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a b s t r a c t 

We consider supplier development decisions for prime manufacturers with extensive supply bases pro- 

ducing complex, highly engineered products. We propose a novel modelling approach to support supply 

chain managers decide the optimal level of investment to improve quality performance under uncertainty. 

We develop a Poisson–Gamma model within a Bayesian framework, representing both the epistemic and 

aleatory uncertainties in non-conformance rates. Estimates are obtained to value a supplier quality im- 

provement activity and assess if it is worth gaining more information to reduce epistemic uncertainty. 

The theoretical properties of our model provide new insights about the relationship between the degree 

of epistemic uncertainty, the effectiveness of development programmes, and the levels of investment. We 

find that the optimal level of investment does not have a monotonic relationship with the rate of ef- 

fectiveness. If investment is deferred until epistemic uncertainty is removed then the expected optimal 

investment monotonically decreases as prior variance increases but only if the prior mean is above a 

critical threshold. We develop methods to facilitate practical application of the model to industrial deci- 

sions by a) enabling use of the model with typical data available to major companies and b) developing 

computationally efficient approximations that can be implemented easily. Application to a real indus- 

try context illustrates the use of the model to support practical planning decisions to learn more about 

supplier quality and to invest in improving supplier capability. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction and industrial motivation 

Our research is motivated by engagement with major manufac- 

turing companies that make complex, high value engineered prod- 

ucts. The companies with which we have collaborated are respon- 

sible for the design, manufacture and assembly of parts but, given 

the nature of their final products, are also systems integrators of 

parts that are procured from global supply chains. The responsi- 

bilities of supply chain management within these organisations in- 

clude selecting and developing suppliers, as well as ensuring a suf- 

ficient supply of parts to the required specification to meet produc- 

tion demands. These supply bases are extensive and often there is 

a long lead time with initial contracting of new suppliers happen- 

ing 3–5 years ahead of the delivery of supplied parts. 
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Company operations are underpinned by large databases con- 

taining information on suppliers (e.g. commodity grouping, tech- 

nology maturity, geographical location), items (e.g. unit price, lead 

time, design ownership), and orders (e.g. volumes, delivery status, 

quality conformance). Routine management reports include data 

analysis to provide information about supplier performance. Com- 

pany cultures encourage and embrace rational analysis for opera- 

tional decision-making. These include decisions to undertake dif- 

ferent kinds of activities for poorly performing suppliers and to 

plan interactions with some suppliers to avoid future problems. 

Supplying parts at the required quality level is fundamental to 

achieve the desired level of performance. Supplier development 

is a costly activity for the companies because it requires deploy- 

ment of skilled personnel for substantial periods of time. The de- 

ployment of such resources requires consideration of the costs and 

effectiveness of activities. It is within this industrial context that 

we seek to help management (1) to assess how much it is worth 

spending to improve supplier quality performance and (2) to un- 

derstand whether there is value in learning more about supplier 

quality capabilities. 
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Krause, Handfield, and Scannell (1998) describe supplier devel- 

opment as “any set of activities undertaken by a buying firm to iden- 

tify, measure and improve supplier performance and facilitate the con- 

tinuous improvement of the overall value of goods and services sup- 

plied to the buying company’s business unit”. In considering the two 

challenges posed by our industry problem, we distinguish between 

two types of activity: those that primarily will help us learn more 

about the state of a supplier’s current capabilities, such as plant 

visits, auditing ( Handley & Gray, 2013; Mayer, Nickerson, & Owan, 

2004 ); and those interventions primarily designed to improve sup- 

plier quality, such as supplier training, allocating buyer personnel 

to improve the supplier’s technical base and operations ( Krause, 

Handfield, & Scannell, 1998; Krause, Handfield, & Tyler, 2007 ). We 

can then conceptualise a modelling approach that incorporates a 

two stage decision process, considering how much should be in- 

vested in supplier quality improvement activities and whether it is 

valuable to make an investment now or after learning more about 

the supplier. These decisions are made under uncertainty about the 

true quality level that a supplier will achieve. The degree of un- 

certainty will be influenced by how much experience the buying 

firm has with a supplier. For established suppliers with whom the 

buyer has a long history about quality achieved, the uncertainties 

may be less than for a supplier who is more recently integrated 

into the buying firm’s supply base. 

To build a meaningful model we need to understand the nature 

of uncertainties affecting supplier quality performance. Our general 

model is developed with parameters to reflect quality uncertain- 

ties. A distinctive feature of our approach is that we distinguish 

between aleatory and epistemic uncertainties, which relate respec- 

tively to those uncertainties that are regarded as irreducible and 

those that are reducible if more information is collected ( Hoffman 

& Hammonds, 1994 ). Generally, epistemic uncertainty represents 

some degree of ignorance or incomplete information about the sys- 

tem or aspects of the system of interest, and importantly such un- 

certainty can be reduced as information is collected. In contrast, 

aleatory uncertainty describes the inherent random variation that 

is a property of the system and is therefore not considered re- 

ducible ( Bedford & Cooke, 2001 ). In operational quality systems an 

improvement in capability would be realised by a reduction in the 

process variation resulting from a decision to develop a supplier’s 

quality performance ( Kotz & Lovelace, 1998 ). Epistemic uncertainty 

in this context is concerned with the a priori state of knowledge 

about a supplier’s process capability and is expressed before mak- 

ing the decision to develop a supplier or not. Learning by the buyer 

about a supplier’s true quality capability reduces epistemic uncer- 

tainty. 

We develop a stochastic model within a Bayesian framework to 

capture both the epistemic uncertainty associated with true sup- 

plier quality performance as well as the aleatory uncertainty asso- 

ciated with the inherent randomness in a supplier’s performance 

such as that observed in quality performance data. Our approach is 

grounded in the value of information concept that data has value 

if, once analysed, it can result in a change of decision ( Ketzenberg, 

Rosenzweig, Marucheck, & Metters, 2007; Wagner, 1969 ). We con- 

sider value to be a combination of the likelihood of changing a 

decision and the magnitude of its consequence. By formulating an 

appropriate stochastic model we can estimate the uncertainty as- 

sociated with the decision consequences, assign likelihoods to pos- 

sible data and update the stochastic model in view of data. 

We consider a context where we have a dominant prime en- 

tity (the buyer), such as one of the major manufacturers with 

which we work, that relies on an extensive base of suppliers. We 

therefore assume a single buying organisation with multiple sup- 

pliers that have been selected according to the buyer’s standard 

procurement process. Thus, for a new supplier there is insight 

into anticipated quality performance based on evidence from, for 

example, quality process reviews, quality certification, quality 

achieved for similar parts, or first article inspections. For those 

suppliers that have supplied parts to the buyer, data will also ex- 

ist on quality performance achieved historically. Our model is in- 

tended to be most useful for those suppliers whose relationship 

with the buyer is relatively new and for whom a proactive ap- 

proach to development will be taken, for example, during the pe- 

riod between signing a contract and delivery of the regular supply 

of orders. This is because in such cases epistemic uncertainty is 

likely to be greater than for suppliers with whom the relationship 

is more mature. 

We do not consider the choice of activity beyond the two 

classes of development noted above; learning and improvement. 

Our model requires as inputs an expression of the buyer’s assess- 

ment of epistemic uncertainty in the true supplier quality, as well 

as the financial value of production losses that will be incurred by 

the buyer if sub-standard parts are supplied, and an assessment 

of the effectiveness of development activity. The model provides 

the level of the optimal investment in a supplier improvement ac- 

tivity with an upper bound on the amount it is worth spending 

to reduce the epistemic uncertainty about the supplier quality by 

targeting learning activities before investing in improvement. Such 

results help the manager to screen suppliers to assess whether it 

is worth conducting additional plant visits, audits or other learning 

activities first, or whether it is more appropriate to invest directly 

in, for example, training, deployment of buyer resources into the 

supplier, root cause analysis or other activities aimed at directly 

making quality improvements. 

In this study we address the challenge posed by a practi- 

cal industry problem by developing and evaluating an innova- 

tive and applicable modelling solution using a sound mathemat- 

ical methodology. Our principal contribution is a new modelling 

framework for supplier development taking into account the value 

of information. The model is grounded in the theory of decision 

analysis and statistical inference, and is aligned with an important 

industrial supply management problem for which we develop a 

methodology to support implementation with real data. Our model 

addresses gaps in the existing literature in relation to research on 

supplier development and the value of information within a supply 

chain quality management context. The existing literature tends 

largely either to develop mathematical models for assumed scenar- 

ios providing insightful thinking tools, or to discuss the theory and 

practice of supplier development in an operational supply manage- 

ment context. 

We examine the literature relevant to our problem context and 

position our work in relation to existing empirical knowledge and 

models on supplier development in Section 2 . Our scientific mod- 

elling contribution is described in Section 3 . We explain how we 

formulate the stochastic model based on assumptions about the 

probabilistic representation of uncertainties and present a number 

of propositions related to properties of the model. We develop an 

exact solution for the expected value under perfect information, 

which is the limiting case of buying down epistemic uncertainty 

through learning activities. To support practical implementation, 

we derive a computational approximation and evaluate the condi- 

tions under which it is accurate. Section 4 presents an application 

of our model to real, albeit de-sensitised, industry data on supplier 

non-conformance rates for a set of key tier 1 suppliers to a large 

industrial prime. We present an empirical Bayes method to esti- 

mate the prior distribution representing the epistemic uncertainty 

in supplier performance using typical data contained in industry 

databases. After discussing the reasonableness of our assumptions 

given the industry problem and data, we present a selection of 

ways in which the findings of our model can be communicated 

to supply chain managers. Section 5 presents our conclusions and 

discusses the implications of our findings for practice and theory, 
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including identifying future challenges and opportunities for fur- 

ther work. 

