16:2112 29:7141 52:0776 89:2018
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values of Ra, which demonstrates the reliability of the new

relationships.
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