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The mesolimbic and nigrostriatal dopamine (DA) systems play a key role in the physiology
of reward seeking, motivation and motor control. Importantly, they are also involved in
the pathophysiology of Parkinson’s and Huntington’s disease, schizophrenia and addiction.
Control of DA release in the striatum is tightly linked to firing of DA neurons in the
ventral tegmental area (VTA) and the substantia nigra (SN). However, local influences in
the striatum affect release by exerting their action directly on axon terminals. For example,
endogenous glutamatergic and cholinergic activity is sufficient to trigger striatal DA release
independently of cell body firing. Recent developments involving genetic manipulation,
pharmacological selectivity or selective stimulation have allowed for better characterization
of these phenomena. Such termino-terminal forms of control of DA release transform
considerably our understanding of the mesolimbic and nigrostriatal systems, and have
strong implications as potential mechanisms to modify impaired control of DA release in
the diseased brain. Here, we review these and related mechanisms and their implications
in the physiology of ascending DA systems.
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INTRODUCTION: ROLE OF DA IN MOTOR AND LIMBIC
FUNCTION
Dopamine (DA) plays a critical role in the organization of
reward-seeking behavior and motor responses (Joshua et al., 2009;
Schultz, 2013). Through the mesolimbic and nigrostriatal DA
systems, the forebrain receives dopaminergic input that mod-
ulates a range of functionally distinct structures, such as the
basal ganglia and cerebral cortex (Björklund and Dunnett, 2007;
Tritsch and Sabatini, 2012). The mesolimbic system is formed by
dopaminergic neurons located in the VTA and their projections to
the nucleus accumbens (NAc), cortex, amygdala and hippocam-
pus, which participate in the configuration of reward-seeking
behaviors (Björklund and Dunnett, 2007; Stuber et al., 2012;
Nieh et al., 2013). The nigrostriatal system has its origin in the
substantia nigra pars compacta (SNc) and projects preferentially
to the dorsolateral domains of the striatum, having a more defined
role in the organization of motor plans (Groenewegen, 2003;
DeLong and Wichmann, 2007). Such functional distinction at
the level of the striatum seems to have structural and molecular
correlates on DA neurons from the SNc (Henny et al., 2012;
Schiemann et al., 2012). Additional to these functional implica-
tions, dopaminergic transmission is compromised in a variety
of neurological conditions such as schizophrenia, Huntington’s
and Parkinson’s disease, drug addiction and obsessive-compulsive
disorder, among others (DeLong and Wichmann, 2007; Money
and Stanwood, 2013).

The striatum is the main input nucleus of the basal gan-
glia, and DA modulates how this input is processed (Calabresi
et al., 1997; Centonze et al., 2001; Tritsch and Sabatini, 2012).

However, in contrast to the traditional view of inter-neuronal
chemical excitatory synaptic transmission in which structural
and functional specializations are observed at the postsynaptic
domains, striatal dopaminergic transmission does not always
require such level of postsynaptic structural specialization (Rice
and Cragg, 2008; Fuxe et al., 2012). Instead, release occurs in a
diffuse manner, DA receptors are extrasynaptic and ultrastruc-
tural studies on the extension and density of DA neuron axonal
arborization in the striatum point to broad, intricate projections
that cover vast areas (Pickel et al., 1981; Smith et al., 1994; Moss
and Bolam, 2008; Matsuda et al., 2009). This diffusely spread
mode of transmission (in contrast to localized, highly spatially
restricted communication), is termed “volume transmission”, and
is a feature of a number of transmitters such as acetylcholine,
norepinephrine, DA and serotonin (Taber and Hurley, 2014).
Volume transmission of DA is, however, not exclusive to the
striatum and it has its own particularities through different areas
(Rice and Cragg, 2008; Fuxe et al., 2012; Martin and Spühler,
2013; Taber and Hurley, 2014). DA as a volume transmitter in
the striatum is thought to exert a widespread modulatory influ-
ence on excitatory—glutamatergic—transmission arriving from
the cortex, basolateral amygdala (BLA), and ventral hippocam-
pus (vHipp; Britt et al., 2012); or on inhibitory—GABAergic—
transmission incoming from areas such as VTA (Van Bockstaele
and Pickel, 1995) and ventral pallidum (Churchill and Kalivas,
1994).