2. Positioning within scientific literature 

Our research relates to several strands of the supply chain man- 

agement and decision sciences literatures. We briefly review semi- 

nal studies on supplier development in order to position our mod- 

elling approach appropriately within this context. We critically re- 

view those studies that focus on modelling the value of informa- 

tion in supply chains with a particular emphasis on the treatment 

of uncertainties. 

2.1. Supplier development 

Krause, Handfield, and Scannell (1998) , Che and Hausch (1999) , 

and Krause, Handfield, and Tyler (2007) provide detailed accounts 

of supplier development approaches in practice. In particular, 

Krause, Handfield, and Scannell (1998) present a general represen- 

tation of a supplier development process grounded in an extensive 

industry survey. From our contemporary company engagement, the 

identified process still typifies many aspects of current practice. For 

example, critical commodities and suppliers are identified, key per- 

formance areas are targeted, appropriate teams are formed, and ac- 

tivities are selected, implemented and reviewed. Interestingly, one 

step in the general process notes that “opportunities and probability 

for improvement” through supplier development should be identi- 

fied. However, no further consideration is given as to how such 

probabilities should be expressed, although criteria such as the po- 

tential to influence the supplier development process, resources re- 

quired in terms of people and time, as well as the potential re- 

turn on investment are discussed. Krause, Handfield, and Scannell 

(1998) pose the question “what criteria should be used to identify 

suppliers that have high probability of development success?”. Our 

model helps to answer this question by estimating the value of 

gaining more information about supplier quality and providing a 

probabilistic assessment of the risks of such investments, given the 

degree of epistemic uncertainty, as well as the buyer’s assessment 

of the potential to develop the supplier. 

Krause, Handfield, and Scannell (1998) classify supplier devel- 

opment activities into reactive and strategic approaches. Reactive 

approaches are the first stage in the development process where 

investment is made into poorly performing suppliers to undertake 

corrective actions. Strategic supplier development, on the other 

hand, is applied at a more advanced stage where the buyer devel- 

ops a strategic plan for the supply base to increase the long-term 

capability of the supply network. We position our approach in be- 

tween these extremes, essentially as a tuned proactive approach, 

which estimates the value of collecting further information on sup- 

plier capability in order to mitigate the risk of poor quality and 

avoid extensive exposure to risks of a supplier failing to perform. 

Supply chain managers are interested in multiple performance 

measures; Ward, McCreery, Ritzman, and Sharma (1998) high- 

light four priorities — quality, delivery, flexibility and cost. Krause, 

Handfield, and Tyler (2007) note that quality has been recognised 

as important in manufacturing since the 1980s and continues to be 

of considerable concern since end customer perceptions of the final 

product quality will be impacted by the quality of parts manufac- 

tured by suppliers. They find that performance outcomes in qual- 

ity, as well as delivery and flexibility, are affected by direct involve- 

ment of the buyer’s personnel in supplier development. Hence, 

deciding how much to invest in interventions aimed at improv- 

ing supplier quality remains an important business challenge more 

generally beyond our motivating industrial problem. 

Supplier development has been previously investigated in sev- 

eral modelling studies. Based on the primary methodology used, 

we classify the literature into (1) game theoretical studies and (2) 

stochastic modelling approaches. 

Most game theoretical studies focus on strategic supplier de- 

velopment for production cost reduction ( Bernstein & Kok, 2009; 

Iida, 2007; Iyer, Schwarz, & Zenios, 2005; Kim & Netessine, 2013; 

Qi, Hyun-Soo, & Amitabh, 2015 ). For instance, Bernstein and Kok 

(2009) consider cost reduction investments of suppliers in an as- 

sembly network where the effectiveness of cost-contingent and 

target-price contracts in promoting investments and increasing 

profits is analysed. Similarly, Iida (2007) considers an assembly 

network where both the buyer and the suppliers might invest in 

cost reduction, showing that effort compensation and cost sharing 

agreements can enable supply chain coordination. Although cost 

reduction effort may be interpreted as a means to satisfy certain 

quality requirements, quality is not given explicit consideration in 

these studies. More related to our approach is the study by Zhu, 

Zhang, and Tsung (2007) that explicitly investigates the improve- 

ment of a supplier’s quality where both the buyer and the sup- 

plier can invest to decrease the non-conformance rate, showing 

that investment by only the party with higher investment effec- 

tiveness is sufficient unless there are resource constraints. Our re- 

search differs from these game theoretical studies in two ways. 

First, we consider the problem from the buyer’s perspective be- 

cause we adopt a client decision support focus. Second, our ap- 

proach is based on real-world data, both empirical and judgemen- 

tal. In contrast, game-theoretical studies in the literature are more 

general and make idealistic assumptions in particular regarding 

uncertainty, as we explore further below. 

Stochastic programming has been used to study supplier de- 

velopment in a more limited number of studies ( Friedl & Wag- 

ner, 2012; Wang, Gilland, & Tomlin, 2010 ). For instance, Wang, 

Gilland, and Tomlin (2010) use a two-stage stochastic program- 

ming framework where in the first stage the buyer selects the in- 

vestment levels, and based on their returns, which are subject to 

variation, the order quantities are selected. Of more interest to our 

problem, Talluri, Narasimhan, and Chung (2010) and Hosseininasab 

and Ahmadi (2015) study strategic supplier development using 

Markowitz-type mean-variance risk models to formulate the op- 

timal levels of investment in a set of suppliers. Hosseininasab and 

Ahmadi (2015) note the importance of taking into account future 

performance and anticipated changes in the development of sup- 

pliers. They also discuss the use of databases to identify trends and 

correlations in supplier performance although they use only syn- 

thetically generated data for supplier quality, delivery, price and 

financial position. Our approach differs from these studies in sev- 

eral ways. First, we consider only quality, unlike authors who fo- 

cus on multiple performance measures, see, for example, the re- 

view by Ho, Xu, and Dey (2010) . Second, our model provides the 

expected return on investment in quality improvement as an out- 

put, rather than using it as a model input. Third, as mentioned 

for game-theoretic models, we use real data rather than synthet- 

ically generated data. Fourth, we consider a stochastic modelling 

framework to account for the potential reduction of epistemic un- 

certainty, which is not captured in Markowitz-type models. 

2.2. Value of information 

The established concept of value of information (VOI) in 

decision analysis is predicated on the ability of additional infor- 

mation to reduce epistemic uncertainty. Since Wagner (1969) , 

much has been written about VOI. In the context of inventory 

management in particular, the value of sharing information about 

customer demand, forecasts, inventory level, and production ca- 

pacity for supply chain coordination, cost reduction, and bullwhip 

effect mitigation has been widely investigated; see reviews by 
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Sahin and Robinson (2002) and Ketzenberg, Rosenzweig, 

Marucheck, and Metters (2007) . 

In their survey article on inventory management, Ketzenberg, 

Rosenzweig, Marucheck, and Metters (2007) describe VOI as the 

marginal improvement in value through additional use of infor- 

mation relative to some base scenario, where the base scenario 

represents a given set of information that can be compared to 

the value gained from the so-called information scenario, which 

is structurally identical to the base scenario except that additional 

information is shared. The authors argue there is growing inter- 

est in VOI because of the increasing opportunities to gain more 

information due to the growth in e-commerce. They discuss differ- 

ent sources of uncertainty, distinguished as random and system- 

atic, which relate to the stochastic and structural characteristics 

of the system and so could be considered equivalent to aleatory 

and epistemic uncertainties, respectively. More generally, much has 

been written about uncertainty in supply chain management with 

different classifications being proposed; see, for example, the re- 

view by Simangunsong, Hendry, and Stevenson (2012) . 

Interestingly, Ketzenberg, Rosenzweig, Marucheck, and Metters 

(2007) also formulate several propositions about VOI in an inven- 

tory management context. Of most relevance to us are the fol- 

lowing, which we paraphrase as follows: (1) VOI is higher when 

there is greater uncertainty and (2) VOI is higher when there is in- 

creased responsiveness. Based on a regression analysis of the em- 

pirical data extracted from their literature review, strong support is 

found for the second and partial support for the first proposition. 

In our concluding discussions, we reflect upon these propositions 

with regard to our modelling theory and application in a quality 

management context. 

The supply chain quality management literature contains arti- 

cles that focus upon decision models related to supplier quality 

and include the treatment of uncertainty. In the agency settings 

of such studies, one or both parties involved in a buyer-supplier 

relation might benefit from hiding private information, leading to 

moral hazard and adverse selection problems. In such settings the 

other party needs to provide incentives to establish coordination 

or incur an information ‘rent’ to reveal the hidden information. 

As discussed above in the context of supplier development, Zhu, 

Zhang, and Tsung (2007) build a model to determine which invest- 

ment options in quality improvement are optimal for both parties 

when buyer production is outsourced to a supplier. Aleatory uncer- 

tainty in the supplier quality control process is modelled in terms 

of the non-conformance rate and the quality costs incurred by both 

the supplier and the buyer are explicated. Although the relative 

states of knowledge of the buyer and supplier are acknowledged, 

no consideration is given to the articulation of such epistemic un- 

certainty as a probability distribution. 

