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Organisms constantly interact with other species through physical contact which leads

to changes on the molecular level, for example the transcriptome. These changes can be

monitored for all genes, with the help of high-throughput experiments such as RNA-seq

or microarrays. The adaptation of the gene expression to environmental changes within

cells is mediated through complex gene regulatory networks. Often, our knowledge of

these networks is incomplete. Network inference predicts gene regulatory interactions

based on transcriptome data. An emerging application of high-throughput transcriptome

studies are dual transcriptomics experiments. Here, the transcriptome of two or more

interacting species is measured simultaneously. Based on a dual RNA-seq data set of

murine dendritic cells infected with the fungal pathogen Candida albicans, the software

tool NetGenerator was applied to predict an inter-species gene regulatory network.

To promote further investigations of molecular inter-species interactions, we recently

discussed dual RNA-seq experiments for host-pathogen interactions and extended the

applied tool NetGenerator (Schulze et al., 2015). The updated version of NetGenerator

makes use of measurement variances in the algorithmic procedure and accepts gene

expression time series data with missing values. Additionally, we tested multiple modeling

scenarios regarding the stimuli functions of the gene regulatory network. Here, we

summarize the work by Schulze et al. (2015) and put it into a broader context. We

review various studies making use of the dual transcriptomics approach to investigate

the molecular basis of interacting species. Besides the application to host-pathogen

interactions, dual transcriptomics data are also utilized to study mutualistic and

commensalistic interactions. Furthermore, we give a short introduction into additional

approaches for the prediction of gene regulatory networks and discuss their application

to dual transcriptomics data. We conclude that the application of network inference on

dual-transcriptomics data is a promising approach to predict molecular inter-species

interactions.

Keywords: dual transcriptomics, dual RNA-seq, gene regulatory network, molecular inter-species interaction,

network inference, host-pathogen interaction

INTRODUCTION

Organisms constantly interact with their abiotic and biotic environment (Koshland, 2002).
Generally, biotic interactions are characterized by their effects on the fitness of an organism
(Figure 1A): The result of an interaction can be a fitness gain (+), a fitness loss (−), or has no effect
on fitness (0). Based on the interaction outcome for the organisms fitness, researchers can classify
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biotic interactions into competition (−/−), predator-prey
interaction (+/−), parasite/pathogen-host interaction (+/−),
mutualism (+/+; including symbiosis), commensalism (+/0),
and amensalism (−/0) (Begon et al., 2006).

Most of these interactions do not only appear on the
macroscopic (e.g., organism interaction) or mesoscopic level
(e.g., cell-cell interaction), but also affect the molecular level
of the cells through molecular mediators. Thus, interactions
can be scaled down to changes in gene expression, i.e., to
the transcriptome. Biotic interactions change the organisms’
environment. These changes, but also the interaction partner
themselves, are sensed by receptors on cell surfaces and
transmitted into the cell by signaling cascades. Such signals finally
(in)activate transcriptional regulators (Groisman and Mouslim,
2006). These regulators alter the expression of their target genes
which may in turn regulate other target genes within complex
Gene Regulatory Networks (GRNs) (Barabási and Oltvai, 2004;
Emmert-Streib et al., 2014). These specific and complex networks
determine the cells response to changes caused by a macroscopic
interaction. Currently, our knowledge about these complex
GRNs is limited, but it would be of great help to understand
the molecular basis of biotic interactions taking place on the
macroscopic level.

KEY CONCEPT 1 | Gene regulatory networks:

A GRN consists of regulatory interactions between genes in order to adjust the

mRNA expression levels to an applied stimulus. Commonly, they are visualized

as nodes representing genes and edges representing regulatory interactions.

Transcriptomics offers a comprehensive way to study
expression changes of all genes of an organism under
different conditions (e.g., reviewed by Jenner and Young, 2005;
Kammenga et al., 2007; Leroy and Raoult, 2010). Traditionally,
microarrays have been applied for transcriptomics. Since
the advent of next-generation-sequencing of cDNAs derived
from RNA samples (RNA-seq), researchers are able to study
transcriptomes with a higher sensitivity and unlimited detection
ranges (Mardis, 2008; Wang et al., 2009). One advantage of
RNA-seq over microarrays is that RNA-seq offers a species-
independent platform which allows for investigations of non-
model species.

KEY CONCEPT 2 | RNA-seq:

RNA-seq is a next-generation-sequencing technology where gene expression

levels are measured based on high-troughput sequencing of RNA molecules.

Given that an interaction between organisms of two different
species affects each one’s gene expression, it is promising to study
the transcriptomes of both species simultaneously in order to
understand the molecular basis of the observed interaction.Dual

transcriptomics is characterized by simultaneous measurements
of the transcriptome from two interacting species where the
processing of samples occurs collectively and species specific
expression is determined in silico (Westermann et al., 2012).
Dual transcriptomics has been successfully applied using both
microarrays and RNA-seq and contributed to new

KEY CONCEPT 3 | Dual transcriptomics:

Dual transcriptomics means to simultaneously measure the transcriptome of

two interacting species and collectively preprocess samples. Species specific

gene expression is determined in silico. Typically, RNA-seq or microarrays are

utilized for this purpose.

knowledge about important biological questions (see Section
2; Table 1). For example, dual transcriptomics data allows
to determine which genes or proteins indirectly or directly
interact between two species. Of note, this approach is
different to metagenomics, which identifies the entire genome
representation of an (environmental) sample; and it is different
to comparative transcriptomics, which compares the responses
of different species to the same stimulus. Strictly speaking, dual
transcriptomics is not the same as simultaneous transcriptomics,
where the transcriptome of two interacting species is captured
simultaneously but processing is carried out separately for each
species/RNA sample (e.g., Oosthuizen et al., 2011; Vojvodic et al.,
2015). In what follows, we differentiate between simultaneous
and dual transcriptomics, but proposed approaches may work for
both.