DA modulation of incoming transmission to the striatum plays
a key role in the functional expression of reward-seeking behav-
iors and motor control. Such functions exhibit some stratification
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within the striatum (Threlfell and Cragg, 2011). For example,
dorso-medial and dorso-lateral areas are predominantly involved
in motor control, while ventro-medial segments are mostly
involved in the expression of reward processing, motivation and
salience (Groenewegen, 2003; Voorn et al., 2004; Kreitzer and
Berke, 2011; Stuber et al., 2012). Concurrently, cortico-striatal
projections also exhibit a stratified distribution in which the
motor and cingulate cortices form the primary input to the dorso-
lateral striatum, while prefrontal and prelimbic cortices project
mainly to ventro-medial areas of the striatum (Voorn et al., 2004).
Phenomena responsible for regulation of striatal DA release can
be VTA/SNc driven, or locally acting, at the striatal level. This
latter possibility has long been reported, still attracts considerable
attention in terms of mechanistic characterization (Cachope et al.,
2012; Threlfell et al., 2012) and is considered as an opportunity for
functionally-segregated intervention (Threlfell and Cragg, 2011).

MULTIPLICITY OF MECHANISMS IN THE CONTROL OF
DOPAMINE RELEASE
Through what are now seminal papers, Wolfram Schultz et al.
demonstrated that firing of DA neurons in the midbrain increases
in response to rewarding stimuli in non-human primates (Schultz
et al., 1997; Schultz, 1998), while functional imaging studies in
humans point to a similar increase in cellular activity (D’Ardenne
et al., 2008), suggesting correspondence with Schultz’s group
reports. Interestingly, it was recently described that VTA GABAer-
gic neurons also encode reward expectation (Cohen et al., 2012).
Recordings of DA neurons from the VTA or SNc areas in rodents
exhibit slow, tonic firing rates that periodically switch to a high
frequency events (Grace and Bunney, 1984a,b). Thus, low levels
of DA release have been correlated with low frequency firing rate
of DA neurons, while corresponding enhancement in striatal DA
release occurs in response to high frequency firing rates (Kawagoe
et al., 1992). These findings have sculpted the traditional view
of striatal DA release being determined by the rate of neuronal
firing of the DA neuron somatas located in either VTA or SNc.
However, besides this dominant mechanism of control of DA
release, local factors such as reuptake, autoreceptor-dependent
modulation, and termino-terminal control exist and are rec-
ognized to play a prominent role, independently of VTA/SNc
firing rate.

DA neurons projecting to the striatum establish prominent
axonal trees at their destination. The volume transmission feature
of striatal DA implies that a considerable amount of control is
required in terms of uptake and/or negative feedback on future
release events. In reaching this goal, two key mechanisms are DA
transporter activity (DAT) and D2-like presynaptic autoreceptor
activity. DAT activity is thought to limit the radius of DA activity
(Rice and Cragg, 2008) and, by doing so, restricts activation of
DA receptors (reviewed in Rice et al., 2011). In a similar manner,
it is known that blockade of D2-like DA receptors in slices
leads to increased DA release in response to repetitive electrical
stimulation (Limberger et al., 1991; Patel et al., 1992). This effect,
however, is not manifest when single pulse stimulation is used
(Limberger et al., 1991; Patel et al., 1992), suggesting that there
is not sufficient DA tone elicited by a single pulse to be displaced
by the antagonist. Importantly, changes in D2 receptor levels and

their subsequent activation are thought to play a prominent role
in several neurological conditions in which DA levels are altered
(Ford, 2014).