In contrast, Lim (2001) and Corbett, Zhou, and Tang (2004) dis- 

cuss the explicit mathematical representation of uncertainties as 

prior probabilities in the context of buyer-supplier contracting de- 

cisions. Neither study uses the term epistemic uncertainty, but 

the concept is clear from the explicit consideration given to ex- 

ante views of buyers and the use of prior probability distributions 

within the models. Lim (2001) develops a buyer decision model 

for contract option selections when there is uncertainty in supplier 

quality; expressing a prior probability on the supplier’s technology 

type to provide a probabilistic assessment of the fraction of de- 

fective parts anticipated to be supplied to the buyer. The increas- 

ing role of e-commerce data as a motivation for such modelling is 

identified, with the authors commenting that the visibility of part 

quality data afforded by shared database systems can impact the 

degree of information asymmetry between the buyer and the sup- 

plier. This observation is contextually important for our problem. 

Corbett, Zhou, and Tang (2004) assume a bilateral buyer- 

supplier monopoly within which they examine scenarios to assess 

VOI of multiple contract types. They assume the supplier holds a 

prior distribution that expresses her uncertainty about the buyer’s 

internal variable costs. The decision model is developed for a gen- 

eral prior distribution represented by a continuous probability dis- 

tribution function, although numerical experiments examine vari- 

ous distributional forms of the assumed prior as a form of sensi- 

tivity analysis. Different parameter value sets are selected to inves- 

tigate the effects of controlling the degree of change in the prior 

mean and variance. Thus, they are, in effect, exploring the effects 

of different degrees of epistemic uncertainty on their decisions. 

We adopt an equivalent approach, although we explore sensitivity 

to changes in the degree of epistemic uncertainty expressed using 

real data. 

While different ways of mathematically representing prior 

probabilities have been articulated by Lim (2001) and especially 

by Corbett, Zhou, and Tang (2004) , there has been no considera- 

tion of how such distributions might be specified in an industrial 

decision-making context. We show how typically available industry 

data can be used to form meaningful, rather than assumed, prior 

distributions to represent epistemic uncertainty. 

3. A modelling framework for valuing supplier development 

Our modelling concept is illustrated using a decision tree 

shown in Fig. 1 . The buyer needs to choose whether or not to in- 

vest in activities to improve supplier quality (upper two branches) 

or whether to gather more information to learn about supplier 

quality capability before investing in improvement activities (lower 

branch). The decision tree is a visual simplification with a binary 

(good or poor) representation of supplier quality. Our full model 

considers the occurrence of poor quality events that risk delaying 

or disrupting supply to the buyer as measured by the number of 

non-conformances within some period of buyer exposure to risk. 

The exposure to risk could be measured by, for example, the calen- 

dar time or the number of parts ordered from the supplier. We at- 

tach a probability distribution to the uncertainties associated with 

supplier quality. Not shown in the diagram are the buyer valua- 

tions associated with each decision pathway, which we measure as 

the buyer’s loss due to poor supplier quality. The model allows us 

to determine the highest amount the buyer be prepared to spend 

in the time window between contracting the new supplier and de- 

livery of orders to learn more about a supplier to reduce epistemic 

uncertainty about the true quality performance. Hence it supports 

the manager in assessing whether it is worth learning more be- 

fore making choices about improvement activities, or whether it is 

better to make improvement decisions in light of the current state 

of knowledge. If the latter option is deemed more worthy, then 

the model further allows the manager to decide whether to invest, 

or not, in improvement activities and also how much it is worth 

spending to improve supplier quality should this option be chosen. 

3.1. Modelling assumptions about the stochastic nature of uncertainty 

Let N denote the random variable, number of non- 

conformances, and let t denote the exposure to risk of non- 

conformances to the buyer. We assume that the mean number 

of non-conformances is proportional to the exposure to risk. We 

model N as a Poisson random variable with parameter �, which 

denotes the non-conformance rate in proportion to exposure. 

Exposure may be measured on a continuous (e.g. time) or discrete 

(e.g. order size) scale. When exposure is measured by a continuous 

metric then a Homogeneous Poisson Process (HPP) is rather than 

as a special case of our model. The Poisson model is the simplest 

model for the number of non-conformances that is both popular in 

the literature ( Montgomery, 2013 ) and is reasonable for our empir- 

ical data, as we shall show in Section 4 . The aleatory uncertainty 
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Fig. 1. Model concept as a simplified decision tree of buyer decisions ( ) and supplier quality uncertainties ( ) . 

representing the natural variation in the non-conformance rate is 

modelled by the Poisson probability distribution conditioned on 

knowing � = λ as in Eq. (3.1) . 

P ( N = n | � = λ) = 
( λt ) 

n 
e −λt 

n ! 
, t > 0 , λ > 0 , n = 0 , 1 , 2 , . . . (3.1) 

Practically, we shall not precisely know a supplier’s true non- 

conformance rate, and so we describe our epistemic uncertainty 

on the value of this parameter, λ, through a prior probability dis- 
tribution, denoted by π ( λ). We assume π ( λ) can be described by 
a Gamma distribution as shown in Eq. (3.2) . The Gamma distribu- 

tion is a conjugate prior to the Poisson model and hence is math- 

ematically tractable giving it popularity as the Poisson–Gamma 

model ( Carlin & Louis, 2009 ). More importantly, the Gamma dis- 

tribution with shape and scale parameters, α and β , respectively, 

provides a flexible family of distributional shapes through which 

epistemic uncertainty can be expressed probabilistically. 

π ( λ) = 
βαλα−1 e −βλ

Ŵ( α) 
, α > 0 , β > 0 , λ > 0 . (3.2) 

If new data becomes available in the form of n 0 observed non- 

conformance events for a risk exposure of t 0 then, using Bayes The- 

orem, we can update the prior in Eq. (3.2) with the new data to 

obtain the posterior distribution. This will also be in the form of a 

Gamma distribution with a change in parameters as shown in Eq. 

(3.3) . 

π ( λ| n 0 , t 0 ) = 
( β + t 0 ) 

αλα+ n 0 −1 e −( β+ t 0 ) λ

Ŵ( α + n 0 ) 
, 

α > 0 , β > 0 , λ > 0 , t 0 > 0 , n 0 = 0 , 1 , 2 , 3 , . . . (3.3) 

The prior in Eq. (3.2) represents our epistemic uncertainty 

about the true supplier quality given our knowledge of that sup- 

plier to date. Our future experience with the supplier will result 

in a new prior, which is effectively the posterior distribution ex- 

pressed in Eq. (3.3) . Intuitively, as we gain more knowledge of 

the supplier, our epistemic uncertainty should reduce. Asymptot- 

ically as t 0 approaches ∞ , our epistemic uncertainty approaches 

zero, because we shall have learnt everything about the true non- 

conformance rate and so we are left only with the natural random 

variation described in Eq. (3.1) . 

3.2. Specification of a prior distribution 

As noted above, the prior distribution represents the buyer’s 

epistemic uncertainty about the true non-conformance rate of an 

individual supplier of interest. If several suppliers are candidates 

for development by the buyer, then each supplier will be modelled 

individually. Although we assume the prior comes from a common 

family of Gamma distributions, the buyer’s epistemic uncertainty 

about each individual supplier is represented by specifying appro- 

priate parameter values for that supplier. 

Alternative modelling tactics can be adopted to specify a prior 

distribution for a supplier. A prior can be constructed empiri- 

cally. For example, Quigley and Walls (2017) describe a general 

structured process for eliciting the domain knowledge of an ex- 

pert, such as a supply chain manager, to define reference factors 

upon which relevant empirical data from existing suppliers can be 

matched to the supplier of interest and subsequently verified as 

an expression of the epistemic uncertainty in that supplier’s true 

non-conformance rate. In this situation, the parameters of the 

Gamma prior distribution require to be estimated statistically. 

We show how this is accomplished using standard approaches in 

the context of our industry example. Alternatively, the subjective 

judgement of the buyer can be elicited using a structured expert 

judgement process to express the buyer’s epistemic uncertainty 

in the supplier true non-conformance rate ( O’Hagan et al., 2006; 

Quigley, Bedford, & Walls, 2008 ). A subjective prior distribution is 

appropriate if the expert believes s/he has more information than 

is contained in the relevant empirical data. 
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In the subsequent steps of our modelling framework, a prior 

distribution is treated in the same way regardless of whether it 

has been constructed empirically or subjectively. 

3.3. Optimal investment in supplier quality improvement activity 

Let x denote the level of investment in supplier quality im- 

provement, where the anticipated benefit is better capability and 

reduced non-conformance. Let v denote the loss incurred by the 

buyer from a single non-conformance, i.e. the unit cost of internal 

quality failure to the buyer. Here, we consider v to be an exogenous 

parameter that needs to be estimated by the buyer. Porter and 

Rayner (1992) and Schiffauerova and Thomson (2006) provide gen- 

eral reviews on the costs of quality. Following Nandakumar, Datar, 

and Akella (1993) , in quantifying v consideration should be given 

to penalties for production delays due to unavailable or unsuitable 

parts, inventory holding costs for other parts used in lieu of non- 

conforming parts, costs for rescheduling and switch-over to other 

orders, and demand side costs of loss of goodwill, such as customer 

defection and loss of potential future customers, due to the delays, 

and so on. 