Using dual transcriptomics, researchers have identified
important genes, pathways and processes during the interaction
of interacting species. However, so far only a few studies have
elucidated more specifically which gene or pathway in organism
A affects which gene or pathway in organism B (Table 1).
Moreover, if such information is given it is either based on
previous knowledge or was found by small scale experiments.
In most studies, underlying transcriptome data were not used to
infer molecular interactions between species.

Network Inference (NI) is a Systems Biology approach
that predicts molecular regulatory interactions between genes
in GRNs from gene expression data. There are different
methodological approaches which were successfully applied in a
number of studies (reviewed in Hecker et al., 2009b; Emmert-
Streib et al., 2014; Linde et al., 2015). Commonly, NI has been
applied to predict a GRN in one species. In a pioneering study, we
appliedNI on dual RNA-seq data of the fungal pathogenCandida
albicans interacting with dendritic cells of Mus musculus. We
predicted two molecular host-pathogen interactions, which were
experimentally validated with help of intracellular staining,
cellular binding assays as well as knock-outs of fungal genes
and knock-downs of mouse genes followed by rtPCRs (Tierney
et al., 2012). To our best knowledge, this is currently the only
study which applied NI on dual-transcriptomics data. Guided
by this experience, we augmented our NI approach to deal with

KEY CONCEPT 4 | Network inference:

Network inference is a modeling approach to predict gene regulatory networks

based on gene expression data.

KEY CONCEPT 5 | Dual RNA-seq:

The term dual RNA-seq describes the simultaneous sequencing of mixed RNA-

pools originating from two (interacting) species. When a pool of sequenced

reads is mapped to genomes, reads are separated and mapped to the genome

of the species they originate from.
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TABLE 1 | Selection of published studies investigating molecular interactions between organisms by applying simultaneous and dual transcriptomics

approaches.

Interaction modus References Interacting species Method

HOST-PATHOGEN INTERACTION

Parasite-plant (Moy et al., 2004) Patterns of gene expression upon infection of

soybean plants by Phytophthora sojae.

Oomycete Phytophthora sojae

-

Soybean Glycine max

Dual

microarray

Parasite-plant (Ithal et al., 2007) Parallel genome-wide expression profiling of host and

pathogen during Soybean cyst nematode infection of soybean.

Nematode Heterodera glycin

-

Soybean Glycine max

Dual

microarray

Pathogen-plant (Hayden et al., 2014) Dual RNA-seq of the plant pathogen

Phytophthora ramorum and its tanoak host.

Fungus-like Phytophthora ramorum

-

Tree Notholithocarpus densiflorus

Dual RNA-seq

Fungus-plant (Eaton et al., 2010) Exploring molecular signaling in plant-fungal

symbioses using high throughput RNA sequencing.

Fungus Epichloë festucae

-

Legume Lolium perenne

Simultaneous

RNA-seq

Fungus-plant (Asai et al., 2014) Expression profiling during arabidopsis/downy

mildew interaction reveals a highly-expressed effector that attenuates

responses to salicylic acid.

Fungus Hyaloperonospora arabidopsidis

-

Plant Arabidopsis thaliana

Dual RNA-seq

Fungus-plant (Teixeira et al., 2014) High-resolution transcript profiling of the atypical

biotrophic interaction between Theobroma cacao and the fungal

pathogen Moniliophthora perniciosa.

Fungus Moniliophthora perniciosa

-

Plant Theobroma cacao

Dual RNA-seq

Fungus-plant (Lowe et al., 2014) Genomes and transcriptomes of partners in

plant-fungal interactions between canola (Brassica napus) and two

Leptosphaeria species.

Fungus Leptosphaeria species

-

Plant Brassica napus

Dual RNA-seq

Fungus-human (Tierney et al., 2012) An interspecies regulatory network inferred from

simultaneous RNA-seq of Candida albicans invading innate immune

cells.

Fungus Candida albicans

-

Mus musculus (dentritic cells)

Dual RNA-seq

Fungus-human (Liu et al., 2015) New signaling pathways govern the host response to

C. albicans infection in various niches.

Fungus Candida albicans

-

Human endothelial cells/oral epithelial cells

(in vitro infection)

Dual RNA-seq

Fungus-human (Oosthuizen et al., 2011) Dual organism transcriptomics of airway

epithelial cells interacting with conidia of Aspergillus fumigatus.

Fungus Aspergillus fumigatus

-

Human airway epithelial cells

Simultaneous

microarray

Bacterium-human (Humphrys et al., 2013) Simultaneous transcriptional profiling of

bacteria and their host cells.

Bacterium Chlamydia trachomatis

-

Human epithelial cell in vitro

Dual RNA-seq

Parasite-human (Yamagishi et al., 2014) Interactive transcriptome analysis of malaria

patients and infecting Plasmodium falciparum.

Parasite Plasmodium falciparum

-

Human (malaria patients)

Dual RNA-seq

Fungus-animal (Bruno et al., 2015) Transcriptomic analysis of vulvovaginal candidiasis

identifies a role for the NLRP3 inflammasome.

Fungus Candida albicans

-

Mouse (Mus musculus)

Dual RNA-seq

Virus-animal (Rosani et al., 2014) Dual analysis of host and pathogen transcriptomes

in ostreid herpesvirus 1-positive Crassostrea gigas.