LOCAL STRIATAL CONTROL OF DOPAMINE RELEASE
GLUTAMATERGIC TRANSMISSION
Excitatory glutamatergic activity in the striatum originates mainly
from frontal cortex, midline and intralaminar thalamus, basal
amygdala, and hippocampus (reviewed in Sesack and Grace,
2010; Stuber et al., 2012). Additionally, DA terminals release
glutamate (Sulzer et al., 1998; Joyce and Rayport, 2000; Sulzer
and Rayport, 2000; Chuhma et al., 2004; Dal Bo et al., 2004;
Chuhma et al., 2009; Hnasko et al., 2010), and this has recently
been demonstrated by way of selective optogenetic stimulation
of DA terminals (Stuber et al., 2010). However, this last report
demonstrates that such possibility exists only in DA terminals that
reach the NAc, not the dorsal striatum. Still, some debate prevails
as to this feature not being present in the adult brain (Bérubé-
Carrière et al., 2009; Moss et al., 2011), or being as widespread as
initially thought (Stuber et al., 2010; for a review, see Broussard,
2012).

Evidence on the potential role of glutamate as a form of local
control of DA release in the striatum has long been reported
(Imperato et al., 1990; Cheramy et al., 1991; Krebs et al.,
1991; Desce et al., 1992) and both ionotropic and metabotropic
glutamate receptors (iGluR; mGluR, respectively) have been
implicated. However, most of the initial studies were performed
in vivo using brain microdialysis as the measuring technique
to assess DA levels as well as for local administration of gluta-
mate receptor ligands. Such findings were of course influenced
by slow temporal resolution and the effects of the ligand in
a complex circuit, among other factors, making a mechanistic
interpretation difficult. In vitro experimental designs, on the
other hand, allowed for more direct mechanistic description while
still not directly addressing whether results were equivalent to
intact-tissue conditions. These distinct experimental conditions
might account for what, at the time, were apparent contradic-
tory results. Initial in vitro explorations in slices and synapto-
somes accounted not only for glutamate, but for a range of
neurotransmitters that could affect striatal DA release locally,
including acetylcholine, GABA, glycine and opiates (reviewed
in Chesselet, 1984). However, further in vivo experiments in
freely moving rats were still non conclusive; i.e., activation of
AMPA receptors by exogenous ligands led to a decrease in DA
release, while an increase was evident only in response to the
application of NMDA receptor ligands at high concentrations
(Imperato et al., 1990). Blocking uptake of endogenous release,
in turn, elevated DA release in a way that was sensitive to the
application of either NMDA or AMPA antagonists, suggesting
the involvement of both receptor types in that response (Segovia
et al., 1997). Similarly, electrical stimulation of the prefrontal
cortex, a putative glutamatergic input to striatum, as well as
local application of kainate or NMDA increased DA release
(Cheramy et al., 1991; Krebs et al., 1991). Development of
electrochemical techniques, however, greatly contributed to the
clarification of these mechanisms. The use of fast-scan cyclic
voltammetry (FSCV) for the detection of DA in vitro allowed for
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better temporal resolution which was less influenced by circuit
adaptive responses in the mid-term scale (minutes), which could
potentially influence DA readout. Under those conditions, bath
application of kainate, AMPA or NMDA elicited inhibition of
DA release (Wu et al., 2000; Kulagina et al., 2001; Avshalumov
et al., 2003). Moreover, electron microscopy studies were not
able to demonstrate labeling of iGluRs in striatal DA termi-
nals (Bernard et al., 1997; Bernard and Bolam, 1998). The lack
of expression of iGluRs on DA terminals suggests that iGluR-
mediated modulation of DA release relates to a more com-
plex process; which may underlie interactions between multi-
ple cellular types and/or chemical mediators. This issue, raised
and investigated by Rice’s group led to the identification of
H2O2 as a key molecule in the iGluR-mediated decrease of
DA release (Avshalumov et al., 2000, 2003, 2008; Avshalumov
and Rice, 2003). This model describes how glutamatergic activ-
ity on ionotropic receptors in medium spiny neurons (MSNs)
triggers production and release of H2O2, which in turn dif-
fuses to adjacent DA terminals and promotes opening of KATP

channels leading to reduction of DA release (Avshalumov et al.,
2008).