To associate the supplier investment level with the supplier 

performance, we define γ as a measure of the effectiveness rate of 

the improvement activity, where higher effectiveness is reflected 

in larger values of γ . We consider a diminishing marginal return 

of investment in the reduction of non-conformances. We employ 

the mathematical formulation used by Porteus (1986) and Zhu, 

Zhang, and Tsung (2007) , where the non-conformance rate reduces 

at a fraction that decreases exponentially with increasing level of 

investment. Namely, if the number of non-conformances is N in 

the absence of a development investment, it is expected to de- 

crease to Ne −γ x when x monetary units are invested and the ef- 

fectiveness rate is γ . The effectiveness of a development activity 

will depend upon, for example, the type and nature of improve- 

ment considered, the familiarity of the buyer with the range of 

parts supplied and production technologies used, and the nature 

of the relationship between the buyer and the supplier in ad- 

dition to the commitment of the particular supplier; these need 

to be reflected in the value chosen for the parameter γ . In this 

paper we focus upon modelling the epistemic uncertainty in the 

non-conformance rate because we wish to apply our model us- 

ing operational data available to the buyer. The effectiveness rate 

parameter is represented as a single value, although as we show 

in our industry example, the sensitivity of results to changes in 

the specified rate of effectiveness can be examined. Future exten- 

sions of our univariate stochastic model could accommodate mod- 

elling of epistemic uncertainties on multiple parameters at the 

cost of increased model complexity, computational and elicitation 

burdens. 

Let P denote the profit function expressed as the difference be- 

tween the value associated with a reduction in the number of non- 

conformances through the improvement activity, and the invest- 

ment level, x , required to undertake the supplier quality improve- 

ment, as shown in Eq. (3.4) . The initial term represents the reduc- 

tion in buyer loss due to non-conformances before ( v N) and after 

( v Ne −γ x ) quality improvement. 

P = v N 
(

1 − e −γ x 
)

− x. (3.4) 

To obtain the optimal level of investment, we evaluate the ex- 

pected profit when epistemic uncertainty is represented by the 

Gamma prior distribution in Eq. (3.2) . That is, we are consider- 

ing the prior information scenario associated with the top two 

branches of Fig. 1 . The expected profit function derived is given 

in Eq. (3.5) . 

E [ P ] = v 
α

β
t 
(

1 − e −γ x 
)

− x. (3.5) 

Table 1 

Interpretation of elasticity ( ǫ) in terms of effectiveness 

rate ( γ ) and optimal investment ( x ∗). 

Elasticity Impact of percentage increase in γ

ǫ ≤ −1 Decrease in x ∗ of at least a percent 

−1 < ǫ < 0 Decrease in x ∗ less than a percent 

ǫ = 0 No change in x ∗

0 < ǫ < 1 Increase in x ∗ less than a percent 

ǫ = 1 Increase in x ∗ of a percent 

ǫ > 1 Increase in x ∗ of greater than a percent 

The product of parameters v t in the expected profit given in Eq. 

(3.5) measures the exposure of the buyer to the benefit of the in- 

vestment. Consistent with the formulation of the Poisson model, t 

could be measured by, for example, the number of parts ordered 

from the supplier or the duration of projects for which it is antic- 

ipated that the supplier will work with the buyer, and the cost to 

the buyer of each non-conforming part is v . This parametric formu- 

lation can also accommodate a Net Present Value (NPV) weighting 

of future benefits as we show in Appendix A . The optimal invest- 

ment level, x ∗, of the expected profit function is given in Eq. (3.6) . 

x ∗ = max 

( 

0 , 
ln ( v tγ ) + ln 

(

α
β

)

γ

) 

. (3.6) 

From Eq. (3.6) we can make several observations. First, sufficiently 

low levels of effectiveness will result in zero investment in supplier 

improvement activity (middle branch of Fig. 1 ). Second, and less 

obvious, the optimal investment level does not have a monotonic 

relationship with the effectiveness rate. This leads us to formulate 

Proposition 1 . The proof is given in Appendix B . 

Proposition 1. The elasticity, denoted by ǫ, of optimal investment 

(x ∗) with respect to the effectiveness rate ( γ )—the ratio of the per- 

centage change in x ∗ with respect to the percentage change in γ—can 

be expressed as: 

ε = 
1 

ln ( v tγ ) + ln 
(

α
β

) − 1 . 

Implying that if: 

ln ( v tγ ) + ln 

(

α

β

)

> 1 , 

then an increase in the effectiveness rate will result in a decrease in 

optimal investment. 

Table 1 summarises the interpretation of elasticity. Expressions 

for the expected profit at x ∗ can be obtained through substitution 

of Eq. (3.6) into Eq. (3.5) to obtain Eq. (3.7) . Note that Eq. (3.7) pro- 

vides an expectation, whereas the actual future outcome will vary 

as illustrated in Fig. 1 . 

E [ P ; x ∗] = 

⎧ 

⎪ 
⎨ 

⎪ 
⎩ 

v tγ α
β

− 1 − ln 
(

v tγ α
β

)

γ
if v tγ

α

β
> 1 

0 if v tγ
α

β
≤ 1 

(3.7) 

3.4. Assessing worth of learning before investing based on expected 

value of perfect information 

To provide the buyer with a useful means of assessing whether 

there is value in activities to learn more about supplier quality we 

compute the expected profit under an assumption of perfect infor- 

mation. Expected value under perfect information (EVPI) does not 

indicate how much should be invested in a particular quality im- 

provement investment, which was described in Section 3.3 . Rather, 



938 J. Quigley et al. / European Journal of Operational Research 264 (2018) 932–947 

estimating EVPI guides managers on how much it is worth spend- 

ing to buy down epistemic uncertainty about the supplier’s true 

non-conformance rate before investing in an improvement activity. 

Specifically, computing the expected value of information as the 

difference between the EVPI and the expected profit without per- 

fect information provides an assessment of how much it is worth 

spending, at most, to remove all epistemic uncertainty, and hence 

provides an upper bound on the amount it would cost to reduce 

uncertainty if information gained was partial and imperfect. This 

captures the lower branch of Fig. 1 . 

For the supplier’s true non-conformance rate, �, we can deter- 

mine the optimal investment decision under perfect information, 

which we denote by X PI as it is a function of the random variable 

�. Eq. (3.8) provides an expression for the expected value of profit 

under perfect information given our modelling assumptions stated 

in Section 3.1 . 

E [ P | x ∗ = X PI ] = 

{

v t γ�−1 −ln ( v t γ�) 
γ if v tγ� > 1 

0 if v tγ� ≤ 1 
(3.8) 

Since the true supplier non-conformance rate is not known we 

take the expectation of Eq. (3.8) with respect to � using the prior 

distribution given in Eq. (3.2) . Proposition 2 gives an analytic ex- 

pression for the EVPI. The proof is shown in Appendix B . 

Proposition 2. For the Poisson probability distribution given in Eq. 

(3.1) with a Gamma prior distribution for true non-conformance rate 

given in Eq. (3.2) and the objective function of form shown in Eq. 

(3.5) , then the Expected Value under Perfect Information (EVPI) can 

be expressed as shown in Eq. (3.9) . 

EVPI = 

v tγ α
β

(

1 − F 
(

1 ;α + 1 , β
v tγ

))

− 1 + F 
(

1 ;α, 
β

v tγ

)

γ

+ 

∞ 
∑ 

i =1 

i 
∑ 

j=0 

( i −1 ) ! 
( i − j ) ! j! ( −1 ) 

j 
(

v tγ
β

) j Ŵ( α+ j ) 
Ŵ( α) 

(

1 − F 
(

1 ;α + j, β
v tγ

))

γ

(3.9) 

where F 

(

1 ;α + j, β
v tγ

)

is the cumulative distribution function of a 

Gamma distribution evaluated at 1 with shape parameter (α + j) and 

scale parameter β
v tγ given by 

F 

(

1 ;α + j, 
β

v tγ

)

= 
( β

v tγ ) α+ j e 
β

v tγ

Ŵ(α + j) 

∞ 
∑ 

k =0 

( β
v tγ ) k 

∏ k 
k 1 =0 (α + j + k 1 ) 

. 

Computing the expected value of perfect information (i.e. 

EVPI − E [ P ; x ∗] ) allows us to obtain an upper bound on how much 

it is worth spending to learn more about a supplier before in- 

vesting in quality improvement. If this difference is less than 

the expected cost of obtaining the supplier information, then Eq. 

(3.6) can be used to support the buyer decision to invest, or 

not, in supplier improvement (first or second branch from top in 

Fig. 1 ). Otherwise, the buyer obtains more information first to buy 

down epistemic uncertainty by learning more about supplier qual- 

ity (lowest branch in Fig. 1 ). 

3.5. Sensitivity of optimal investment to prior variance 

It is interesting to explore how the optimal investment in sup- 

plier quality improvement under perfect information, X PI , responds 

to changes in the degree of epistemic uncertainty. We use the 

prior standard deviation as a summary measure of epistemic un- 

certainty. Note also that re-expressing the parameters of the prior 

distribution in terms of the mean and standard deviation can be 

useful when communicating results to managers since they are 

more understandable. 

Theorem 1 below shows that for situations where the true 

non-conformance rate is above the investment threshold, that is 

� > 
1 

υtγ , the mean optimal level of investment under perfect in- 

formation is a monotonically decreasing function of the epistemic 

uncertainty associated with the non-conformance rate. The proof 

is shown in Appendix C . We note that the proof does not require 

the prior to have the form of a Gamma distribution. 

Theorem 1. If the non-conformance rate is greater than the min- 

imum investment threshold, i.e. � > 
1 

υtγ , then for a fixed mean 

non-conformance rate μ
�> 1 

υtγ
= E 

[

�
∣

∣� > 
1 

υtγ

]

, the expected opti- 

mal investment under perfect information is monotonically decreas- 

ing with respect to non-conformance uncertainty, i.e. σ 2 
�> 1 

υtγ
= 

V ar 
[

�
∣

∣� > 
1 

υtγ

]

. Specifically, 
∂E 

[ 
X PI 

∣

∣

∣
�> 1 

υtγ

] 

∂σ 2 
�> 1 

υtγ

< 0 . 