Ostreid herpesvirus type 1

-

pacific oyster Crassostrea gigas

Dual RNA-seq

Parasite-animal (Foth et al., 2014) Whipworm genome and dual-species transcriptome

analyses provide molecular insights into an intimate host-parasite

interaction.

Nematode Trichuris spec.

-

Mouse Mus musculus

Dual RNA-seq

INTERACTION MODUS

Bacterium-animal (Brogaard et al., 2015) Concurrent host-pathogen gene expression in

the lungs of pigs challenged with Actinobacillus pleuropneumoniae.

Bacterium Actinobacillus pleuropneumoniae

-

Pig

High-

throughput

RT-qPCR

Nematode-insect (Choi et al., 2014) Dual RNA-seq of parasite and host reveals gene

expression dynamics during filarial worm-mosquito interactions.

Nematode Brugia malayi

-

Mosquito Aedes aegypti

Dual RNA-seq

(Continued)
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TABLE 1 | Continued

Interaction modus References Interacting species Method

HOST-SYMBIONT INTERACTION

Bacterium-plant (Roux et al., 2014) An integrated analysis of plant and bacterial gene

expression in symbiotic root nodules using laser-capture

microdissection coupled to RNA sequencing.

Bacterium Sinorhizobium meliloti

-

Legume Medicago truncatula

Dual RNA-seq

Fungus-plant (Handa et al., 2015) RNA-seq transcriptional profiling of an arbuscular

mycorrhiza provides insights into regulated and coordinated gene

expression in Lotus japonicus and Rhizophagus irregularis.

Fungus Rhizophagus irregularis

-

Legume Lotus japonicus

Dual RNA-seq

Fungus-plant (Johnson et al., 2007) Dual Affymetrix GeneChip(R) analysis of the

perennial ryegrass-endophyte symbiosis.

Fungus Epichloë festucae/Fungus

Neotyphodium lolii

-

Legume Lolium perenne

Dual

microarray

SOCIAL INSECT INTERACTION

(Vojvodic et al., 2015) The transcriptomic and evolutionary signature of

social interactions regulating honey bee caste development.

Developing honey bee larvae

-

Caregiving adult worker

Simultaneous

RNA-seq

SYMBIONT-SYMBIONT INTERACTION

Bacterium-

bacterium

(Rosenthal et al., 2011) RNA-seq reveals cooperative metabolic

interactions between two termite-gut spirochete species in co-culture.

Bacterium Treponema primitia

-

Bacterium Treponema azotonutricium

Dual RNA-seq

typical situations for NI based on dual transcriptomics data.
In Schulze et al. (2015), we published an improved version of
our NI tool NetGenerator (Guthke et al., 2005; Toepfer et al.,
2007) —an algorithm to infer GRNs based on time series gene
expression data that are simulated by Ordinary Differential
Equations (ODEs) and includes prior knowledge (see Section
4). NetGenerator is now capable of dealing with missing data
and has more options for handling variance of gene expression
data. In addition, we tested the influence of integrating multiple
stimuli.

This Frontiers Focused Review puts the results of Schulze
et al. (2015) into a broader context. In addition to dual
transcriptome studies dealing with host-pathogen interactions,
we review studies from other fields of biology, such as
mutualistic interactions. Furthermore, we give an overview of
other NI approaches and discuss their possible applications to
dual transcriptomics. Finally, we outline the usability of novel
extensions proposed in Schulze et al. (2015) and discuss current
problems as well as future developments.

DUAL TRANSCRIPTOMICS

The term dual RNA-seq describes the transcriptome sequencing
of two or more interacting species based on one mixed RNA-
pool. This approach of measuring the transcriptome of two
different species in one run has multiple advantages over
simultaneous transcriptomics. RNA can be extracted directly
without separating interacting species. Therewith, measured gene
expression data directly reflects changes due to macroscopic
interactions and not side effects of separation. Also, sequencing
costs are lower because only one library is constructed. In
some experimental setups interacting species are separated, their
transcriptomes are sequenced in two runs and data processing is

carried out separately.We refer to this procedure as simultaneous
transcriptomics.

Raw dual RNA-seq data are preprocessed as follows
(Figure 1B): Low quality bases of reads are trimmed [e.g.,
Trimmomatic (Bolger et al., 2014), CutAdapt (Martin, 2011)] and
samples are quality controlled [e.g., HTQC (Yang et al., 2013),
FastQC (Andrews, 2010)]. When the quality report is checked,
researchers need to keep species properties in mind. E.g., the
per sequence GC content plot of the FastQC report could show
two peaks, if the GC content of investigated species is very
different. A crucial step in dual RNA-seq preprocessing is the
alignment of reads to their corresponding genomes (“mapping”;
reviewed in Engström et al., 2013; Shang et al., 2014). Reads
can be mapped consecutively to both genomes, but the order
will influence the results since some reads may map to both
genomes (depending on their evolutionary distance, sequencing
parameters and read length). Alternatively, reads can be mapped
in parallel to concatenated genomes. The advantage is, that in
case of possible alignments to both genomes, the read mapping
tools find the best position. The drawback is, that in case of
equally good alignments to both genomes the read will be
discarded as multi-mapped read. Also, mapping parameters are
crucial, e.g., if intron lengths of studied organisms are very
different, a tool non-sensitive to this parameter should be applied.
In advance to carrying out experiments, RNA ratios of studied
organisms should be determined and reflected by the mapping
rates. As a next step, expression values of features (e.g., genes or
transcripts) are calculated [e.g., featureCounts (Liao et al., 2014),
maxcounts (Finotello et al., 2014)] and testing for differential
expression is carried out separately for each species (reviewed in
Rapaport et al., 2013; Soneson and Delorenzi, 2013; Zhang et al.,
2014).