In contrast to iGluRs, labeling of mGluRs has been reported
in presynaptic profiles identified as DA axons (Paquet and Smith,
2003). Moreover, blocking glutamate uptake, or high-frequency
stimulation of the cortico-striatal pathway modulates DA release,
in a mGluR-dependent fashion followed by modulation of Ca++-
activated potassium channels (Zhang and Sulzer, 2003). Alto-
gether, the existent evidence points to mGluR-mediated direct
action on DA terminals, and a second MSN-mediated mechanism
involving iGluR-H2O2 signaling.

CHOLINERGIC TRANSMISSION
In contrast to striatal glutamatergic activity, which originates
mainly from inputs to the striatum, sources of striatal acetyl-
choline release are mostly from cholinergic interneurons (CINs)
that account for about 2–5% of all striatal neurons (Descarries
et al., 1997; Descarries and Mechawar, 2000). Additional to
CINs, a recent report shows that brainstem-based cholinergic
neurons send terminals to the striatum in a topographic fashion
with their origin (Dautan et al., 2014). In spite of their low
numbers, CINs establish prominent and intricate axonal pro-
jections that configure an extensive planar neurotransmission
system (Descarries et al., 1997; Descarries and Mechawar, 2000).
Electrophysiological characterization shows that CINs are ton-
ically active neurons that fire at a relatively low rate of about
5–10 Hz (Wilson et al., 1990; Aosaki et al., 1995). This rate,
however, as in the case of DA neurons, encodes behaviorally
relevant reward-related events (Apicella et al., 1991, 2011; Aosaki
et al., 1994, 1995; Shimo and Hikosaka, 2001; Morris et al.,
2004).

Target receptors of cholinergic activity in the striatum are
both of nicotinic and muscarinic types (nAChR and mAChR,
respectively). While mAChRs are seven trans-membrane
domain G-protein coupled receptors, nAChRs consist of
five subunits arranged as homomers or heteromers that, in
mammals, are formed by subfamilies II (α7) and III (α2-6, β2-4)
(Le Novère et al., 2002). Particularly, striatal DA axons express a

high density of α4, α5, α6, β2 and β3 subunits in an arrangement
of two αβ pairs that could be α4-β2 and/or α6-β2 and/or α4-β4,
plus a fifth subunit that can be α5 or β3 (Champtiaux et al.,
2003; reviewed in Threlfell and Cragg, 2011). Additionally, the β2
subunit is expressed on striatal DA axons (Jones et al., 2001) and
is included in all nAChRs at these terminals. This characterization
is functionally relevant because some segregation exists in which
predominance of different α subunits occurs between dorso-
lateral striatum and the NAc. More specifically, a significant
amount of work has shown that α4(non-α6)-nAChRs play a
prominent role in dorsal striatum, while α4α6-nAChRs are
dominant in NAc (Exley et al., 2008, 2011, 2012). Given the
distinct functional role of the dorsolateral and the ventromedial
striatum, it has been proposed that such differences could be
taken into account as a substrate for region-specific intervention
(Threlfell and Cragg, 2011).

mAChRs, in turn, are classified in two groups according to
their coupling to either Gs (M1, M3, M5) or Gi (M2, M4) subunits
of G proteins, with M2 and M4 predominantly expressed in
CINs (Yan and Surmeier, 1996). In a similar way to what has
been described for nAChRs, mAChRs exhibit some dorso-ventral
gradient in their ability to regulate DA release. While M2/M4

receptors are necessary for such regulation in the dorsal striatum,
M4 is prevalent in the NAc (Threlfell et al., 2010). Additionally,
expression of M5 receptors has been reported in nigrostriatal
DA neurons, although their pattern of expression on striatal DA
terminals and subsequent potential role in local control of DA
release remains unclear (reviewed in Threlfell and Cragg, 2011;
Zhang and Sulzer, 2012).