3.6. Approximation for EVPI and computational accuracy 

Proposition 2 provides an expression for EVPI in terms of a 

cumulative Gamma distribution function. However, calculating the 

EVPI using Eq. (3.9) requires a degree of programming knowl- 

edge, which might hinder the practical use of the method. Hence 

Proposition 3 below gives an upper bound approximation for the 

EVPI to facilitate easier application in, for example, spreadsheets. 

We can also obtain a bound on the error between the true EVPI 

and its upper bound, as shown in Proposition 4 , and thus obtain a 

lower bound on the EVPI. Proofs to both propositions are shown in 

Appendix B . 

Proposition 3. The following expression provides an upper bound 

(UB) for the EVPI expressed in Eq. (3.9) : 

EVPI ≤ v t 
α

β
−

�( α) − ln 
(

β
v tγ

)

γ
−

(

1 − F 

(

1 ;α, 
β

v tγ

))

(3.10) 

where � is the digamma function. 

Proposition 4. The error between the upper bound on the EVPI (UB) 
(Eq. (3.10) ) and the actual EVPI (Eq. (3.9) ) can be bounded as fol- 
lows: 

v t 
α

β
−

�( α) − ln 
(

β
v tγ

)

γ
−

(

1 − F 

(

1 ;α, 
β

v tγ

))

− EV PI 

≤

(

β
v tγ

)α

Ŵ( α) γ

ln ( α) 

(

1 − e −
β

v tγ
)

α2 ( α + 2 ) + e −
β

v tγ α3 + 

(

2 + e −
β

v tγ
)

α2 + 3 α + 2 

α2 
(

α2 + 3 α + 2 
) . 

(3.11) 

We can characterise the parameter regions where the UB is a 

good approximation for the EVPI. That is, where the right-hand- 

side of Eq. (3.11) is sufficiently small. Note that the bound in Eq. 

(3.11) is not a monotonic function of α. Corollary 1 establishes the 

limits of this bound for either α or β when the other is held fixed, 

showing that the EVPI converges to the UB in these limits for large 

α or small β . 

Corollary 1. For the limits of the error in the upper bound with re- 
spect to α and β , the shape and scale parameters of the Gamma prior 

distribution respectively, are zero for large α and small β . i.e.: 

lim 
β→ 0 

(

β
v tγ

)α

Ŵ( α) γ

ln ( α) 

(

1 − e −
β

v tγ
)

α2 ( α + 2 ) + e −
β

v tγ α3 + 

(

2 + e −
β

v tγ
)

α2 + 3 α + 2 

α2 
(

α2 + 3 α + 2 
) = 0 

lim 
α→∞ 

(

β
v tγ

)α

Ŵ( α) γ

ln ( α) 

(

1 − e −
β

v tγ
)

α2 ( α + 2 ) + e −
β

v tγ α3 + 

(

2 + e −
β

v tγ
)

α2 + 3 α + 2 

α2 
(

α2 + 3 α + 2 
) = 0 
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Fig. 2. Process showing relation between inputs and outputs when modelling a new supplier. Dotted lines show an alternative path when modelling an existing supplier. 

The accuracy of the UB as an approximation for the actual EVPI 

is assessed in Appendix C for a range of parameter values for α and 

β . Our results show that the accuracy of the UB increases as the 

shape parameter α increases, which is consistent with Corollary 1 . 

In addition, its accuracy also increases for increasing values 

of the effectiveness rate γ and decreasing values of the scale 

parameter β . 

4. Industry example 

Fig. 2 summarises our general modelling framework and we 

now discuss its application to a real industry problem for a large 

manufacturing company making highly engineered heavy machin- 

ery. The company has an extensive in-bound supply base. Lead 

times can be long for new projects since initial contracting de- 

cisions with critical suppliers can be made several years ahead. 

During the time period before parts arrive, the company faces 

the ‘buyer’s dilemma’ addressed by our modelling framework. 

The core decision problems are whether or not to invest in ac- 

tivities to improve quality or whether to invest in activities to 

learn more about a supplier’s quality. This dilemma is particu- 

larly acute for suppliers that are newly integrated into the buying 

company’s supply base and for whom there may be little empiri- 

cal evidence about the required part quality since initial contract- 

ing and procurement information is limited to checks on certifica- 

tion, quality processes, and previous quality outcomes for related 

products. 

4.1. Setting model parameters 

A modelling choice needs to be made about the approach 

adopted to specify the prior distribution expressing the buyer’s 

uncertainty of the new supplier’s true non-conformance rate. In 

this study, the manager is able to construct a suitable compara- 

tor pool of existing suppliers based on reference factors elicited 

following the methodology of Quigley and Walls (2017) . Moreover, 

the records taken from the company ERP system provide relevant 

non-conformance data for the suppliers in the comparator pool. 

Therefore, we elect to construct an empirical prior distribution in 

this case. The steps in estimating the empirical prior distribution 

are described in Section 4.2 . 

The model also requires as inputs an assessment of the effec- 

tiveness of the improvement activity and an estimate of the loss 

incurred by the manufacturer if non-conforming parts are sup- 

plied. In this study, we investigate the impact of setting differ- 

ent effectiveness rates on decision-making to cover a range of de- 

grees of effectiveness for different types of improvement activi- 

ties, the buyer’s familiarity with the supplier, the parts and tech- 

nologies used, and different levels of supplier engagement. For the 

purposes of this example, we set the buyer loss to be one unit 

per non-conformance occurrence, i.e. v = 1 , to de-sensitise the cost 

valuations. 

4.2. Estimating an empirical prior distribution 

We use empirical data from company databases on the annual 

frequencies of non-conforming parts recorded over several years 

for a comparator pool of 35 suppliers. To estimate the parame- 

ters of the prior distribution using the selected data we adopt a 

method, known as empirical Bayes, which has been used in a sim- 

ilar manner in technical risk analysis ( Quigley, Bedford, & Walls, 

2007; Quigley, Hardman, Bedford, & Walls, 2011 ) and also more 

generally ( Carlin & Louis, 2009 ). 

In order to obtain the Maximum Likelihood Estimates (MLE) 

of the prior distribution’s parameters, we require an expression 

for the predictive distribution that explains the relationship be- 

tween the observed data and the prior parameters ( Good, 1976 ). 

Eq. (4.1) shows the predictive distribution as a Negative Binomial 

distribution, where N i denotes the number of non-conforming 

parts for supplier i and t i represents the exposure to risk for sup- 
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Fig. 3. (a) Joint 95% confidence region for the empirical prior mean and standard deviation of the true number of non-conforming parts per annum. (b) P–P plot of the 

predictive distribution against the empirical distribution. 

plier i , which in this example is 1 year. We justify this choice 

of exposure because we want to relate the supply risk to the 

buyer’s manufacturing projects and so consider the implications 

when parts may not be available for assembly of the engineering 

product. The remaining notation is the same as in Section 3 . 

P ( N i = n i ) = 

∞ 
∫ 

0 

( λi t i ) 
n i e −λi k i 

n i ! 

βαλi 
α−1 

e −βλi 

Ŵ( α) 
dλ

= 
Ŵ( n i + α) 

Ŵ( α) n i ! 

(

β

β + t i 

)α
(

t i 
β + t i 

)n i 

, 

α > 0 , β > 0 , n i = 0 , 1 , 2 , . . . (4.1) 

Using the predictive distribution we construct the log-likelihood 

function for the data across the pool of 35 suppliers as follows: 

l ( α, β) ∝ 

35 
∑ 

i =1 

[

d i + α ln 

(

β

β + t i 

)

+ n i 

(

t i 
β + t i 

)

]

where d i = 

⎧ 

⎨ 

⎩ 

n i −1 
∑ 

j=0 

ln ( j + α) , if n i ≥ 1 

0 if n i = 0 . 

We obtain the MLE of the parameters of the empirical prior to 

be ˆ α = 0 . 0879 and ˆ β = 0 . 0018 . Construction of joint confidence re- 

gions for the prior parameters are obtained using likelihood theory 

( Lawless, 2003 ). Here, we re-parameterise the prior parameters to 

express them in terms of the pool mean non-conformance rate ( μ) 

and standard deviation ( σ ), which we find are more directly under- 

standable in reasoning about the meaning of the empirical prior 

distribution with supply chain managers. Fig. 3 (a) illustrates the 

95% joint confidence region showing strong association between 

the prior mean and standard deviation, which are 48.83 and 164.71 

for this data set, respectively. The mean number of non-conforming 

parts per annum in the pool is not likely to exceed 400 and the 

standard deviation in the non-conformance frequency is not likely 

to be greater than 1400. 

Now that we have estimated the prior distribution, we can as- 

sess the validity of our modelling assumptions. Fig. 3 (b) shows a 

P–P plot to assess the fit of the estimated predictive distribution 

model to the empirical data. There is a good fit in both extremes 

of the distribution, although there are values below the 45 degree 

reference line in the centre indicating that the model is more con- 

servative than the data in this region. However the fit is good in 

the upper right hand tail, which is important in our risk analysis 

since this is the high consequence situation where the true sup- 

plier non-conformance rate may be relatively high. 