Sequencing parameters, such as rRNA filtering (filter RNA
species of interest) (Westermann et al., 2012), read length
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FIGURE 1 | An example is provided how a molecular interaction

between two species is detected. Panel (A) provides a schematic overview

of possible interactions between organisms of two different species influencing

each other’s transcriptome. In (B) the processing of dual RNA-seq data

extracted simultaneously from both interacting species is shown. In contrast,

dotted lines represent simultaneous transcriptomics, where both

transcriptomes are analyzed separately. In (C) an exemplary GRN resulting

from the inference process is illustrated, including an indirect molecular

inter-species interaction between two genes (red bar). In addition, molecular

intra-species interactions (black) within each of the two species are shown.

Arrowheads indicate activation and bars indicate repression.

(number of sequenced bases of a RNA fragment), single- vs.
paired-end libraries (sequence a fragment from one or two
ends), sequencing depth (average number how often every
base is sequenced), and number of replicates (biological or
technical), need to be chosen carefully depending on the species
of interest and project aims. For example, the extractable RNA
amounts of each species need to be determined and optimized
in advance to the sequencing experiment. Therewith, a minimal
sequencing depth to achieve sufficient coverage for all species
can be calculated. If the species of interest are closely related,
researchers might sequence longer paired-end reads to better
determine read-genome correspondence and to prevent a large
proportion of multi-mapped reads. If researchers aim for a highly

reproducible detection of Differentially Expressed Genes (DEGs),
Liu et al. (2013) recommended to generate more biological
replicates rather than a higher sequencing depth. Nevertheless, if
the aim is to detect DEGs with low expression, a high sequencing
depth is necessary. Generally, we recommend to generate at least
three replicates with a minimum coverage of ∼10 fold to detect
DEGs.

In dual or simultaneous transcriptome studies based on
microarrays, RNA is extracted separately from each species
and hybridized to species-specific microarrays. Therefore,
preprocessing is not different from standard microarray data
preprocessing. Even though, microarray data preprocessing
slightly differs for different technological platforms (Gautier
et al., 2004; Du et al., 2008), the main steps are (Irizarry et al.,
2003): (i) image processing including background substraction,
(ii) within array normalization to correct for spatial effects
or cross-hybridization on each array, (iii) between array
normalization to ensure that expression values have the same
empirical distribution across different arrays/slides and (iv)
testing for DEGs between conditions. Here, empirical t-statistics
combined with amultiple test correction and a fold-change cutoff
have emerged as a standard (Smyth, 2005; SEQC/MAQC-III
Consortium, 2014).

DUAL TRANSCRIPTOMICS APPLICATIONS

Over the last years, the use of simultaneous transcriptomics to
elucidate the molecular interactions between organisms of the
same or of different species has gained increasing importance.
One major application of simultaneous transcriptomics is the
research area of infectious diseases. Different approaches dealing
with the simultaneous analysis of expression profiles from two
different species, via microarrays or RNA-seq, were published
(e.g., Motley et al., 2004; Tierney et al., 2012; Humphrys et al.,
2013; Schulze et al., 2015). These methods provide the basis to
reveal the complex interplay between invading pathogens and
their host. In the following, we briefly review recent simultaneous
transcriptomics studies focusing on host-pathogen interactions.
In addition, we provide insights to other relevant fields of
biological interactions in which simultaneous transcriptomics
plays an increasing role (Table 1).

Host-pathogen interactions are relevant in plant ecology due
to their consequences for agricultural ecosystems. Eaton et al.
(2010) performed high throughput sequencing of both, a plant
host and its pathogen to evaluate interactions in a grass-fungal
system. Themost important fungal genes responsible for the shift
of the fungus from a symbiont to a pathogen were revealed. The
study data indicates that the protein sakA is important for the
switch from a symbiotic to a pathogenic interaction.

On the plant side, changes in the hormone balance and
upregulation of the defense response (generally absent in a
symbiotic association) were observed to take place during the
change of interaction modes. Interestingly, the same grass-
fungal system has been investigated in regard to the symbiotic
interaction based on a specifically designed dual microarray,
which contains probes of two species (Johnson et al., 2007).
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In both publications, the symbiotic interaction of the fungus
Epichloë festucae and the host Lolium perenne is investigated
which is characterized by the fungal biosynthesis of secondary
metabolites that protect the plant from various biotic and abiotic
stresses, while the plant provides nutrients to the fungus and a
mechanism of dissemination via seed transmission.

Moy et al. (2004) designed a dual microarray to
simultaneously measure gene expression of soybean (Glycine
max) and its pathogen Phytophthora sojae on a single array. The
authors identified plant genes which are up- or downregulated
within 24 h after infection. Analyzing these gene sets, they
conclude that during the infection process the pathogen changes
from biotrophy to necrotrophy. Similar work in the field of
plant-pathogen interaction has been done by Ithal et al. (2007),
who investigated the gene expression changes in soybean (G.
max) and the soybean cyst nematode based on a dual microarray
expression study during the course of infection. In addition,
Teixeira et al. (2014) used dual RNA-seq to simultaneously assess
the transcriptomes of cacao (Theobroma cacao) and the fungal
pathogen Moniliophthora perniciosa, which causes Witches
broom disease in its host. The authors found that the pathogen
causes a change of the host metabolism to increase nutrition
availability. Accordingly, they observed carbon deprivation
on the host side and showed that the fungus causes massive
metabolic reprogramming in infected shoots.