Involvement of presynaptic cholinergic receptors on DA reg-
ulation was inferred early, mainly from experiments describing
increase of DA release in response to AChR activation in slices
or synaptosomes (Giorguieff et al., 1976, 1977; Wonnacott
et al., 1989; Rapier et al., 1990). In a similar way to what
occurred with the characterization of glutamatergic-dependent
DA modulation, transition to electrochemical methods to quan-
tify DA allowed for a better temporal resolution. Importantly,
FSCV has been critical in determining a high dependence of
DA release on stimulation frequency under the effect of nico-
tine. More specifically, in a striatal slice, the maximum peak
of DA release does not change significantly through different
frequencies (5, 10, 25, 50 Hz) of electrical stimulation. How-
ever, in the presence of nicotine or the nAChR antagonist
mecamylamine, DA release at low frequencies is decreased,
while at high frequencies release is enhanced (Rice and Cragg,
2004).

While electrical stimulation combined with pharmacological
and genetic manipulations have produced a wealth of infor-
mation on cholinergic control of DA release (Giorguieff et al.,
1977; Cheramy et al., 1991; Krebs et al., 1991; Desce et al.,
1992; Tremblay et al., 1992; Chéramy et al., 1996; Schmitz
et al., 2003; Zhang and Sulzer, 2003, 2012; Exley and Cragg,
2008; Exley et al., 2011; reviewed by Cragg, 2006; Rice et al.,
2011; Threlfell and Cragg, 2011; Zhang and Sulzer, 2012), the
advent of optogenetics offered the previously unseen possibility
of selective control of CINs. This would allow inducing AChR
activation by means of endogenous release of ACh, obtained by
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selective stimulation of striatal CINs. Taking advantage of in vitro
slices, electrochemistry, and optogenetics, both the laboratory
of Stephanie Cragg (Threlfell et al., 2012) and ours (Cachope
et al., 2012) were interested in characterizing changes in striatal
DA levels in response to endogenous AChR activation. Inter-
estingly, both research groups were advancing on characteriz-
ing similar phenomena in functionally different striatal areas,
showing how endogenous release of ACh directly triggers DA
release in the dorsal striatum and the NAc, respectively. Addi-
tionally to demonstrating how selective activation of CINs is
enough to trigger DA release in striatum and NAc, respectively,
both reports confirmed the role of nAChRs and mAChRs in
modulating such output. Moreover, Cragg’s report very nicely
unveiled circuital mechanisms by which thalamic input synchro-
nizes CIN firing, subsequently promoting DA release (Threlfell
et al., 2012). Our experiments focused instead on the possibility
of CINs-triggered DA release in vivo (Cachope et al., 2012).
Consistently with the in vitro data, optogenetic stimulation of
CINs in the anesthetized mouse was sufficient to trigger eleva-
tion of DA concentrations in the NAc. Also, following Sabatini’s
group’s report regarding the ability of CINs to evoke gluta-
matergic responses (Higley et al., 2011), we showed that ACh-
evoked DA release is sensitive to AMPA blockers (Cachope et al.,
2012).

In the case of mAChRs, they can also locally modulate DA
release in the striatum. In vitro experiments with FSCV show how
a wide range mAChR antagonist (oxotremorine) decreases DA
release evoked by single pulse electrical stimulation, but enhances

DA levels in response to train stimulation (Threlfell et al., 2010).
A similar effect was observed using selective optogenetic stimu-
lation, in which single pulse optical stimulation did not affect
DA release, but instead 5 and 10 Hz stimulation enhanced DA
release under application of the mAChR antagonist scopolamine
(Cachope et al., 2012; Threlfell et al., 2012).

A complex interaction between diverse neurotransmission and
neuromodulatory systems takes place in the control of striatal
DA release. Although we have focused on the effect of glu-
tamatergic and cholinergic systems, a handful other receptors
have been identified as able to alter striatal DA levels; includ-
ing GABA, cannabinoid, purinergic and opioid. Interestingly
(and, up to some point expected), the possibilities for diver-
sity on this local control are dependent on the type of recep-
tor, not just the type of transmitter/modulator being released.
Both in the case of glutamate and acetylcholine, different recep-
tors lead to distinct and even opposite effects. As illustrated
in Figure 1, mGluR activation on DA terminals and iGluR
activation on MSNs result both in modulation of K conduc-
tances decreasing DA release. In contrast, activation of nAChRs
on DA terminals leads to increased DA release, while activa-
tion of mAChR autoreceptors expectedly result in decreased
DA release. More importantly, all these results demonstrate that
firing rate at the VTA and SNc does not entirely determine
striatal DA output, leaving enough room for control mechanisms
driven by input from other areas (glutamatergic), as well as
by interneurons (cholinergic), which might exert considerable
impact on it.