We now use the empirical prior distribution as a probability 

model representing the epistemic uncertainty in the true non- 

conformance rate of the new supplier of interest. This Gamma 

prior probability distribution function is shown in Fig. 4 (a) and 

indicates a high probability the true non-conformance rate will 

be low, but the right tail in the distribution implies there re- 

mains a relatively lower chance the true non-conformance rate of 

the new supplier will be high. Using the MLE, ˆ α = 0 . 0879 and 
ˆ β = 0 . 0018 , we can update the uncertainty associated with the 

true non-conformance rate to obtain the predictive distribution 

for the new supplier in the form of a Negative Binomial distribu- 

tion with parameters ( ̂  α + n i , ˆ β + t i ) . Since we only have informa- 

tion from assessments obtained at initial contracting for the new 

supplier, we have no data on the number of non-conformances 

(i.e. n i = t i = 0 ). Fig. 4 (b) shows this predictive distribution for the 

number of non-conforming parts per annum conditional on the oc- 

currence of at least one such event. The conditional distribution al- 

lows us to illustrate the thick tail of the distribution which would 

otherwise be dominated by the outcome of zero non-conformances 

since this probability is estimated to be 0.57 for this data set. The 

decay of the tail of this conditional distribution is slow, implying 

that there is a significant risk of many non-conforming parts being 

delivered by the new supplier given our current state of knowledge 

about quality obtained from the pool. 

4.3. Optimal investment in supplier quality improvement 

So, how much should the company be willing to invest to im- 

prove the quality performance of the new supplier given prior lev- 

els of epistemic uncertainty? 

Using Eq. (3.6) we find that the optimal investment to improve 

the quality of the new supplier is 15 . 85 v when the effectiveness 

rate of an improvement activity is γ = 0 . 1 , meaning that we would 

expect to invest up to nearly sixteen times the buyer loss of a non- 

conformance in improving supplier non-conformance rate. If the 

effectiveness rate of an activity is γ = 0 . 5 , then the optimal value 

of investment decreases to 6 . 40 v . Consistent with Proposition 1 , 

we find that optimal investment in improvement activities of the 
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Fig. 4. (a) Prior distribution of uncertainty in the true non-conformance rate and (b) predictive distribution of number of non-conforming parts conditional on at least one 

non-conformance for the new supplier. 

new supplier is lower for higher effectiveness rates. Note that the 

expected profits are 22 . 97 v and 40 . 44 v , respectively. 

However, these are expected profits. Above we noted the pat- 

tern of variation shown in the prior distribution. If the true non- 

conformance rate of the new supplier is low (i.e. realised from the 

left hand tail of the empirical prior distribution) then there re- 

mains a risk that a loss will be incurred by implementing the im- 

provement activity. For example, if the true non-conformance rate 

is λ < 0.05 for an effectiveness rate of γ = 0 . 1 then the probabil- 

ity of making a loss is 0.51; whereas if λ < 0.15 for γ = 0 . 5 then 

the probability of making a loss is 0.46. We highlight these insights 

because they allow managers to appreciate the level of risk asso- 

ciated with making an immediate investment in supplier improve- 

ment given prior uncertainty. 

We can further examine the relationships between the effec- 

tiveness rate, optimal investment and expected profit, given the 

prior epistemic uncertainty as illustrated in Fig. 5 . Fig. 5 (a) shows 

the optimal investment and expected profit profiles, which are 

both zero until the effectiveness rate is above the investment 

threshold. Beyond this point, the expected profit increases mono- 

tonically with the effectiveness rate at a diminishing marginal rate 

of increase. Expected investment is highest at low effectiveness 

rates then decreases as the effectiveness rate increases, implying 

that the higher effectiveness requires less investment to improve 

profits. In Fig. 5 (a) the expected profit function is constrained to 

be zero for low values of the effectiveness rate, unlike the surface 

plot shown in Fig. 5 (b) where the zones of expected loss and profit 

can be identified. When effectiveness rate and optimal investment 

increase, the expected profit is highest. However, as optimal invest- 

ment and/or effectiveness decrease, so too does expected profit, 

with high investment and low effectiveness resulting in expected 

losses. 

4.4. Value of learning more about the supplier before investing in 

improvement 

So, should the company invest in activities to learn more about 

supplier quality to reduce the epistemic uncertainty about the true 

non-conformance rate? 

Table 2 

Quantiles and mean of optimal profits distribution un- 

der perfect information (in units of v ) for new suppli- 

ers to commodity group. 

Statistic Effectiveness of learning activity 

γ = 0 . 1 γ = 0 . 5 

Quantile 0.5 0 0 

0.75 0 6.02 

0.90 88.71 113.63 

0.99 915.39 956.78 

Mean 43.53 49.29 

When the effectiveness rate γ = 0 . 1 , we find the expected 

value of perfect information, that is the difference between the 

EVPI and the expected profit under prior uncertainty, to be 17 . 05 v . 

This implies that if the buyer judges it is worth spending up to 

just over seventeen times the loss incurred by a supplied non- 

conformance part to remove uncertainty about quality perfor- 

mance then the best decision is to conduct additional learning be- 

fore investing in an improvement activity. When the effectiveness 

rate is γ = 0 . 5 , the expected value of perfect information reduces 

to 5 . 44 v . 

We can further examine the likely financial consequences of 

epistemic uncertainty for the true quality performance of the new 

supplier. Table 2 shows selected quantiles and the mean of the 

distribution of optimal profits under an assumption of perfect in- 

formation corresponding to no epistemic uncertainty. The results 

presented in Table 2 indicate that investment in improvement is 

not optimal for a large proportion of suppliers new to the com- 

modity group because we find the optimal profit is zero. How- 

ever it is clear from values of the quantiles, and especially from 

the relationship of the median to the mean, that this distribu- 

tion is right skewed implying there is a small chance the new 

supplier will merit relatively large investment. For example, 1% of 

such new suppliers to the commodity group would benefit from 

an investment at least 900 times the value of a non-conforming 

part. 
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Fig. 5. Relationship between expected investment and optimal profit, given a range of effectiveness rates for supplier improvement activity. Note in (a) solid is expected 

profit and dashed is optimal investment and in (b) blue is expected profit and red is expected loss. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

4.5. Implications of epistemic uncertainty for decision-making 

Through our modelling we aim to support supply chain man- 

agers to make informed decisions. Our goal is not to make the op- 

timal decision itself. For this reason, we have presented a selec- 

tion of results that are both typical of those shared with managers 

in the manufacturing company and illustrate the behaviour of the 

model for different inputs. We summarise our key results in rela- 

tion to the basic modelling concept shown in Fig. 1 . Let us consider 

the situation where the supply chain manager is concerned with 

an improvement activity which has an effectiveness rate judged 

to be γ = 0 . 5 . Our analysis indicates that the manager should be 

willing to invest up to 5 . 44 v to remove the epistemic uncertainty 

about the true non-conformance rate. If the costs of gathering ad- 

ditional information to learn more about supplier quality exceed 

5 . 44 v then the supply manager might decide to invest up to 6 . 40 v 

directly in the improvement activity. 

So far, our analysis has only considered the degree of epistemic 

uncertainty at the two extremes: either as estimated by the em- 

pirical prior distribution; or totally removed. To further help the 

manager develop an understanding of the impact of the degree 

of epistemic uncertainty on optimal investment levels for supplier 

improvement, we can also examine the impact of changing the 

prior standard deviation. Fig. 6 shows changes in the expected op- 

timal investment under perfect information as the standard devi- 

ation increases from zero through to 200, which is just above the 

estimated prior standard deviation of 164.71. We also examine four 

cases of changes in the prior mean around the point estimate of 

48.83 to explore part of the confidence region. As previously, we 

consider effectiveness rates of 0.1 and 0.5. We find that regard- 

less of the effectiveness rate, the expected optimal investment as 

a function of prior standard deviation is consistently less for lower 

prior mean. For equivalent prior mean and standard deviation, the 

expected optimal investment is lower when effectiveness rate is 

higher. 

In our industry example, the managers know the real value of 

the loss incurred by non-conformance and, based on their procure- 

ment knowledge, have informed opinions about the likely effec- 

tiveness rate of an improvement activity as well as the associated 

cost. Our analysis provides them with a means of expressing their 

uncertainty about supplier quality evidenced by their data and al- 

lows them to investigate options for supplier development and for 

information seeking activities with an understanding of the inher- 

ent risks to inform their decision. 

5. Discussion 

Our research has been motivated by engagement with industry 

practice and addresses an important academic topic on the value 

of information in supplier development. Consequently we believe 

we have developed a modelling framework that is both useful to 

supply chain managers and makes a scientific contribution. Our 

practical motivation has led us to frame a distinctive decision prob- 

lem where we focus upon the buyer’s dilemma of investing in 

activities to develop supplier quality performance and we aim to 

make effective and efficient use of available industry data, both 

empirical and judgemental. Hence we have presented a modelling 

solution that fills a gap in the literature between the management 

considerations of the supplier development process and the sci- 

ence of mathematically modelling abstract decision problems us- 

ing, for example, stochastic programming or game theoretical ap- 

proaches. 

5.1. Conclusions and contributions 

Practically, our modelling process has proved valuable to the in- 

dustry practitioners with whom we have been collaborating since 

they need to allocate their limited resources to a range of devel- 

opment activities in the context of an extensive number of suppli- 

ers. Importantly, by focusing on the expected value of perfect infor- 

mation we help to quickly identify those new suppliers for which 

there will be no economic benefit in obtaining any further infor- 

mation before the actual improvement investment and those oth- 

ers for which further information is essential. This type of decision 

aid is critical for prime companies with large supply bases. 

Scientifically, our major contributions and insights are as fol- 

lows. We provide closed form solutions for the optimal level of in- 

vestment and expected profit under no and perfect information. 