The fungus C. albicans attracts broad research interest due to
its ability to switch from a commensal organism to a pathogen
which can cause fatal invasive infections in humans (Cheng et al.,
2012). To understand the mechanisms involved in the infection
process, predominantly one-sided expression analyses focusing
on either the host (e.g., Barker et al., 2005; Kim et al., 2005;
Fradin et al., 2007) or the pathogen (e.g., Fradin et al., 2003;
Fernández-Arenas et al., 2007; Bruno et al., 2010) were conducted
in the past. In recent years, insights in the infection and defense
mechanisms were gained by simultaneously measuring the hosts
and the fungus gene expression profiles utilizing dual RNA-seq
(Tierney et al., 2012; Bruno et al., 2015). In the latest study, Liu
et al. (2015) identified several active pathways during C. albicans
and host endothelial cell interaction based on dual RNA-seq data.
Furthermore, they validated that two of these pathways regulate
the uptake of C. albicans by host cells.

Dual transcriptomics was also applied to study host-virus
and host-parasite interactions. Dual RNA-seq analysis of pacific
oyster (Crassostrea gigas) infected by the ostreid herpesvirus type
1 allowed the exploration of the virus transcriptome and the
host innate immune response during the process of infection
(Rosani et al., 2014, see also Segarra et al., 2014). Furthermore,
to understand the molecular mechanisms of parasitism, a dual
RNA-seq approach was used to elucidate the transcriptome of
malaria patients and the parasite Plasmodium falciparum based
on blood samples (Yamagishi et al., 2014). The authors found
characteristic expression changes of human innate immune
response pathways involving TLR2 and TICAM2. Moreover,
these expression changes correlated with the severity of the
malaria infection.

Besides promoting our understanding of host-pathogen
interactions, some studies used dual transcriptomics to

investigate mutualism between species. Mycorrhiza is the
symbiotic association of certain fungal species with plant
roots (Brundrett, 2009). Handa et al. (2015) analyzed the
gene expression profiles of the legume Lotus japonicus and
the mycorrhizal fungus Rhizophagus irregularis during root
mycorrhizal development. Some highly co-regulated transcripts
encoding membrane traffic-related proteins, transporters and
iron transport-related proteins were identified. An expression
change of fungal cytochrome P450 was measured and the authors
hypothesize, that this might contribute to metabolic pathways
required to accommodate roots and soil.

Furthermore, an interesting study of mutualism has been
conducted by Rosenthal et al. (2011), who investigated the
interplay between two termite gut symbionts (spirochetes)
using dual RNA-seq. The authors identified detailed cooperative
interaction concerning metabolism during interaction of the
symbionts. Another application field is the use of dual RNA-
seq in plant-bacteria symbiotic interactions. For example, Roux
et al. (2014) applied dual RNA-seq on the model legume
Medicago truncatula and its symbiont Sinorhizobium meliloti.
Since their expression study was coupled to laser microdissection
of nodule regions, authors were able to analyze region sepcific
gene expression. The authors found that bacterial transcription
factors which control the root apical meristem are also
expressed in the nodule meristem. In contrast, plant genes
which are higher expressed in nodules than in roots are often
associated with regions comprising both plant and bacterial
partners.

Recently, simultaneous RNA-seq analysis was applied to
elucidate themolecular interaction of social insects. The interplay
between developing female honey bee larvae and adult nurse
workers was analyzed on the molecular level before and after
removal of the queen. By comparing these gene expression
profiles, larval and nurse genes associated with caste development
were identified (Vojvodic et al., 2015).

This short overview of interaction studies highlights the
far-reaching applicability and practicability of dual RNA-seq
analysis in the field of biological interactions. Consequently,
further development and improvement of suitable methods and
approaches, as the prediction of molecular interactions (Schulze
et al., 2015), is essential to promote our understanding of the
interplay between organisms on the molecular level. This is not
only crucial in the research area of infectious diseases, but may
also open up research on many symbiotic systems (Eaton et al.,
2011) and other biological relevant interaction systems.

NETWORK INFERENCE

Network Inference approaches predict GRNs based on gene
expression data. The structure of a GRN is thereby reconstructed
from the gene expression data in response to an applied stimulus
(reverse engineering).

The input for NI approaches is a gene expression matrix,
which contains the expression values (or changes) of genes
during treatment with different stimuli and/or over time. The
number of included genes depends on the research question and
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on the applied NI approach. Importantly, the number of possible
network structures increases exponentially with the number of
included genes (curse of dimensionality). Several strategies are
used to overcome the curse of dimensionality. Guided by the
observation that biological networks have fewer interactions
than expected in random networks, many NI approaches apply
the sparseness criterion, i.e., predict the smallest number of
interactions needed to fit the measured data. Another property
of GRNs which is often applied as a network selection criterion
is scale-freeness. This means that the number of interaction
partners per gene is power law distributed, i.e., most genes
interact with a very low number of genes while a few genes (hubs)
have a high number of interaction partners (Barabási and Oltvai,
2004). So called prior knowledge are interactions extracted from
literature or additional data sources, such as the occurrence of
transcription factor binding sites in promoters. Integration of
prior knowledge during NI strongly improves the accuracy of
predicted interactions (Hecker et al., 2009a).