FIGURE 1 | Termino-terminal control of dopamine (DA) release in the
striatum. Model diagram of glutamatergic (left side of graph) and cholinergic
(right side of graph) local influences on striatal DA release. Electrically-evoked
glutamate release activates mGluRs located on dopaminergic varicosities
increasing Ca++-sensitive K channels (KCa) conductance, which leads to
reduction of DA release. Activation of iGluRs on MSNs elevates production of

H2O2, which diffuses to DA varicosities enhancing ATP-sensitive K channels
(KATP) conductance reducing DA release. Optogenetic selective activation of
cholinergic interneurons (CINs) through channelrhodopsin (ChR2) triggers ACh
release, increasing nAChR activation on DA varicosities, triggering DA release.
Activation of mAChRs on cholinergic terminals decreases ACh release and
further nAChR activation, which would result in decreased DA release.
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CONCLUDING REMARKS
The role of DA in essential behaviors such as reward-seeking,
motivation and motor control has been extensively studied. Reg-
ulation of DA release at both the dorso-lateral striatum and the
NAc is considered to be mainly the consequence of changes in
firing rate at the level of DA somata in the SNc and the VTA,
correspondingly. Local control at the level of the striatum has
been traditionally linked to DA reuptake and to feedback control
on DA release through activation of D2 autoreceptors. However,
reports on termino-terminal control of DA release, although
scarce decades ago provided key findings in understanding a
more complex control system than the one defined just by firing
rate at DA neuronal somata. To date, the influence of non-DA
striatal terminals on striatal DA release has been explored in a
variety of experimental conditions, including synaptosomes, in
vitro slices and in vivo preparations. Not only pharmacological,
but genetic, optogenetic, electrophysiological and electrochemical
strategies have been used to unveil the localization, role, extent
and functional impact of such local influences. Glutamatergic and
cholinergic systems have attracted the most attention so far. Still,
although highly characterized in terms of types of receptors and
neurotransmitters involved, there is not enough evidence on the
functional impact of these forms of regulation in the behavioral
setting. CINs modify their firing rate in animals subject to behav-
ioral tasks encoding reward delivery as a decrease in firing rate,
following a mild increase in frequency of firing (Apicella et al.,
1991, 2011; Aosaki et al., 1994; Shimo and Hikosaka, 2001; Morris
et al., 2004). Also, a recent report shows a differential role of
DA neurons modulating CINs firing in dorsal striatum and NAc
(Chuhma et al., 2014). However, there is no clarity as to how
prominent all those interactions are in terms of their ability to
affect DA release, and even less is known about the role of such
variations, if they might impact behavior, or if DA transmission is
otherwise still VTA- and SNc-driven.

One of the main strategies to fully develop yet is the poten-
tial of targeting these modulation systems to affect striatal DA
release in conditions such as Parkinson’s disease, schizophrenia,
addiction, Huntington’s disease, in which DA levels have been
reported to be altered. As already outlined by Threlfell and
Cragg (2011), modulating the striatal cholinergic system through
subunit-specific modulation of nAChR and mAChR promises to
be a useful approach. Temporal dynamics are a critical feature of
inter-neuronal transmission. Behavioral events have, for example,
phasic changes in striatal DA levels as correlates in the limbic and
motor areas (O’Neill and Fillenz, 1985; Schultz, 2007a,b; Joshua
et al., 2009). A significant proportion of therapeutic strategies are
based on ligands that exert a sustained effect on neurotransmitter
receptors, cancelling such changes over time. While DA neuron
somata drive phasic changes in DA release, termino-terminal
control might be seen as a mechanism that allows for fine regu-
lation over that main drive, still preserving most of the temporal
dynamics.
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