We establish that the optimal investment level in supplier im- 

provement does not have a monotonic relationship with the ef- 

fectiveness rate of that activity. Through Theorem 1 we have pro- 
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Fig. 6. Relationship between the expected optimal investment under perfect information and the prior standard deviation as measure of epistemic uncertainty when effec- 

tiveness rate is controlled to be (a) γ = 0 . 1 and (b) γ = 0 . 5 . 

vided distribution-free results on the relationship between mean 

optimal investment levels and uncertainty of the prior distribu- 

tion. Mean investment level before the learning stage will inform 

budgeting, as it provides a prediction on the expected amount of 

investment to a supplier that will be required post due-diligence. 

We have shown that, ceteris paribus, we would reserve the least 

amount of resources for the suppliers for whom we have the great- 

est uncertainty. This may seem counter-intuitive as one might ex- 

pect to reserve extra resources for improvement for those suppliers 

about which there is greater uncertainty. However, we stress that 

the budgeting of reserves is made in advance of learning activi- 

ties and the actual investment in the supplier will be determined 

only after further information has been collected. We provide an 

analytical expression for the EVPI that can be used to assess the 

benefits of learning more about supplier quality processes before 

investing in improvement activities. We also derive and evalu- 

ate an approximation to the EVPI in the form of an upper and 

lower bound, which supports practical computations within stan- 

dard software, such as spreadsheets. By creating a visual represen- 

tation of the relationships between expected profit, effectiveness 

and optimal investment, and examining the distribution of optimal 

profit for a given rate of effectiveness, we can communicate the 

impact of uncertainty on the risks associated with making deci- 

sions to managers, as shown in the industry example reported in 

Section 4 . 

We reflect upon our insights in relation to the proposi- 

tions made by Ketzenberg, Rosenzweig, Marucheck, and Metters 

(2007) mentioned in Section 2 . Although formed from an extensive 

literature review in the context of inventory management, these 

propositions also express more widely understood characteristics 

of value of information, hence providing a suitable level at which 

to consider the implications of our theoretical findings. Our mod- 

elling framework is useful in situations when a decision is likely 

to be sensitive to uncertainty since management support would 

not be required if (nearly) perfect information exists about the 

true non-conformance rate since the need to invest, or not, in a 

supplier would be obvious. Therefore we are consistent with the 

proposition that sensitivity of the decision to uncertainty moder- 

ates the relationship between the level of uncertainty and VOI. We 

find, although have not shown, that the expected value of per- 

fect information increases as the prior variance increases, consis- 

tent with the proposition that VOI will be larger when uncertainty 

is greater. Learning activities are intended to reduce the epistemic 

uncertainty from the prior level, but the rate of reduction will de- 

pend on the activity and so vary between activities. Better learn- 

ing will be achieved when the prior distribution shifts in location 

towards good or poor quality levels with less spread and this is in 

line with the proposition that the VOI increases with respect to the 

level of marginal information. Our approach is predicated upon the 

view that information has value if it has the potential to change 

decisions. Our effectiveness rate of a supplier improvement activ- 

ity essentially provides a mapping from the current to an intended 

quality performance state of the supplier and so corresponds to 

a supplier’s ability to respond to buyer-led improvement activities 

given operating constraints. 

5.2. Limitations and further work 

We have focused upon deriving analytical expressions for the 

value of perfect information in the context of supplier develop- 

ment investment decisions. This presumes all epistemic uncer- 

tainty is removed and so practically the expected value of per- 

fect information only provides the supply chain manager with an 

upper limit of how much to spend on learning. We can envis- 

age situations where the manager might consider various activ- 

ities to learn about supplier quality, implying that reduction in 

epistemic uncertainty about the true non-conformance rate might 

vary according to the characteristics of different activities. Thus 

we may obtain more, but not necessarily perfect, information. 

Our modelling framework can accommodate this situation allow- 

ing the manager to assess the levels of uncertainty associated with 

the non-conformance rate following a learning activity to deter- 

mine whether it is cost effective. However, we may be required 

to use simulations to assess situations where partial information is 
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gained, learning is not perfect and residual epistemic uncertainty 

remains. 

We have focused upon assessing the upper limit of a further 

reduction in epistemic uncertainty because we were motivated by 

the challenge posed by the industrial project. Our industry partners 

were not concerned with the option of delaying key learning activ- 

ities; instead they were interested in whether or not to implement 

the learning activities, such as site visits and additional audits dur- 

ing the early phase of supplier relations. Hence our focus has been 

on obtaining the expected value of perfect information as an upper 

limit for all further data gathering processes, which would include 

real options. A real option approach to this problem would be in- 

teresting to develop more formally and would be appropriate to 

modelling partial information, insofar as another branch could be 

added to the decision tree to represent a delay in the decision to 

invest and to consider the NPV of the associated costs and benefits 

to such an alternative. 

We have focused upon decisions relating to a supplier newly 

integrated to a company’s supply base in a context where the lead 

times allow for both learning and improvement activities to be 

initiated before the regular supply of parts starts. However, a re- 

lated problem is that of developing existing suppliers with whom 

the company has a past relationship. Conceptually, our Bayesian 

stochastic modelling framework supports decisions regarding ex- 

isting suppliers since it is possible to determine appropriate prob- 

ability distributions using relevant historical data for the supplier 

of interest. 

We have assumed a Gamma prior distribution. Our choice is 

aligned with our underlying probability model, which is suffi- 

ciently flexible to represent many epistemic uncertainty scenarios. 

We make the common assumption that non-conformances follow a 

Poisson distribution. The assumptions support the mathematics of 

the methods developed and can be validated using standard sta- 

tistical model checks. However, now that our framework has been 

articulated, a future challenge is to develop a wider class of proba- 

bility models that might be suitable to capture different supplier 

data patterns. This might be especially useful if we extend the 

set of performance characteristics beyond quality to, for example, 

late deliveries, or consider situations when there is anticipated im- 

provement in supplier quality as might be expected for start-up 

companies or new production technologies. 

The EVPI can be expanded to assess the value of learning about 

the effectiveness parameter γ . Assessing the uncertainty about γ
may be complicated by the confounding effect of the supplier’s 

willingness to engage in development activities. Additionally, when 

there is value in knowing the effectiveness of an intervention prior 

to engagement then learning about both the non-conformance and 

effectiveness rates is needed to assess the net impact. Develop- 

ing a bivariate model to simultaneously assess the EVPI for both 

non-conformance rate and improvement effectiveness would al- 

low the synergies of learning within activities and the depen- 

dency between the uncertainties to be analysed. Modelling the 

epistemic uncertainty in the effectiveness rate within the model 

also presents additional challenges for elicitation of the prior. 

We express the buyer loss due to a non-conforming part sup- 

plied as an unknown parameter, which is typical in the litera- 

ture. For example, Ketzenberg, Rosenzweig, Marucheck, and Met- 

ters (2007) find that few studies in an inventory management con- 

text report total costs of scenarios considered in value of infor- 

mation analysis in the inventory context. We made this modelling 

choice partly because of the challenge of accessing financial data 

and estimating such costs accurately, but also because we found 

that expressing choices relative to this loss is more useful to sup- 

ply chain managers since it accords with their practice on penal- 

ties. There is a need to provide further guidance in the articulation 

of these costs even if only for applications support, since we know 

from our theoretical and empirical work that they will also impact 

the optimal decision. 
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Appendix A 

Let N i denote the number of non-conformances realised in the 

i th future time epoch, v i denote the value of a non-conformance 

realised in the i th epoch, t i denote the exposure to risk in the i th 

epoch, and r denote the discount for one epoch. As before x is the 

one-off investment made at time 0 and γ is the effectiveness rate. 

Then we can express the profit expression in Eq. (3.4) as the NPV 

of profit, P , as follows 

P = 

∑ 

∀ i 

v i N i (1 − e −γ x ) 

(1 + r) i 
− x 

The expectation of P with respect to N i is given by 

P = 

∑ 

∀ i 

v i 
α
β
t i (1 − e −γ x ) 

(1 + r) i 
− x = 

α

β
(1 − e −γ x ) 

∑ 

∀ i 

v i t i 
(1 + r) i 

− x 

which can be re-expressed as shown below in the form consistent 

with the expression in Eq. (3.5) . 

E[ P ] = 
α

β
(1 − e −γ x ) v t − x, 

where v t = 
∑ 

∀ i 
v i t i 

(1+ r) i 
. 

Appendix B 

Proof of Proposition 1 . 

x ∗ ≡
ln ( v tγ ) + ln 

(

α
β

)

γ
, 

dx ∗

dγ
≡

1 − ln ( v tγ ) − ln 
(

α
β

)

γ 2 

ε = 
γ

x ∗
dx ∗

dγ
= 

1 − ln ( v tγ ) − ln 
(

α
β

)

ln ( v tγ ) + ln 
(

α
β

) = 
1 

ln ( v tγ ) + ln 
(

α
β

) − 1 

Proof of Proposition 2 . 

First we establish the following expression which we use of in 

the derivation of the proof: 

∞ 
∫ 

1 

z j 

(

β
v tγ

)α
z α−1 e −z β

v tγ

Ŵ( α) 
dz = 

Ŵ( α + j ) 

Ŵ( α) 
(

β
v tγ

) j 

∞ 
∫ 

1 

(

β
v tγ

)α+ j 
z α+ j−1 e −z β

v tγ

Ŵ( α + j ) 
dz 

= 
Ŵ( α + j ) 

Ŵ( α) 
(

β
v tγ

) j 

(

1 − F 

(

1 ;α + j, 
β

v tγ

))

. 

where F 

(

1 ;α + j, β
v tγ

)

is the cumulative distribution function of 

a Gamma distribution evaluated at 1 with shape parameter α + j

and scale parameter β
v tγ . 