The result of a NI can be a correlation network, a Bayesian
network or a mathematical model, depending on the underlying
NI approach. NI approaches differ in the details of predicted
interactions. They may predict either undirected interactions (A
and B interact) or directed interactions (A regulates B). Directed
interactions may additionally be signed (A induces B, A represses
C). It is possible to get a steady or a dynamic network model
depending on the NI approach. In dynamic network models, the
state at a certain time point depends on its state at previous time
points. Dynamic network models can be applied to predict future
behavior of a system.

The assessment of NI approaches is difficult as they are often
applied to very different research questions and success in one
experimental setup does not guarantee success in another one.
Since 2006, the “Dialog for Reverse Engineering Assessment and
Methodsâ” (DREAM, www.dreamchallenges.org) has launched
annual competitions for systems biology methods including NI
(Stolovitzky et al., 2007).

In what follows, we give a brief and general description of
the most important NI approaches and discuss their advantages
and disadvantages. We guide the interested reader to excellent
reviews for more comprehensive and detailed overviews of NI
approaches (Hecker et al., 2009b; Wu and Chan, 2012; Emmert-
Streib et al., 2014; Linde et al., 2015).

Approaches Based on Correlation and
Information Theory
One of the most straightforward methods to predict a GRN is to
compute the pairwise correlation between each pair of genes. An
interaction is predicted if the correlation value is above a user-
defined cut-off. This approach is computationally very fast and
can be applied to a large number of genes. As the concept of
correlation is well-known, results are easy to interpret. However,
correlation does not mean causality. For example, consider a
transcription factor inducing two target genes. The target genes
have a high correlation value but do not interact.

To overcome this problem, approaches based on information
theory compute the mutual information based on the pairwise

correlationmatrix. This termmeasures the statistical dependency
between two random variables, which represent the expression
intensities of two genes. Several mutual information based
approaches are available (Butte and Kohane, 2000; Basso et al.,
2005; Faith et al., 2007; Meyer et al., 2007; Altay and Emmert-
Streib, 2010). Typically, these approaches do not integrate prior
knowledge, nor do they enforce sparseness or scale-freeness. In
general, they infer static undirected networks, but augmentations
to generate directed networks exist (Madar et al., 2010).

Bayesian Networks
Another probabilistic approach is Bayesian NI. Here, the
expression of each gene is considered to be a random variable
which follows a probability distribution. Applying the Bayesian
theorem, algorithms sample networks from a prior distribution
and the network which best explains the measured data is
selected. With help of the prior distribution of networks, prior
knowledge can be elegantly integrated. Inferred GRNs are
directed and can be static or dynamic (without direct feedback).
Bayesian NI approaches (Murphy and Mian, 1999; Hartemink
et al., 2001; Rau et al., 2010; Yeung et al., 2011) do not directly
apply scale-freeness but this criterion might be included in
the prior distribution. A major disadvantage is that accuracy
of predicted interactions strongly depends on a relatively high
amount of measured expression data.

Linear Regression Based NI
By applying linear regression, the expression of a gene at
condition (time point) t is modeled as the weighted sum of
the expression of all other genes. Additionally, some approaches
include an external stimulus as part of the weighted sum. This
represents the change in the environment. The values for the
weights are determined by optimization algorithms in order to
fit to the measured expression data. Non-zero weights define
the network structure, where a positive weight represents an
activation and a negative weight a repression. Thus, linear
regression results in directed and signed steady networks. Many
linear regression approaches apply the sparseness criterion. They
predict the GRN which has a minimal (or small) number of
interactions but is still able to fit the measured data. Moreover,
they softly integrate prior knowledge (e.g., Gardner et al., 2003;
Toepfer et al., 2007; Zou and Hastie, 2005; Hecker et al., 2009a;
Gustafsson et al., 2005). More recent approaches also predict
scale-free GRNs (Hecker et al., 2009a; Gustafsson and Hörnquist,
2010; Altwasser et al., 2012).

Differential Equation Based NI
Systems of ODEs are widely used in physics, chemistry, and
biology to describe and model dynamic systems. Yet, ODEs
provide an excellent way to mathematically infer GRNs. Here,
the expression change of a gene at a time point is modeled as the
weighted sum of the expression of all other genes and an external
stimuli represents an environmental change. In contrast to steady
linear regression models, differential equations model the change
of a gene expression, not the gene expression itself.

Differential equation approaches reflect cause-effect relations
which can be visualized by directed networks. The environmental
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change directly leads to fast reacting genes that regulate genes
which respond later. Thus, GRNs modeled by ODEs are dynamic
with directed and signed (weighted) edges. Similar to linear
regression methods, weights are determined by optimization
algorithms with the aim to fit measured data. In this NI category,
many approaches apply the sparseness criterion and integrate
prior knowledge by preferring known interactions during model
structure optimization (e.g., Guthke et al., 2005; Greenfield
et al., 2013; Zhang et al., 2013). While predicted GRNs are
often highly accurate, a drawback is that the approaches are
computationally demanding. Thus, they are often applied to a
small number of genes which need to be carefully selected (see
below).

One approach based on differential equations is NetGenerator
(Guthke et al., 2005; Toepfer et al., 2007). The tool applies
the sparseness criterion with help of a heuristic search strategy.
Furthermore, it softly integrates prior knowledge and has been
augmented to predict interactions which are robust against
noise in expression data (Linde et al., 2010). NetGenerator
was successfully applied to predict GRNs for immune diseases
(Guthke et al., 2005), stress adaptation processes of pathogens
(Linde et al., 2010, 2012) and rheumatoid arthritis (Kupfer et al.,
2014). Since 2013, NetGenerator is able to predict GRNs based on
more than one expression data set and more than one stimulus
(Weber et al., 2013), which is for example useful for combined
drug treatment.

DUAL NETWORK INFERENCE

Interacting organisms of two or more species form a complex
system. Various direct and indirect interactions take place
and trigger multiple responses at different scales. In the

following, as an example the complex interactions of the
pathogenic fungus C. albicans and the human immune system
are outlined in an abstract and simplified way (Figure 2).
C. albicans cells can migrate into host tissues where they
are exposed to different environmental conditions, such as
a change in pH, available nutritions, presence and contact
with immune cells. These stimuli are sensed by C. albicans,
transmitted through the cell and finally the transcriptional
program is changed. Similarly, immune and tissue cells sense
the presence of C. albicans and change their transcriptional
program. The transcriptional changes of both species can be
measured by dual RNA-seq or microarrays. After the processing
of transcribed mRNAs, the host adapts to infection. E.g.,
membrane bound and soluble receptors for pathogen recognition
and cell signaling molecules for cell-cell communication are
produced. Furthermore, host defense responses are initiated,
such as the generation of reactive oxygen species. In turn,
the pathogen again changes its transcriptional program to
protect itself against host defense mechanisms. GRNs cannot
comprehensively describe all molecular mechanisms of such
a complex system of interacting species, but predict essential
and also indirect interactions. Tierney et al. (2012) predicted
inter-species interactions in a system of murine dendritic cells
interacting with C. albicans. As outlined before (Figure 2),
these predictions are highly indirect but were experimentally
validated.

Theoretically, all presented NI methods (see Section 4) can
be applied to dual transcriptomics data. Some NI approaches
additionally allow for prior knowledge as input. Given these
inputs, NI approaches may work with dual or simultaneous
gene expression data and finally predict a GRN including
genes of both interacting species. Molecular interactions can be

FIGURE 2 | Simplified overview of Candida albicans (red) interacting with an immune cell (blue) and its environment. C. albicans is stimulated by

environmental factors (I) leading to a change of its transcriptome. Immune cells recognize the pathogen, e.g., via pattern recognition receptors (II), transmit the signal

through the cell and adapt their transcriptional program (III). In turn, this stimulates C. albicans, e.g., by producing cellsurface or extracellular proteins (IV).
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predicted between genes of one species (molecular intra-species

interaction) or between genes of different species (molecular

inter-species interaction; Figure 1C). NetGenerator (Guthke
et al., 2005; Toepfer et al., 2007) is a tool that requires
time series data of DEGs in form of a gene expression
matrix, which can consist of genes from two interacting
organisms. Relevant genes to be incorporated in the inference
have to be selected. A maximum number of 20–30 genes
is recommended depending on the number of samples. For
example, genes can be selected based on their association to
enriched Gene Ontology terms or with the help of expert
knowledge.

KEY CONCEPT 6 | Molecular intra-species interactions:

Molecular intra-species interactions are gene regulatory interactions predicted

between two genes within one species. These predictions can be direct or

indirect.

KEY CONCEPT 7 | Molecular inter-species interactions:

Molecular inter-species interactions are predictions of a gene from species A

interacting with a gene from species B. The predicted inter-species interactions

are highly indirect.

To the authors’ best knowledge the first practical inter-
species application of NI was carried out with NetGenerator
based on dual RNA-seq data of M. musculus dendritic cells
infected with C. albicans (Tierney et al., 2012). Guided by this
experience, we augmented NetGenerator for typical scenaria of
dual transcriptomics data (Schulze et al., 2015) which we will
introduce in the following.

A change in gene expression is triggered by one or more
stimuli, which NetGenerator integrates through one or more
time-dependent functions. Such a function is a user-defined input
which represents the environmental change over time. If both
species respond immediately, one identical stimulus function
for both species might be sufficient. It is also possible, that one
species responds faster than the other, which could be translated
into two or more stimuli functions. NetGenerator was extended
to incorporate multiple stimuli by Weber et al. (2013), while
making use of multiple stimuli for dual NI was first discussed in
Schulze et al. (2015).

NetGenerator was extended in Schulze et al. (2015) to deal
with missing data at intermediate time points of time series. For
example, this can occur when no gene expression values can
be determined due to insufficient coverage or other technical
problems. Furthermore, if transcriptome data from two species
are combined retrospectively into a dual transcriptomics data
set, time points can differ. Internally, NetGenerator handles this
problem by interpolating missing data points. NetGenerator does
not accept missing values for the first or last time point. In that
case, the user has to provide these values, e.g., by setting them to
zero or preceding/succeeding values.

Finally, NetGenerator was extended to consider gene
expression variances. Biological variance in gene expression data
exists for each experimental setup. However, the complex nature
of biotic interactions in vivo leads to more variance than in
in vitro experiments where under defined conditions only one

environmental parameter is changed (e.g., heat shock). For each
gene at each time point, a variance is calculated based on
replicated measurements. The NI process of NetGenerator is
sequential, i.e., it integrates one gene after another. For each
gene, an objective function is minimized. In a simplified way, this
means that the difference between measured data and simulated
time course data should be as small as possible. The extended
NetGenerator includes gene expression variances in the objective
function. For gene expression values with a large variance, the
difference of measured and simulated data is allowed to be larger
than for gene expression values with smaller variance.