Note that: 

F 

(

1 ;α + j, 
β

v tγ

)

= 

(

β
v tγ

)α+ j 
e −

β
v tγ

Ŵ( α + j ) 

∞ 
∑ 

k =0 

(

β
v tγ

)k 

k 
∏ 

k 1=0 
( α + j + k 1 ) 

. 

http://dx.doi.org/10.13039/501100000266
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Table C.3 

Ratio of logarithm of upper bound (UB) to true EVPI over simulated parameter ranges. 

Effectiveness rate γ Shape parameter range α Scale parameter range β Min ln ( UB 
EVPI ) α value at min β value at min Max ln ( UB 

EVPI ) α value at max β value at max 

0.1 [0.001,0.1] [0.001,0.1] 0.588 0.1 0.001 16.797 0.001 0.1 

0.1 [0.001,0.1] [0.1,1] 7.489 0.1 0.1 26.522 0.01 1 

0.1 [0.001,0.1] [1,10] 21.858 0.1 1 123.074 0.01 10 

0.1 [0.1,1] [0.001,0.1] 0.125 1 0.01 7.489 0.1 0.1 

0.1 [0.1,1] [0.1,1] 2.339 1 0.1 21.858 0.1 1 

0.1 [0.1,1] [1,10] 15.867 1 1 118.364 0.1 10 

0.1 [1,10] [0.001,0.1] 0.009 10 0.01 2.339 1 0.1 

0.1 [1,10] [0.1,1] 0.125 10 0.1 15.867 1 1 

0.1 [1,10] [1,10] 3.86 10 1 110.875 1 10 

0.5 [0.001,0.1] [0.001,0.1] 0.116 0.1 0.001 13.277 0.001 0.1 

0.5 [0.001,0.1] [0.1,1] 3.907 0.1 0.1 14.607 0.01 1 

0.5 [0.001,0.1] [1,10] 9.93 0.1 1 38.418 0.01 10 

0.5 [0.1,1] [0.001,0.1] 0.011 1 0.01 3.907 0.1 0.1 

0.5 [0.1,1] [0.1,1] 0.215 1 0.1 9.93 0.1 1 

0.5 [0.1,1] [1,10] 15.867 1 1 118.364 0.1 10 

0.5 [1,10] [0.001,0.1] 0.001 10 0.01 0.215 1 0.1 

0.5 [1,10] [0.1,1] 0.011 10 0.1 4.508 1 1 

0.5 [1,10] [1,10] 0.186 10 1 27.37 1 10 

0.9 [0.001,0.1] [0.001,0.1] 0.06 0.1 0.001 12.354 0.001 0.1 

0.9 [0.001,0.1] [0.1,1] 2.973 0.1 0.1 12.5 0.01 1 

0.9 [0.001,0.1] [1,10] 7.807 0.1 1 27.916 0.01 10 

0.9 [0.1,1] [0,0.1] 0.001 1 0.01 2.973 0.1 0.1 

0.9 [0.1,1] [0.1,1] 0.039 1 0.1 7.807 0.1 1 

0.9 [0.1,1] [1,10] 15.867 1 1 118.364 0.1 10 

0.9 [1,10] [0,001,0.1] 0 10 0.01 0.039 1 0.1 

0.9 [1,10] [0.1,1] 0.001 10 0.1 2.427 1 1 

0.9 [1,10] [1,10] 0.017 10 1 17.205 1 10 

Now we derive the main result. Let Z = v tγ�. Since a Gamma ran- 

dom variable is closed under scale transformation we can express 

Z ∼ Gamma 

(

α, 
β

v tγ

)

. We seek the following: 

E Z [ E [ P ; x PI | Z ] ] = 

∞ 
∫ 

1 

z − 1 − ln ( z ) 

γ

(

β
v tγ

)α
z α−1 e −z β

v tγ

Ŵ( α) 
dz 

= 

∞ 
∫ 

1 

(

z − 1 + 

∞ 
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i =1 
( −1 ) 

i ( z−1 ) i 

i 

)

γ

(

β
v tγ

)α
z α−1 e −z β

v tγ

Ŵ( α) 
dz = 

∞ 
∫ 

1 

z − 1 + 

∞ 
∑ 

i =1 

(−1) i 

i 
∑ 

j=0 
( −1 ) i − j ( i j ) z j 

i 

γ

(

β
v tγ

)α
z α−1 e −z β

v tγ

Ŵ( α) 
dz 

= 

v tγ α
β

(

1 − F 
(

1 ;α + 1 , β
v tγ

))

− 1 + F 
(

1 ;α, 
β

v tγ

)

γ

+ 

∞ 
∑ 

i =1 

i 
∑ 

j=0 

( i −1 ) ! 
( i − j ) ! j! ( −1 ) 

j 
(

v tγ
β

) j Ŵ( α+ j ) 
Ŵ( α) 

(

1 − F 
(

1 ;α + j, β
v tγ

))

γ

which gives an expression for the EVPI. 

Proof of Theorem 1 . 

The optimal level of investment under perfect information is 

given by X PI = max ( 0 , ln ( υtγ�) ) . The expectation of X PI when the 

non-conformance rate is known to exceed the threshold can be 

expressed as in the following. 

E 

[

X PI 

∣

∣

∣

∣

� > 
1 

υtγ

]

= ln ( υtγ ) + E 

[

ln ( �) 

∣

∣

∣

∣

� > 
1 

υtγ

]

Consider the following Taylor Expansion of ln ( �) about 

μ
�> 1 

υtγ
= E 

[

�
∣

∣� > 
1 

υtγ

]

, where � is a random variable de- 

fined on the positive real numbers with variance σ 2 
�> 1 

υtγ

= 

E 
[

( � − μ) 
2 
∣

∣� > 
1 

υtγ

]

. 

ln ( �) = ln 

(

μ�> 1 
υtγ

)

+ 

(

� − μ�> 1 
υtγ

)

μ�> 1 
υtγ

+ o 

(

(

� − μ�> 1 
υtγ

)2 
)

∗

We make two observations: 

i) As ln ( �) is a concave function then we know ln ( �) ≤

ln 

(

μ
�> 1 

υtγ

)

+ 

(

�−μ
�> 1 

υtγ

)

μ
�> 1 

υtγ

ii) Taking the expectation of both sides of ( ∗) results in the follow- 

ing: 

E 

[

ln ( �) 

∣

∣

∣

∣

� > 
1 

υtγ

]

= ln 

(

μ�> 1 
υtγ

)

+ o 

(

E 

[

(

� − μ�> 1 
υtγ

)2 
∣

∣

∣

∣

� > 
1 

υtγ

])

Re-arranging we have the following bound. 

ln 

(

μ�> 1 
υtγ

)

− E 

[

ln ( �) 

∣

∣

∣

∣

� > 
1 

υtγ

]

= o 

(

σ 2 
�> 1 

υtγ

)

. 

So from observation i) we know that 

E 

[

X PI 

∣

∣

∣

∣

� > 
1 

υtγ

]

≤ ln 

(

υtγμ�> 1 
υtγ

)

and only achieves equality in the deterministic case, i.e. when 

σ 2 
�> 1 

υtγ

= 0 . 

From observation ii) we know that the expected investment de- 

creases as uncertainty increases, i.e. as σ 2 
�> 1 

υtγ

increases. 
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Proof of Proposition 3 . 

Following the derivation of Proposition 2 , we seek to find: 

E Z [ E [ P ; x PI | Z ] ] = 

∞ 
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z − 1 − ln ( z ) 

γ
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. 

Proof of Proposition 4 . 

The difference between the EVPI and the upper bound pro- 

vided in Proposition 3 comes from integration over the range [0, 

∞ ) rather than [1, ∞ ). As such, the error is given by: 

error = 

1 
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Appendix C 

The purpose of our numerical study is to understand the loss 

of accuracy of the UB as an approximation to the EVPI. Hence, 

we focus upon the region where the bound is likely to perform 

poorly, informed by our theoretical results. Setting v = t = 1 , we 

simulate combinations of the remaining parameters in the follow- 

ing ranges: 0.001 ≤ α ≤ 1; 0.001 ≤ β ≤ 10; and for 0.1 ≤ γ ≤ 1.0. 

Table C.3 summarises the results for effectiveness rates of 0.1, 0.5, 

and 0.9, and selected 27 partitions of the parameter space for the 

shape and scale parameters. Reported are the minimum and max- 

imum values of the ratio of the UB to the EVPI in each partition. 

More than 20,0 0 0 simulations have been run in total to calculate 

these statistics. Lesser (greater) accuracy is implied when the log 

ratio of the UB to the true EVPI is larger (smaller). By showing the 

maximums and minimums of the log ratio over the controlled pa- 

rameter intervals, we gain insight into the best and worst accuracy 

within each simulation set. 

Our results show that the accuracy of the UB increases as the 

shape parameter α increases, which is consistent with Corollary 1 . 

In addition, the accuracy of the UB also increases for increasing 

values of effectiveness rate, γ , and decreasing values of the scale 

parameter β . Therefore, the upper bound becomes a poorer ap- 

proximation as the effectiveness rate reduces and the values of the 

scale parameter increases. This implies that for α > 1 and β < 0.1 

then the error between the approximation given by the UB and the 

true EVPI can be as high as a factor of 10. 
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