Issues and Perspectives
Dual transcriptomics paves the way to study the molecular
basis of interaction. With the advent of RNA-seq it is now
possible to study the transcriptome of non-model species. In
this Frontiers Focused Review, we present an overview of
dual and simultaneous transcriptomics studies which shows
the wide range of possible applications from studying host-
pathogen interactions via symbiotic fungal-host interactions to
social interactions of insects. Among these studies, there is no
example wheremolecular host-pathogen interactions were solved
omics-based by both, dual and simultaneous transcriptomics. The
majority of theses studies have identified genes and pathways
involved in the interaction process. With dual NI, we present
an approach which goes beyond identification of DEGs and
uses gene expression data to predict molecular inter-species
interactions (Figure 1C; Tierney et al., 2012; Schulze et al., 2015).
Hypothetic gene regulatory interactions predicted by NI might
be indirect. In fact, genes never directly interact. The most direct
interaction, which can be predicted is between a transcription
factor coding gene and the transcription factors target gene.

Indirect interactions may represent whole pathways or
signaling cascades relevant in the interaction between two
species. For a long time, indirect interactions have been
regarded as a drawback of NI. In fact, the ability to predict
indirect interactions is a big advantage, when NI approaches
are applied to dual transcriptomics data. Predicted molecular
inter-species interactions are by nature indirect but they are
extremely interesting as they indicate which gene from species
A influences which gene from species B (e.g., via one or
more hidden molecular mediators, receptors, pathways or
transcription factors) . In future, dual network inference may also
be applied to dual transcriptomics experiments where different
organisms of the same species interact with each other (e.g.,
Vojvodic et al., 2015).

As models are always abstractions from a complex reality
they do have a number of simplifications/assumptions. We
have already discussed, that correlation of two genes does
not mean a causal interaction. Other approaches based on
regression or differential equations often assume linearity, which
means the concentration of an activated gene is a linear
function of its activator. However, biochemical kinetics often
contain saturation dynamics (e.g., Michaelis Menten kinetics) or
synergistic effects (e.g., Hill kinetics). Some tools also allow for
non-linear modeling, e.g., NetGenerator (Guthke et al., 2005).
This introduces additional parameters that need to be identified
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and therewith more prior knowledge or experimental data is
needed. On the other hand, the assumption of linearity also holds
true for wide ranges of biochemical kinetics.

A general assumption in (dual) transcriptomics is that
the measured gene expression changes have an influence on
the phenotype. However, proteins catalyze most biochemical
reactions and shape the structure of a cell. Dual proteomics
may pave the way to directly measure proteins. As the overlap
between proteomics and transcriptomics differs depending on
the experiment (Haider and Pal, 2013), NI approaches combining
both -omics approaches are necessary.

Recently, first steps were done toward a systems biology of
pathogen-host interactions by combining models of GRNs and
signaling networks with models of other levels, in particular
by modeling of metabolic and Protein-Protein Interaction
(PPI) networks (Durmus et al., 2015; Schleicher et al., 2016).
Sometimes, GRN modeling was also supported by prior
knowledge retrieved from PPI databases (e.g., Altwasser et al.,
2012).

Depending on the number of genes, NI approaches are divided
into small scale and large scale NI. Large scale approaches often
need a compendium of gene expression data combining different
experiments. Thus, predicted interactions are gobal (genome-
wide) for the respective interacting species and not specific for
a certain condition/treatment. These approaches are useful to
identify central genes (hubs) in regulatory networks. Small scale
approaches typically focus on certain experimental conditions
and are thus useful for dual NI. Even though, statistical (p-values
for differential expression) and biological (e.g., member of an
interesting biological process) methods for gene selection exist,
this process is often subjective. Novel NI approaches need to
combine advantages of large scale and small scale methods.

When we study the transcriptome of microorganisms, we
need to be aware that we measure a mixture of hundreds or
billions of cells, that might even be of different cell types.
Expression values are a kind of “average” over the expression
of all these different cells which assumes one big identical cell
population. In fact, there might be sub-populations during the
experiment. Moreover, individual cells may follow a very specific
strategy during a biotic interaction. Single-cell RNA-seq allows
to measure the transcriptome of each individual (Shapiro et al.,
2013; Battle et al., 2014) and will change our understanding
of molecular inter-species interactions. While single-cell RNA-
seq is already possible for higher organisms, methods are
being adapted for small RNA amounts of microorganisms.
Single-cell RNA-seq of interacting species will help to identify
the molecular basis of two interacting cells. Methods for NI

based on such data need to take into account variability
between different cells of the same species. In comparison to
networks from averaged data, networks of a single cell may
help to identify genes and interactions which vary between
cells and are connected to a specific phenotype. Such an
approach is applicable for individualized medicine (Lu et al.,
2014).

This Frontiers Focused Review is mainly dedicated to dual
RNA-seq data and modeling of two interacting species such
as pathogen-host interaction. RNA-seq opens the door for
the investigation of multi-species interaction, in particular the
interactions between microorganisms and viruses in oral and
gut microbiomes (Bikel et al., 2015). Whereas, metagenomics
is focused on the relative abundance of the different species
(genomes), the emerging RNA-seq-based metatranscriptomics
will provide gene expression data of a biome and, thus,
the empirical basis for molecular modeling of multi-species
population networks. Examples are metatranscriptomics of the
human gut (Franzosa et al., 2014) and its application to the
current research on inflammatory bowel disease (Valles-Colomer
et al., 2016) and the mixed culture of three bacterial species
(Giannoukos et al., 2012). In addition, there are examples of
metatranscriptome studies in environmental research, such as to
analyse the gene expression and dynamics in the environments
of the Pacific (Stewart et al., 2011) or the Amazon River (Satinsky
et al., 2014).
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